LT1677IS8#PBF [Linear]

暂无描述;
LT1677IS8#PBF
型号: LT1677IS8#PBF
厂家: Linear    Linear
描述:

暂无描述

运算放大器
文件: 总20页 (文件大小:540K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1677  
Low Noise, Rail-to-Rail  
Precision Op Amp  
U
FEATURES  
DESCRIPTIO  
The LT®1677 features the lowest noise performance avail-  
able for a rail-to-rail operational amplifier: 3.2nV/Hz  
wideband noise, 1/f corner frequency of 13Hz and 90nV  
peak-to-peak 0.1Hz to 10Hz noise. Low noise is combined  
with outstanding precision: 20µV offset voltage and  
0.2µV/°C drift, 130dB common mode and power supply  
rejection and 7.2MHz gain bandwidth product. The com-  
mon mode range exceeds the power supply by 100mV.  
Rail-to-Rail Input and Output  
100% Tested Low Voltage Noise:  
3.2nV/Hz Typ at 1kHz  
4.5nV/Hz Max at 1kHz  
Offset Voltage: 60µV Max  
Low VOS Drift: 0.2µV/°C Typ  
Low Input Bias Current: 20nA Max  
Wide Supply Range: 3V to ±18V  
High AVOL: 7V/µV Min, RL = 10k  
The voltage gain of the LT1677 is extremely high, 19 million  
(typical) driving a 10k load.  
High CMRR: 109dB Min  
High PSRR: 108dB Min  
In the design, processing and testing of the device, particular  
attention has been paid to the optimization of the entire  
distribution of several key parameters. Consequently, the  
specifications have been spectacularly improved compared  
to competing rail-to-rail amplifiers.  
Gain Bandwidth Product: 7.2MHz  
Slew Rate: 2.5V/µs  
Operating Temperature Range: 40°C to 85°C  
U
APPLICATIO S  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Low Noise Signal Processing  
Microvolt Accuracy Threshold Detection  
Strain Gauge Amplifiers  
Tape Head Preamplifiers  
Direct Coupled Audio Gain Stages  
Infrared Detectors  
Battery-Powered Microphones  
U
TYPICAL APPLICATIO  
Distribution of Offset Voltage  
25  
T
= 25°C  
= ±15V  
A
S
3V Electret Microphone Amplifier  
V
20  
15  
A
= –100  
R3  
V
1.5V  
1M  
C1  
R1  
10k  
1.5V  
7
R2  
10k  
0.68µF  
TO PA  
OR  
PANASONIC  
ELECTRET  
CONDENSER  
+
2
3
HEADPHONES  
10  
5
6
MICROPHONE  
WM-61  
www.panasonic.com/pic  
(714) 373-7334  
LT1677  
4
23Hz  
HIGHPASS  
1677 TA01  
–1.5V  
0
0
–40 –30 –20 –10  
10 20 30 40  
INPUT OFFSET VOLTAGE (µV)  
1677 TA02  
1677fa  
1
LT1677  
W W U W  
U W  
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
V
V
OS  
TRIM  
Supply Voltage ...................................................... ±22V  
Input Voltages (Note 2) ............ 0.3V Beyond Either Rail  
Differential Input Current (Note 2) ..................... ± 25mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
Operating Temperature Range  
LT1677C (Note 4) ............................. 40°C to 85°C  
LT1677I ............................................. 40°C to 85°C  
Specified Temperature Range  
OS  
1
2
3
4
8
7
6
5
TRIM  
–IN  
+
+V  
S
OUT  
NC  
+IN  
–V  
S
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 150°C/ W (N8)  
TJMAX = 150°C, θJA = 190°C/ W (S0-8)  
S8 PART MARKING  
ORDER PART NUMBER  
LT1677CS8  
LT1677IS8  
LT1677CN8  
LT1677IN8  
1677  
1677I  
LT1677C (Note 5) ............................. 40°C to 85°C  
LT1677I ............................................. 40°C to 85°C  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
S
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 3V, V = V = 1.7V; V = 5V, V = V = 2.5V unless otherwise noted.  
A
CM  
O
S
CM  
O
SYMBOL  
PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage (Note 11)  
35  
55  
75  
90  
150  
210  
µV  
µV  
µV  
OS  
0°C T 70°C  
A
40°C T 85°C  
A
V
V
V
= V + 0.1V  
150  
180  
200  
400  
550  
650  
µV  
µV  
µV  
CM  
CM  
CM  
S
= V – 0.2V, 0°C T 70°C  
S
A
= V – 0.3V, 40°C T 85°C  
S
A
V
V
V
= 0.1V  
1.5  
1.8  
2.0  
5.0  
6.0  
6.5  
mV  
mV  
mV  
CM  
CM  
CM  
= 0V, 0°C T 70°C  
A
= 0V, 40°C T 85°C  
A
V  
Average Input Offset Drift (Note 10)  
Long Term Input Voltage Stability  
Input Bias Current (Note 11)  
SO-8  
N8  
0.40  
0.20  
2.0  
1.5  
µV/°C  
µV/°C  
OS  
Temp  
V  
Time  
0.3  
µV/Mo  
OS  
I
±2  
±3  
±7  
± 20  
± 35  
± 50  
nA  
nA  
nA  
B
0°C T 70°C  
40°C T 85°C  
A
A
V
V
V
= V + 0.1V  
0.19  
0.19  
0.25  
0.40  
0.60  
0.75  
µA  
µA  
µA  
CM  
CM  
CM  
S
= V – 0.2V, 0°C T 70°C  
S
A
= V – 0.3V, 40°C T 85°C  
S
A
V
V
V
= 0.1V  
1.2  
–2.0  
–2.3  
0.41  
0.45  
0.47  
µA  
µA  
µA  
CM  
CM  
CM  
= 0V, 0°C T 70°C  
A
= 0V, 40°C T 85°C  
A
I
Input Offset Current (Note 11)  
4
5
8
15  
20  
40  
nA  
nA  
nA  
OS  
0°C T 70°C  
A
40°C T 85°C  
A
V
V
V
= V + 0.1V  
6
10  
15  
30  
40  
65  
nA  
nA  
nA  
CM  
CM  
CM  
S
= V – 0.2V, 0°C T 70°C  
S
A
= V – 0.3V, 40°C T 85°C  
S
A
V
V
V
= 0.1V  
20  
25  
30  
100  
150  
160  
nA  
nA  
CM  
CM  
CM  
= 0V, 0°C T 70°C  
A
= 0V, 40°C T 85°C  
nA  
A
1677fa  
2
LT1677  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 3V, V = V = 1.7V; V = 5V, V = V = 2.5V unless  
A
S
CM  
O
S
CM  
O
SYMBOL PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
e
Input Noise Voltage  
0.1Hz to 10Hz (Note 7)  
90  
180  
600  
nV  
P-P  
nV  
P-P  
nV  
P-P  
n
V
V
= V  
= 0V  
CM  
CM  
S
Input Noise Voltage Density (Note 8)  
f = 10Hz  
5.2  
7
25  
nV/Hz  
nV/Hz  
nV/Hz  
O
V
V
= V , f = 10Hz  
= 0V, f = 10Hz  
CM  
CM  
S O  
O
f = 1kHz  
3.2  
5.3  
17  
4.5  
nV/Hz  
nV/Hz  
nV/Hz  
O
V
V
= V , f = 1kHz  
= 0V, f = 1kHz  
CM  
CM  
S O  
O
i
Input Noise Current Density  
Input Voltage Range  
f = 10Hz  
f = 1kHz  
O
1.2  
0.3  
pA/Hz  
pA/Hz  
n
O
V
0.1  
0
0
V + 0.1V  
V
V
V
CM  
S
0°C T 70°C  
V – 0.2V  
A
S
–40°C T 85°C  
V – 0.3V  
S
A
R
IN  
Input Resistance  
Common Mode  
2
GΩ  
C
Input Capacitance  
4.2  
pF  
IN  
CMRR  
Common Mode Rejection Ratio (Note 11)  
V = 3V  
S
V
V
= –0.1V to 3.1V  
= 0V to 2.7V  
55  
53  
68  
67  
dB  
dB  
CM  
CM  
V = 5V  
S
V
V
= –0.1V to 5.1V  
= 0V to 4.7V  
60  
58  
73  
72  
dB  
dB  
CM  
CM  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = 2.7V to 40V, V = V = 1.7V  
108  
105  
125  
120  
dB  
dB  
S
CM  
O
V = 3.1V to 40V, V = V = 1.7V  
S
CM  
O
A
V = 3V, R 10k, V = 2.5V to 0.7V  
0.6  
0.4  
0.4  
4
3
3
V/µV  
V/µV  
V/µV  
VOL  
S
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
V = 3V, R 2k, V = 2.2V to 0.7V  
0.5  
0.4  
0.4  
1
0.9  
0.8  
V/µV  
V/µV  
V/µV  
S
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
V = 3V, R 600, V = 2.2V to 0.7V  
0.20  
0.15  
0.10  
0.43  
0.40  
0.35  
V/µV  
V/µV  
V/µV  
S
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
V = 5V, R 10k, V = 4.5V to 0.7V  
0.8  
0.7  
0.7  
5
4
4
V/µV  
V/µV  
V/µV  
S
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
V = 5V, R 2k, V = 4.2V to 0.7V  
0.40  
0.35  
0.25  
0.9  
0.8  
0.6  
V/µV  
V/µV  
V/µV  
S
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
V = 5V, R 600, V = 4.2V to 0.7V  
0.35  
0.30  
0.20  
0.67  
0.60  
0.45  
V/µV  
V/µV  
V/µV  
S
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
1677fa  
3
LT1677  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 3V, V = V = 1.7V; V = 5V, V = V = 2.5V unless  
A
S
CM  
O
S
CM  
O
otherwise noted.  
SYMBOL PARAMETER  
V
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
Output Voltage Swing Low (Note 11)  
Output Voltage Swing High (Note 11)  
Output Short-Circuit Current (Note 3)  
Above GND  
OL  
I
= 0.1mA  
110  
125  
130  
170  
200  
230  
mV  
mV  
mV  
SINK  
0°C T 70°C  
A
40°C T 85°C  
A
Above GND  
I
= 2.5mA  
170  
195  
205  
250  
320  
350  
mV  
mV  
mV  
SINK  
0°C T 70°C  
A
40°C T 85°C  
A
Above GND  
I
= 10mA  
370  
440  
465  
500  
600  
650  
mV  
mV  
mV  
SINK  
0°C T 70°C  
A
40°C T 85°C  
A
V
Below V  
OH  
S
I
= 0.1mA  
75  
85  
93  
170  
200  
250  
mV  
mV  
mV  
SOURCE  
0°C T 70°C  
A
40°C T 85°C  
A
Below V  
S
I
= 2.5mA  
170  
195  
205  
300  
350  
375  
mV  
mV  
mV  
SOURCE  
0°C T 70°C  
A
40°C T 85°C  
A
Below V  
S
I
= 10mA  
450  
510  
525  
700  
800  
850  
mV  
mV  
mV  
SOURCE  
0°C T 70°C  
A
40°C T 85°C  
A
I
V = 3V  
15  
14  
13  
22  
20  
19  
mA  
mA  
mA  
SC  
S
0°C T 70°C  
A
40°C T 85°C  
A
V = 5V  
20  
18  
17  
29  
27  
25  
mA  
mA  
mA  
S
0°C T 70°C  
A
40°C T 85°C  
A
SR  
Slew Rate (Note 13)  
A = 1  
1.7  
1.5  
1.2  
2.5  
2.3  
2.0  
V/µs  
V/µs  
V/µs  
V
R 10k, 0°C T 70°C  
L
A
R 10k, 40°C T 85°C  
L
A
GBW  
Gain Bandwidth Product (Note 11)  
Settling Time  
f = 100kHz  
4.5  
3.8  
3.7  
7.2  
6.2  
5.8  
MHz  
MHz  
MHz  
O
f = 100kHz, 0°C T 70°C  
O
A
f = 100kHz, 40°C T 85°C  
O
A
t
2V Step 0.1%, A = +1  
2V Step 0.01%, A = +1  
2.1  
3.5  
µs  
µs  
S
V
V
R
Open-Loop Output Resistance  
Closed-Loop Output Resistance  
I
= 0  
OUT  
V
80  
1
O
A = 100, f = 10kHz  
I
Supply Current (Note 12)  
2.60  
2.75  
2.80  
3.4  
3.7  
3.8  
mA  
mA  
mA  
S
0°C T 70°C  
A
40°C T 85°C  
A
1677fa  
4
LT1677  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = ±15V, V = V = 0V unless otherwise noted.  
A
S
CM  
O
SYMBOL  
PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
20  
30  
45  
60  
120  
180  
µV  
µV  
µV  
OS  
0°C T 70°C  
A
40°C T 85°C  
A
V
V
V
= 15.1V  
= 14.8V, 0°C T 70°C  
= 14.7V, 40°C T 85°C  
150  
180  
200  
400  
550  
650  
µV  
µV  
µV  
CM  
CM  
CM  
A
A
V
V
V
= 15.1V  
= –15V, 0°C T 70°C  
= –15V, 40°C T 85°C  
1.5  
1.8  
2.0  
5.0  
6.0  
6.5  
mV  
mV  
mV  
CM  
CM  
CM  
A
A
V  
Temp  
V  
Time  
Average Input Offset Drift (Note 10)  
Long Term Input Voltage Stability  
Input Bias Current  
SO-8  
N8  
0.40  
0.20  
2.0  
1.5  
µV/°C  
µV/°C  
OS  
0.3  
µV/Mo  
OS  
I
±2  
±3  
±7  
± 20  
± 35  
± 50  
nA  
nA  
nA  
B
0°C T 70°C  
40°C T 85°C  
A
A
V
V
V
= 15.1V  
= 14.8V, 0°C T 70°C  
= 14.7V, 40°C T 85°C  
0.19  
0.20  
0.25  
0.40  
0.60  
0.75  
µA  
µA  
µA  
CM  
CM  
CM  
A
A
V
V
V
= –15.1V  
= –15V, 0°C T 70°C  
= –15V, 40°C T 85°C  
1.2  
–2.0  
–2.3  
0.42  
0.46  
0.48  
µA  
µA  
µA  
CM  
CM  
CM  
A
A
I
Input Offset Current  
3
5
8
15  
20  
40  
nA  
nA  
nA  
OS  
0°C T 70°C  
A
40°C T 85°C  
A
V
V
V
= 15.1V  
= 14.8V, 0°C T 70°C  
= 14.7V, 40°C T 85°C  
5
8
12  
25  
35  
60  
nA  
nA  
nA  
CM  
CM  
CM  
A
A
V
V
V
= –15.1V  
= –15V, 0°C T 70°C  
= –15V, 40°C T 85°C  
20  
25  
30  
105  
160  
170  
nA  
nA  
nA  
CM  
CM  
CM  
A
A
e
Input Noise Voltage  
0.1Hz to 10Hz (Note 7)  
90  
180  
600  
nV  
P-P  
nV  
P-P  
nV  
P-P  
n
V
V
= 15V  
= –15V  
CM  
CM  
Input Noise Voltage Density  
f = 10Hz  
5.2  
7
25  
nV/Hz  
nV/Hz  
nV/Hz  
O
V
V
= 15V, f = 10Hz  
= –15V, f = 10Hz  
CM  
CM  
O
O
f = 1kHz  
3.2  
5.3  
17  
4.5  
nV/Hz  
nV/Hz  
nV/Hz  
O
V
= 15V, f = 1kHz  
= –15V, f = 1kHz  
CM  
CM  
O
V
O
i
Input Noise Current Density  
Input Voltage Range  
f = 10Hz  
f = 1kHz  
O
1.2  
0.3  
pA/Hz  
pA/Hz  
n
O
V
15.1  
15.0  
15.0  
15.1  
14.8  
14.7  
V
V
V
CM  
0°C T 70°C  
A
–40°C T 85°C  
A
R
Input Resistance  
Input Capacitance  
Common Mode  
2
GΩ  
IN  
C
4.2  
pF  
IN  
1677fa  
5
LT1677  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = ± 15V, V = V = 0V unless otherwise noted.  
A
S
CM  
O
SYMBOL  
PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
CMRR  
Common Mode Rejection Ratio  
V
= –13.3V to 14V  
109  
105  
130  
124  
dB  
dB  
CM  
V
V
= –15.1V to 15.1V  
= –15V to 14.7V  
74  
72  
95  
91  
dB  
dB  
CM  
CM  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±1.7V to ±18V  
106  
103  
130  
125  
dB  
dB  
S
V = 2.7V to 40V  
V = 3.1V to 40V  
108  
105  
125  
120  
dB  
dB  
S
S
A
V
R 10k, V = ±14V  
7
4
3
19  
13  
8
V/µV  
V/µV  
V/µV  
VOL  
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
R 2k, V = ±13.5V  
0.50  
0.30  
0.15  
0.75  
0.67  
0.24  
V/µV  
V/µV  
V/µV  
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
R 600, V = ±10V  
0.2  
0.5  
V/µV  
L
O
Output Voltage Swing Low  
Above V  
OL  
S
I
= 0.1mA  
A
110  
125  
130  
170  
200  
230  
mV  
mV  
mV  
SINK  
0°C T 70°C  
40°C T 85°C  
A
Above V  
S
I
= 2.5mA  
170  
195  
205  
250  
320  
350  
mV  
mV  
mV  
SINK  
0°C T 70°C  
A
40°C T 85°C  
A
Above V  
S
I
= 10mA  
370  
440  
450  
500  
600  
650  
mV  
mV  
mV  
SINK  
0°C T 70°C  
A
40°C T 85°C  
A
V
Output Voltage Swing High  
Below +V  
S
OH  
I
= 0.1mA  
110  
130  
140  
170  
200  
250  
mV  
mV  
mV  
SOURCE  
0°C T 70°C  
A
40°C T 85°C  
A
Below +V  
S
I
= 2.5mA  
A
210  
240  
250  
300  
350  
375  
mV  
mV  
mV  
SOURCE  
0°C T 70°C  
40°C T 85°C  
A
Below +V  
S
I
= 10mA  
A
520  
590  
620  
700  
800  
850  
mV  
mV  
mV  
SOURCE  
0°C T 70°C  
40°C T 85°C  
A
I
Output Short-Circuit Current (Note 3)  
Slew Rate  
25  
20  
18  
35  
30  
28  
mA  
mA  
mA  
SC  
0°C T 70°C  
A
40°C T 85°C  
A
SR  
R 10k (Note 9)  
1.7  
1.5  
1.2  
2.5  
2.3  
2.0  
V/µs  
V/µs  
V/µs  
L
R 10k (Note 9) 0°C T 70°C  
L
A
R 10k (Note 9) 40°C T 85°C  
L
A
GBW  
Gain Bandwidth Product  
f = 100kHz  
4.5  
3.8  
3.7  
7.2  
6.2  
5.8  
MHz  
MHz  
MHz  
O
f = 100kHz, 0°C T 70°C  
O
A
f = 100kHz, 40°C T 85°C  
O
A
1677fa  
6
LT1677  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = ± 15V, V = V = 0V unless otherwise noted.  
A
S
CM  
O
SYMBOL  
PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
THD  
Total Harmonic Distortion  
Settling Time  
R = 2k, A = 1, f = 1kHz, V = 10V  
P-P  
0.0006  
%
L
V
O
O
t
10V Step 0.1%, A = +1  
5
6
µs  
µs  
S
V
10V Step 0.01%, A = +1  
V
R
O
Open-Loop Output Resistance  
Closed-Loop Output Resistance  
I
= 0  
OUT  
V
80  
1
A = 100, f = 10kHz  
I
Supply Current  
2.75  
3.00  
3.10  
3.5  
3.9  
4.0  
mA  
mA  
mA  
S
0°C T 70°C  
A
40°C T 85°C  
A
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low noise. If differential input  
voltage exceeds ±1.4V, the input current should be limited to 25mA. If the  
common mode range exceeds either rail, the input current should be  
limited to 10mA.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum.  
Note 4: The LT1677C and LT1677I are guaranteed functional over the  
Operating Temperature Range of 40°C to 85°C.  
Note 6: Typical parameters are defined as the 60% yield of parameter  
distributions of individual amplifier; i.e., out of 100 LT1677s, typically 60  
op amps will be better than the indicated specification.  
Note 7: See the test circuit and frequency response curve for 0.1Hz to  
10Hz tester in the Applications Information section of the LT1677 data  
sheet.  
Note 8: Noise is 100% tested at ±15V supplies.  
Note 9: Slew rate is measured in A = 1; input signal is ±7.5V, output  
V
measured at ±2.5V.  
Note 10: This parameter is not 100% tested. V = 3V and 5V limits are  
S
guaranteed by correlation to V = ±15V test.  
S
Note 11: V = 5V limits are guaranteed by correlation to V = 3V and  
S
S
V = ±15V tests.  
S
Note 5: The LT1677C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1677C is designed, characterized and expected to  
meet specified performance from 40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LT1677I is guaranteed to meet  
specified performance from 40°C to 85°C.  
Note 12: V = 3V limits are guaranteed by correlation to V = 5V and  
S
S
V = ±15V tests.  
S
Note 13: Guaranteed by correlation to slew rate at V = ±15V and GBW at  
S
V = 3V and V = ±15V tests.  
S
S
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Voltage Noise vs Frequency  
0.1Hz to 10Hz Voltage Noise  
0.01Hz to 1Hz Voltage Noise  
100  
10  
1
1/f CORNER 10Hz  
< –14.5V  
V
CM  
1/f CORNER 8.5Hz  
V
> 14.5V  
V
CM  
CM  
–13.5V TO 14.5V  
1/f CORNER 13Hz  
V
S
A
= ±15V  
= 25°C  
T
0
20  
40  
60  
80  
100  
0
2
4
6
8
10  
0.1  
1
10  
FREQUENCY (Hz)  
100  
1000  
TIME (SECONDS)  
TIME (SECONDS)  
1677 G01  
1677 G03  
1677 G04  
1677fa  
7
LT1677  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Input Bias Current  
vs Temperature  
Voltage Noise vs Temperature  
Current Noise vs Frequency  
10  
7
6
5
4
3
2
10  
9
8
7
6
5
4
3
2
1
0
V
T
= ±15V  
= 25°C  
V
= ±15V  
S
V
V
= ±15V  
CM  
S
A
S
V
= 0V  
CM  
= 0V  
10Hz  
1kHz  
V
< –13.5V  
CM  
1/f CORNER 180Hz  
1
V
CM  
–13.5V TO 14.5V  
1/f CORNER 90Hz  
1/f CORNER 60Hz  
100  
V
> 14.5V  
CM  
0.1  
10  
1000  
10000  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1677 G07  
1677 G08  
1677 G05  
Offset Voltage Shift  
vs Common Mode  
Input Bias Current  
vs Temperature  
Input Bias Current Over the  
Common Mode Range  
600  
500  
400  
300  
200  
100  
2.5  
2.0  
250  
800  
600  
V
= ±15V  
V
= ±15V  
= 25°C  
S
S
A
200  
150  
100  
50  
T
V
= –14V  
CM  
1.5  
V
IS REFERRED  
CM  
OS  
CURRENT OUT OF DUT  
400  
TO V = 0V  
1.0  
V
= –13.6V  
V
= 15.15V  
CM  
CM  
200  
0.5  
INPUT BIAS CURRENT  
= 14.3V  
0
0
0
V
CM  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–50  
–100  
–150  
–200  
–250  
–200  
–400  
–600  
–800  
V
= –15.3V  
CM  
V
= 14.7V  
CURRENT INTO DUT  
CM  
V
T
= ±1.5V TO ±15V  
= 25°C  
S
A
5 TYPICAL PARTS  
+
–1.0  
V
1.0 2.0 –0.8 –0.4  
V
0.4  
–50  
0
25  
50  
75 100 125  
–16 –12 –8 –4  
0
4
8
12 16  
–25  
+
TEMPERATURE (°C)  
COMMON MODE INPUT VOLTAGE (V)  
V
– V (V)  
V
– V (V)  
CM  
CM  
1677 G10  
1677 G06  
1677 G09  
Distribution of Input Offset  
Voltage Drift (N8)  
Distribution of Input Offset  
Voltage Drift (SO-8)  
Warm-Up Drift  
30  
25  
20  
15  
10  
5
10  
8
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
T
= ±15V  
V
T
= ±15V  
V
T
= ±15V  
= 25°C  
S
A
S
A
S
A
= –40°C TO 85°C  
= –40°C TO 85°C  
201 PARTS (5 LOTS)  
167 PARTS (4 LOTS)  
SO PACKAGE  
6
N PACKAGE  
4
2
0
0
0
–0.8  
0
0.4 0.8 1.2 1.6 2.0  
–0.4  
0.6  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
1.0  
1.4  
0
1
2
3
4
5
–1.0 –0.6 –0.2 0.2  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
TIME (MINUTES)  
1677 G37  
1677 G02  
1677 G13  
1677fa  
8
LT1677  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Common Mode Range  
vs Temperature  
Long-Term Stability of Four  
Representative Units  
V
vs Temperature of  
OS  
Representative Units  
140  
120  
100  
80  
5
4
2.5  
2.0  
250  
200  
150  
100  
50  
V
V
= ±15V  
V
S
= ±2.5V TO ±15V  
S
= 0V  
CM  
SO-8  
N8  
3
1.5  
125°C  
2
1.0  
25°C  
60  
–55°C  
1
0.5  
–55°C  
40  
0
0
0
20  
–1  
–2  
–3  
–4  
–5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–50  
–100  
–150  
–200  
–250  
0
V
IS REFERRED 125°C  
OS  
–20  
–40  
–60  
–80  
TO V = 0V  
CM  
25°C  
+
–55  
–35 –15  
5
25 45 65 85 105 125  
–1.0  
V
1.0 2.0 –0.8 –0.4  
V
0.4  
0
100 200 300 400 500 600 700 800 900  
TIME (HOURS)  
TEMPERATURE (°C)  
+
V
– V (V)  
V
– V (V)  
CM S  
CM  
S
1677 G11  
1677 G14  
1677 G12  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Supply Current vs Supply Voltage  
4
3
2
1
160  
160  
140  
120  
100  
V
T
= ±15V  
V
T
CM  
= ±15V  
S
A
S
A
V
= 25°C  
= 25°C  
140  
120  
100  
80  
= 0V  
T
= 125°C  
= 25°C  
A
T
A
NEGATIVE SUPPLY  
80  
60  
POSITIVE SUPPLY  
T
A
= –55°C  
60  
40  
20  
0
40  
20  
0
10  
100  
10k  
1
100k 1M  
1k  
0
±5  
±10  
±15  
±20  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
1677 G16  
1677 G17  
1677 G15  
Voltage Gain vs Supply Voltage  
(Single Supply)  
Voltage Gain vs Frequency  
Overshoot vs Load Capacitance  
100  
10  
180  
140  
100  
60  
60  
50  
40  
30  
20  
10  
0
T
R
V
= 25°C  
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
A
L
S
S
TO GND  
: V = V /2  
= 25°C  
A
A
R
= 10k TO 2k  
CM  
O
S
L
R
= 10k  
= 2k  
L
V
CM  
= 0V  
RISING  
EDGE  
V
CM  
= V  
V
= V  
EE  
CC  
CM  
R
L
1
FALLING  
EDGE  
20  
0.1  
–20  
0
10  
20  
30  
0.01  
1
100  
10k  
1M  
100M  
10  
100  
CAPACITANCE (pF)  
1000  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
1677 G21  
1677 G19  
1677 G18  
1677fa  
9
LT1677  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Large-Signal Transient Response  
Small-Signal Transient Response  
PM, GBWP, SR vs Temperature  
70  
60  
50  
3
V
C
= ±15V  
= 15pF  
S
L
PHASE  
50mV  
0
10V  
8
7
6
5
4
GBW  
10V  
50mV  
SLEW  
2
AVCL = 1  
S = ±15V  
5µs/DIV  
AVCL = 1  
VS = ±15V  
0.5µs/DIV  
V
CL = 15pF  
1
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
1677 G22  
Settling Time vs Output Step  
(Noninverting)  
Settling Time vs Output Step  
(Inverting)  
Gain, Phase Shift vs Frequency  
12  
10  
12  
10  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
V
V
C
= ±15V  
CM  
= 10pF  
0.01% OF  
FULL SCALE  
S
V
A
T
= ±15V  
= 1  
= 25°C  
S
V
A
2k  
5k  
+
5k  
= 0V  
V
IN  
V
L
OUT  
L
V
OUT  
2k  
+
V
125°C  
25°C  
55°C  
IN  
R
= 1k  
8
6
8
6
0.01% OF  
FULL SCALE  
0.1% OF  
FULL SCALE  
0.01% OF  
FULL SCALE  
0.01% OF  
FULL SCALE  
GAIN  
PHASE  
0.1% OF  
FULL SCALE  
4
2
0
4
2
0
0.1% OF  
FULL SCALE  
0.1% OF  
FULL SCALE  
V
A
= ±15V  
= –1  
= 25°C  
S
V
A
T
–10  
–20  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
0.1  
1
10  
100  
FREQUENCY (MHz)  
OUTPUT STEP (V)  
OUTPUT STEP (V)  
1677 G25  
1677 G26  
1677 G34  
Output Voltage Swing  
vs Load Current  
Gain, Phase Shift vs Frequency  
Gain, Phase Shift vs Frequency  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
+V – 0  
S
V
V
C
= ±15V  
CM  
= 10pF  
V
V
C
= ±15V  
CM  
= 10pF  
S
S
V = ±15V  
S
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
0.5  
= –14V  
= 14.7V  
–55°C  
125°C  
L
L
125°C  
25°C  
55°C  
125°C  
25°C  
55°C  
25°C  
PHASE  
GAIN  
GAIN  
PHASE  
125°C  
25°C  
0.4  
0.3  
0.2  
0.1  
–55°C  
–10  
–20  
–10  
–20  
–V + 0  
S
0.1  
1
10  
100  
0.1  
1
10  
100  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
I
I
FREQUENCY (MHz)  
SINK  
SOURCE  
FREQUENCY (MHz)  
OUTPUT CURRENT (mA)  
1677 G36  
1677 G35  
1677 G27  
1677fa  
10  
LT1677  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Total Harmonic Distortion and  
Noise vs Frequency for  
Noninverting Gain  
Output Short-Circuit Current  
vs Time  
Closed-Loop Output Impedance  
vs Frequency  
0.1  
0.01  
50  
40  
30  
20  
10  
100  
10  
V
= ±15V  
Z
= 2k/15pF  
S
L
–55°C  
V
V
A
= ±15V  
S
O
V
= 10V  
P-P  
= +1, +10, +100  
25°C  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
125°C  
1
A
= 100  
V
A
V
= +100  
–30  
–35  
–40  
–45  
–50  
0.1  
25°C  
0.001  
0.0001  
A
= 10  
V
125°C  
–55°C  
A
= +1  
V
0.01  
0.001  
A
= 1  
V
10  
100  
1k  
10k  
100k  
1M  
0
2
3
1
4
20  
100  
1k  
10k 20k  
TIME FROM OUTPUT SHORT TO GND (MIN)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1677 G29  
1677 G30  
1677 G28  
Total Harmonic Distortion and  
Noise vs Frequency for Inverting  
Gain  
Total Harmonic Distortion and  
Noise vs Output Amplitude for  
Noninverting Gain  
Total Harmonic Distortion and  
Noise vs Output Amplitude for  
Inverting Gain  
0.1  
0.01  
1
1
Z
= 2k/15pF  
= ±15V  
Z
L
= 2k/15pF  
= ±15V  
Z
= 2k/15pF  
L
S
L
V
f
V
V
V
A
= ±15V  
S
S
O
V
= 1kHz  
f
= 1kHz  
= 10V  
P-P  
= –1, –10, – 100  
O
O
A
= +1, +10, +100  
A
V
= –1, –10, –100  
V
0.1  
0.01  
0.1  
MEASUREMENT BANDWIDTH  
= 10Hz TO 22kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 22kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
A
V
= 100  
A
= –100  
V
A
V
= –100  
0.01  
A
V
= 10  
A = –10  
V
0.001  
0.0001  
A
= –10  
V
A
= –1  
A
= 1  
0.001  
0.001  
V
V
A
= –1  
100  
V
0.0001  
0.0001  
0.3  
1
10  
)
30  
0.3  
1
10  
)
30  
20  
1k  
10k 20k  
OUTPUT SWING (V  
OUTPUT SWING (V  
P-P  
P-P  
FREQUENCY (Hz)  
1677 G31  
1677 G32  
1677 G33  
1677fa  
11  
LT1677  
W U U  
U
APPLICATIO S I FOR ATIO  
General  
The adjustment range with a 10kpot is approximately  
±2.5mV. Iflessadjustmentrangeisneeded, thesensitiv-  
ityandresolutionofthenullingcanbeimprovedbyusing  
a smaller pot in conjunction with fixed resistors. The  
example has an approximate null range of ±200µV  
(Figure 3).  
The LT1677 series devices may be inserted directly into  
OP-07,OP-27,OP-37andsocketswithorwithoutremoval  
of external compensation or nulling components. In addi-  
tion, the LT1677 may be fitted to 741 sockets with the  
removal or modification of external nulling components.  
10k  
15V  
Rail-to-Rail Operation  
1
To take full advantage of an input range that can exceed  
the supply, the LT1677 is designed to eliminate phase  
reversal. ReferringtothephotographsshowninFigure1,  
the LT1677 is operating in the follower mode (AV = +1) at  
asingle3Vsupply. TheoutputoftheLT1677clipscleanly  
and recovers with no phase reversal. This has the benefit  
of preventing lock-up in servo systems and minimizing  
distortion components.  
2
3
8
7
6
OUTPUT  
LT1677  
INPUT  
+
4
–15V  
1677 F02  
Figure 2. Standard Adjustment  
1k  
Offset Voltage Adjustment  
15V  
4.7k  
The input offset voltage of the LT1677 and its drift with  
temperature are permanently trimmed at wafer  
testing to a low level. However, if further adjustment of  
VOS is necessary, the use of a 10knulling potentiometer  
will not degrade drift with temperature. Trimming to a  
value other than zero creates a drift of (VOS/300)µV/°C,  
e.g., if VOS is adjusted to 300µV, the change in drift will be  
1µV/°C (Figure 2).  
4.7k  
1
2
3
8
LT1677  
4
7
6
OUTPUT  
+
–15V  
1677 F03  
Figure 3. Improved Sensitivity Adjustment  
LT1677 Output  
Input = 0.5V to 3.5V  
3V  
2V  
1V  
0V  
3V  
2V  
1V  
0V  
0.5V  
0.5V  
1577 F01a  
1577 F01b  
Figure 1. Voltage Follower with Input Exceeding the Supply Voltage (V = 3V)  
S
1677fa  
12  
LT1677  
W U U  
APPLICATIO S I FOR ATIO  
U
Offset Voltage and Drift  
As with all operational amplifiers when RF > 2k, a pole will  
be created with RF and the amplifier’s input capacitance,  
creating additional phase shift and reducing the phase  
margin.Asmallcapacitor(20pFto50pF)inparallelwithRF  
will eliminate this problem.  
Thermocouple effects, caused by temperature gradients  
across dissimilar metals at the contacts to the input  
terminals, can exceed the inherent drift of the amplifier  
unless proper care is exercised. Air currents should be  
minimized, package leads should be short, the two input  
leadsshouldbeclosetogetherandmaintainedatthesame  
temperature.  
Noise Testing  
The 0.1Hz to 10Hz peak-to-peak noise of the LT1677 is  
measured in the test circuit shown (Figure 6a). The fre-  
quency response of this noise tester (Figure 6b) indicates  
that the 0.1Hz corner is defined by only one zero. The test  
time to measure 0.1Hz to 10Hz noise should not exceed  
ten seconds, as this time limit acts as an additional zero to  
eliminate noise contributions from the frequency band  
below 0.1Hz.  
Thecircuitshowntomeasureoffsetvoltageisalsousedas  
the burn-in configuration for the LT1677, with the supply  
voltages increased to ±20V (Figure 4).  
50k*  
15V  
2
7
Measuring the typical 90nV peak-to-peak noise perfor-  
mance of the LT1677 requires special test precautions:  
6
100* LT1677  
V
OUT  
+
3
V
= 1000V  
OS  
OUT  
4
1. The device should be warmed up for at least five  
minutes. As the op amp warms up, its offset voltage  
changes typically 3µV due to its chip temperature  
increasing 10°C to 20°C from the moment the power  
suppliesareturnedon. Intheten-secondmeasurement  
interval these temperature-induced effects can easily  
exceed tens of nanovolts.  
*RESISTORS MUST HAVE LOW  
THERMOELECTRIC POTENTIAL  
50k*  
–15V  
1677 F04  
Figure 4. Test Circuit for Offset Voltage and  
Offset Voltage Drift with Temperature  
Unity-Gain Buffer Application  
2. For similar reasons, the device must be well shielded  
from air currents to eliminate the possibility of  
thermoelectric effects in excess of a few nanovolts,  
which would invalidate the measurements.  
When RF 100and the input is driven with a fast, large-  
signal pulse (>1V), the output waveform will look as  
shown in the pulsed operation diagram (Figure 5).  
During the fast feedthrough-like portion of the output, the  
input protection diodes effectively short the output to the  
inputandacurrent, limitedonlybytheoutputshort-circuit  
protection, will be drawn by the signal generator. With  
RF 500, the output is capable of handling the current  
requirements (IL 20mA at 10V) and the amplifier stays  
in its active mode and a smooth transition will occur.  
3. Sudden motion in the vicinity of the device can also  
“feedthrough” to increase the observed noise.  
Current noise is measured in the circuit shown in Figure 7  
and calculated by the following formula:  
1/ 2  
2⎤  
2
)
130nV  
e
101  
(
)
(
no  
R
F
i =  
n
1M101  
(
)(  
)
2.5V/µs  
OUTPUT  
The LT1677 achieves its low noise, in part, by operating  
the input stage at 100µA versus the typical 10µA of most  
other op amps. Voltage noise is inversely proportional  
while current noise is directly proportional to the square  
1677fa  
+
LT1677  
1677 F05  
Figure 5. Pulsed Operation  
13  
LT1677  
W U U  
U
APPLICATIO S I FOR ATIO  
100  
90  
80  
70  
60  
50  
40  
30  
0.1µF  
100k  
10  
2k  
*
+
22µF  
LT1677  
SCOPE  
× 1  
IN  
4.3k  
+
LT1001  
4.7µF  
R
= 1M  
110k  
2.2µF  
VOLTAGE GAIN  
100k  
= 50,000  
0.1µF  
0.01  
0.1  
1
10  
100  
*DEVICE UNDER TEST  
NOTE: ALL CAPACITOR VALUES ARE FOR  
NONPOLARIZED CAPACITORS ONLY  
24.3k  
FREQUENCY (Hz)  
1677 F06a  
1677 F06b  
Figure 6b. 0.1Hz to 10Hz Peak-to-Peak  
Noise Tester Frequency Response  
Figure 6a. 0.1Hz to 10Hz Noise Test Circuit  
root of the input stage current. Therefore, the LT1677’s  
currentnoisewillberelativelyhigh.Atlowfrequencies,the  
low 1/f current noise corner frequency (90Hz) mini-  
mizes current noise to some extent.  
100k  
100Ω  
500k  
LT1677  
e
no  
500k  
+
In most practical applications, however, current noise will  
not limit system performance. This is illustrated in the  
Total Noise vs Source Resistance plot (Figure 8) where:  
1677 F07  
Figure 7  
Total Noise = [(op amp voltage noise)2 + (resistor noise)2  
+ (current noise RS)2]1/2  
Three regions can be identified as a function of source  
resistance:  
1000  
R
R
V
= ±15V  
= 25°C  
S
A
T
(i) RS 400. Voltage noise dominates  
SOURCE RESISTANCE = 2R  
100  
10  
1
(ii) 400Ω ≤ RS 50k at 1kHz  
400Ω ≤ RS 8k at 10Hz  
Resistor noise  
dominates  
AT 1kHz  
}
AT 10Hz  
(iii) RS > 50k at 1kHz  
RS > 8k at 10Hz  
Current noise  
dominates  
}
RESISTOR  
NOISE ONLY  
ClearlytheLT1677shouldnotbeusedinregion(iii),where  
total system noise is at least six times higher than the  
voltage noise of the op amp, i.e., the low voltage noise  
specification is completely wasted. In this region the  
LT1792 or LT1793 is the best choice.  
0.1  
1
10  
100  
SOURCE RESISTANCE (k)  
1677 F08  
Figure 8. Total Noise vs Source Resistance  
1677fa  
14  
LT1677  
W U U  
APPLICATIO S I FOR ATIO  
U
Rail-to-Rail Input  
Rail-to-Rail Output  
The LT1677 has the lowest voltage noise, offset voltage  
and highest gain when compared to any rail-to-rail op  
amp. The input common mode range for the LT1677 can  
exceed the supplies by at least 100mV. As the common  
mode voltage approaches the positive rail (+VS – 0.7V),  
the tail current for the input pair (Q1, Q2) is reduced,  
which prevents the input pair from saturating (refer to the  
Simplified Schematic). The voltage drop across the load  
resistorsRC1, RC2 isreducedtolessthan200mV, degrad-  
ing the slew rate, bandwidth, voltage noise, offset voltage  
and input bias current (the cancellation is shut off).  
The rail-to-rail output swing is achieved by using transis-  
tor collectors (Q28, Q29) instead of customary class A-B  
emitter followers for the output stage. Referring to the  
SimplifiedSchematic,theoutputNPNtransistor(Q29)sinks  
the current necessary to move the output in the negative  
direction. The change in Q29’s base emitter voltage is re-  
flecteddirectlytothegainnode(collectorsofQ20andQ16).  
For large sinking currents, the delta VBE of Q29 can domi-  
nate the gain. Figure 9 shows the change in input voltage  
for a change in output voltage for different load resistors  
connected between the supplies. The gain is much higher  
for output voltages above ground (Q28 sources current)  
since the change in base emitter voltage of Q28 is attenu-  
ated by the gain in the PNP portion of the output stage.  
Therefore, for positive output swings (output sourcing  
current) there is hardly any change in input voltage for any  
load resistance. Highest gain and best linearity is achieved  
when the output is sourcing current, which is the case in  
singlesupplyoperationwhentheloadisgroundreferenced.  
Figure 10 shows gains for both sinking and sourcing load  
currents for a worst-case load of 600.  
When the input common mode range goes below 1.5V  
above the negative rail, the NPN input pair (Q1, Q2) shuts  
off and the PNP input pair (Q8, Q9) turns on. The offset  
voltage, input bias current, voltage noise and bandwidth  
are also degraded. The graph of Offset Voltage Shift vs  
Common Mode shows where the knees occur by display-  
ing the change in offset voltage. The change-over points  
aretemperaturedependent,see thegraphCommonMode  
Range vs Temperature.  
RL TO 5V  
RL = 600  
RL = 1k  
R
L = 10k  
RL TO 0V  
0
1
2
3
4
5
15 10 5  
0
5
10 15  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
TA = 25°C  
VS = 5V  
TA = 25°C  
VS = ±15V  
RL = 600Ω  
RL CONNECTED TO 0V  
MEASURED ON TEKTRONIX 577 CURVE TRACER  
MEASURED ON TEKTRONIX 577 CURVE TRACER  
Figure 10. Voltage Gain Single Supply  
Figure 9. Voltage Gain Split Supply  
1677fa  
15  
LT1677  
U
TYPICAL APPLICATIO S  
Microvolt Comparator with Hysteresis  
3V Strain Gauge Amplifier  
3V  
3V  
10M  
5%  
15k  
1%  
R9  
R8  
R7  
3.4Ω  
7.5Ω  
22.1Ω  
7
R11  
1k  
3
2
+
15k  
1%  
1
R2  
5Ω  
R3  
R5  
698Ω  
R*  
R*  
R*  
6
5.49k  
OUTPUT  
INPUT  
LT1677  
4
R10  
232Ω  
3V  
R*  
+
1677 TA03  
V
LT1677  
OUT  
POSITIVE FEEDBACK TO ONE OF THE NULLING TERMINALS  
CREATES APPROXIMATELY 5µV OF HYSTERESIS. OUTPUT  
CAN SINK 16mA  
INPUT OFFSET VOLTAGE IS TYPICALLY CHANGED LESS THAN  
5µV DUE TO THE FEEDBACK  
R*  
R*  
FOR TEMP  
COMPENSATION  
OF GAIN  
R4  
5.49k  
R2  
5Ω  
*OMEGA SG-3/350LY11  
350, 1%  
ALL OTHER RESISTORS 1%  
R6  
22.1Ω  
1677 TA06  
2 • R* + R6  
R6  
R4  
R2 + (R*/2)  
A
V
=
1000  
(
) (  
)
TRIM R11 FOR BRIDGE BALANCE  
Precision High Side Current Sense  
SOURCE  
3V < V < 36V  
S
R
IN  
1k  
2
7
R
LINE  
0.1Ω  
6
ZETEX  
LT1677  
4
BC856B  
3
+
V
OUT  
R
OUT  
V
R
OUT  
LOAD  
OUT  
20k  
= R  
LINE  
I
R
LOAD  
IN  
= 2V/AMP  
1677 TA07  
1677fa  
16  
LT1677  
U
TYPICAL APPLICATIO S  
3V Super Electret Microphone Amplifier with DC Servo  
1.5V  
2N3906  
1.5V  
2N3906  
C1  
10pF  
C3  
0.022µF  
7Hz POLE FOR SERVO  
R5  
2k  
1.5V  
7
16kHz  
ROLL OFF  
R1  
R3  
1M  
1M  
+
2
3
6
LT1677  
4
1.5V  
7
2
3
6
–1.5V  
LT1677  
+
4
R2  
80k  
C2  
100pF  
–1.5V  
20kHz  
ROLL OFF  
C4  
1µF  
1.5V  
R4  
8k  
2
3
PANASONIC  
ELECTRET  
TO  
7
HEADPHONES  
6
CONDENSER  
MICROPHONE  
WM-61  
LT1677  
+
4
(714) 373-7334  
–1.5V  
–1.5V  
1677 TA05  
1677fa  
17  
LT1677  
W
W
SI PLIFIED SCHE ATIC  
+
+
1677fa  
18  
LT1677  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
.160 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1677fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1677  
U
TYPICAL APPLICATIO  
This 2-wire remote Geophone preamp operates on a  
current-loop principle and so has good noise immunity.  
Quiescent current is 10mA for a VOUT of 2.5V. Excitation  
will cause AC currents about this point of ~±4mA for a  
gain of ~107. Components R5 and Q1 convert the voltage  
into a current for transmission back to R10, which con-  
verts it into a voltage again. The LM334 and 2N3904 are  
not temperature compensated so the DC output contains  
temperature information.  
V
OUT of ~±1V max. The op amp is configured for a voltage  
2-Wire Remote Geophone Preamp  
R9  
20Ω  
+
V
V
LINEAR  
TECHNOLOGY  
LM334Z  
R
R8  
11Ω  
6mA  
Q1  
12V  
3V  
2N3904  
R2  
R6  
C
100k  
R4  
4.99k  
+
R
C3  
14k  
LT1431CZ  
220µF  
R7  
24.9k  
A
R5  
243Ω  
V
R1  
365Ω  
OUT  
2.5V ±1V  
2 –  
C2  
0.1µF  
R10  
250Ω  
7
LT1677  
4
GEOSPACE  
GS-20DX  
L
+
6
R
= 630Ω  
3
+
GEOPHONE  
www.geospacecorp.com/default.htm  
C4  
R3  
16.2k  
(713) 939-7093  
1000pF  
1677 TA04  
||  
R2 + R3 R4  
107  
A
=
V
R1 + R  
L
RELATED PARTS  
PART NUMBER  
LT1028/LT1128  
LT1115  
DESCRIPTION  
Ultralow Noise Precision Op Amps  
Ultralow Noise, Low distortion Audio Op Amp  
Dual/Quad Low Noise, High Speed Precision Op Amps  
COMMENTS  
Lowest Noise 0.85nV/Hz  
0.002% THD, Max Noise 1.2nV/Hz  
Similar to LT1007  
LT1124/LT1125  
LT1126/LT1127  
LT1226  
Dual/Quad Decompensated Low Noise, High Speed Precision Op Amps  
Low Noise, Very High Speed Op Amp  
Similar to LT1037  
1GHz, 2.6nV/Hz, Gain of 25 Stable  
Precision C-LoadTM Stable  
4.2nV/Hz, 10fA/Hz  
LT1498/LT1499  
LT1792  
10MHz, 5V/µs, Dual/Quad Rail-to-Rail Input and Output Op Amps  
Low Noise, Precision JFET Input Op Amp  
LT1793  
Low Noise, Picoampere Bias Current Op Amp  
6nV/Hz, 1fA/Hz, I = 10pA Max  
B
LT1806  
Low Noise, 325MHz Rail-to-Rail Input and Output Op Amp  
Dual/Quad Rail-to-Rail Output Picoamp Input Precision Op Amps  
Dual/Quad Rail-to-Rail Output Picoamp Input Precision Op Amps  
3.5nV/Hz  
LT1881/LT1882  
LT1884/LT1885  
C
to 1000pF, I = 200pA Max  
LOAD B  
2.2MHz Bandwidth, 1.2V/µs SR  
C-Load is a trademark of Linear Technology Corporation.  
1677fa  
LT 0306 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
© LINEAR TECHNOLOGY CORPORATION 2000  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY