LT1761MPS5-5#TRM [Linear]

LT1761 - 100mA, Low Noise, LDO Micropower Regulators in TSOT-23; Package: SOT; Pins: 5; Temperature Range: -55°C to 125°C;
LT1761MPS5-5#TRM
型号: LT1761MPS5-5#TRM
厂家: Linear    Linear
描述:

LT1761 - 100mA, Low Noise, LDO Micropower Regulators in TSOT-23; Package: SOT; Pins: 5; Temperature Range: -55°C to 125°C

光电二极管 输出元件 调节器
文件: 总22页 (文件大小:1159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1761 Series  
100mA, Low Noise,  
LDO Micropower  
Regulators in TSOT-23  
FEATURES  
DESCRIPTION  
The LT®1761 series are micropower, low noise, low  
dropout regulators. With an external 0.01μF bypass  
n
Low Noise: 20μV  
(10Hz to 100kHz)  
RMS  
n
Low Quiescent Current: 20μA  
Wide Input Voltage Range: 1.8V to 20V  
Output Current: 100mA  
Very Low Shutdown Current: <0.1μA  
Low Dropout Voltage: 300mV at 100mA  
Fixed Output Voltages: 1.2V, 1.5V, 1.8V, 2V, 2.5V,  
2.8V, 3V, 3.3V, 5V  
n
n
n
n
n
capacitor, output noise drops to 20μV  
over a 10Hz to  
RMS  
100kHz bandwidth. Designed for use in battery-powered  
systems, the low 20μA quiescent current makes them an  
ideal choice. In shutdown, quiescent current drops to less  
than 0.1μA. The devices are capable of operating over an  
input voltage from 1.8V to 20V, and can supply 100mA of  
outputcurrentwithadropoutvoltageof300mV.Quiescent  
current is well controlled, not rising in dropout as it does  
with many other regulators.  
n
n
n
Adjustable Output from 1.22V to 20V  
Stable with 1μF Output Capacitor  
Stable with Aluminum, Tantalum or  
Ceramic Capacitors  
TheLT1761regulatorsarestablewithoutputcapacitorsas  
low as 1μF. Small ceramic capacitors can be used without  
the series resistance required by other regulators.  
n
n
n
n
n
Reverse-Battery Protected  
No Reverse Current  
No Protection Diodes Needed  
Internal protection circuitry includes reverse battery  
protection, current limiting, thermal limiting and reverse  
current protection. The device is available in fixed output  
voltages of 1.2V, 1.5V, 1.8V, 2V, 2.5V, 2.8V, 3V, 3.3V and  
5V, and as an adjustable device with a 1.22V reference  
voltage. The LT1761 regulators are available in the 5-lead  
TSOT-23 package.  
Overcurrent and Overtemperature Protected  
Available in Tiny 5-Lead TSOT-23 Package  
APPLICATIONS  
n
Cellular Phones  
n
Pagers  
n
Battery-Powered Systems  
L, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
n
Frequency Synthesizers  
n
Wireless Modems  
TYPICAL APPLICATION  
10Hz to 100kHz Output Noise  
5V Low Noise Regulator  
5V AT100mA  
20μV NOISE  
10μF  
IN  
OUT  
BYP  
V
RMS  
IN  
+
V
OUT  
5.4V TO  
20V  
1μF  
0.01μF  
LT1761-5  
20μV  
RMS  
100μV/DIV  
SHDN  
GND  
1761 TA01  
1761 TA01b  
1761sff  
1
LT1761 Series  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
IN Pin Voltage ......................................................... 20V  
OUT Pin Voltage...................................................... 20V  
Input to Output Differential Voltage......................... 20V  
ADJ Pin Voltage ...................................................... 7V  
BYP Pin Voltage..................................................... 0.6V  
SHDN Pin Voltage ................................................. 20V  
Output Short-Circuit Duration ........................ Indefinite  
Operating Junction Temperature Range  
E, I Grade (Note 2)............................. –40°C to 125°C  
MP Grade (Note 2)............................. –55°C to 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
PIN CONFIGURATION  
LT1761-BYP  
LT1761-SD  
LT1761-X  
TOP VIEW  
TOP VIEW  
TOP VIEW  
IN 1  
GND 2  
BYP 3  
5 OUT  
4 ADJ  
IN 1  
GND 2  
5 OUT  
4 ADJ  
IN 1  
GND 2  
5 OUT  
4 BYP  
SHDN 3  
SHDN 3  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
T
= 150°C, θ = 250°C/W  
T
JMAX  
= 150°C, θ = 250°C/W  
T
= 150°C, θ = 250°C/W  
JMAX JA  
JMAX  
JA  
JA  
SEE APPLICATIONS INFORMATION SECTION  
SEE APPLICATIONS INFORMATION SECTION  
SEE APPLICATIONS INFORMATION SECTION  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1761ES5-BYP#PBF  
LT1761IS5-BYP#PBF  
LT1761ES5-SD#PBF  
LT1761IS5-SD#PBF  
LT1761ES5-1.2#PBF  
LT1761IS5-1.2#PBF  
LT1761ES5-1.5#PBF  
LT1761IS5-1.5#PBF  
LT1761ES5-1.8#PBF  
LT1761IS5-1.8#PBF  
LT1761MPS5-1.8#PBF  
LT1761ES5-2#PBF  
LT1761IS5-2#PBF  
TAPE AND REEL  
PART MARKING *  
LTGC  
LTGC  
LTGH  
LTGH  
LTCDS  
LTCDS  
LTMT  
LTMT  
LTJM  
LTJM  
LTDCH  
LTJE  
LTJE  
LTGD  
LTGD  
LTLB  
LTLB  
LTGE  
LTGE  
LTGF  
PACKAGE DESCRIPTION  
5-Lead Plastic TSOT-23  
TEMPERATURE RANGE  
LT1761ES5-BYP#TRPBF  
LT1761IS5-BYP#TRPBF  
LT1761ES5-SD#TRPBF  
LT1761IS5-SD#TRPBF  
LT1761ES5-1.2#TRPBF  
LT1761IS5-1.2#TRPBF  
LT1761ES5-1.5#TRPBF  
LT1761IS5-1.5#TRPBF  
LT1761ES5-1.8#TRPBF  
LT1761IS5-1.8#TRPBF  
LT1761MPS5-1.8#TRPBF  
LT1761ES5-2#TRPBF  
LT1761IS5-2#TRPBF  
LT1761ES5-2.5#TRPBF  
LT1761IS5-2.5#TRPBF  
LT1761ES5-2.8#TRPBF  
LT1761IS5-2.8#TRPBF  
LT1761ES5-3#TRPBF  
LT1761IS5-3#TRPBF  
LT1761ES5-3.3#TRPBF  
LT1761IS5-3.3#TRPBF  
LT1761MPS5-3.3#TRPBF  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
LT1761ES5-2.5#PBF  
LT1761IS5-2.5#PBF  
LT1761ES5-2.8#PBF  
LT1761IS5-2.8#PBF  
LT1761ES5-3#PBF  
LT1761IS5-3#PBF  
LT1761ES5-3.3#PBF  
LT1761IS5-3.3#PBF  
LT1761MPS5-3.3#PBF  
LTGF  
LTGF  
1761sff  
2
LT1761 Series  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1761ES5-5#PBF  
LT1761IS5-5#PBF  
LT1761MPS5-5#PBF  
LEAD BASED FINISH  
LT1761ES5-BYP  
LT1761IS5-BYP  
LT1761ES5-SD  
LT1761IS5-SD  
LT1761ES5-1.2  
LT1761IS5-1.2  
LT1761ES5-1.5  
LT1761IS5-1.5  
LT1761ES5-1.8  
LT1761IS5-1.8  
LT1761MPS5-1.8  
LT1761ES5-2  
TAPE AND REEL  
PART MARKING *  
LTGG  
LTGG  
LTGG  
PART MARKING *  
LTGC  
LTGC  
LTGH  
LTGH  
LTCDS  
LTCDS  
LTMT  
LTMT  
LTJM  
LTJM  
LTDCH  
LTJE  
LTJE  
LTGD  
LTGD  
LTLB  
LTLB  
LTGE  
LTGE  
LTGF  
LTGF  
LTGF  
PACKAGE DESCRIPTION  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
PACKAGE DESCRIPTION  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
LT1761ES5-5#TRPBF  
LT1761IS5-5#TRPBF  
LT1761MPS5-5#TRPBF  
TAPE AND REEL  
LT1761ES5-BYP#TR  
LT1761IS5-BYP#TR  
LT1761ES5-SD#TR  
LT1761IS5-SD#TR  
LT1761ES5-1.2#TR  
LT1761IS5-1.2#TR  
LT1761ES5-1.5#TR  
LT1761IS5-1.5#TR  
LT1761ES5-1.8#TR  
LT1761IS5-1.8#TR  
LT1761MPS5-1.8#TR  
LT1761ES5-2#TR  
LT1761IS5-2#TR  
LT1761ES5-2.5#TR  
LT1761IS5-2.5#TR  
LT1761ES5-2.8#TR  
LT1761IS5-2.8#TR  
LT1761ES5-3#TR  
LT1761IS5-3#TR  
LT1761IS5-2  
LT1761ES5-2.5  
LT1761IS5-2.5  
LT1761ES5-2.8  
LT1761IS5-2.8  
LT1761ES5-3  
LT1761IS5-3  
LT1761ES5-3.3  
LT1761IS5-3.3  
LT1761MPS5-3.3  
LT1761ES5-5  
LT1761IS5-5  
LT1761MPS5-5  
LT1761ES5-3.3#TR  
LT1761IS5-3.3#TR  
LT1761MPS5-3.3#TR  
LT1761ES5-5#TR  
LT1761IS5-5#TR  
LTGG  
LTGG  
LTGG  
LT1761MPS5-5#TR  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1761sff  
3
LT1761 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
= 100mA  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage (Notes 3, 11)  
Regulated Output Voltage (Note 4)  
I
1.8  
2.3  
V
LOAD  
LT1761-1.2  
LT1761-1.5  
LT1761-1.8  
LT1761-2  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
LT1761-3.3  
LT1761-5  
LT1761  
V
= 2V, I  
= 1mA  
LOAD  
1.185  
1.170  
1.150  
1.2  
1.2  
1.2  
1.215  
1.230  
1.240  
V
V
V
IN  
l
l
2.3V < V < 20V, 1mA < I  
< 50mA  
IN  
IN  
LOAD  
LOAD  
2.3V < V < 20V, 1mA < I  
< 100mA  
V
IN  
= 2V, I  
= 1mA  
LOAD  
1.478  
1.457  
1.436  
1.5  
1.5  
1.5  
1.522  
1.538  
1.555  
V
V
V
l
l
2.5V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
IN  
IN  
LOAD  
LOAD  
2.5V < V < 20V, 1mA < I  
V
IN  
= 2.3V, I  
= 1mA  
LOAD  
1.775  
1.750  
1.725  
1.8  
1.8  
1.8  
1.825  
1.845  
1.860  
V
V
V
l
l
2.8V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
IN  
IN  
LOAD  
LOAD  
2.8V < V < 20V, 1mA < I  
V
= 2.5V, I  
IN  
IN  
= 1mA  
LOAD  
1.970  
1.945  
1.920  
2
2
2
2.030  
2.045  
2.060  
V
V
V
IN  
l
l
3V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
LOAD  
LOAD  
3V < V < 20V, 1mA < I  
V
IN  
= 3V, I  
= 1mA  
LOAD  
2.465  
2.435  
2.415  
2.5  
2.5  
2.5  
2.535  
2.565  
2.575  
V
V
V
l
l
3.5V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
IN  
IN  
LOAD  
LOAD  
3.5V < V < 20V, 1mA < I  
V
IN  
= 3.3V, I  
= 1mA  
LOAD  
2.762  
2.732  
2.706  
2.8  
2.8  
2.8  
2.838  
2.868  
2.884  
V
V
V
l
l
3.8V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
IN  
IN  
LOAD  
LOAD  
3.8V < V < 20V, 1mA < I  
V
= 3.5V, I  
IN  
IN  
= 1mA  
LOAD  
2.960  
2.930  
2.900  
3
3
3
3.040  
3.070  
3.090  
V
V
V
IN  
l
l
4V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
LOAD  
LOAD  
4V < V < 20V, 1mA < I  
V
IN  
= 3.8V, I  
= 1mA  
LOAD  
3.250  
3.230  
3.190  
3.3  
3.3  
3.3  
3.350  
3.370  
3.400  
V
V
V
l
l
4.3V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
IN  
IN  
LOAD  
LOAD  
4.3V < V < 20V, 1mA < I  
V
= 5.5V, I  
IN  
IN  
= 1mA  
LOAD  
4.935  
4.900  
4.850  
5
5
5
5.065  
5.100  
5.120  
V
V
V
IN  
l
l
6V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
LOAD  
LOAD  
6V < V < 20V, 1mA < I  
ADJ Pin Voltage (Note 3, 4)  
Line Regulation  
V
IN  
= 2V, I  
= 1mA  
LOAD  
1.205  
1.190  
1.170  
1.220  
1.220  
1.220  
1.235  
1.250  
1.260  
V
V
V
l
l
2.3V < V < 20V, 1mA < I  
< 50mA  
< 100mA  
IN  
IN  
LOAD  
LOAD  
2.3V < V < 20V, 1mA < I  
l
l
l
l
l
l
l
l
l
l
LT1761-1.2  
LT1761-1.5  
LT1761-1.8  
LT1761-2  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
LT1761-3.3  
LT1761-5  
LT1761 (Note 3)  
1
1
1
1
1
1
1
1
1
1
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
ΔV = 2V to 20V, I  
= 1mA  
= 1mA  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
ΔV = 2V to 20V, I  
ΔV = 2.3V to 20V, I  
= 1mA  
= 1mA  
ΔV = 2.5V to 20V, I  
ΔV = 3V to 20V, I  
= 1mA  
LOAD  
ΔV = 3.3V to 20V, I  
= 1mA  
= 1mA  
= 1mA  
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
ΔV = 3.5V to 20V, I  
ΔV = 3.8V to 20V, I  
ΔV = 5.5V to 20V, I  
IN  
IN  
ΔV = 2V to 20V, I  
= 1mA  
LOAD  
1761sff  
4
LT1761 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Load Regulation  
LT1761-1.2  
1
6
mV  
mV  
mV  
mV  
V
IN  
V
IN  
V
IN  
V
IN  
= 2.3V, ΔI  
= 2.3V, ΔI  
= 2.3V, ΔI  
= 2.3V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
LOAD  
LOAD  
LOAD  
LOAD  
l
l
12  
12  
50  
1
LT1761-1.5  
LT1761-1.8  
LT1761-2  
10  
14  
20  
35  
30  
55  
mV  
mV  
mV  
mV  
V
V
V
V
= 2.5V, ΔI  
= 2.5V, ΔI  
= 2.5V, ΔI  
= 2.5V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
IN  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
l
l
10  
15  
20  
35  
30  
60  
mV  
mV  
mV  
mV  
V
IN  
V
IN  
V
IN  
V
IN  
= 2.8V, ΔI  
= 2.8V, ΔI  
= 2.8V, ΔI  
= 2.8V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
LOAD  
LOAD  
LOAD  
LOAD  
l
l
10  
15  
20  
35  
35  
65  
mV  
mV  
mV  
mV  
V
IN  
V
IN  
V
IN  
V
IN  
= 3V, ΔI  
= 3V, ΔI  
= 3V, ΔI  
= 3V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
LOAD  
LOAD  
LOAD  
LOAD  
l
l
LT1761-2.5  
LT1761-2.8  
LT1761-3  
10  
20  
20  
35  
40  
80  
mV  
mV  
mV  
mV  
V
V
V
V
= 3.5V, ΔI  
= 3.5V, ΔI  
= 3.5V, ΔI  
= 3.5V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
IN  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
l
l
10  
20  
20  
38  
40  
86  
mV  
mV  
mV  
mV  
V
IN  
V
IN  
V
IN  
V
IN  
= 3.8V, ΔI  
= 3.8V, ΔI  
= 3.8V, ΔI  
= 3.8V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
LOAD  
LOAD  
LOAD  
LOAD  
l
l
10  
20  
20  
40  
40  
90  
mV  
mV  
mV  
mV  
V
IN  
V
IN  
V
IN  
V
IN  
= 4V, ΔI  
= 4V, ΔI  
= 4V, ΔI  
= 4V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
LOAD  
LOAD  
LOAD  
LOAD  
l
l
LT1761-3.3  
LT1761-5  
10  
20  
20  
40  
mV  
mV  
mV  
mV  
V
V
V
V
= 4.3V, ΔI  
= 4.3V, ΔI  
= 4.3V, ΔI  
= 4.3V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
IN  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
l
l
40  
100  
15  
25  
30  
60  
mV  
mV  
mV  
mV  
V
V
V
V
= 6V, ΔI  
= 6V, ΔI  
= 6V, ΔI  
= 6V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
IN  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
l
l
65  
150  
LT1761 (Note 3)  
1
1
6
mV  
mV  
mV  
mV  
V
IN  
V
IN  
V
IN  
V
IN  
= 2.3V, ΔI  
= 2.3V, ΔI  
= 2.3V, ΔI  
= 2.3V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
= 1mA to 100mA  
= 1mA to 100mA  
LOAD  
LOAD  
LOAD  
LOAD  
l
l
12  
12  
50  
Dropout Voltage  
I
I
= 1mA  
= 1mA  
0.10  
0.17  
0.24  
0.30  
0.15  
0.19  
V
V
LOAD  
LOAD  
l
l
l
V
= V  
OUT(NOMINAL)  
IN  
(Notes 5, 6, 11)  
I
I
= 10mA  
= 10mA  
0.22  
0.29  
V
V
LOAD  
LOAD  
I
I
= 50mA  
= 50mA  
0.28  
0.38  
V
V
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
0.35  
0.45  
V
V
LOAD  
LOAD  
1761sff  
5
LT1761 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
GND Pin Current  
I
I
I
I
I
= 0mA  
20  
55  
45  
100  
400  
2
μA  
μA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
= 1mA  
IN  
OUT(NOMINAL)  
(Notes 5, 7)  
= 10mA  
= 50mA  
= 100mA  
230  
1
μA  
mA  
mA  
2.2  
4
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, C  
= 0.01μF, I  
= 100mA, BW = 10Hz to 100kHz  
20  
30  
μV  
RMS  
OUT  
BYP  
LOAD  
(Notes 3, 8)  
100  
2
nA  
l
l
V
V
= Off to On  
= On to Off  
0.8  
0.65  
V
V
OUT  
OUT  
0.25  
l
l
SHDN Pin Current  
(Note 9)  
V
SHDN  
V
SHDN  
= 0V  
= 20V  
0
1
0.5  
3
μA  
μA  
Quiescent Current in Shutdown  
Ripple Rejection (Note 3)  
V
V
= 6V, V  
= 0V  
0.01  
65  
0.1  
μA  
dB  
IN  
SHDN  
– V  
= 1.5V (Avg), V  
= 0.5V , f  
P-P RIPPLE  
= 120Hz,  
= –5%  
55  
IN  
OUT  
RIPPLE  
I
= 50mA  
LOAD  
Current Limit  
V
IN  
V
IN  
= 7V, V  
= 0V  
200  
mA  
mA  
OUT  
OUT(NOMINAL)  
l
l
= V  
+ 1V or 2.3V (Note 12), ΔV  
110  
OUT  
Input Reverse Leakage Current  
V
IN  
= –20V, V  
= 0V  
OUT  
1
mA  
Reverse Output Current  
(Note 10)  
LT1761-1.2  
LT1761-1.5  
LT1761-1.8  
LT1761-2  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
LT1761-3.3  
LT1761-5  
LT1761 (Note 3)  
V
= 1.2V, V < 1.2V  
10  
10  
10  
10  
10  
10  
10  
10  
10  
5
20  
20  
20  
20  
20  
20  
20  
20  
20  
10  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
V
V
V
V
V
V
V
V
V
= 1.5V, V < 1.5V  
IN  
= 1.8V, V < 1.8V  
IN  
= 2V, V < 2V  
IN  
= 2.5V, V < 2.5V  
IN  
= 2.8V, V < 2.8V  
IN  
= 3V, V < 3V  
IN  
= 3.3V, V < 3.3V  
IN  
= 5V, V < 5V  
IN  
= 1.22V, V < 1.22V  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to: V – V  
.
IN  
DROPOUT  
Note 7: GND pin current is tested with V = V  
or V = 2.3V  
IN  
IN  
OUT(NOMINAL)  
Note 2: The LT1761 regulators are tested and specified under pulse load  
(whichever is greater) and a current source load. This means the device  
is tested while operating in its dropout region or at the minimum input  
voltage specification. This is the worst-case GND pin current. The GND pin  
current will decrease slightly at higher input voltages.  
Note 8: ADJ pin bias current flows into the ADJ pin.  
Note 9: SHDN pin current flows into the SHDN pin.  
Note 10: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
conditions such that T ≈ T . The LT1761E is 100% production tested  
J
A
at T = 25°C. Performance at –40°C and 125°C is assured by design,  
A
characterization and correlation with statistical process controls. The  
LT1761I is guaranteed over the full –40°C to 125°C operating junction  
temperature range. The LT1761MP is 100% tested and guaranteed over  
the –55°C to 125°C operating junction temperature range.  
Note 3: The LT1761 (adjustable versions) are tested and specified for  
these conditions with the ADJ pin connected to the OUT pin.  
Note 4: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply  
for all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 5: To satisfy requirements for minimum input voltage, the LT1761  
(adjustable version) is tested and specified for these conditions with an  
external resistor divider (two 250k resistors) for an output voltage of  
2.44V. The external resistor divider will add a 5μA DC load on the output.  
Note 11: For the LT1761, LT1761-1.2, LT1761-1.5, LT1761-1.8 and  
LT1761-2 dropout voltage will be limited by the minimum input voltage  
specification under some output voltage/load conditions. See the curve of  
Minimum Input Voltage in the Typical Performance Characteristics.  
Note 12: To satisfy requirements for minimum input voltage, current limit  
is tested at V = V  
+ 1V or V = 2.3V, whichever is greater.  
IN  
OUT(NOMINAL)  
IN  
1761sff  
6
LT1761 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
T
≤ 125°C  
J
T
= 125°C  
J
I
L
= 100mA  
T
≤ 25°C  
J
I
= 50mA  
= 10mA  
L
T
= 25°C  
J
I
L
I
= 1mA  
L
0
0
0
40  
50  
TEMPERATURE (°C)  
125  
40  
50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
0
10 20 30  
50 60 70 80 90 100  
–50 –25  
0
25  
75 100  
0
10 20 30  
OUTPUT CURRENT (mA)  
1761 G01  
1761 G01.1  
1761 G00  
LT1761-1.2  
Output Voltage  
LT1761-1.5  
Quiescent Current  
Output Voltage  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
1.528  
1.521  
1.514  
1.507  
1.500  
1.493  
1.486  
1.479  
1.472  
40  
35  
30  
25  
20  
15  
10  
5
V
= 6V  
I
= 1mA  
I
= 1mA  
IN  
L
L
L
R
= ∞ (250k FOR LT1761-BYP, -SD)  
I
= 0 (5μA FOR LT1761-BYP, -SD)  
L
V
= V  
IN  
SHDN  
V
= 0V  
50  
SHDN  
0
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
–25  
0
25  
75  
125  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1761 G05  
1761 G51  
1761 G03  
LT1761-1.8  
Output Voltage  
LT1761-2  
Output Voltage  
LT1761-2.5  
Output Voltage  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
2.04  
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
1.96  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
I
= 1mA  
I
= 1mA  
I
= 1mA  
L
L
L
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1761 G06  
1761 G07  
1761 G08  
1761sff  
7
LT1761 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1761-2.8  
Output Voltage  
LT1761-3  
Output Voltage  
LT1761-3.3  
Output Voltage  
2.84  
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
2.76  
3.060  
3.045  
3.030  
3.015  
3.000  
2.985  
2.970  
2.955  
2.940  
3.360  
3.345  
3.330  
3.315  
3.300  
3.285  
3.270  
3.255  
3.240  
I
= 1mA  
I
= 1mA  
I = 1mA  
L
L
L
–25  
0
25  
50  
75  
125  
–50  
100  
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1761 G52  
1761 G09  
1761 G11  
LT1761-5  
Output Voltage  
LT1761-BYP, LT1761-SD  
ADJ Pin Voltage  
LT1761-1.2  
Quiescent Current  
250  
225  
200  
175  
150  
125  
100  
75  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
I
= 1mA  
T
= 25°C  
= ∞  
I
= 1mA  
L
J
L
L
R
50  
V
V
= V  
IN  
SHDN  
25  
= 0V  
8
SHDN  
0
–25  
0
25  
50  
75  
125  
–50  
100  
–25  
0
25  
50  
75  
125  
–50  
100  
0
1
2
3
4
5
6
7
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
1761 G12  
1761 G10  
1761 G10b  
LT1761-1.5  
Quiescent Current  
LT1761-1.8  
Quiescent Current  
LT1761-2  
Quiescent Current  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
T
= 25°C  
= ∞  
T
= 25°C  
= ∞  
T
= 25°C  
R = ∞  
L
J
L
J
L
J
R
R
50  
50  
50  
V
V
= V  
V
V
= V  
V
V
= V  
IN  
SHDN  
IN  
SHDN  
IN  
SHDN  
25  
25  
25  
= 0V  
8
= 0V  
8
= 0V  
8
SHDN  
SHDN  
SHDN  
0
0
0
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1761 G53  
1761 G18  
1761 G19  
1761sff  
8
LT1761 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1761-2.5  
Quiescent Current  
LT1761-2.8  
Quiescent Current  
LT1761-3  
Quiescent Current  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
T
= 25°C  
= ∞  
T
= 25°C  
= ∞  
T
= 25°C  
= ∞  
J
L
J
L
J
L
R
R
R
50  
50  
50  
V
= V  
IN  
V
= V  
IN  
V
= V  
IN  
SHDN  
SHDN  
SHDN  
25  
25  
25  
V
= 0V  
8
V
= 0V  
8
V
= 0V  
8
SHDN  
SHDN  
SHDN  
0
0
0
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1761 G13  
1761 G54  
1761 G14  
LT1761-3.3  
Quiescent Current  
LT1761-5  
Quiescent Current  
LT1761-BYP, LT1761-SD  
Quiescent Current  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
30  
25  
20  
15  
10  
5
T
= 25°C  
= ∞  
T
= 25°C  
= 250k  
L
T
= 25°C  
= ∞  
J
L
J
J
L
R
R
R
I
= 5μA  
L
V
= V  
IN  
SHDN  
50  
50  
V
V
= V  
V
= V  
IN  
SHDN  
IN  
SHDN  
25  
25  
V
= 0V  
8
= 0V  
8
V
= 0V  
SHDN  
SHDN  
SHDN  
0
0
0
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
9
10  
0
2
4
6
8
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1761 G15  
1761 G16  
1761 G17  
LT1761-1.2  
GND Pin Current  
LT1761-1.5  
GND Pin Current  
LT1761-1.8  
GND Pin Current  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
T
= 25°C  
T
= 25°C  
T
= 25°C  
J
J
J
*FOR V  
= 1.8V  
*FOR V  
= 1.2V  
*FOR V  
= 1.5V  
OUT  
OUT  
OUT  
R
L
= 12Ω  
R
L
= 15Ω  
R
L
= 18Ω  
L
L
L
I
= 100mA*  
I
= 100mA*  
I
= 100mA*  
R
L
= 24Ω  
L
R
I
= 36Ω  
L
L
R
L
= 30Ω  
L
I
= 50mA*  
= 50mA*  
I
= 50mA*  
R
L
= 1.2k  
L
R
L
= 1.5k  
R = 1.8k  
L
I = 1mA*  
L
L
R
I
= 120Ω  
R
I
= 150Ω  
R
I
= 180Ω  
L
L
L
L
L
L
I
= 1mA*  
I
= 1mA*  
= 10mA*  
= 10mA*  
= 10mA*  
4
0
1
2
3
5
6
7
8
9
10  
4
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1761 G17b  
1761 G55  
1761 G02  
1761sff  
9
LT1761 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1761-2  
GND Pin Current  
LT1761-2.5  
GND Pin Current  
LT1761-2.8  
GND Pin Current  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
T
= 25°C  
T
= 25°C  
T
= 25°C  
J
J
J
*FOR V  
= 2.8V  
*FOR V  
= 2.5V  
*FOR V  
= 2V  
OUT  
OUT  
OUT  
R
L
= 25Ω  
L
R
L
= 28Ω  
L
I
= 100mA  
I
= 100mA  
R
L
= 20Ω  
L
I
= 100mA*  
R
I
= 50Ω  
R = 56Ω  
L
I = 50mA*  
L
R
= 40Ω  
= 50mA*  
L
L
= 50mA*  
I
L
L
R
L
= 2k  
R
L
= 2.5k  
R = 2.8k  
L
I = 1mA*  
L
L
L
R
= 200Ω  
= 10mA*  
R
I
= 250Ω  
R = 280Ω  
L
I = 10mA*  
L
L
L
I
= 1mA*  
I
= 1mA*  
I
= 10mA*  
L
L
4
4
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1761 G04  
1761 G20  
1761 G56  
LT1761-3  
GND Pin Current  
LT1761-3.3  
GND Pin Current  
LT1761-5  
GND Pin Current  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
T
= 25°C  
T
= 25°C  
T = 25°C  
J
J
J
*FOR V  
= 3.3V  
*FOR V  
= 3V  
*FOR V  
= 5V  
OUT  
OUT  
OUT  
R
L
= 50Ω  
L
I
= 100mA  
R
L
= 30Ω  
L
R
L
= 33Ω  
L
I
= 100mA*  
I
= 100mA*  
R
L
= 100Ω  
L
R
I
= 66Ω  
L
R
L
= 60Ω  
I
= 50mA*  
L
= 50mA*  
L
I
= 50mA*  
R
I
= 5k  
= 1mA*  
L
L
R
L
= 3k  
= 1mA*  
R = 3.3k  
L
I = 1mA*  
L
L
R
= 500Ω  
= 10mA*  
R
= 300Ω  
= 10mA*  
R
I
= 330Ω  
L
L
L
I
I
L
I
= 10mA*  
L
L
4
4
4
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1761 G21  
1761 G22  
1761 G23  
LT1761-BYP, LT1761-SD  
GND Pin Current  
SHDN Pin Threshold  
GND Pin Current vs ILOAD  
(On to Off)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
I
= 1mA  
V
= V  
+ 1V  
OUT(NOMINAL)  
T
= 25°C  
L
IN  
J
*FOR V  
= 1.22V  
OUT  
R
L
= 12.2Ω  
L
I
= 100mA*  
R
L
= 24.4Ω  
L
I
= 50mA*  
R
L
= 1.22k  
L
R
L
= 122Ω  
L
I
= 1mA*  
I
= 10mA*  
4
0
1
2
3
5
6
7
8
9
10  
40  
50 60 70 80 90 100  
50  
75 100 125  
0
10 20 30  
–50  
0
25  
–25  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
1761 G24  
1761 G25  
1761 G26  
1761sff  
10  
LT1761 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
SHDN Pin Threshold  
(Off to On)  
SHDN Pin Input Current  
SHDN Pin Input Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 20V  
SHDN  
I
= 100mA  
L
I
= 1mA  
L
50  
TEMPERATURE (°C)  
75 100 125  
4
50  
125  
–50  
0
25  
0
1
2
3
5
6
7
8
9
10  
–50  
0
25  
75  
–25  
–25  
100  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1761 G27  
1761 G28  
1761 G29  
ADJ Pin Bias Current  
Current Limit  
Current Limit  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
V
V
= 7V  
V
T
= 0V  
IN  
OUT  
OUT  
J
= 0V  
= 25°C  
0
0
–50  
0
25  
50  
75 100 125  
0
2
3
4
5
6
7
–50  
0
25  
50  
75 100 125  
–25  
1
–25  
TEMPERATURE (oC)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1761 G30  
1761 G31  
1761 G32  
Reverse Output Current  
Reverse Output Current  
Input Ripple Rejection  
25.0  
22.5  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
V
V
V
= 0V  
IN  
I = 100mA  
L
T = 25°C  
LT1761-BYP  
LT1761-SD  
J
= 1.22V (LT1761-BYP, -SD)  
= 1.2V (LT1761-1.2)  
= 1.5V (LT1761-1.5)  
= 1.8V (LT1761-1.8)  
= 2V (LT1761-2)  
= 2.5V (LT1761-2.5)  
= 2.8V (LT1761-2.8)  
= 3V (LT1761-3)  
OUT  
OUT  
V
= V  
+
90 V = 0V  
IN  
OUT(NOMINAL)  
IN  
LT1761-BYP  
LT1761-5  
1V + 50mV  
RIPPLE  
CURRENT FLOWS  
RMS  
V
20.0 OUT  
80  
70  
60  
50  
40  
30  
20  
10  
0
C
= 0  
INTO OUTPUT PIN  
BYP  
V
OUT  
LT1761-1.2  
V
= V  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
17.5  
15.0  
12.5  
10.0  
7.5  
OUT  
ADJ  
(LT1761-BYP, -SD)  
LT1761-1.5  
C
= 10μF  
LT1761-1.8  
LT1761-2  
LT1761-2.5  
OUT  
= 3.3V (LT1761-3.3)  
= 5V (LT1761-5)  
LT1761-2.8  
LT1761-3  
LT1761-BYP,-SD  
5.0  
C
= 1μF  
OUT  
LT1761-1.2,-1.5,-1.8,-2,  
-2.5,-2.8,-3,-3.3,-5  
LT1761-3.3  
2.5  
LT1761-5  
0
10  
100  
1k  
10k  
100k  
1M  
–50  
0
25  
50  
75 100 125  
–25  
4
0
1
2
3
5
6
7
8
9
10  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
1761 G35  
1761 G34  
1761 G33  
1761sff  
11  
LT1761 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1761-5  
Input Ripple Rejection  
LT1761-BYP, LT1761-SD  
Minimum Input Voltage  
Input Ripple Rejection  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
C
= 0.01μF  
BYP  
C
= 1000pF  
BYP  
I
= 100mA  
L
I
= 50mA  
L
C
= 100pF  
BYP  
I
= 100mA  
= V  
V
= V  
+
OUT (NOMINAL)  
L
IN  
IN  
V
+
OUT(NOMINAL)  
1V + 0.5V RIPPLE  
P-P  
1V + 50mV  
RIPPLE  
AT f = 120Hz  
RMS  
C
= 10μF  
I
= 50mA  
OUT  
L
–25  
0
25  
50  
75  
125  
–50  
100  
10  
100  
1k  
10k  
100k  
1M  
–50  
0
25  
50  
75 100 125  
–25  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1761 G36  
1761 G37  
1761 G38  
Load Regulation  
ΔIL = 1mA to 50mA  
Load Regulation  
ΔIL = 1mA to 100mA  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
LT1761-BYP, -SD, -1.2  
LT1761-1.5  
LT1761-BYP, -SD, -1.2  
LT1761-1.5  
LT1761-1.8  
LT1761-2  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
LT1761-1.8  
LT1761-2  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
LT1761-3.3  
LT1761-3.3  
LT1761-5  
LT1761-5  
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1761 G39  
1761 G40  
RMS Output Noise vs  
Bypass Capacitor  
Output Noise Spectral Density  
Output Noise Spectral Density  
10  
1
10  
1
140  
120  
100  
80  
C
L
= 10μF  
OUT  
LT1761-5  
LT1761-3.3  
LT1761-3  
LT1761-2.8  
LT1761-2.5  
LT1761-3.3  
I
= 100mA  
LT1761-2.8,-3  
f = 10Hz TO 100kHz  
LT1761-2.5  
LT1761-5  
LT1761-5  
C
= 1000pF  
BYP  
C
BYP  
= 100pF  
LT1761-BYP,  
-SD, 1.2  
LT1761-BYP  
60  
LT1761-1.5  
0.1  
0.01  
LT1761-1.8  
LT1761-2  
0.1  
0.01  
C
= 0.01μF  
BYP  
40  
LT1761-1.8, -2  
100  
C
C
I
= 10μF  
= 0  
OUT  
BYP  
L
20  
LT1761-1.5  
C
OUT  
I
= 10μF  
= 100mA  
LT1761-BYP, -1.2  
= 100mA  
L
0
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
1k  
10k  
C
(pF)  
BYP  
1761 G43  
1761 G41  
1761 G42  
1761sff  
12  
LT1761 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1761-5  
10Hz to 100kHz Output Noise  
CBYP = 0pF  
LT1761-5  
10Hz to 100kHz Output Noise  
CBYP = 100pF  
RMS Output Noise vs  
Load Current (10Hz to 100kHz)  
160  
140  
120  
100  
80  
C
= 10μF  
OUT  
C
= 0  
BYP  
BYP  
C
= 0.01μF  
LT1761-5  
V
V
OUT  
OUT  
100μV/DIV  
100μV/DIV  
LT1761-BYP  
LT1761-5  
60  
40  
1761 G46  
1761 G45  
C
I
= 10μF  
1ms/DIV  
C
I
= 10μF  
1ms/DIV  
OUT  
L
OUT  
L
20  
= 100mA  
= 100mA  
LT1761-BYP  
10  
0
0.01  
0.1  
1
100  
LOAD CURRENT (mA)  
1761 G44  
LT1761-5  
10Hz to 100kHz Output Noise  
CBYP = 1000pF  
LT1761-5  
10Hz to 100kHz Output Noise  
CBYP = 0.01μF  
V
OUT  
V
OUT  
100μV/DIV  
100μV/DIV  
1761 G46  
1761 G48  
C
L
= 10μF  
1ms/DIV  
OUT  
C
= 10μF  
1ms/DIV  
OUT  
I
= 100mA  
I = 100mA  
L
LT1761-5 Transient Response  
CBYP = 0pF  
LT1761-5 Transient Response  
CBYP = 0.01μF  
V
C
C
= 6V  
V
C
C
= 6V  
IN  
IN  
IN  
IN  
0.2  
0.1  
0.04  
0.02  
0
= 10μF  
= 10μF  
= 10μF  
= 10μF  
OUT  
OUT  
0
–0.1  
–0.2  
–0.02  
–0.04  
100  
50  
0
100  
50  
0
800  
TIME (μs)  
80  
0
400  
1200  
1600  
2000  
0
20 40 60  
100 120 140 160 180 200  
TIME (μs)  
1761 G49  
1761 G50  
1761sff  
13  
LT1761 Series  
PIN FUNCTIONS  
IN (Pin 1): Input. Power is supplied to the device through  
the IN pin. A bypass capacitor is required on this pin if  
the device is more than six inches away from the main  
input filter capacitor. In general, the output impedance  
of a battery rises with frequency, so it is advisable to  
include a bypass capacitor in battery-powered circuits. A  
bypass capacitor in the range of 1μF to 10μF is sufficient.  
The LT1761 regulators are designed to withstand reverse  
voltages on the IN pin with respect to ground and the OUT  
pin. In the case of a reverse input, which can happen if  
a battery is plugged in backwards, the device will act as  
if there is a diode in series with its input. There will be  
no reverse current flow into the regulator and no reverse  
voltage will appear at the load. The device will protect both  
itself and the load.  
BYP (Pins 3/4, Fixed/-BYP Devices): Bypass. The BYP  
pin is used to bypass the reference of the LT1761 regula-  
tors to achieve low noise performance from the regulator.  
The BYP pin is clamped internally to 0.6V (one V ) from  
BE  
ground. A small capacitor from the output to this pin will  
bypass the reference to lower the output voltage noise.  
A maximum value of 0.01μF can be used for reducing  
output voltage noise to a typical 20μV  
over a 10Hz  
RMS  
to 100kHz bandwidth. If not used, this pin must be left  
unconnected.  
ADJ (Pin 4, Adjustable Devices Only): Adjust Pin. For the  
adjustable LT1761, this is the input to the error amplifier.  
This pin is internally clamped to 7V. It has a bias current  
of 30nA which flows into the pin (see curve of ADJ Pin  
Bias Current vs Temperature in the Typical Performance  
Characteristics section). The ADJ pin voltage is 1.22V  
referenced to ground and the output voltage range is  
1.22V to 20V.  
GND (Pin 2): Ground.  
SHDN (Pin 3, Fixed/-SD Devices): Shutdown. The SHDN  
pin is used to put the LT1761 regulators into a low power  
shutdown state. The output will be off when the SHDN pin  
ispulledlow.TheSHDNpincanbedriveneitherby5Vlogic  
or open-collector logic with a pull-up resistor. The pull-up  
resistor is required to supply the pull-up current of the  
open-collector gate, normally several microamperes, and  
the SHDN pin current, typically 1μA. If unused, the SHDN  
OUT(Pin5):Output.Theoutputsuppliespowertotheload.  
A minimum output capacitor of 1μF is required to prevent  
oscillations. Larger output capacitors will be required for  
applications with large transient loads to limit peak volt-  
age transients. See the Applications Information section  
for more information on output capacitance and reverse  
output characteristics.  
pin must be connected to V . The device will not function  
IN  
if the SHDN pin is not connected. For the LT1761-BYP, the  
SHDN pin is internally connected to V .  
IN  
1761sff  
14  
LT1761 Series  
APPLICATIONS INFORMATION  
The LT1761 series are 100mA low dropout regulators with  
micropowerquiescentcurrentandshutdown.Thedevices  
are capable of supplying 100mA at a dropout voltage of  
ADJ pin bias current. Note that in shutdown the output is  
turned off and the divider current will be zero. Curves of  
ADJ Pin Voltage vs Temperature and ADJ Pin Bias Cur-  
rent vs Temperature appear in the Typical Performance  
Characteristics.  
300mV. Output voltage noise can be lowered to 20μV  
RMS  
over a 10Hz to 100kHz bandwidth with the addition of a  
0.01μF reference bypass capacitor. Additionally, the refer-  
ence bypass capacitor will improve transient response of  
the regulator, lowering the settling time for transient load  
conditions. The low operating quiescent current (20μA)  
drops to less than 1μA in shutdown. In addition to the  
low quiescent current, the LT1761 regulators incorporate  
several protection features which make them ideal for use  
in battery-powered systems. The devices are protected  
against both reverse input and reverse output voltages.  
In battery backup applications where the output can be  
held up by a backup battery when the input is pulled to  
ground, the LT1761-X acts like it has a diode in series with  
its output and prevents reverse current flow. Additionally,  
in dual supply applications where the regulator load is  
returned to a negative supply, the output can be pulled  
below ground by as much as 20V and still allow the device  
to start and operate.  
The adjustable device is tested and specified with the ADJ  
pin tied to the OUT pin for an output voltage of 1.22V.  
Specifications for output voltages greater than 1.22V will  
be proportional to the ratio of the desired output voltage  
to 1.22V: V /1.22V. For example, load regulation for an  
OUT  
output current change of 1mA to 100mA is –1mV typical  
at V  
= 1.22V. At V  
= 12V, load regulation is:  
OUT  
OUT  
(12V/1.22V)(–1mV) = –9.8mV  
Bypass Capacitance and Low Noise Performance  
The LT1761 regulators may be used with the addition of a  
bypass capacitor from OUT to the BYP pin to lower output  
voltage noise. A good quality low leakage capacitor is rec-  
ommended. Thiscapacitorwillbypassthereferenceofthe  
regulator, providing a low frequency noise pole. The noise  
poleprovidedbythisbypasscapacitorwilllowertheoutput  
voltage noise to as low as 20μV  
with the addition of a  
RMS  
Adjustable Operation  
0.01μF bypass capacitor. Using a bypass capacitor has the  
added benefit of improving transient response. With no  
bypass capacitor and a 10μF output capacitor, a 10mA to  
100mA load step will settle to within 1% of its final value  
in less than 100μs. With the addition of a 0.01μF bypass  
capacitor, the output will stay within 1% for a 10mA to  
100mA load step (see LT1761-5 Transient Response in  
Typical Performance Characteristics section). However,  
regulator start-up time is proportional to the size of the  
bypass capacitor, slowing to 15ms with a 0.01μF bypass  
capacitor and 10μF output capacitor.  
TheadjustableversionoftheLT1761hasanoutputvoltage  
range of 1.22V to 20V. The output voltage is set by the  
ratio of two external resistors as shown in Figure 1. The  
device servos the output to maintain the ADJ pin voltage  
at 1.22V referenced to ground. The current in R1 is then  
equal to 1.22V/R1 and the current in R2 is the current in  
R1 plus the ADJ pin bias current. The ADJ pin bias cur-  
rent, 30nA at 25°C, flows through R2 into the ADJ pin.  
The output voltage can be calculated using the formula in  
Figure 1. The value of R1 should be no greater than 250k  
to minimize errors in the output voltage caused by the  
IN  
OUT  
ADJ  
V
OUT  
¥
´
µ
R2  
R1  
+
V
122V 1ꢁ  
I  
R2  
V
ꢃꢂ  
IN  
OUT  
ADJ  
¦
§
R2  
R1  
LT1761  
GND  
V
122V  
ADJ  
I
30nA AT 25oC  
ADJ  
OUTPUT RANGE = 1.22V TO 20V  
1761 F01  
Figure 1. Adjustable Operation  
1761sff  
15  
LT1761 Series  
APPLICATIONS INFORMATION  
Output Capacitance and Transient Response  
and temperature coefficients as shown in Figures 3 and 4.  
When used with a 5V regulator, a 16V 10μF Y5V capacitor  
can exhibit an effective value as low as 1μF to 2μF for the  
DC bias voltage applied and over the operating tempera-  
ture range. The X5R and X7R dielectrics result in more  
stable characteristics and are more suitable for use as the  
output capacitor. The X7R type has better stability across  
temperature, while the X5R is less expensive and is avail-  
able in higher values. Care still must be exercised when  
using X5R and X7R capacitors; the X5R and X7R codes  
only specify operating temperature range and maximum  
capacitancechangeovertemperature.Capacitancechange  
due to DC bias with X5R and X7R capacitors is better than  
Y5VandZ5Ucapacitors,butcanstillbesignificantenough  
to drop capacitor values below appropriate levels. Capaci-  
tor DC bias characteristics tend to improve as component  
casesizeincreases, butexpectedcapacitanceatoperating  
voltage should be verified.  
The LT1761 regulators are designed to be stable with a  
wide range of output capacitors. The ESR of the output  
capacitor affects stability, most notably with small capaci-  
tors. A minimum output capacitor of 1μF with an ESR of  
3Ω or less is recommended to prevent oscillations. The  
LT1761-X is a micropower device and output transient  
response will be a function of output capacitance. Larger  
values of output capacitance decrease the peak deviations  
and provide improved transient response for larger load  
current changes. Bypass capacitors, used to decouple  
individual components powered by the LT1761-X, will  
increase the effective output capacitor value. With larger  
capacitors used to bypass the reference (for low noise  
operation), larger values of output capacitors are needed.  
For 100pF of bypass capacitance, 2.2μF of output capaci-  
tor is recommended. With a 330pF bypass capacitor or  
larger, a 3.3μF output capacitor is recommended. The  
shaded region of Figure 2 defines the region over which  
the LT1761 regulators are stable. The minimum ESR  
needed is defined by the amount of bypass capacitance  
used, while the maximum ESR is 3Ω.  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
0
X5R  
–20  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are specified with EIA temperature char-  
acteristic codes of Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
in a small package, but they tend to have strong voltage  
–40  
–60  
Y5V  
–80  
–100  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
1761 F03  
Figure 3. Ceramic Capacitor DC Bias Characteristics  
4.0  
3.5  
40  
20  
3.0  
STABLE REGION  
2.5  
X5R  
0
–20  
2.0  
–40  
C
= 0  
1.5  
1.0  
0.5  
0
BYP  
C
Y5V  
= 100pF  
BYP  
–60  
C
= 330pF  
BYP  
C
> 3300pF  
BYP  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
–100  
1
3
6 9 10  
7 8  
2
4
5
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
OUTPUT CAPACITANCE (μF)  
1761 F02  
1761 F04  
Figure 4. Ceramic Capacitor Temperature Characteristics  
Figure 2. Stability  
1761sff  
16  
LT1761 Series  
APPLICATIONS INFORMATION  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or micro-  
phone works. For a ceramic capacitor the stress can be  
induced by vibrations in the system or thermal transients.  
The resulting voltages produced can cause appreciable  
amounts of noise, especially when a ceramic capacitor is  
used for noise bypassing. A ceramic capacitor produced  
Figure 5’s trace in response to light tapping from a pencil.  
Similar vibration induced behavior can masquerade as  
increased output voltage noise.  
The ground pin current can be found by examining the  
GND Pin Current curves in the Typical Performance Char-  
acteristics section. Power dissipation will be equal to the  
sum of the two components listed above.  
TheLT1761seriesregulatorshaveinternalthermallimiting  
designedtoprotectthedeviceduringoverloadconditions.  
For continuous normal conditions, the maximum junction  
temperature rating of 125°C must not be exceeded. It is  
important to give careful consideration to all sources of  
thermal resistance from junction to ambient. Additional  
heat sources mounted nearby must also be considered.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
The following table lists thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
V
OUT  
500μV/DIV  
Table 1. Measured Thermal Resistance  
1761 F05  
LT1761-5  
100ms/DIV  
COPPER AREA  
THERMAL RESISTANCE  
C
C
LOAD  
= 10μF  
OUT  
BYP  
= 0.01μF  
= 100mA  
TOPSIDE*  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
I
2
2
2
2
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
125°C/W  
125°C/W  
130°C/W  
135°C/W  
150°C/W  
2
1000mm  
Figure 5. Noise Resulting from Tapping on a Ceramic Capacitor  
2
225mm  
Thermal Considerations  
2
100mm  
2
50mm  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components:  
*Device is mounted on topside.  
Calculating Junction Temperature  
Example: Given an output voltage of 3.3V, an input voltage  
range of 4V to 6V, an output current range of 0mA to 50mA  
1. Output current multiplied by the input/output voltage  
differential: (I )(V – V ), and  
OUT  
IN  
OUT  
2. GND pin current multiplied by the input voltage:  
(I )(V ).  
GND  
IN  
1761sff  
17  
LT1761 Series  
APPLICATIONS INFORMATION  
and a maximum ambient temperature of 50°C, what will  
the maximum junction temperature be?  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditionsattheoutputofthedevice.Fornormaloperation,  
the junction temperature should not exceed 125°C.  
The power dissipated by the device will be equal to:  
I
(V  
– V ) + I (V  
)
OUT(MAX) IN(MAX)  
OUT  
GND IN(MAX)  
The input of the device will withstand reverse voltages  
of 20V. Current flow into the device will be limited to less  
than 1mA (typically less than 100μA) and no negative  
voltage will appear at the output. The device will protect  
both itself and the load. This provides protection against  
batteries which can be plugged in backward.  
where,  
I
= 50mA  
= 6V  
OUT IN  
OUT(MAX)  
V
IN(MAX)  
I
at (I  
= 50mA, V = 6V) = 1mA  
GND  
So,  
The output of the LT1761-X can be pulled below ground  
withoutdamagingthedevice.Iftheinputisleftopencircuit  
or grounded, the output can be pulled below ground by  
20V. For fixed voltage versions, the output will act like a  
largeresistor,typically500korhigher,limitingcurrentow  
to typically less than 100μA. For adjustable versions, the  
output will act like an open circuit; no current will flow out  
of the pin. If the input is powered by a voltage source, the  
output will source the short-circuit current of the device  
and will protect itself by thermal limiting. In this case,  
grounding the SHDN pin will turn off the device and stop  
the output from sourcing the short-circuit current.  
P = 50mA(6V – 3.3V) + 1mA(6V) = 0.14W  
The thermal resistance will be in the range of 125°C/W to  
150°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
0.14W(150°C/W) = 21.2°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
T
= 50°C + 21.2°C = 71.2°C  
JMAX  
The ADJ pin of the adjustable device can be pulled above  
or below ground by as much as 7V without damaging the  
device. If the input is left open circuit or grounded, the  
ADJ pin will act like an open circuit when pulled below  
ground and like a large resistor (typically 100k) in series  
with a diode when pulled above ground.  
Protection Features  
The LT1761 regulators incorporate several protection  
features which make them ideal for use in battery-pow-  
ered circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
limiting and thermal limiting, the devices are protected  
against reverse input voltages, reverse output voltages  
and reverse voltages from output to input.  
1761sff  
18  
LT1761 Series  
APPLICATIONS INFORMATION  
In situations where the ADJ pin is connected to a resistor  
dividerthatwouldpulltheADJpinaboveits7Vclampvolt-  
age if the output is pulled high, the ADJ pin input current  
must be limited to less than 5mA. For example, a resistor  
divider is used to provide a regulated 1.5V output from the  
1.22V reference when the output is forced to 20V. The top  
resistor of the resistor divider must be chosen to limit the  
current into the ADJ pin to less than 5mA when the ADJ  
pin is at 7V. The 13V difference between output and ADJ  
pin divided by the 5mA maximum current into the ADJ pin  
yields a minimum top resistor value of 2.6k.  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage or is left  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 6.  
When the IN pin of the LT1761-X is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input cur-  
rent will typically drop to less than 2μA. This can happen  
if the input of the device is connected to a discharged  
(low voltage) battery and the output is held up by either  
a backup battery or a second regulator circuit. The state  
of the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
100  
T = 25°C  
LT1761-BYP  
LT1761-SD  
J
90 V = 0V  
IN  
CURRENT FLOWS  
80  
70  
60  
50  
40  
30  
20  
10  
0
INTO OUTPUT PIN  
= V  
(LT1761-BYP, -SD)  
LT1761-1.5  
LT1761-1.2  
V
OUT  
ADJ  
LT1761-1.8  
LT1761-2  
LT1761-2.5  
LT1761-2.8  
LT1761-3  
LT1761-3.3  
LT1761-5  
4
0
1
2
3
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
1761 F06  
Figure 6. Reverse Output Current  
1761sff  
19  
LT1761 Series  
PACKAGE DESCRIPTION  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
1761sff  
20  
LT1761 Series  
REVISION HISTORY (Revision history begins at Rev F)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
F
5/10  
Added MP-grade  
2, 3  
22  
Added Typical Application  
1761sff  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LT1761 Series  
TYPICAL APPLICATION  
Noise Bypassing Provides Soft-Start  
Startup Time  
100  
10  
1
5V  
AT 100mA  
IN  
OUT  
BYP  
V
IN  
LT1761-5  
10μF  
1μF  
C
BYP  
5.4V TO 20V  
OFF ON  
SHDN  
GND  
1761 TA02a  
0.1  
10  
100  
1000  
10000  
C
(pF)  
BYP  
1761 TA02b  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Includes 2.5V Reference and Comparator  
LT1120  
125mA Low Dropout Regulator with 20μA I  
Q
LT1121  
150mA Micropower Low Dropout Regulator  
700mA Micropower Low Dropout Regulator  
30μA I , SOT-223 Package  
Q
LT1129  
50μA Quiescent Current  
LT1175  
500mA Negative Low Dropout Micropower Regulator  
300mA Low Dropout Micropower Regulator with Shutdown  
3A Low Dropout Regulator with 50μA I  
45μA I , 0.26V Dropout Voltage, SOT-223 Package  
Q
LT1521  
15μA I , Reverse-Battery Protection  
Q
LT1529  
500mV Dropout Voltage  
Q
LT1762 Series  
LT1763 Series  
LTC1928  
LT1962 Series  
LT1963  
150mA, Low Noise, LDO Micropower Regulator  
500mA, Low Noise, LDO Micropower Regulator  
Doubler Charge Pump with Low Noise Linear Regulator  
300mA, Low Noise, LDO Micropower Regulator  
1.5A, Low Noise, Fast Transient Response LDO  
3A, Low Noise, Fast Transient Response LDO  
25μA Quiescent Current, 20μV  
30μA Quiescent Current, 20μV  
Noise  
Noise  
RMS  
RMS  
Low Output Noise: 60μV  
(100kHz BW)  
RMS  
30μA Quiescent Current, 20μV  
Noise  
RMS  
40μV  
40μV  
, SOT-223 Package  
RMS  
LT1764  
, 340mV Dropout Voltage  
RMS  
LTC3404  
High Efficiency Synchronous Step-Down Switching Regulator Burst Mode® Operation, Monolithic, 100% Duty Cycle  
1761sff  
LT 0510 REV F • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY