LT1638CS8 [Linear]

1.2MHz, 0.4V/us Over-The-TopTM Micropower Rail-to-Rail Input and Output Op Amps; 1.2MHz的, 0.4V / us的过度的TopTM微功耗轨至轨输入和输出运算放大器
LT1638CS8
型号: LT1638CS8
厂家: Linear    Linear
描述:

1.2MHz, 0.4V/us Over-The-TopTM Micropower Rail-to-Rail Input and Output Op Amps
1.2MHz的, 0.4V / us的过度的TopTM微功耗轨至轨输入和输出运算放大器

运算放大器
文件: 总12页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1638/LT1639  
1.2MHz, 0.4V/µs  
Over-The-TopTM Micropower  
Rail-to-Rail Input and Output  
Op Amps  
U
FEATURES  
DESCRIPTION  
The LT®1638 is a low power dual rail-to-rail input and output  
operationalamplifieravailableinthestandard8-pinPDIPand  
SO packages as well as the 8-lead MSOP package. The  
LT1639 is a low power quad rail-to-rail input and output  
operational amplifier offered on the standard 14-pin PDIP  
and surface mount packages.  
Operates with Inputs Above V+  
Rail-to-Rail Input and Output  
Low Power: 230µA per Amplifier Max  
Gain Bandwidth Product: 1.2MHz  
Slew Rate: 0.4V/µs  
High Output Current: 25mA Min  
Specified on 3V, 5V and ±15V Supplies  
Reverse Battery Protection to 18V  
No Supply Sequencing Problems  
High Voltage Gain: 1500V/mV  
Single Supply Input Range: 0.4V to 44V  
High CMRR: 98dB  
The LT1638/LT1639 op amps operate on all single and  
split supplies with a total voltage of 2.5V to 44V drawing  
only 170µA of quiescent current per amplifier. These  
amplifiers are reverse battery protected and draw no  
current for reverse supply up to 18V.  
The input range of the LT1638/LT1639 includes both  
supplies,andauniquefeatureofthisdeviceisitscapability  
to operate over the top with either or both of its inputs  
above V+. The inputs handle 44V, both differential and  
common mode, independent of supply voltage. The input  
stage incorporates phase reversal protection to prevent  
falseoutputsfromoccurringevenwhentheinputsare22V  
below the negative supply. Protective resistors are  
included in the input leads so that current does not  
become excessive when the inputs are forced below the  
negativesupply.TheLT1638/LT1639candriveloadsupto  
25mAandstillmaintainrail-to-railcapability.Theopamps  
are unity-gain stable and drive all capacitive loads up to  
1000pF when optional output compensation is used.  
No Phase Reversal  
U
APPLICATIONS  
Battery- or Solar-Powered Systems  
Portable Instrumentation  
Sensor Conditioning  
Supply Current Sensing  
Battery Monitoring  
Micropower Active Filters  
4mA to 20mA Transmitters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Over-The-Top is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Output Voltage vs Input Voltage  
Over-The-Top Comparator with 100mV Hysteresis Centered at 0mV  
5V  
0V  
V
CC  
10k  
1M  
V1  
V
CC  
V
CC  
1M  
+
+
A
B
V0  
1/2 LT1638  
1/2 LT1638  
1M  
10k  
1M  
1638/39 TA01  
V2  
1638/39 TA02  
V
= 5V, V  
= 0V TO 44V, t = 27µs  
CM PD  
CC  
1
LT1638/LT1639  
W W  
U W  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Total Supply Voltage (V+ to V) .............................. 44V  
Input Differential Voltage ......................................... 44V  
Input Current ...................................................... ±25mA  
Output Short-Circuit Duration (Note 2) .........Continuous  
Operating Temperature Range ................ 40°C to 85°C  
Specified Temperature Range (Note 3) .. 40°C to 85°C  
Junction Temperature........................................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
TOP VIEW  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
1
2
3
4
8
7
6
5
OUT A  
–IN A  
+IN A  
V
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V+  
OUT B  
–IN B  
+IN B  
7 OUT B  
6 –IN B  
5 +IN B  
A
B
D
C
A
12 +IN D  
V
+
B
V
11  
V
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
+IN B  
–IN B  
OUT B  
10 +IN C  
S8 PACKAGE  
8-LEAD PLASTIC SO  
N8 PACKAGE  
8-LEAD PDIP  
9
8
– IN C  
OUT C  
TJMAX = 150°C, θJA = 250°C/ W (MS8)  
TJMAX = 150°C, θJA = 130°C/ W (N8)  
JMAX = 150°C, θJA = 190°C/ W (S8)  
T
N PACKAGE  
S PACKAGE  
14-LEAD PDIP 14-LEAD PLASTIC SO  
ORDER PART NUMBER  
LT1638CMS8  
ORDER PART NUMBER  
TJMAX = 150°C, θJA = 110°C/ W (N)  
T
JMAX = 150°C, θJA = 150°C/ W (S)  
LT1638CN8  
LT1638CS8  
LT1638IS8  
LT1638IN8  
ORDER PART NUMBER  
MS8 PART MARKING  
S8 PART MARKING  
LT1639CN  
LT1639IN  
LT1639CS  
LT1639IS  
1638  
1638I  
LTCY  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
VS = 3V, 0V; VS = 5V, 0V; VCM = VOUT = half supply, TA = 25°C, unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
LT1638 N, S Packages  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
200  
600  
850  
950  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
LT1639 N, S Packages  
300  
350  
700  
950  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
1050  
A
LT1638C MS8 Package  
900  
1150  
1250  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
Input Offset Voltage Drift  
(Note 7)  
LT1638/LT1639 N, S Packages  
LT1638CMS8  
2
2.5  
6
7
µV/°C  
µV/°C  
I
Input Offset Current  
1
6
2.5  
nA  
µA  
OS  
V
= 44V (Note 4)  
CM  
2
LT1638/LT1639  
ELECTRICAL CHARACTERISTICS  
VS = 3V, 0V; VS = 5V, 0V; VCM = VOUT = half supply, TA = 25°C, unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Bias Current  
20  
8
0.1  
50  
30  
nA  
µA  
nA  
B
V
S
= 44V (Note 4)  
CM  
V = 0V  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
1
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
20  
0.3  
nV/Hz  
pA/Hz  
n
i
f = 1kHz  
n
R
Differential  
Common Mode, V = 0V to 44V  
1
1.4  
2.5  
5.5  
MΩ  
MΩ  
IN  
CM  
C
Input Capacitance  
5
pF  
V
IN  
Input Voltage Range  
0
44  
CMRR  
Common Mode Rejection Ratio  
V
CM  
V
CM  
= 0V to V – 1V  
88  
80  
98  
88  
dB  
dB  
CC  
= 0V to 44V (Note 8)  
A
Large-Signal Voltage Gain  
V = 3V, V = 500mV to 2.5V, R = 10k  
200  
133  
100  
1500  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
0°C T 70°C  
A
40°C T 85°C  
A
V = 5V, V = 500mV to 4.5V, R = 10k  
400  
250  
200  
1500  
V/mV  
V/mV  
V/mV  
S
O
L
0°C T 70°C  
A
40°C T 85°C  
A
V
V
Output Voltage Swing Low  
Output Voltage Swing High  
Short-Circuit Current (Note 2)  
V = 3V, No Load  
3
8
mV  
mV  
OL  
OH  
S
V = 3V, I  
= 5mA  
250  
450  
S
SINK  
V = 5V, No Load  
3
500  
8
700  
mV  
mV  
S
V = 5V, I  
S
= 10mA  
SINK  
V = 3V, No Load  
2.94  
2.25  
2.98  
2.40  
V
V
S
V = 3V, I  
= 5mA  
S
SOURCE  
V = 5V, No Load  
4.94  
3.8  
4.98  
4.0  
V
V
S
V = 5V, I  
S
= 10mA  
SOURCE  
I
V = 3V, Short to GND  
10  
15  
15  
25  
mA  
mA  
SC  
S
V = 3V, Short to V  
S
CC  
V = 5V, Short to GND  
15  
15  
20  
25  
mA  
mA  
S
V = 5V, Short to V  
S
CC  
PSRR  
Power Supply Rejection Ratio  
Reverse Supply Voltage  
V = 3V to 12.5V, V = V = 1V  
90  
18  
100  
27  
dB  
V
S
CM  
O
I = 100µA per Amplifier  
S
Minimum Operating Supply Voltage  
2.4  
170  
2.7  
V
I
Supply Current per Amplifier  
(Note 5)  
230  
275  
µA  
µA  
S
GBW  
SR  
Gain Bandwidth Product  
(Note 4)  
f = 1kHz  
650  
550  
500  
1075  
0.38  
kHz  
kHz  
kHz  
0°C T 70°C  
A
40°C T 85°C  
A
Slew Rate  
(Note 6)  
A = 1, R = ∞  
0.210  
0.185  
0.170  
V/µs  
V/µs  
V/µs  
V
L
0°C T 70°C  
A
40°C T 85°C  
A
3
LT1638/LT1639  
ELECTRICAL CHARACTERISTICS VS =  
±15V, VCM = 0V, VOUT = 0V, TA = 25°C, unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
LT1638 N, S Packages  
250  
800  
1000  
1100  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
LT1639 N, S Packages  
350  
400  
900  
1100  
1200  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
LT1638C MS8 Package  
1050  
1250  
1350  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
Input Offset Voltage Drift  
(Note 7)  
LT1638/LT1639 N, S Packages  
LT1638CMS8  
2
2.5  
6
7
µV/°C  
µV/°C  
I
I
Input Offset Current  
Input Bias Current  
1
20  
1
6
nA  
nA  
OS  
50  
B
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
0.1Hz to 10Hz  
f = 1kHz  
µV  
P-P  
e
20  
0.3  
nV/Hz  
pA/Hz  
n
i
n
f = 1kHz  
R
Differential  
Common Mode, V = 15V to 14V  
1
2.5  
500  
MΩ  
MΩ  
IN  
CM  
C
Input Capacitance  
4.5  
pF  
V
IN  
Input Voltage Range  
15  
80  
29  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= –15V to 29V  
88  
dB  
CM  
A
VOL  
V = ±14V, R = 10k  
200  
125  
100  
500  
V/mV  
V/mV  
V/mV  
O
L
0°C T 70°C  
A
40°C T 85°C  
A
V
OL  
Output Voltage Swing  
No Load  
14.9  
13.7  
14.95  
14.0  
V
V
I
= ±10mA  
OUT  
I
Short-Circuit Current (Note 2)  
Short to GND  
0°C T 70°C  
25  
20  
15  
40  
mA  
mA  
mA  
SC  
A
40°C T 85°C  
A
PSRR  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
V = ±1.5V to ±22V  
S
90  
100  
205  
dB  
I
280  
350  
µA  
µA  
S
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
f = 1kHz  
750  
650  
600  
1200  
0.4  
kHz  
kHz  
kHz  
0°C T 70°C  
A
40°C T 85°C  
A
A = 1, R = ∞, V = ±10V,  
0.225  
0.2  
0.18  
V/µs  
V/µs  
V/µs  
V
L
O
0°C T 70°C  
A
40°C T 85°C  
A
Note 4: V = 5V limits are guaranteed by correlation to V = 3V and  
The  
denotes specifications which apply over the full specified  
S
S
V = ±15V tests.  
S
temperature range.  
Note 5: V = 3V limits are guaranteed by correlation to V = 5V and  
Note 1: Absolute Maximum Ratings are those values beyond which the  
S
S
V = ±15V tests.  
S
life of a device may be impaired.  
Note 6: Guaranteed by correlation to slew rate at V = ±15V and GBW  
Note 2: A heat sink may be required to keep the junction temperature  
below absolute maximum. This depends on the power supply voltage  
and how many amplifiers are shorted.  
Note 3: The LT1638C/LT1639C are guaranteed to meet 0°C to 70°C  
specifications and are designed, characterized and expected to meet  
the extended temperature limits, but are not tested at 40°C and 85°C.  
The LT1638I/LT1639I are guaranteed to meet the extended  
temperature limits.  
S
at V = 3V and V = ±15V tests.  
S
S
Note 7: This parameter is not 100% tested.  
Note 8: The spec implies a typical offset voltage at V = 44 of 2mV and  
CM  
a maximum offset voltage at V = 44 of 5mV.  
CM  
4
LT1638/LT1639  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Bias Current vs  
Common Mode Voltage  
Supply Current vs Supply Voltage  
Minimum Supply Voltage  
400  
300  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
10000  
8000  
6000  
V
= 5V, 0V  
S
T
= 125°C  
A
200  
100  
T
= 25°C  
A
T
= –55°C  
A
60  
40  
0
T
= 25°C  
A
–100  
T
A
= –55°C  
20  
T
= –55°C  
T
= 125°C  
T
A
= 125°C  
A
A
–200  
–300  
T
= 25°C  
0
A
–20  
–40  
400  
0
1
2
3
4
5
0
5
10 15 20 25 30 35 40 45  
SUPPLY VOLTAGE (V)  
4.0  
4.4  
5.2  
5.6  
44  
4.8  
TOTAL SUPPLY VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
1638/39 G02  
1638/39 G01  
1638/39 G03  
Output Saturation Voltage vs  
Load Current (Output High)  
Output Saturation Voltage vs  
Load Current (Output Low)  
Output Saturation Voltage vs  
Input Overdrive  
1
1
100  
10  
1
V
= ±2.5V  
V
V
= ±2.5V  
OD  
V
V
= ±2.5V  
OD  
S
S
S
NO LOAD  
= 30mV  
= 30mV  
T
A
= 125°C  
OUTPUT HIGH  
0.1  
T
= 125°C  
A
T
A
= 25°C  
T
A
= 25°C  
0.1  
0.01  
OUTPUT LOW  
T
A
= –55°C  
T
= –55°C  
A
0.01  
0.001  
0.001  
0.01  
0.1  
1
10  
10 20  
40  
60 70 80 100  
90  
0.001  
0.01  
0.1  
1
10  
0
30  
50  
SOURCING LOAD CURRENT (mA)  
SINKING LOAD CURRENT (mA)  
INPUT OVERDRIVE (mV)  
1638/39 G04  
1638/39 G06  
1638/39 G05  
Noise Voltage Density vs  
Frequency  
Input Noise Current Density  
vs Frequency  
0.1Hz to 10Hz Noise Voltage  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
70  
60  
50  
40  
30  
20  
10  
0
V
= ±2.5  
S
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1k  
1
10  
100  
1k  
TIME (SEC)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1638/39 G08  
1638/39 G09  
1638/39 G07  
5
LT1638/LT1639  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Gain and Phase Shift vs  
Frequency  
Gain Bandwith Product vs  
Temperature  
Slew Rate vs Temperature  
100  
90  
80  
70  
60  
50  
40  
1500  
1400  
1300  
1200  
1100  
1000  
900  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
f = 1kHz  
V
= ±2.5V  
S
RISING, V = ±15V  
80  
S
PHASE  
70  
V
= ±15V  
RISING, V = ±2.5V  
S
S
60  
50  
30  
20  
GAIN  
40  
30  
20  
10  
0
FALLING, V = ±2.5V  
S
10  
0
FALLING, V = ±15V  
V
S
= ±2.5V  
S
–10  
–20  
800  
1
10  
100  
1000  
0
25  
50  
75 100 125  
–50  
0
25  
TEMPERATURE (°C)  
50  
75 100 125  
–50  
–25  
–25  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
1638/39 G12  
1638/39 G13  
1638/39 G14  
Gain Bandwidth Product and  
Phase Margin vs Supply Voltage  
Gain Bandwidth Product and  
Phase Margin vs Load Resistance  
PSRR vs Frequency  
1500  
1400  
1300  
1200  
1100  
1000  
60  
50  
40  
30  
20  
10  
1500  
1400  
1300  
1200  
1100  
1000  
900  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
A
= ±2.5V  
V
= ±2.5V  
S
V
F
S
= –1  
R = R = 100k  
G
f = 1kHz  
PHASE MARGIN  
PHASE MARGIN  
POSITIVE SUPPLY  
GAIN BANDWIDTH  
NEGATIVE SUPPLY  
GAIN BANDWIDTH  
PRODUCT  
800  
–10  
100  
–10  
1
10  
LOAD RESISTANCE (k)  
0
5
10 15 20 25 30  
35 40  
TOTAL SUPPLY VOLTAGE (V)  
45  
1
10  
100  
1000  
FREQUENCY (kHz)  
1638/39 G17  
1638/39 G16  
1638/39 G15  
CMRR vs Frequency  
Output Impedance vs Frequency  
Channel Separation vs Frequency  
120  
110  
100  
90  
130  
120  
110  
100  
90  
10k  
1k  
V
= ±15V  
V
= ±2.5V  
S
V
S
= ±15V  
S
A
V
= 10  
80  
100  
10  
A
V
= 100  
70  
60  
50  
A
V
= 1  
80  
40  
1
70  
30  
60  
0.1  
20  
0.1  
0.1  
1
10  
100  
1000  
1
10  
100  
1
10  
FREQUENCY (kHz)  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1638/39 G20  
1638/39 G18  
1638/39 G19  
6
LT1638/LT1639  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Settling Time to 0.1% vs  
Output Step  
Capacitive Load Handling,  
Undistorted Output Swing  
vs Frequency  
Overshoot vs Capacitive Load  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
8
35  
30  
25  
20  
15  
10  
5
V
= ±15V  
V
V
= 5V, 0V  
DISTORTION 1%  
L
S
S
V
S
= ±15V  
= 2.5V  
R = 20k  
CM  
A
= 1  
V
I
= 150µA  
SOURCE  
6
A
= –1  
V
4
2
0
A
= 5  
V
A
= 1  
–2  
–4  
–6  
–8  
–10  
V
A
= 10  
A
= –1  
25  
V
V
V
= ±2.5V  
S
A
= 1  
V
0
0
20  
30  
35  
10  
100  
1000  
10000  
5
10  
15  
0.1  
1
10  
100  
CAPACITIVE LOAD (pF)  
SETTLING TIME (µs)  
FREQUENCY (kHz)  
1638/39 G22  
1638/39 G23  
1638/39 G21  
Total Harmonic Distortion + Noise  
vs Frequency  
Total Harmonic Distortion + Noise  
vs Load Resistance  
Total Harmonic Distortion + Noise  
vs Output Voltage  
10  
1
10  
1
10  
1
V
A
V
= 3V TOTAL  
= 1  
R
CM  
= 10k, f = 1kHz  
V
V
V
= 3V, 0V  
S
V
L
S
V
= HALF SUPPLY  
= 2V  
OUT  
P-P  
= 2V AT 1kHz  
A = –1, V = ±1.5V  
= 1.2V  
IN  
P-P  
V
V
V
V
S
CM  
A
A
A
= –1, V = 3V, 0V  
R
L
= 20k  
S
= 1, V = ±1.5V  
S
= 1, V = 3V, 0V  
S
V
V
= ±1.5V  
= ±1V  
S
IN  
0.1  
0.1  
0.1  
V
V
= 3V, 0V  
IN  
S
= 0.5V TO 2.5V  
0.01  
0.001  
0.01  
0.01  
A
= –1  
= 1  
V
V
V
= 3V, 0V  
= 0.2V TO 2.2V  
A
S
IN  
V
0.001  
0.001  
0
1
2
3
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
OUTPUT VOLTAGE (V  
)
P-P  
FREQUENCY (Hz)  
LOAD RESISTANCE TO GROUND (k)  
1638/39 G26  
1638/39 G24  
1638/39 G25  
Open-Loop Gain  
Large-Signal Response  
Small-Signal Response  
V
= ±15V  
S
R = 2k  
L
R = 10k  
L
R = 50k  
L
VS = ±15V  
AV = 1  
V
S = ±15V  
AV = 1  
L = 15pF  
1638/39 G29  
1638/39 G28  
C
–20V  
–10V  
0V  
10V  
20V  
OUTPUT VOLTAGE (5V/DIV)  
1638/39 G27  
7
LT1638/LT1639  
U
W U U  
APPLICATIONS INFORMATION  
Supply Voltage  
The inputs are protected against excursions as much as  
22V below Vby an internal 1k resistor in series with each  
input and a diode from the input to the negative supply.  
TheinputstageoftheLT1638/LT1639incorporatesphase  
reversal protection to prevent the output from phase  
reversing for inputs up to 22V below V. There are no  
clamping diodes between the inputs and the maximum  
differential input voltage is 44V.  
The positive supply pin of the LT1638/LT1639 should be  
bypassedwithasmallcapacitor(typically0.1µF)withinan  
inch of the pin. When driving heavy loads an additional  
4.7µF electrolytic capacitor should be used. When using  
split supplies, the same is true for the negative supply pin.  
The LT1638/LT1639 are protected against reverse battery  
voltagesupto18V. Intheeventareversebatterycondition  
occurs, the supply current is less than 1nA.  
Output  
The LT1638/LT1639 can be shut down by removingV+. In  
this condition the input bias current is less than 0.1nA,  
even if the inputs are 44V above the negative supply.  
The output of the LT1638/LT1639 can swing within 20mV  
of the positive rail with no load, and within 3mV of the  
negative rail with no load. When monitoring voltages  
within 20mV of the positive rail or within 3mV of the  
negative rail, gain should be taken to keep the output from  
clipping. The LT1638/LT1639 are capable of sinking and  
sourcing over 40mA on ±15V supplies; sourcing current  
capability is reduced to 20mA at 5V total supplies as noted  
in the electrical characteristics.  
At temperatures greater than 70°C, when operating the  
LT1638/LT1639 on total supplies of 10V or more, the  
supply must not be brought up faster than 1V/µs. Increas-  
ing the bypass capacitor and/or adding a small resistor in  
series with the supply will limit the rise time.  
Inputs  
The LT1638/LT1639 are internally compensated to drive  
at least 200pF of capacitance under any output loading  
conditions. A 0.22µF capacitor in series with a 150Ω  
resistor between the output and ground will compensate  
these amplifiers for larger capacitive loads, up to 1000pF,  
at all output currents.  
The LT1638/LT1639 have two input stages, NPN and PNP  
(see the Simplified Schematic), resulting in three distinct  
operating regions as shown in the Input Bias Current vs  
Common Mode typical performance curve.  
For input voltages about 0.8V or more below V+, the PNP  
input stage is active and the input bias current is typically  
20nA. When the input common mode voltage is within  
0.5Vofthepositiverail, theNPNstageisoperatingandthe  
input bias current is typically 40nA. Increases in tempera-  
ture will cause the voltage at which operation switches  
from the PNP input stage to the NPN input stage to move  
towards V+. The input offset voltage of the NPN stage is  
untrimmed and is typically 600µV.  
Distortion  
There are two main contributors of distortion in op amps:  
output crossover distortion as the output transitions from  
sourcing to sinking current and distortion caused by non-  
linear common mode rejection. If the op amp is operating  
inverting there is no common mode induced distortion. If  
theopampisoperatinginthePNPinputstage(inputisnot  
within 0.8V of V+), the CMRR is very good, typically 98dB.  
When the LT1638 switches between input stages there is  
significant nonlinearity in the CMRR. Lower load resis-  
tance increases the output crossover distortion, but has  
no effect on the input stage transition distortion. For low-  
estdistortiontheLT1638/LT1639shouldbeoperatedsingle  
supply, with the output always sourcing current and with  
the input voltage swing between ground and (V+ – 0.8V).  
See the Typical Performance Characteristics curves.  
A Schottky diode in the collector of each NPN transistor  
allow the LT1638/LT1639 to operate over the top, with  
either or both of its inputs above V+. At about 0.3V above  
V+ the NPN input transistor is fully saturated and the input  
bias current is typically 8µA at room temperature. The  
inputoffsetvoltageistypically2mVwhenoperatingabove  
V+. The LT1638/LT1639 will operate with its inputs 44V  
above Vregardless of V+.  
8
LT1638/LT1639  
U
W U U  
APPLICATIONS INFORMATION  
Gain  
mance in single supply applications where the load is  
returned to ground. The typical performance curve of  
Open-Loop Gain for various loads shows the details.  
The open-loop gain is almost independent of load when  
the output is sourcing current. This optimizes perfor-  
U
TYPICAL APPLICATIONS  
V
CC  
With 1.2MHz bandwidth, Over-The-Top capability, re-  
verse-battery protection and rail-to-rail input and output  
features, the LT1638/LT1639 are ideal candidates for  
general purpose applications.  
R5  
100k  
+
1/4 LT1639  
LT1634-1.2V  
The lowpass slope limiting filter in Figure 1 limits the  
maximum dV/dT (not frequency) that it passes. When the  
input signal differs from the output by one forward diode  
drop, D1 or D2 will turn on. With a diode on, the voltage  
across R2 will be constant and a fixed current, VDIODE/R2,  
will flow through capacitor C1, charging it linearly instead  
of exponentially. The maximum slope that the circuit will  
pass is equal to VDIODE divided by (R2)(C1). No matter  
how fast the input changes the output will never change  
any faster than the dV/dT set by the diodes and (R2)(C).  
D1  
D2  
R3  
100k  
R1  
1k  
V
OUT  
1/4 LT1639  
R2  
V
IN  
+
C1  
R4  
100k  
LT1634-1.2V  
D4  
D3  
D1  
+
1/4 LT1639  
D2  
FOR R2 = 50k, C1 = 500pF,  
MAXIMUM SLOPE = 0.048V/µs  
R6  
100k  
R1  
R2  
d
dt  
1.2V  
(R2)(C1)  
1638/39 F02  
V
+
V
OUT  
=
IN  
V
EE  
C1  
V
1/2 LT1638  
OUT  
V
d
dt  
D
V
=
OUT(MAX)  
(R2)(C1)  
FOR R1 = 10k, R2 = 100k, C1 = 1000pF  
d
V
= 0.006V/µs  
1638/39 F01  
OUT(MAX)  
Response of Slope Limiting Filter  
dt  
Figure 1. Lowpass Slope Limiting Filter  
VOUT  
A modification of this application is shown in Figure 2  
using references instead of diodes to set the maximum  
slope. By using references, the slope is independent of  
temperature. A scope photo shows a 1VP-P, 2kHz input  
signal with a 2V pulse added to the sine wave; the circuit  
passes the 2kHz signal but limits the slope of the pulse.  
VIN  
1638/39 TA02  
The application in Figure 3 utilizes the Over-The-Top  
capabilities of the LT1638. The 0.2resistor senses the  
load current while the op amp and NPN transistor form a  
closed loop making the collector current of Q1  
Figure 2. Lowpass Slope Limiting Filter with 0TC  
9
LT1638/LT1639  
U
TYPICAL APPLICATIONS  
proportional to the load current. As a convenient monitor,  
the2kloadresistorconvertsthecurrentintoavoltage.The  
positive supply rail, V+, is not limited to the 5V supply of  
the op amp and could be as high as 44V.  
The Figure 4 application uses the LT1638 in conjunction  
with the LT1634 micropower shunt reference. The supply  
current of the op amp also biases the reference. The drop  
across resistor R1 is fixed at 1.2V generating an output  
current equal to 1.2V/R1.  
+
V
200Ω  
V
CC  
V
CC  
LT1634-1.2  
R1  
5V  
0.2Ω  
+
Q1  
1/2 LT1638  
+
2N3904  
200Ω  
1.2V  
R1  
0V TO 4.3V  
1/2 LT1638  
I
=
OUT  
2k  
I
LOAD  
LOAD  
I
OUT  
1638/39 F03  
V
= (2)(I )  
LOAD  
OUT  
1638/39 F04  
Figure 3. Positive Supply Rail Current Sense  
Figure 4. Current Source  
W
W
SI PLIFIED SCHE ATIC  
+
V
Q2  
Q1  
Q3  
Q22  
D1  
D2  
D3  
R1  
R2  
1k  
6k  
Q19  
Q4  
IN  
+IN  
Q17  
Q18  
Q20  
OUT  
Q7  
Q8  
Q11 Q12  
R3  
1k  
+
Q16  
10µA  
Q15  
Q9  
Q10  
Q13  
Q14  
Q21  
R4  
8k  
R5  
8k  
Q5  
Q6  
D4  
D5  
V
ONE AMPLIFIER  
1638/39 SS  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
0.118 ± 0.004**  
(3.00 ± 0.102)  
SEATING  
PLANE  
0.192 ± 0.004  
(4.88 ± 0.10)  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
0.0256  
(0.65)  
TYP  
MSOP (MS8) 1197  
1
2
3
4
*
DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
10  
LT1638/LT1639  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
4
3
0.325  
N8 1197  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
+0.889  
8.255  
(
)
(0.457 ± 0.076)  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
N Package  
14-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
0.130 ± 0.005  
(3.302 ± 0.127)  
(1.143 – 1.651)  
14  
13  
12  
11  
10  
9
8
7
0.020  
(0.508)  
MIN  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
1
2
3
5
6
4
0.325  
0.005  
(0.125)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
–0.015  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
N14 1197  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S Package  
14-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.337 – 0.344*  
(8.560 – 8.738)  
0.010 – 0.020  
14  
13  
12  
11  
10  
9
8
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
(0.254 – 0.508)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.228 – 0.244  
(5.791 – 6.197)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
S14 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
5
6
7
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1638/LT1639  
U
TYPICAL APPLICATION  
The battery monitor in Figure 5 also demonstrates the  
LT1638’s ability to operate with its inputs above the  
positive rail. In this application, a conventional amplifier  
would be limited to a battery voltage between 5V and  
ground, but the LT1638 can handle battery voltages as  
high as 44V. When the battery is charging, Amp B senses  
the voltage drop across RS. The output of Amp B causes  
Q2 to drain sufficient current through RB to balance the  
input of Amp B. Likewise, Amp A and Q1 form a closed  
loopwhenthebatteryisdischarging. Thecurrentthrough  
Q1 or Q2 is proportional to the current in RS and this  
currentflowsintoRG andisconvertedintoavoltage. Amp  
D buffers and amplifies the voltage across RG. Amp C  
compares the output of Amp A and Amp B to determine  
the polarity of current through RS. The scale factor for  
VOUT withS1openis1V/A. WithS1closedthescalefactor  
is 1V/100mA and currents as low as 500µA can be  
measured.  
R , 0.2Ω  
R , 2k  
S
A
Q1  
2N3904  
CHARGER  
VOLTAGE  
+
A
+
1/4 LT1639  
R
A
2k  
',  
I
BATT  
C
LOGIC  
1/4 LT1639  
R , 2k  
B
Q2  
2N3904  
LOGIC HIGH (5V) = CHARGING  
+
LOGIC LOW (0V) = DISCHARGING  
B
1/4 LT1639  
R
, 2k  
'
B
+
+
LOAD  
D
R
G
V
OUT  
1/4 LT1639  
V
= 12V  
10k  
BATT  
S1  
10k  
90.9k  
1638/39 F05  
V
V
OUT  
OUT  
S1 = OPEN, GAIN = 1  
S1 = CLOSED, GAIN = 10  
R
S
= R  
A
B
I
=
=
AMPS  
BATT  
V
= 5V, 0V  
(R )(R /R )(GAIN) GAIN  
S
G
A
Figure 5. Battery Monitor  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Input/Output Common Mode Includes Ground, 70µV V  
and 2.5µV/°C Drift (Max), 200kHz GBW, 0.07V/µs Slew Rate  
LT1078/LT1079  
LT2078/LT2079  
Dual/Quad 55µA Max, Single Supply, Precision Op Amps  
Dual/Quad 17µA Max, Single Supply, Precison Op Amps  
Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps  
OS(MAX)  
LT1178/LT1179  
LT2178/LT2179  
Input/Output Common Mode Includes Ground, 70µV V  
and 4µV/°C Drift (Max), 85kHz GBW, 0.04V/µs Slew Rate  
OS(MAX)  
LT1366/LT1367  
LT1490/LT1491  
475µV V , 500V/mV A , 400kHz GBW  
OS(MAX)  
VOL(MIN)  
Dual/Quad Over-The-Top Micropower, Rail-to-Rail Input and  
Output Op Amps  
Single Supply Input Range: 0.4V to 44V, Micropower 50µA  
per Amplifier, Rail-to-Rail Input and Output, 200kHz GBW  
LT1636  
Single Over-The-Top Micropower Rail-to-Rail Input and Output  
Op Amp  
55µA Supply Current, V  
Extends 44V above V ,  
CM EE  
Independent of V ; MSOP Package, Shutdown Function  
CC  
16389f LT/TP 1098 4K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
LINEAR TECHNOLOGY CORPORATION 1998  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1638CS8#PBF

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1638CS8#TR

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1638CS8#TRPBF

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1638HS8

1.2MHz, 0.4V/μs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps
Linear

LT1638HS8#PBF

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT1638HS8#TR

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT1638HS8#TRPBF

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: SO; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT1638IDD

1.2MHz, 0.4V/μs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps
Linear

LT1638IDD#TRPBF

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1638IMS8

1.2MHz, 0.4V/μs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps
Linear

LT1638IMS8#PBF

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1638IMS8#TR

LT1638 - 1.2MHz, 0.4V/µs Over-The-Top Micropower Rail-to-Rail Input and Output Op Amps; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear