LT1678IS8 [Linear]

Dual/Quad Low Noise, Rail-to-Rail, Precision Op Amps; 双/四通道,低噪声,轨到轨,精密运算放大器
LT1678IS8
型号: LT1678IS8
厂家: Linear    Linear
描述:

Dual/Quad Low Noise, Rail-to-Rail, Precision Op Amps
双/四通道,低噪声,轨到轨,精密运算放大器

运算放大器
文件: 总16页 (文件大小:297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1678/LT1679  
Dual/Quad Low Noise,  
Rail-to-Rail, Precision Op Amps  
U
FEATURES  
DESCRIPTIO  
The LT®1678/LT1679 are dual/quad rail-to-rail op amps  
offering both low noise and precision: 3.9nV/Hz wideband  
noise, 1/f corner frequency of 4Hz and 90nV peak-to-peak  
0.1Hz to 10Hz noise are combined with outstanding  
precision: 100µV maximum offset voltage, greater than  
100dB common mode and power supply rejection and  
20MHz gain bandwidth product. The LT1678/LT1679 bring  
precisionaswellaslownoisetosinglesupplyapplicationsas  
low as 3V. The input range exceeds the power supply by  
100mV with no phase inversion while the output can swing  
to within 170mV of either rail.  
Rail-to-Rail Input and Output  
100% Tested Low Voltage Noise:  
3.9nV/Hz Typ at 1kHz  
5.5nV/Hz Max at 1kHz  
Single Supply Operation from 2.7V to 36V  
Offset Voltage: 100µV Max  
Low Input Bias Current: 20nA Max  
High AVOL: 3V/µV Min, RL = 10k  
High CMRR: 100dB Min  
High PSRR: 106dB Min  
Gain Bandwidth Product: 20MHz  
Operating Temperature Range: 40°C to 85°C  
Matching Specifications  
No Phase Inversion  
8-Lead SO and 14-Lead SO Packages  
The LT1678/LT1679 are offered in the SO-8 and SO-14  
packages. A full set of matching specifications are also  
provided, facilitating their use in matching dependent appli-  
cations such as a two op amp instrumentation amplifier  
design. The LT1678/LT1679 are specified for supply volt-  
ages of ±15V, single 5V as well as single 3V. For a single  
amplifier with similiar performance, see the LT1677 data  
sheet.  
U
APPLICATIO S  
Strain Gauge Amplifiers  
Portable Microphones  
Battery-Powered Rail-to-Rail Instrumentation  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Low Noise Signal Processing  
Microvolt Accuracy Threshold Detection  
Infrared Detectors  
U
TYPICAL APPLICATIO  
Instrumentation Amplifier with Shield Driver  
3
0.1Hz to 10Hz Voltage Noise  
+
1k  
30k  
1
1/4  
V
= ±2.5V  
S
LT1679  
2
R
F
15V  
4
3.4k  
5
6
GUARD  
+
R
G
7
1/4  
LT1679  
100  
OUTPUT  
30k  
10  
+
+
11  
8
1/4  
LT1679  
R
G
INPUT  
100Ω  
9
–15V  
GUARD  
GAIN = 1000  
0
2
4
6
8
10  
R
F
13  
12  
TIME (sec)  
3.4k  
14  
1/4  
LT1679  
16789 TA01  
16789 TA01b  
1k  
+
sn16789 16789fs  
1
LT1678/LT1679  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
Operating Temperature Range  
Supply Voltage ...................................................... ±18V  
Input Voltages (Note 2) ............ 0.3V Beyond Either Rail  
Differential Input Current (Note 2) ..................... ±25mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Storage Temperature Range ................. 65°C to 150°C  
(Note 4)............................................. 40°C to 85°C  
Specified Temperature Range  
(Note 5)............................................. 40°C to 85°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
NUMBER  
TOP VIEW  
A
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
+
OUT A  
1
2
3
4
8
7
6
5
V
A
B
D
C
LT1678CS8  
LT1678IS8  
LT1679CS  
LT1679IS  
OUT B  
–IN B  
+IN B  
–IN A  
+IN A  
+
V
V
B
+IN B  
–IN B  
+IN C  
–IN C  
OUT C  
V
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
OUT B  
8
1678  
1678I  
TJMAX = 150°C, θJA = 190°C/ W  
S PACKAGE  
14-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 160°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 3V, VCM = VO = 1.7V; VS = 5V, VCM = VO = 2.5V unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
(Note 11)  
35  
55  
75  
100  
270  
350  
µV  
µV  
µV  
OS  
0°C T 70°C  
A
40°C T 85°C  
A
V =5V, V = V + 0.1V  
150  
180  
200  
550  
750  
1000  
µV  
µV  
µV  
S
CM  
S
V =5V, V = V – 0.3V, 0°C T 70°C  
S
CM  
S
A
V =5V, V = V – 0.3V, 40°C T 85°C  
S
CM  
S
A
V =5V, V = 0.1V  
1.5  
1.8  
2.0  
30  
45  
50  
mV  
mV  
mV  
S
CM  
V =5V, V = 0V, 0°C T 70°C  
S
CM  
A
V =5V, V = 0V, 40°C T 85°C  
S
CM  
A
V  
Temp  
Average Input Offset Drift (Note 10)  
Input Bias Current  
0.40  
3
µV/°C  
OS  
I
(Note 11)  
±2  
±3  
±7  
±20  
±35  
±50  
nA  
nA  
nA  
B
0°C T 70°C  
A
40°C T 85°C  
A
V = 5V, V = V + 0.1V  
0.19  
0.19  
0.25  
0.40  
0.60  
0.75  
µA  
µA  
µA  
S
CM  
S
V = 5V, V = V – 0.3V, 0°C T 70°C  
S
CM  
S
A
V = 5V, V = V – 0.3V, 40°C T 85°C  
S
CM  
S
A
V = 5V, V = 0.1V  
–5  
–8.4  
–10  
0.41  
0.45  
0.47  
µA  
µA  
µA  
S
CM  
V = 5V, V = 0V, 0°C T 70°C  
S
CM  
A
V = 5V, V = 0V, 40°C T 85°C  
S
CM  
A
sn16789 16789fs  
2
LT1678/LT1679  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 3V, VCM = VO = 1.7V; VS = 5V, VCM = VO = 2.5V unless  
SYMBOL  
PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
I
Input Offset Current  
(Note 11)  
4
5
8
25  
35  
55  
nA  
nA  
nA  
OS  
0°C T 70°C  
A
40°C T 85°C  
A
V = 5V, V = V + 0.1V  
6
10  
15  
30  
40  
65  
nA  
nA  
nA  
S
CM  
S
V = 5V, V = V – 0.3V, 0°C T 70°C  
S
CM  
S
A
V = 5V, V = V – 0.3V, 40°C T 85°C  
S
CM  
S
A
V = 5V, V = 0.1V  
0.1  
0.1  
0.15  
1.6  
2.0  
2.4  
µA  
µA  
µA  
S
CM  
V = 5V, V = 0V, 0°C T 70°C  
S
CM  
A
V = 5V, V = 0V, 40°C T 85°C  
S
CM  
A
e
Input Noise Voltage  
0.1Hz to 10Hz (Note 7)  
90  
nV  
P-P  
nV  
P-P  
nV  
P-P  
n
V
V
= V  
180  
CM  
CM  
S
= 0V  
1600  
Input Noise Voltage Density (Note 8)  
f = 10Hz  
4.4  
6.6  
19  
nV/Hz  
nV/Hz  
nV/Hz  
O
V
V
= V , f = 10Hz  
CM  
CM  
S O  
= 0V, f = 10Hz  
O
f = 1kHz  
3.9  
5.3  
9
5.5  
nV/Hz  
nV/Hz  
nV/Hz  
O
V
V
= V , f = 1kHz  
CM  
CM  
S O  
= 0V, f = 1kHz  
O
i
Input Noise Current Density  
Input Voltage Range  
f = 10Hz  
O
1.2  
0.3  
pA/Hz  
pA/Hz  
n
O
f = 1kHz  
V
0.1  
0
V + 0.1V  
S
V
V
CM  
S
V – 0.3V  
R
IN  
Input Resistance  
Common Mode  
2
GΩ  
C
Input Capacitance  
4.2  
pF  
IN  
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = 1.9V to 3.9V  
98  
92  
120  
120  
dB  
dB  
S
CM  
V = 5V, V = 1.9V to 3.9V  
S
CM  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = 2.7V to 36V, V = V = 1.7V  
100  
98  
125  
120  
dB  
dB  
S
CM  
O
V = 3.1V to 36V, V = V = 1.7V  
S
CM  
O
A
V = 3V, R = 10k, V = 2.5V to 0.7V  
0.6  
0.3  
3
2
V/µV  
V/µV  
VOL  
S
L
O
V = 3V, R = 2k, V = 2.2V to 0.7V  
0.5  
0.4  
0.4  
3
0.9  
0.8  
V/µV  
V/µV  
V/µV  
S
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
V = 3V, R = 600, V = 2.2V to 0.7V  
0.20  
0.15  
0.10  
0.43  
0.40  
0.35  
V/µV  
V/µV  
V/µV  
S
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
V = 5V, R = 10k, V = 4.5V to 0.7V  
1
0.6  
0.3  
3.8  
2
2
V/µV  
V/µV  
V/µV  
S
L
O
O°C < T < 70°C  
A
–40 < T < 85°C  
A
V = 5V, R = 2k, V = 4.2V to 0.7V  
0.7  
0.6  
0.5  
3.5  
3.2  
3.0  
V/µV  
V/µV  
V/µV  
S
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
V = 5V, R = 600, V = 4.2V to 0.7V  
0.6  
0.5  
0.4  
3.0  
2.8  
2.5  
V/µV  
V/µV  
V/µV  
S
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
V
Output Voltage Swing Low (Note 11)  
Above GND  
SINK  
OL  
I
= 0.1mA  
80  
125  
130  
170  
200  
250  
mV  
mV  
mV  
0°C T 70°C  
A
40°C T 85°C  
A
sn16789 16789fs  
3
LT1678/LT1679  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 3V, VCM = VO = 1.7V; VS = 5V, VCM = VO = 2.5V unless  
SYMBOL  
PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
V
Output Voltage Swing Low (Note 11)  
Above GND  
OL  
I
= 2.5mA  
170  
195  
205  
250  
320  
350  
mV  
mV  
mV  
SINK  
0°C T 70°C  
A
40°C T 85°C  
A
Above GND  
I
= 10mA  
370  
440  
465  
600  
720  
770  
mV  
mV  
mV  
SINK  
0°C T 70°C  
A
40°C T 85°C  
A
V
Output Voltage Swing High (Note 11)  
Below V  
OH  
S
I
= 0.1mA  
A
75  
85  
93  
150  
200  
250  
mV  
mV  
mV  
SOURCE  
0°C T 70°C  
40°C T 85°C  
A
Below V  
S
I
= 2.5mA  
A
110  
195  
205  
250  
350  
375  
mV  
mV  
mV  
SOURCE  
0°C T 70°C  
40°C T 85°C  
A
Below V  
S
I
= 10mA  
A
170  
200  
230  
400  
500  
550  
mV  
mV  
mV  
SOURCE  
0°C T 70°C  
40°C T 85°C  
A
I
Output Short-Circuit Current (Note 3)  
Slew Rate (Note 13)  
V = 3V  
15  
13  
22  
19  
mA  
mA  
SC  
S
V = 5V  
S
18  
14  
29  
25  
mA  
mA  
SR  
A = 1, R = 10k  
4
3.5  
3
6
5.8  
5.5  
V/µs  
V/µs  
V/µs  
V
L
R = 10k, 0°C T 70°C  
L
A
R = 10k, 40°C T 85°C  
L
A
GBW  
Gain Bandwidth Product (Note 11)  
Settling Time  
f = 100kHz  
f = 100kHz  
O
13  
12.5  
20  
19  
MHz  
MHz  
O
t
2V Step 0.1%, A = +1  
2V Step 0.01%, A = +1  
1.4  
2.4  
µs  
µs  
S
V
V
R
Open-Loop Output Resistance  
Closed-Loop Output Resistance  
I
= 0  
OUT  
V
100  
1
O
A = 100, f = 10kHz  
I
Supply Current per Amplifier (Note 12)  
2
2.5  
3.4  
3.8  
mA  
mA  
S
V  
Offset Voltage Match  
(Notes 11, 15)  
35  
55  
75  
150  
400  
525  
µV  
µV  
µV  
OS  
0°C T 70°C  
A
–40°C T 85°C  
A
IB+  
Noninverting Bias Current Match  
(Notes 11, 15)  
±2  
±3  
±7  
±30  
±55  
±75  
nA  
nA  
nA  
0°C T 70°C  
A
–40°C T 85°C  
A
CMRR  
PSRR  
Common Mode Rejection Match  
(Notes 11, 14, 15)  
V = 5V, V = 1.9V to 3.9V  
94  
88  
110  
110  
dB  
dB  
S
CM  
Power Supply Rejection Match  
(Notes 11, 14, 15)  
V = 2.7V to 36V, V = V = 1.7V  
96  
94  
120  
120  
dB  
dB  
S
CM  
O
V = 3.1V to 36V, V = V = 1.7V  
S
CM  
O
sn16789 16789fs  
4
LT1678/LT1679  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, VCM = VO = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
20  
30  
45  
150  
350  
420  
µV  
µV  
µV  
OS  
0°C T 70°C  
A
40°C T 85°C  
A
V  
Temp  
Average Input Offset Drift (Note 10)  
Input Bias Current  
0.40  
3
µV/°C  
OS  
I
±2  
±3  
±7  
±20  
±35  
±50  
nA  
nA  
nA  
B
0°C T 70°C  
A
40°C T 85°C  
A
I
Input Offset Current  
3
5
8
25  
35  
55  
nA  
nA  
nA  
OS  
0°C T 70°C  
A
40°C T 85°C  
A
e
Input Noise Voltage  
0.1Hz to 10Hz (Note 7)  
90  
180  
1600  
nV  
P-P  
nV  
P-P  
nV  
P-P  
n
V
V
= 15V  
= –15V  
CM  
CM  
Input Noise Voltage Density  
f = 10Hz  
4.4  
6.6  
19  
nV/Hz  
nV/Hz  
nV/Hz  
O
V
= 15V, f = 10Hz  
= –15V, f = 10Hz  
CM  
CM  
O
V
O
f = 1kHz  
3.9  
5.3  
9
5.5  
14  
nV/Hz  
nV/Hz  
nV/Hz  
O
V
V
= 15V, f = 1kHz  
= –15V, f = 1kHz  
CM  
CM  
O
O
i
Input Noise Current Density  
f = 10Hz  
1.2  
0.3  
pA/Hz  
pA/Hz  
n
O
f = 1kHz  
O
V
Input Voltage Range (Note 16)  
Input Resistance  
13.3  
V
GΩ  
pF  
CM  
R
Common Mode  
2
IN  
C
Input Capacitance  
4.2  
IN  
CMRR  
Common Mode Rejection Ratio  
V
= –13.3V to 14V  
100  
96  
130  
124  
dB  
dB  
CM  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±1.7V to ±18V  
106  
100  
130  
125  
dB  
dB  
S
A
R = 10k, V = ±14V  
0°C T 70°C  
–40°C T 85°C  
3
2
1
7
6
4
V/µV  
V/µV  
V/µV  
VOL  
L
O
A
A
R = 2k, V = ±13.5V  
0.8  
0.5  
0.4  
1.7  
1.4  
1.1  
V/µV  
V/µV  
V/µV  
L
O
0°C T 70°C  
A
–40°C T 85°C  
A
sn16789 16789fs  
5
LT1678/LT1679  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, VCM = VO = 0V unless otherwise noted.  
SYMBOL  
V
PARAMETER  
CONDITIONS (Note 6)  
Above V  
MIN  
TYP  
MAX  
UNITS  
Output Voltage Swing Low  
OL  
S
I
= 0.1mA  
110  
125  
130  
200  
230  
260  
mV  
mV  
mV  
SINK  
0°C T 70°C  
A
40°C T 85°C  
A
Above V  
S
I
= 2.5mA  
170  
195  
205  
280  
350  
380  
mV  
mV  
mV  
SINK  
0°C T 70°C  
A
40°C T 85°C  
A
Above V  
S
I
= 10mA  
370  
440  
450  
600  
700  
750  
mV  
mV  
mV  
SINK  
0°C T 70°C  
A
40°C T 85°C  
A
V
Output Voltage Swing High  
Below +V  
S
OH  
I
= 0.1mA  
80  
90  
100  
150  
200  
250  
mV  
mV  
mV  
SOURCE  
0°C T 70°C  
A
40°C T 85°C  
A
Below +V  
S
I
= 2.5mA  
A
110  
120  
120  
200  
300  
350  
mV  
mV  
mV  
SOURCE  
0°C T 70°C  
40°C T 85°C  
A
Below +V  
S
I
= 10mA  
A
200  
250  
250  
450  
500  
550  
mV  
mV  
mV  
SOURCE  
0°C T 70°C  
40°C T 85°C  
A
I
Output Short-Circuit Current (Note 3)  
Slew Rate  
20  
15  
35  
28  
mA  
mA  
SC  
SR  
R = 10k (Note 9)  
4
3.5  
3
6
5.8  
5.5  
V/µs  
V/µs  
V/µs  
L
R = 10k (Note 9) 0°C T 70°C  
L
A
R = 10k (Note 9) 40°C T 85°C  
L
A
GBW  
THD  
Gain Bandwidth Product  
f = 100kHz  
f = 100kHz  
O
13  
12.5  
20  
19  
MHz  
MHz  
O
Total Harmonic Distortion  
Settling Time  
R = 2k, A = 1, f = 1kHz, V = 20V  
P-P  
0.00025  
%
L
V
O
O
t
10V Step 0.1%, A = +1  
10V Step 0.01%, A = +1  
2.7  
3.9  
µs  
µs  
S
V
V
R
O
Open-Loop Output Resistance  
Closed-Loop Output Resistance  
I
= 0  
OUT  
V
100  
1
A = 100, f = 10kHz  
I
Supply Current per Amplifier  
2.5  
3
3.5  
4.5  
mA  
mA  
S
Channel Separation  
f = 10Hz, V = ±10V, R = 10k  
132  
dB  
O
L
V  
OS  
Offset Voltage Match  
(Note 15)  
5
30  
45  
225  
525  
630  
µV  
µV  
µV  
0°C T 70°C  
A
–40°C T 85°C  
A
IB+  
Noninverting Bias Current Match  
(Note 15)  
±2  
±3  
±7  
±30  
±55  
±75  
nA  
nA  
nA  
0°C T 70°C  
A
–40°C T 85°C  
A
CMRR  
PSRR  
Common Mode Rejection Match  
(Notes 14, 15)  
V
= –13.3V to 14V  
96  
92  
120  
115  
dB  
dB  
CM  
Power Supply Rejection Match  
(Notes 14, 15)  
V = ±1.7V to ±18V  
100  
96  
123  
120  
dB  
dB  
S
sn16789 16789fs  
6
LT1678/LT1679  
ELECTRICAL CHARACTERISTICS  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 8: Noise is 100% tested at ±15V supplies.  
of the device may be impaired.  
Note 9: Slew rate is measured in A = 1; input signal is ±10V, output  
V
measured at ±5V.  
Note 10: This parameter is not 100% tested.  
Note 2: The inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low noise. If differential input  
voltage exceeds ±1.4V, the input current should be limited to 25mA. If the  
common mode range exceeds either rail, the input current should be  
limited to 10mA.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum.  
Note 11: V = 5V limits are guaranteed by correlation to V = 3V and  
S
S
V = ±15V tests.  
S
Note 12: V = 3V limits are guaranteed by correlation to V = 5V and  
S
S
V = ±15V tests.  
S
Note 13: Guaranteed by correlation to slew rate at V = ±15V and GBW at  
S
Note 4: The LT1678C/LT1679C and LT1678I/LT1679I are guaranteed  
functional over the Operating Temperature Range of 40°C to 85°C.  
V = 3V and V = ±15V tests.  
S
S
Note 14: CMRR and PSRR are defined as follows:  
1. CMRR and PSRR are measured in µV/V on the individual amplifiers.  
2. The difference is calculated between the matching sides in µV/V.  
3. The result is converted to dB.  
Note 15: Matching parameters are the difference between amplifiers A and  
B on the LT1678 and between amplifiers A and D and B and C in the  
LT1679.  
Note 5: The LT1678C/LT1679C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT1678C/LT1679C are designed,  
characterized and expected to meet specified performance from 40°C to  
85°C but is not tested or QA sampled at these temperatures. The LT1678I/  
LT1679I are guaranteed to meet specified performance from 40°C to  
85°C.  
Note 6: Typical parameters are defined as the 60% yield of parameter  
distributions of individual amplifier; i.e., out of 100 LT1678/LT1679s,  
typically 60 op amps will be better than the indicated specification.  
Note 16: Input range guaranteed by the common mode rejection ratio test.  
Note 7: See the test circuit and frequency response curve for 0.1Hz to10Hz  
tester in the Applications Information section.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
0.01Hz to 1Hz Voltage Noise  
0.1Hz to 10Hz Voltage Noise  
Voltage Noise vs Frequency  
100  
10  
1
V
= ±15V  
= 25°C  
V
= 5V, 0V  
V
= 5V, 0V  
S
A
S
S
T
V
= 14.5V  
CM  
V
= 0V  
CM  
0
2
4
6
8
10  
0
20  
40  
60  
80  
100  
0.1  
1
10  
FREQUENCY (Hz)  
100  
1000  
TIME (sec)  
TIME (sec)  
16789 G01  
16789 G02  
16789 G03  
sn16789 16789fs  
7
LT1678/LT1679  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Voltage Noise vs Temperature  
Input Bias Current vs Temperature  
Current Noise vs Frequency  
6
5
4
3
2
1
10  
16  
14  
12  
10  
8
V
V
= ±15V  
CM  
V
T
= ±15V  
= 25°C  
V
V
= ±15V  
CM  
S
S
A
S
= 0V  
= 0V  
10Hz  
V
V
= 0V  
CM  
6
1
1kHz  
4
2
= 14.5V  
CM  
0
–2  
–4  
–6  
0.1  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50  
0
25  
50  
75 100 125  
–25  
0.01  
0.1  
1
10  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
16789 G05  
16789 G06  
16789 G04  
Input Bias Current Over the  
Common Mode Range  
Offset Voltage Shift vs  
Common Mode  
Input Bias Current vs Temperature  
1400  
1200  
1000  
800  
600  
400  
200  
0
900  
700  
5
4
500  
400  
300  
200  
100  
0
V
= ±15V  
S
V
= –14V  
V
= ±15V  
= 25°C  
CM  
S
A
CURRENT OUT OF DUT  
T
3
V
IS REFERRED TO  
CM  
500  
OS  
V
= 0V  
2
V
= 14.5V  
300  
CM  
V
CM  
= –13.5V  
1
100  
INPUT BIAS CURRENT  
0
–100  
–300  
–500  
–700  
–900  
–1  
–2  
–3  
–4  
–5  
–100  
–200  
–300  
–400  
–500  
V
= 14.1V  
CM  
V
CM  
= 14.7V  
V
T
= ±1.5V TO ±15V  
= 25°C  
S
A
CURRENT INTO DUT  
V
= –15.2V  
–4  
5 TYPICAL PARTS  
+
CM  
–50 –25  
0
25  
50  
75 100 125  
0
1.0  
–16  
–12  
4
8
16  
–1.0  
V
2.0 –0.8 –0.4  
V
0.4  
–8  
12  
+
TEMPERATURE (°C)  
COMMON MODE INPUT VOLTAGE (V)  
V
– V (V)  
V
– V (V)  
CM  
CM  
16789 G09  
16789 G07  
16789 G08  
V
OS vs Temperature of  
Distribution of Input Offset  
Voltage Drift (SO-8)  
Representive Units  
Warm-Up Drift vs Time  
200  
100  
0
30  
25  
20  
15  
10  
5
10  
8
V
= 5V, 0V  
S
A
V
V
= 5V, 0V  
CM  
S
V
= ±15V  
= 25°C  
S
A
T
= –40°C TO 85°C  
= 0V  
T
111 PARTS (2 LOTS)  
SO PACKAGE  
6
–100  
–200  
–300  
4
2
0
0
–1.0  
1.0  
–3.0 –2.0  
0
2.0  
3.0  
1
2
3
–55 –35 –15  
5
25  
45  
65  
85 105 125  
0
4
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
TEMPERATURE (°C)  
TIME (min)  
16789 G11  
16789 G10  
16789 G12  
sn16789 16789fs  
8
LT1678/LT1679  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Common Mode Rejection Ratio  
vs Frequency  
Common Mode Range vs  
Temperature  
Supply Current vs Supply Voltage  
5
4
500  
400  
300  
200  
100  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
160  
140  
120  
100  
80  
V
= ±2.5V TO ±15V  
S
V
T
= ±15V  
= 25°C  
CM  
S
A
V
= 0V  
3
2
25°C  
–55°C  
1
T
= 125°C  
A
–55°C  
25°C  
125°C  
0
–1  
–2  
–3  
–4  
–5  
–100  
–200  
–300  
–400  
–500  
T
= 25°C  
A
60  
V
IS REFERRED TO  
CM  
OS  
V
= 0V  
40  
T
= –55°C  
A
125°C  
20  
0
1.0  
–1.0  
V
2.0 –0.8 –0.4  
V
0.4  
0
±5  
±10  
±15  
±20  
10k  
100k  
1M  
10M  
+
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
V
– V (V)  
V
– V (V)  
CM S  
CM  
S
16789 G14  
16789 G15  
16789 G09  
Power Supply Rejection Ratio  
vs Frequency  
Voltage Gain vs Supply Voltage  
% Overshoot vs Capacitive Load  
10  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
V
= ±15V  
= 2k TO 10k  
= 1  
V
T
= ±15V  
= 25°C  
S
L
S
A
R
A
R
= 10k  
L
V
A
T
= 25°C  
R
= 2k  
L
NEGATIVE SUPPLY  
1
RISING EDGE  
60  
POSITIVE SUPPLY  
40  
FALLING EDGE  
T
= 25°C  
A
L
20  
R
TO GND  
V
= V = V /2  
CM  
O S  
0.1  
0
100  
0
0.001 0.01  
0.1  
1
10  
1000  
10  
SUPPLY VOLTAGE (V)  
30  
20  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
FREQUENCY (kHz)  
16789 G18  
16789 G16  
16789 G17  
Phase Margin, Gain Bandwidth  
Product and Slew Rate vs  
Temperature  
Small Signal  
Large Signal  
Transient Response  
Transient Response  
90  
80  
70  
60  
50  
V
C
A
= ±15V  
= 15pF  
= –1  
S
L
V
50mV  
PHASE MARGIN  
10V  
R
= R = 1k  
G
F
30  
25  
20  
15  
10  
0V  
GAIN BANDWIDTH PRODUCT  
40  
8
–10V  
–50mV  
+SR  
–SR  
6
A
V
= –1  
A
V
C
= 1  
VCL  
5µs/DIV  
0.5µs/DIV  
VCL  
S
= ±15V  
= ±15V  
S
L
= 15pF  
4
16789 G20  
16789 G21  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
16789 G19  
sn16789 16789fs  
9
LT1678/LT1679  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Settling Time vs Output  
Step (Inverting)  
Settling Time vs Output  
Step (Noninverting)  
Gain, Phase Shift vs Frequency  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
100  
2k  
5k  
V
V
C
= ±15V  
V
A
T
= ±15V  
= –1  
= 25°C  
V
A
T
= ±15V  
= 1  
= 25°C  
S
S
V
A
S
V
A
= 0V  
5k  
CM  
PHASE  
V
+
IN  
+
= 10pF 80  
L
V
V
2k  
OUT  
OUT  
T
= –55°C  
A
V
IN  
T
= 25°C  
A
R
= 1k  
L
60  
40  
20  
0
T
= 125°C  
A
0.01% OF  
FULL SCALE  
0.01% OF  
FULL SCALE  
0.01% OF  
FULL SCALE  
0.01% OF  
FULL SCALE  
T
= 125°C  
A
0.1% OF  
FULL SCALE  
GAIN  
0.1% OF  
FULL SCALE  
T
= 25°C  
A
0.1% OF  
FULL SCALE  
0.1% OF  
FULL SCALE  
T
= –55°C  
A
–10  
–20  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
0.1  
1
10  
100  
OUTPUT STEP (V)  
OUTPUT STEP (V)  
FREQUENCY (MHz)  
16789 G22  
16789 G23  
16789 G24  
Output Voltage Swing vs  
Load Current  
Gain, Phase Shift vs Frequency  
Gain, Phase Shift vs Frequency  
100  
80  
60  
40  
20  
0
+V  
100  
80  
60  
40  
20  
0
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
S
0
V
= ±15V  
V
V
C
= ±15V  
CM  
= 10pF  
V
V
C
= ±15V  
CM  
= 10pF  
S
S
S
T
= –55°C  
A
–0.1  
–0.2  
–0.3  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
= 14.7V  
= –14V  
T
= 125°C  
L
L
A
T
= 25°C  
T
= –55°C  
A
PHASE  
A
T
= 25°C  
A
PHASE  
T
= 125°C  
A
T
= 125°C  
T
= –55°C  
A
A
T
= 125°C  
A
T
= –55°C  
A
T
= 25°C  
A
T
= 125°C  
= 25°C  
A
GAIN  
T
= 25°C  
T
= 25°C  
A
A
GAIN  
T
A
T
= –55°C  
A
T
= –55°C  
A
–20  
100  
–20  
–10  
–10  
–V  
S
0.1  
1
10  
100  
0.1  
1
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
OUTPUT CURRENT (mA)  
16789 G25  
16789 G26  
16789 G27  
Total Harmonic Distortion and  
Noise vs Frequency for  
Noninverting Gain  
Total Harmonic Distortion and  
Noise vs Frequency for  
Noninverting Gain  
Closed-Loop Output  
Impedance vs Frequency  
0.1  
0.1  
100  
10  
Z
= 2k/15pF  
Z
= 2k/15pF  
L
L
V
= ±15V  
S
V
V
A
= ±15V  
V
V
A
= ±15V  
S
O
V
S
O
V
= 20V  
= 20V  
P-P  
P-P  
= 1, 10, 100  
= –1, –10, –100  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
0.01  
0.001  
0.01  
1
A
= –100  
V
A
= 100  
A
= 100  
V
V
0.1  
A
= 1  
V
0.001  
A
= –10  
= –1  
V
V
A
= 10  
= 1  
V
V
0.01  
0.001  
A
A
0.0001  
0.0001  
20  
10  
100  
1k  
10k  
100k  
1M  
20  
100  
1k  
10k  
50k  
100  
1k  
10k  
50k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
16789 G29  
16789 G30  
16789 G28  
sn16789 16789fs  
10  
LT1678/LT1679  
W U U  
APPLICATIO S I FOR ATIO  
U
Rail-to-Rail Operation  
inputandacurrent, limitedonlybytheoutputshort-circuit  
protection, will be drawn by the signal generator. With  
RF 500, the output is capable of handling the current  
requirements (IL 20mA at 10V) and the amplifier stays  
in its active mode and a smooth transition will occur.  
To take full advantage of an input range that can exceed  
thesupply, theLT1678/LT1679aredesignedtoeliminate  
phase reversal. Referring to the photographs shown in  
Figure 1, the LT1678/LT1679 are operating in the fol-  
lower mode (AV = +1) at a single 3V supply. The output  
of the LT1678/LT1679 clips cleanly and recovers with no  
phasereversal. Thishasthebenefitofpreventinglock-up  
inservosystemsandminimizingdistortioncomponents.  
As with all operational amplifiers when RF > 2k, a pole will  
be created with RF and the amplifier’s input capacitance,  
creating additional phase shift and reducing the phase  
margin.Asmallcapacitor(20pFto50pF)inparallelwithRF  
will eliminate this problem.  
R
F
Input = –0.5V to 3.5V  
+
6V/µs  
3
2
1
OUTPUT  
LT1678  
16789 F02  
Figure 2. Pulsed Operation  
Noise Testing  
0
The 0.1Hz to 10Hz peak-to-peak noise of the LT1678/  
LT1679 are measured in the test circuit shown (Figure 3).  
The frequency response of this noise tester (Figure 4)  
indicates that the 0.1Hz corner is defined by only one zero.  
The test time to measure 0.1Hz to 10Hz noise should not  
exceed ten seconds, as this time limit acts as an additional  
zero to eliminate noise contributions from the frequency  
band below 0.1Hz.  
–0.5  
16789 F01a  
50µs/DIV  
LT1678 Output  
3
2
1
Measuring the typical 90nV peak-to-peak noise perfor-  
mance of the LT1678/LT1679 requires special test pre-  
cautions:  
0
1. The device should be warmed up for at least five  
minutes. As the op amp warms up, its offset voltage  
changes typically 3µV due to its chip temperature  
increasing 10°C to 20°C from the moment the power  
suppliesareturnedon. Intheten-secondmeasurement  
interval these temperature-induced effects can easily  
exceed tens of nanovolts.  
–0.5  
16789 F01b  
50µs/DIV  
Figure 1. Voltage Follower with Input Exceeding the Supply  
Voltage (VS = 3V)  
Unity-Gain Buffer Application  
When RF 100and the input is driven with a fast, large-  
signal pulse (>1V), the output waveform will look as  
shown in the pulsed operation diagram (Figure 2).  
2. For similar reasons, the device must be well shielded  
from air currents to eliminate the possibility of  
thermoelectric effects in excess of a few nanovolts,  
which would invalidate the measurements.  
During the fast feedthrough-like portion of the output, the  
input protection diodes effectively short the output to the  
sn16789 16789fs  
11  
LT1678/LT1679  
W U U  
U
APPLICATIO S I FOR ATIO  
100  
90  
80  
70  
60  
50  
40  
30  
0.1µF  
100k  
10  
2k  
*
+
22µF  
LT1678  
SCOPE  
× 1  
IN  
4.3k  
+
LT1001  
4.7µF  
R
= 1M  
110k  
2.2µF  
VOLTAGE GAIN  
100k  
= 50,000  
0.1µF  
0.01  
0.1  
1
10  
100  
*DEVICE UNDER TEST  
NOTE: ALL CAPACITOR VALUES ARE FOR  
NONPOLARIZED CAPACITORS ONLY  
24.3k  
FREQUENCY (Hz)  
16789 F03  
16789 F04  
Figure 4. 0.1Hz to 10Hz Peak-to-Peak  
Noise Tester Frequency Response  
Figure 3. 0.1Hz to 10Hz Noise Test Circuit  
3. Sudden motion in the vicinity of the device can also  
“feedthrough” to increase the observed noise.  
Total Noise = [(op amp voltage noise)2 + (resistor noise)2  
+ (current noise RS)2]1/2  
Current noise is measured in the circuit shown in Figure 5  
and calculated by the following formula:  
Three regions can be identified as a function of source  
resistance:  
1/2  
(i) R 400. Voltage noise dominates  
S
2⎤  
)
2
)
130nV  
e
101  
(
(
no  
Resistor Noise  
400Ω ≤ R 8k at 10Hz Dominates  
(ii) 400Ω ≤ R 50k at 1kHz  
S
i =  
n
S
1M101  
(
)(  
)
(iii) R > 50k at 1kHz Current Noise  
S
S
100k  
R > 8k at 10Hz  
Dominates  
100  
500k  
500k  
Clearly the LT1678/LT1679 should not be used in region  
(iii), where total system noise is at least six times higher  
than the voltage noise of the op amp, i.e., the low voltage  
noisespecificationiscompletelywasted. Inthisregionthe  
LT1113 or LT1169 are better choices.  
LT1678  
e
no  
+
16789 F05  
Figure 5.  
1000  
R
V
= ±15V  
= 25°C  
S
A
T
The LT1678/LT1679 achieve their low noise, in part, by  
operatingtheinputstageat100µAversusthetypical10µA  
of most other op amps. Voltage noise is inversely propor-  
tional while current noise is directly proportional to the  
square root of the input stage current. Therefore, the  
LT1678/LT1679’s current noise will be relatively high. At  
low frequencies, the low 1/f current noise corner fre-  
quency(200Hz)minimizescurrentnoisetosomeextent.  
R
SOURCE RESISTANCE = 2R  
100  
10  
1
AT 1kHz  
AT 10Hz  
RESISTOR  
NOISE ONLY  
0.1  
1
10  
100  
In most practical applications, however, current noise will  
not limit system performance. This is illustrated in the  
Total Noise vs Source Resistance plot (Figure 6) where:  
SOURCE RESISTANCE (k)  
16789 F06  
Figure 6. Total Noise vs Source Resistance  
sn16789 16789fs  
12  
LT1678/LT1679  
W U U  
APPLICATIO S I FOR ATIO  
U
Rail-to-Rail Input  
Rail-to-Rail Output  
The input common mode range for the LT1678/LT1679  
can exceed the supplies by at least 100mV. As the  
common mode voltage approaches the positive rail (+VS  
– 0.7V), the tail current for the input pair (Q1, Q2) is  
reduced, which prevents the input pair from saturating  
(refer to the Simplified Schematic). The voltage drop  
across the load resistors RC1, RC2 is reduced to less than  
200mV, degrading the slew rate, bandwidth, voltage  
noise, offset voltage and input bias current (the cancella-  
tion is shut off).  
The rail-to-rail output swing is achieved by using transis-  
tor collectors (Q28, Q29 referring to the Simplified Sche-  
matic)insteadofcustomaryclassA-Bemitterfollowersfor  
theoutputstage.TheoutputNPNtransistor(Q29)sinksthe  
currentnecessarytomovetheoutputinthenegativedirec-  
tion. The change in Q29’s base emitter voltage is reflected  
directly to the gain node (collectors of Q20 and Q16). For  
large sinking currents, the delta VBE of Q29 can dominate  
the gain. Figure 7 shows the change in input voltage for a  
change in output voltage for different load resistors con-  
nected between the supplies. The gain is much higher for  
outputvoltagesaboveground(Q28sourcescurrent)since  
the change in base emitter voltage of Q28 is attenuated by  
the gain in the PNP portion of the output stage. Therefore,  
for positive output swings (output sourcing current) there  
ishardlyanychangeininputvoltageforanyloadresistance.  
Highestgainandbestlinearityareachievedwhentheoutput  
is sourcing current, which is the case in single supply op-  
erationwhentheloadisgroundreferenced.Figure8shows  
gains for both sinking and sourcing load currents for a  
worst-case load of 600.  
When the input common mode range goes below 1.5V  
above the negative rail, the NPN input pair (Q1, Q2) shuts  
off and the PNP input pair (Q8, Q9) turns on. The offset  
voltage, input bias current, voltage noise and bandwidth  
are also degraded. The graph of Offset Voltage Shift vs  
Common Mode shows where the knees occur by display-  
ing the change in offset voltage. The change-over points  
aretemperaturedependent;seethegraphCommonMode  
Range vs Temperature.  
VOLTAGE GAIN SINGLE SUPPLY  
V
= 5V  
= 600Ω  
S
L
R
R
= 600  
L
MEASURED ON TEKTRONIX 577  
CURVE TRACER  
R
= 1k  
L
R
TO 0V  
L
R
= 10k  
L
INPUT VOLTAGE  
(50µV/DIV)  
INPUT VOLTAGE  
(10µV/DIV)  
R
TO 5V  
L
T
= 25°C  
= ±15V  
CONNECTED TO 0V  
A
S
V
R
L
MEASURED ON  
TEKTRONIX 577  
CURVE TRACER  
–15 –10 –5  
0
5
10 15  
0
1
2
3
4
5
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
16789 F07  
16789 F08  
Figure 7. Voltage Gain Split Supply  
Figure 8. Voltage Gain Single Supply  
sn16789 16789fs  
13  
LT1678/LT1679  
W
W
SI PLIFIED SCHE ATIC  
+
+
sn16789 16789fs  
14  
LT1678/LT1679  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
S Package  
14-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.337 – .344  
.045 ±.005  
(8.560 – 8.738)  
.050 BSC  
NOTE 3  
14  
N
13  
12  
11  
10  
9
8
N
1
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
7
1
2
3
4
5
6
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S14 0502  
NOTE:  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
1. DIMENSIONS IN  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
sn16789 16789fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1678/LT1679  
U
TYPICAL APPLICATIO  
Bridge Reversal Eliminates 1/f Noise and Offset Drift of a Low Noise, Non-autozeroed, Bipolar Amplifier.  
Circuit Gives 14nV Noise Level or 19 Effective Bits Over a 10mV Span  
V
REF  
3
V
7V  
REF  
4
φ1  
5,6,7,8  
LT1461-5  
2
10µF  
0.1µF  
5V  
+
100k  
10Ω  
1
1/2 LT1678  
+
REF  
0.047µF  
350Ω  
350Ω  
350Ω  
1k  
0.1%  
100Ω  
+
IN  
1µF  
1µF  
350Ω  
100Ω  
0.1%  
LTC2440  
1k  
100Ω  
0.1%  
IN  
0.047µF  
REF  
V
REF  
3
10Ω  
100k  
1/2 LT1678  
+
4
2
φ1  
φ2  
2X  
SILICONIX  
Si9801  
φ2  
5,6,7,8  
1
2s  
16789 TA02  
RELATED PARTS  
PART NUMBER  
LT1028/LT1128  
LT1115  
DESCRIPTION  
COMMENTS  
Lowest Noise 0.85nV/Hz  
Ultralow Noise Precision Op Amps  
Ultralow Noise, Low distortion Audio Op Amp  
0.002% THD, Max Noise 1.2nV/Hz  
Similar to LT1007  
LT1124/LT1125  
LT1126/LT1127  
LT1226  
Dual/Quad Low Noise, High Speed Precision Op Amps  
Dual/Quad Decompensated Low Noise, High Speed Precision Op Amps  
Low Noise, Very High Speed Op Amp  
Similar to LT1037  
1GHz, 2.6nV/Hz, Gain of 25 Stable  
Precision C-LoadTM Stable  
Rail-to-Rail 3.2nV/Hz  
LT1498/LT1499  
LT1677  
10MHz, 5V/µs, Dual/Quad Rail-to-Rail Input and Output Op Amps  
Single Version of LT1678/LT1679  
LT1792  
Low Noise, Precision JFET Input Op Amp  
4.2nV/Hz, 10fA/Hz  
LT1793  
Low Noise, Picoampere Bias Current Op Amp  
6nV/Hz, 1fA/Hz, I = 10pA Max  
B
LT1806  
Low Noise, 325MHz Rail-to-Rail Input and Output Op Amp  
Dual/Quad Rail-to-Rail Output Picoamp Input Precision Op Amps  
Dual/Quad Rail-to-Rail Output Picoamp Input Precision Op Amps  
3.5nV/Hz  
LT1881/LT1882  
LT1884/LT1885  
C
to 1000pF, I = 200pA Max  
LOAD B  
2.2MHz Bandwidth, 1.2V/µs SR  
C-Load is a trademark of Linear Technology Corporation.  
sn16789 16789fs  
LT/TP 0104 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY