LT1764ET-2.5#PBF [Linear]

LT1764 - 3A, Fast Transient Response, Low Noise, LDO Regulators; Package: TO-220; Pins: 5; Temperature Range: -40°C to 85°C;
LT1764ET-2.5#PBF
型号: LT1764ET-2.5#PBF
厂家: Linear    Linear
描述:

LT1764 - 3A, Fast Transient Response, Low Noise, LDO Regulators; Package: TO-220; Pins: 5; Temperature Range: -40°C to 85°C

局域网 输出元件 调节器
文件: 总20页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1764 Series  
3A, Fast Transient  
Response, Low Noise,  
LDO Regulators  
U
FEATURES  
DESCRIPTIO  
The LT®1764 is a low dropout regulator optimized for fast  
transient response. The device is capable of supplying 3A  
of output current with a dropout voltage of 340mV. Oper-  
ating quiescent current is 1mA, dropping to <1µA in  
shutdown. Quiescentcurrentiswellcontrolled;itdoesnot  
rise in dropout as it does with many other regulators. In  
addition to fast transient response, the LT1764 has very  
low output voltage noise which makes the device ideal for  
sensitive RF supply applications.  
Optimized for Fast Transient Response  
Output Current: 3A  
Dropout Voltage: 340mV at 3A  
Low Noise: 40µVRMS (10Hz to 100kHz)  
1mA Quiescent Current  
Wide Input Voltage Range: 2.7V to 20V  
No Protection Diodes Needed  
Controlled Quiescent Current in Dropout  
Fixed Output Voltages: 1.5V, 1.8V, 2.5V, 3.3V  
Adjustable Output from 1.21V to 20V  
<1µA Quiescent Current in Shutdown  
Stable with 10µF Output Capacitor  
Reverse Battery Protection  
Output voltage range is from 1.21V to 20V. The LT1764  
regulatorsarestablewithoutputcapacitorsaslowas10µF.  
Internal protection circuitry includes reverse battery pro-  
tection, current limiting, thermal limiting and reverse cur-  
rent protection. The device is available in fixed output  
voltages of 1.5V, 1.8V, 2.5V, 3.3V and as an adjustable  
device with a 1.21V reference voltage. The LT1764 regu-  
lators are available in 5-lead TO-220, DD and Exposed Pad  
16-lead TSSOP packages.  
No Reverse Current  
Thermal Limiting  
Available in 5-Lead TO-220, DD and 16-Lead  
TSSOP Packages  
U
APPLICATIO S  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Protected by U.S. Patents,  
including 6144250, 6118263.  
3.3V to 2.5V Logic Power Supply  
Post Regulator for Switching Supplies  
U
TYPICAL APPLICATIO  
Dropout Voltage  
400  
350  
300  
250  
200  
150  
100  
50  
3.3V to 2.5V  
Regulator  
OUT  
IN  
2.5V  
3A  
IN  
OUT  
+
+
V
IN  
> 3V  
10µF  
10µF  
LT1764-2.5  
SHDN SENSE  
GND  
1764 TA01  
0
2.5  
0
0.5  
1.0  
1.5  
2.0  
3.0  
LOAD CURRENT (A)  
1764 TA02  
1764fb  
1
LT1764 Series  
W W U W  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
SHDN Pin Voltage................................................. ±20V  
Output Short-Circuit Duration ......................... Indefinite  
Operating Junction Temperature Range 40°C to 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
IN Pin Voltage........................................................ ±20V  
OUT Pin Voltage .................................................... ±20V  
Input to Output Differential Voltage (Note 12) ....... ±20V  
SENSE Pin Voltage ............................................... ±20V  
ADJ Pin Voltage ...................................................... ±7V  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
GND  
NC  
1
2
3
4
5
6
7
8
16 GND  
15 NC  
14 IN  
FRONT VIEW  
FRONT VIEW  
SENSE/  
ADJ*  
5
4
3
2
1
SENSE/ADJ*  
OUT  
5
4
3
2
1
OUT  
OUT  
GND  
IN  
OUT  
13 IN  
17  
TAB IS  
GND  
GND  
OUT  
12 IN  
IN  
SENSE/ADJ*  
GND  
11 NC  
10 SHDN  
SHDN  
SHDN  
TAB IS  
GND  
T PACKAGE  
5-LEAD PLASTIC TO-220  
Q PACKAGE  
5-LEAD PLASTIC DD  
GND  
9
GND  
FE PACKAGE  
*PIN 5 = SENSE FOR LT1764-1.5/LT1764-1.8/  
LT1764-2.5/LT1764-3.3  
*PIN 5 = SENSE FOR LT1764-1.5/LT1764-1.8/  
LT1764-2.5/LT1764-3.3  
16-LEAD PLASTIC TSSOP  
EXPOSED PAD (PIN 17) IS GND. MUST BE  
SOLDERED TO THE PCB.  
= ADJ FOR LT1764  
= ADJ FOR LT1764  
*PIN 6 = SENSE FOR LT1764-1.5/  
LT1764-1.8/LT1764-2.5/  
LT1764-3.3  
TJMAX = 150°C, θJA = 50°C/ W  
TJMAX = 150°C, θJA = 30°C/ W  
= ADJ FOR LT1764  
TJMAX = 150°C, θJA = 38°C/ W  
FE PART  
MARKING  
ORDER PART NUMBER  
ORDER PART NUMBER  
ORDER PART  
NUMBER  
1764EFE  
LT1764EQ  
LT1764ET  
LT1764EFE  
1764EFE15  
1764EFE18  
1764EFE25  
1764EFE33  
LT1764EQ-1.5  
LT1764EQ-1.8  
LT1764EQ-2.5  
LT1764EQ-3.3  
LT1764ET-1.5  
LT1764ET-1.8  
LT1764ET-2.5  
LT1764ET-3.3  
LT1764EFE-1.5  
LT1764EFE-1.8  
LT1764EFE-2.5  
LT1764EFE-3.3  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
1764fb  
2
LT1764 Series  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C. (Note 2)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
(Notes 3, 11)  
I
I
I
I
= 0.5A  
= 1.5A  
1.7  
1.9  
2.3  
2.3  
V
V
V
V
LOAD  
LOAD  
LOAD  
LOAD  
= 2.7A, 110°C < T 125°C  
2.7  
2.7  
J
= 3A, 40°C T 110°C  
J
Regulated Output Voltage  
(Note 4)  
LT1764-1.5  
LT1764-1.8  
LT1764-2.5  
LT1764-3.3  
LT1764  
V
= 2.21V, I  
= 1mA  
1.477  
1.447  
1.447  
1.500  
1.500  
1.500  
1.523  
1.545  
1.545  
V
V
V
IN  
LOAD  
2.7V < V < 20V, 1mA < I  
< 3A, 40°C T 110°C  
J
IN  
LOAD  
LOAD  
2.7V < V < 20V, 1mA < I  
< 2.7A, 110°C < T 125°C  
J
IN  
V
= 2.3V, I  
= 1mA  
LOAD  
1.773  
1.737  
1.737  
1.800  
1.800  
1.800  
1.827  
1.854  
1.854  
V
V
V
IN  
2.8V < V < 20V, 1mA < I  
< 3A, 40°C T 110°C  
J
< 2.7A, 110°C < T 125°C  
J
IN  
LOAD  
LOAD  
2.8V < V < 20V, 1mA < I  
IN  
V
= 3V, I  
= 1mA  
2.462  
2.412  
2.412  
2.500  
2.500  
2.500  
2.538  
2.575  
2.575  
V
V
V
IN  
LOAD  
3.5V < V < 20V, 1mA < I  
< 3A, 40°C T 110°C  
J
< 2.7A, 110°C < T 125°C  
J
IN  
LOAD  
LOAD  
3.5V < V < 20V, 1mA < I  
IN  
V
= 3.8V, I  
= 1mA  
LOAD  
3.250  
3.183  
3.183  
3.300  
3.300  
3.300  
3.350  
3.400  
3.400  
V
V
V
IN  
4.3V < V < 20V, 1mA < I  
< 3A, 40°C T 110°C  
J
< 2.7A, 110°C < T 125°C  
J
IN  
IN  
LOAD  
LOAD  
4.3V < V < 20V, 1mA < I  
ADJ Pin Voltage  
(Notes 3, 4)  
V
= 2.21V, I  
= 1mA  
1.192  
1.168  
1.168  
1.210  
1.210  
1.210  
1.228  
1.246  
1.246  
V
V
V
IN  
LOAD  
2.7V < V < 20V, 1mA < I  
< 3A, 40°C T 110°C  
J
IN  
IN  
LOAD  
LOAD  
2.7V < V < 20V, 1mA < I  
< 2.7A, 110°C < T 125°C  
J
Line Regulation  
LT1764-1.5  
LT1764-1.8  
LT1764-2.5  
LT1764-3.3  
V = 2.21V to 20V, I  
= 1mA  
2.5  
3
10  
10  
10  
10  
10  
mV  
mV  
mV  
mV  
mV  
IN  
LOAD  
V = 2.3V to 20V, I  
= 1mA  
IN  
LOAD  
V = 3V to 20V, I  
IN  
= 1mA  
= 1mA  
= 1mA  
4
IN  
LOAD  
V = 3.8V to 20V, I  
4.5  
2
LOAD  
LOAD  
LT1764 (Note 3) V = 2.21V to 20V, I  
IN  
Load Regulation  
LT1764-1.5  
LT1764-1.8  
LT1764-2.5  
LT1764-3.3  
LT1764 (Note 3)  
V
V
V
= 2.7V, I  
= 2.7V, I  
= 2.7V, I  
= 1mA to 3A  
3
4
4
4
2
7
23  
23  
mV  
mV  
mV  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
= 1mA to 3A, 40°C T 110°C  
J
= 1mA to 2.7A, 110°C < T 125°C  
J
V
V
V
= 2.8V, I  
= 2.8V, I  
= 2.8V, I  
= 1mA to 3A  
8
25  
25  
mV  
mV  
mV  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
= 1mA to 3A, 40°C T 110°C  
J
= 1mA to 2.7A, 110°C < T 125°C  
J
V
V
V
= 3.5V, I  
= 3.5V, I  
= 3.5V, I  
= 1mA to 3A  
10  
30  
30  
mV  
mV  
mV  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
= 1mA to 3A, 40°C T 110°C  
J
= 1mA to 2.7A, 110°C < T 125°C  
J
V
V
V
= 4.3V, I  
= 4.3V, I  
= 4.3V, I  
= 1mA to 3A  
12  
40  
40  
mV  
mV  
mV  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
= 1mA to 3A, 40°C T 110°C  
J
= 1mA to 2.7A, 110°C < T 125°C  
J
V
V
V
= 2.7V, I  
= 2.7V, I  
= 2.7V, I  
= 1mA to 3A  
5
20  
20  
mV  
mV  
mV  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
= 1mA to 3A, 40°C T 110°C  
J
= 1mA to 2.7A, 110°C < T 125°C  
J
Dropout Voltage  
I
I
= 1mA  
= 1mA  
0.02  
0.07  
0.14  
0.25  
0.05  
0.10  
V
V
LOAD  
LOAD  
V
= V  
IN  
OUT(NOMINAL)  
(Notes 5, 6, 11)  
I
I
= 100mA  
= 100mA  
0.13  
0.18  
V
V
LOAD  
LOAD  
I
I
= 500mA  
= 500mA  
0.20  
0.27  
V
V
LOAD  
LOAD  
I
I
= 1.5A  
= 1.5A  
0.33  
0.40  
V
V
LOAD  
LOAD  
I
= 2.7A, 110°C < T 125°C  
0.66  
V
LOAD  
J
I
I
= 3A  
0.34  
0.45  
0.66  
V
V
LOAD  
LOAD  
= 3A, 40°C T 110°C  
J
1764fb  
3
LT1764 Series  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C. (Note 2)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GND Pin Current  
I
I
I
I
I
I
I
= 0mA  
= 1mA  
= 100mA  
= 500mA  
= 1.5A  
= 2.7A, 110°C < T 125°C  
= 3A, 40°C T 110°C  
1
1.5  
1.6  
5
18  
75  
200  
200  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
+ 1V  
1.1  
3.5  
11  
40  
120  
120  
IN  
OUT(NOMINAL)  
(Notes 5, 7)  
J
J
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10µF, I  
= 3A, BW = 10Hz to 100kHz  
40  
3
µV  
RMS  
OUT  
LOAD  
(Notes 3, 8)  
10  
2
µA  
V
V
= Off to On  
= On to Off  
0.9  
0.75  
V
V
OUT  
OUT  
0.25  
55  
SHDN Pin Current  
(Note 9)  
V
V
= 0V  
= 20V  
0.01  
7
1
30  
µA  
µA  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Ripple Rejection  
V
= 6V, V  
= 0V  
0.01  
63  
1
µA  
IN  
SHDN  
V
– V  
= 1.5V (Avg), V  
= 0.5V ,  
P-P  
dB  
IN  
OUT  
RIPPLE  
f
= 120Hz, I  
= 1.5A  
RIPPLE  
LOAD  
Current Limit  
V
= 7V, V  
= 0V  
4
A
IN  
OUT  
LT1764-1.8, LT1764-2.5, LT1764-3.3  
V
V
= V  
= V  
+ 1V, V  
+ 1V, V  
= 0.1V, 40°C T 110°C  
3.1  
2.8  
A
A
IN  
OUT(NOMINAL)  
OUT  
J
= 0.1V, 110°C < T 125°C  
IN  
OUT(NOMINAL)  
OUT  
J
LT1764, LT1764-1.5  
V
V
= 2.7V, V  
= 2.7V, V  
= 0.1V, 40°C T 110°C  
3.1  
2.8  
A
A
IN  
OUT  
J
= 0.1V, 110°C < T 125°C  
IN  
OUT  
J
Input Reverse Leakage Current  
V
= 20V, V  
= 0V  
1
mA  
IN  
OUT  
Reverse Output Current (Note 10) LT1764-1.5 V  
= 1.5V, V < 1.5V  
600  
600  
600  
600  
300  
1200  
1200  
1200  
1200  
600  
µA  
µA  
µA  
µA  
µA  
OUT  
OUT  
OUT  
OUT  
IN  
LT1764-1.8 V  
LT1764-2.5 V  
LT1764-3.3 V  
= 1.8V, V < 1.8V  
IN  
= 2.5V, V < 2.5V  
IN  
= 3.3V, V < 3.3V  
IN  
LT1764 (Note 3) V  
= 1.21V, V < 1.21V  
IN  
OUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to: V – V  
.
IN  
DROPOUT  
Note 7: GND pin current is tested with V = V  
+ 1V or  
IN  
OUT(NOMINAL)  
Note 2: The LT1764 regulators are tested and specified under pulse load  
V = 2.7V (whichever is greater) and a current source load. The GND pin  
IN  
conditions such that T T . The LT1764 is 100% tested at T = 25°C.  
current will decrease at higher input voltages.  
Note 8: ADJ pin bias current flows into the ADJ pin.  
Note 9: SHDN pin current flows into the SHDN pin.  
Note 10: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 11. For the LT1764, LT1764-1.5 and LT1764-1.8 dropout voltage will  
be limited by the minimum input voltage specification under some output  
voltage/load conditions.  
J
A
A
Performance at 40°C and 125°C is assured by design, characterization  
and correlation with statistical process controls.  
Note 3: The LT1764 (adjustable version) is tested and specified for these  
conditions with the ADJ pin connected to the OUT pin.  
Note 4. Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply for  
all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 5: To satisfy requirements for minimum input voltage, the LT1764  
(adjustable version) is tested and specified for these conditions with an  
external resistor divider (two 4.12k resistors) for an output voltage of 2.42V.  
The external resistor divider will add a 300µA DC load on the output.  
Note 12. All combinations of absolute maximum input voltage and  
absolute maximum output voltage cannot be achieved. The absolute  
maximum differential from input to output is ± 20V. For example, with  
V
IN  
= 20V, V  
cannot be pulled below ground.  
OUT  
1764fb  
4
LT1764 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
= TEST POINTS  
T
125°C  
J
T
= 125°C  
J
I
L
= 3A  
I
L
= 1.5A  
T
25°C  
J
200  
100  
0
T
= 25°C  
I
L
= 0.5A  
J
I
L
= 100mA  
I
L
= 1mA  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
2.0  
3.0  
50  
100 125  
0
0.5  
1.0  
1.5  
2.5  
–50 –25  
0
25  
75  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
1764 G01  
1764 G02  
1764 G03  
Quiescent Current  
LT1764-1.8 Output Voltage  
LT1764-2.5 Output Voltage  
1.4  
1.2  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
I
= 1mA  
I = 1mA  
L
L
LT1764-1.8/2.5/3.3  
1.0  
0.8  
0.6  
0.4  
0.2  
LT1764  
V
= 6V  
IN  
L
R
=
I
= 0  
L
V
= V  
SHDN  
IN  
0
0
50  
100 125  
50 25  
0
25  
50  
75 100 125  
50 25  
0
25  
50  
75 100 125  
–50 –25  
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1764 G04  
1756 G05  
1756 G06  
LT1764-3.3 Output Voltage  
LT1764 ADJ Pin Voltage  
LT1764-1.8 Quiescent Current  
40  
35  
30  
25  
20  
15  
10  
5
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
I
= 1mA  
I = 1mA  
L
T
= 25°C  
L
J
L
R
=
V
= V  
IN  
SHDN  
0
25  
0
50  
75 100 125  
25  
0
50  
75 100 125  
50  
25  
50  
25  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
1756 G07  
1756 G08  
1764 G09  
1764fb  
5
LT1764 Series  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
LT1764-2.5 Quiescent Current  
LT1764-3.3 Quiescent Current  
LT1764 Quiescent Current  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
T
= 25°C  
T = 25°C  
J
J
L
J
L
R
=
R
=
R
= 4.3k  
L
V
= V  
V
= V  
V
= V  
SHDN  
IN  
SHDN  
IN  
SHDN  
IN  
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1764 G10  
1764 G11  
1764 G12  
LT1764-1.8 GND Pin Current  
LT1764-2.5 GND Pin Current  
LT1764-3.3 GND Pin Current  
20.0  
17.5  
15.0  
12.5  
10.0  
7.5  
40  
35  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
SHDN  
T
= 25°C  
SHDN  
T = 25°C  
J
J
V
J
V
= V  
= V  
IN  
V
= V  
SHDN IN  
IN  
*FOR V  
= 1.8V  
*FOR V  
= 2.5V  
*FOR V  
= 3.3V  
OUT  
OUT  
OUT  
R
L
= 5  
L
R
L
= 3.6Ω  
L
R
L
= 6Ω  
L
I
= 500mA*  
I
I
= 500mA*  
R
L
= 6.6Ω  
L
I
= 300mA*  
I
= 500mA*  
R
= 11Ω  
L
R
L
= 25Ω  
= 100mA*  
R = 8.33Ω  
L
I = 300mA*  
L
L
I
= 300mA*  
L
I
R
L
= 33Ω  
L
5.0  
I
= 100mA*  
R
= 18Ω  
L
2.5  
= 100mA*  
L
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1764 G15  
1764 G13  
1764 G14  
LT1764 GND Pin Current  
LT1764-1.8 GND Pin Current  
LT1764-2.5 GND Pin Current  
200  
160  
120  
15  
12  
9
150  
120  
90  
T
= 25°C  
SHDN  
T
= 25°C  
J
T
= 25°C  
SHDN  
J
J
V
= V  
V
= V  
IN  
V
= V  
IN  
SHDN  
IN  
= 1.8V  
*FOR V  
= 1.21V  
*FOR V  
= 2.5V  
OUT  
*FOR V  
OUT  
OUT  
R
L
= 2.42Ω  
L
R
= 0.6Ω  
= 3A*  
R
= 0.83Ω  
L
I
= 500mA*  
L
L
L
I
I
= 3A*  
R
L
= 4.33Ω  
L
I
= 300mA*  
80  
40  
0
6
3
0
60  
30  
0
R
I
= 1.2Ω  
R
L
= 3.57Ω  
L
L
R
L
= 2.57Ω  
L
R
L
= 12.1Ω  
L
L
R
= 1.66Ω  
L
L
= 1.5A*  
I
= 0.7A*  
I
= 0.7A*  
I
= 100mA*  
I
= 1.5A*  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1764 G18  
1764 G16  
1764 G17  
1764fb  
6
LT1764 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT1764-3.3 GND Pin Current  
LT1764 GND Pin Current  
GND Pin Current vs ILOAD  
200  
160  
120  
150  
120  
90  
160  
140  
120  
100  
V
= V  
+ 1V  
OUT(NOM)  
T
= 25°C  
SHDN  
T = 25°C  
J
IN  
J
V
= V  
V
= V  
SHDN IN  
IN  
= 3.3V  
*FOR V  
*FOR V  
= 1.21V  
OUT  
OUT  
R
= 0.4Ω  
= 3A*  
L
L
R
= 1.1Ω  
= 3A*  
I
L
L
I
80  
60  
R
= 0.81Ω  
L
L
80  
40  
0
60  
30  
0
I
= 1.5A*  
R
L
= 1.73Ω  
L
R
L
= 4.71Ω  
R
I
= 2.2Ω  
L
L
L
I
= 0.7A*  
I
= 0.7A*  
= 1.5A*  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
0.5  
1.0  
2.0  
2.5  
3.0  
1.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
1764 G19  
1764 G20  
1764 G21  
SHDN Pin Threshold  
(Off-to-On)  
SHDN Pin Threshold  
(On-to-Off)  
SHDN Pin Input Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
9
8
7
6
5
4
3
2
1
0
I
= 1mA  
L
I
= 3A  
L
I
= 1mA  
L
–50  
0
25  
50  
75 100 125  
–25  
0
2
4
6
8
10 12 14 16 18 20  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1764 G22  
1764 G24  
1764 G23  
SHDN Pin Input Current  
ADJ Pin Bias Current  
Current Limit  
10  
9
8
7
6
5
4
3
2
1
0
6
5
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 20V  
SHDN  
T
= –50°C  
J
4
3
T
J
= 125°C  
T
J
= 25°C  
2
1
0
0
2
4
6
8
10 12 14 16 18 20  
–50  
0
25  
50  
75 100 125  
–25  
25  
0
50  
75 100 125  
50  
25  
INPUT/OUTPUT DIFFERENTIAL (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1764 G27  
1764 G25  
1756 G26  
1764fb  
7
LT1764 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Current Limit  
Reverse Output Current  
6
5
4
3
5.0  
V
IN  
V
OUT  
= 7V  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 0V  
LT1764  
LT1764-1.8  
LT1764-2.5  
LT1764-3.3  
T
= 25°C  
IN  
J
V
= 0V  
2
1
0
CURRENT FLOWS  
INTO OUTPUT PIN  
(LT1764)  
OUT  
(LT1764-1.8/-2.5/-3.3)  
V
= V  
OUT  
ADJ  
V
= V  
FB  
50  
TEMPERATURE (°C)  
100 125  
0
1
2
3
6
7
8
9
10  
–50 –25  
0
25  
75  
4
5
OUTPUT VOLTAGE (V)  
1764 G28  
1764 G29  
Ripple Rejection  
Reverse Output Current  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
V
V
V
= 0V  
IN  
= 1.21V (LT1764)  
OUT  
OUT  
OUT  
OUT  
= 1.8V (LT1764-1.8)  
= 2.5V (LT1764-2.5)  
= 3.3V (LT1764-3.3)  
C
= 100µF  
OUT  
LT1764-1.8/-2.5/-3.3  
TANTALUM +  
10 × 1µF  
CERAMIC  
LT1764  
C
= 10µF  
OUT  
TANTALUM  
I
= 1.5A  
L
V
= V  
+ 1V  
RMS  
IN  
OUT(NOM)  
+ 50mV  
RIPPLE  
10  
100  
1k  
10k  
100k  
1M  
–50  
0
25  
50  
75 100 125  
–25  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1764 G31  
1764 G30  
Ripple Rejection  
LT1764 Minimum Input Voltage  
3.0  
2.5  
2.0  
1.5  
75  
70  
65  
60  
55  
50  
I
= 1.5A  
L
V
= V  
+ 1V  
IN  
OUT(NOM)  
+ 0.5V RIPPLE  
P-P  
AT f = 120Hz  
I
I
= 3A  
L
L
= 1.5A  
I
= 500mA  
L
I
= 100mA  
L
1.0  
0.5  
0
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
1764 G33  
1764 G32  
1764fb  
8
LT1764 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Load Regulation  
Output Noise Spectral Density  
10  
1
C
LOAD  
= 10µF  
= 3A  
OUT  
I
5
LT1764  
0
–5  
LT1764-3.3  
LT1764  
LT1764-2.5  
LT1764-1.8  
LT1764-1.8  
–10  
–15  
–20  
–25  
–30  
0.1  
LT1764-2.5  
LT1764-3.3  
I = 1mA TO 3A  
L
IN  
IN  
V
V
= 2.7V (LT1764)  
= V  
+ 1V  
OUT(NOM)  
(LT1764-1.8/-2.5/-3.3)  
0.01  
25  
0
50  
75 100 125  
50  
25  
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
1764 G35  
1764 G34  
RMS Output Noise vs Load Current  
(10Hz to 100kHz)  
LT1764-3.3 10Hz to 100kHz  
Output Noise  
40  
35  
30  
25  
20  
15  
10  
5
C
= 10µF  
OUT  
LT1764-3.3  
LT1764-2.5  
V
OUT  
100µV/  
LT1764-1.8  
LT1764  
DIV  
C
= 10µF  
1ms/DIV  
1764 G37  
OUT  
= 3A  
I
L
0
0.0001 0.001  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
1764 G36  
LT1764-3.3 Transient Response  
LT1764-3.3 Transient Response  
0.2  
0.1  
0.2  
0.1  
0
0
V
C
C
= 4.3V  
–0.1  
–0.2  
1.00  
0.75  
0.50  
0.25  
0
–0.1  
–0.2  
IN  
IN  
V
C
C
= 4.3V  
IN  
IN  
= 3.3µF TANTALUM  
= 33µF  
= 10µF TANTALUM  
OUT  
= 100µF TANTALUM  
+ 10 × 1µF CERAMIC  
OUT  
3
2
1
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
TIME (µs)  
TIME (µs)  
1764 G38  
1764 G39  
1764fb  
9
LT1764 Series  
U
U
U
PI FU CTIO S  
(DD and TO-220/TSSOP)  
SHDN (Pin 1/Pin 10): Shutdown. The SHDN pin is used to  
put the LT1764 regulators into a low power shutdown  
state. The output will be off when the SHDN pin is pulled  
low. The SHDN pin can be driven either by 5V logic or  
open-collector logic with a pull-up resistor. The pull-up  
resistor is required to supply the pull-up current of the  
open-collector gate, normally several microamperes, and  
the SHDN pin current, typically 7µA. If unused, the SHDN  
pin must be connected to VIN. The device will be in the low  
power shutdown state if the SHDN pin is not connected.  
OUT (Pin 4/Pins 3, 4, 5): Output. The output supplies  
power to the load. A minimum output capacitor of 10µF is  
required to prevent oscillations. Larger output capacitors  
will be required for applications with large transient loads  
to limit peak voltage transients. See the Applications  
Information section for more information on output ca-  
pacitance and reverse output characteristics.  
SENSE (Pin 5/Pin 6): Sense. For fixed voltage versions of  
the LT1764 (LT1764-1.8/LT1764-2.5/LT1764-3.3), the  
SENSE pin is the input to the error amplifier. Optimum  
regulation will be obtained at the point where the SENSE  
pin is connected to the OUT pin of the regulator. In critical  
applications, small voltage drops are caused by the resis-  
tance(RP)ofPCtracesbetweentheregulatorandtheload.  
These may be eliminated by connecting the SENSE pin to  
the output at the load as shown in Figure 1 (Kelvin Sense  
Connection). Note that the voltage drop across the exter-  
nal PC traces will add to the dropout voltage of the  
regulator. The SENSE pin bias current is 600µA at the  
nominalratedoutputvoltage.TheSENSEpincanbepulled  
below ground (as in a dual supply system where the  
regulator load is returned to a negative supply) and still  
allow the device to start and operate.  
IN (Pin 2/Pins 12, 13, 14): Input. Power is supplied to the  
device through the IN pin. A bypass capacitor is required  
on this pin if the device is more than six inches away from  
the main input filter capacitor. In general, the output  
impedance of a battery rises with frequency, so it is  
advisable to include a bypass capacitor in battery-pow-  
ered circuits. A bypass capacitor in the range of 1µF to  
10µF is sufficient. The LT1764 regulators are designed to  
withstand reverse voltages on the IN pin with respect to  
ground and the OUT pin. In the case of a reverse input,  
which can happen if a battery is plugged in backwards, the  
device will act as if there is a diode in series with its input.  
There will be no reverse current flow into the regulator and  
no reverse voltage will appear at the load. The device will  
protect both itself and the load.  
ADJ (Pin 5/Pin 6): Adjust. For the adjustable LT1764, this  
is the input to the error amplifier. This pin is internally  
clamped to ±7V. It has a bias current of 3µA which flows  
into the pin. The ADJ pin voltage is 1.21V referenced to  
ground and the output voltage range is 1.21V to 20V.  
GND (Pin 3/Pins 1, 7, 8, 9, 16, 17): Ground. The exposed  
pad (FE Package) is ground and must be soldered to the  
PCB for rated thermal performance.  
R
P
2
4
5
IN  
OUT  
LT1764  
+
1
+
SHDN SENSE  
GND  
LOAD  
V
IN  
3
R
P
1764 F01  
Figure 1. Kelvin Sense Connection  
1764fb  
10  
LT1764 Series  
W U U  
APPLICATIO S I FOR ATIO  
U
The LT1764 series are 3A low dropout regulators opti-  
mized for fast transient response. The devices are capable  
of supplying 3A at a dropout voltage of 340mV. The low  
operating quiescent current (1mA) drops to less than 1µA  
in shutdown. In addition to the low quiescent current, the  
LT1764regulatorsincorporateseveralprotectionfeatures  
which make them ideal for use in battery-powered sys-  
tems.Thedevicesareprotectedagainstbothreverseinput  
and reverse output voltages. In battery backup applica-  
tions where the output can be held up by a backup battery  
when the input is pulled to ground, the LT1764-X acts like  
it has a diode in series with its output and prevents reverse  
current flow. Additionally, in dual supply applications  
where the regulator load is returned to a negative supply,  
the output can be pulled below ground by as much as 20V  
and still allow the device to start and operate.  
be proportional to the ratio of the desired output voltage to  
1.21V: VOUT/1.21V. For example, load regulation for an  
output current change of 1mA to 3A is 3mV typical at  
V
OUT = 1.21V. At VOUT = 5V, load regulation is:  
(5V/1.21V)(–3mV) = 12.4mV  
Output Capacitance and Transient Response  
The LT1764 regulators are designed to be stable with a  
wide range of output capacitors. The ESR of the output  
capacitor affects stability, most notably with small capaci-  
tors. A minimum output capacitor of 10µF with an ESR in  
the range of 50mto 3is recommended to prevent  
oscillations. Larger values of output capacitance can de-  
crease the peak deviations and provide improved transi-  
ent response for larger load current changes. Bypass  
capacitors, used to decouple individual components pow-  
ered by the LT1764-X, will increase the effective output  
capacitor value.  
Adjustable Operation  
The adjustable version of the LT1764 has an output  
voltage range of 1.21V to 20V. The output voltage is set by  
theratiooftwoexternalresistorsasshowninFigure2.The  
deviceservostheoutputtomaintainthevoltageatthe ADJ  
pin at 1.21V referenced to ground. The current in R1 is  
then equal to 1.21V/R1 and the current in R2 is the current  
in R1 plus the ADJ pin bias current. The ADJ pin bias  
current, 3µA at 25°C, flows through R2 into the ADJ pin.  
The output voltage can be calculated using the formula in  
Figure 2. The value of R1 should be less than 4.17k to  
minimize errors in the output voltage caused by the ADJ  
pinbiascurrent.Notethatinshutdowntheoutputisturned  
off and the divider current will be zero.  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common di-  
electrics used are specified with EIA temperature charac-  
teristiccodesofZ5U,Y5V,X5RandX7R.TheZ5UandY5V  
dielectrics are good for providing high capacitances in a  
small package, but they tend to have strong voltage and  
temperature coefficients as shown in Figures 3 and 4.  
When used with a 5V regulator, a 16V 10µF Y5V capacitor  
can exhibit an effective value as low as 1µF to 2µF for the  
DC bias voltage applied and over the operating tempera-  
ture range. The X5R and X7R dielectrics result in more  
stable characteristics and are more suitable for use as the  
output capacitor. The X7R type has better stability across  
temperature, while the X5R is less expensive and is  
available in higher values. Care still must be exercised  
when using X5R and X7R capacitors; the X5R and X7R  
codesonlyspecifyoperatingtemperaturerangeandmaxi-  
mum capacitance change over temperature. Capacitance  
change due to DC bias with X5R and X7R capacitors is  
better than Y5V and Z5U capacitors, but can still be  
significant enough to drop capacitor values below appro-  
priate levels. Capacitor DC bias characteristics tend to  
improve as component case size increases, but expected  
The adjustable device is tested and specified with the ADJ  
pin tied to the OUT pin for an output voltage of 1.21V.  
Specifications for output voltages greater than 1.21V will  
IN  
OUT  
ADJ  
V
OUT  
+
V
IN  
R2  
R1  
LT1764  
GND  
R2  
R1  
VOUT = 1.21V 1+  
+ I  
R2  
(
ADJ)(  
)
VADJ = 1.21V  
IADJ = 3µA AT 25°C  
OUTPUT RANGE = 1.21V TO 20V  
1764 F02  
Figure 2. Adjustable Operation  
capacitance at operating voltage should be verified.  
1764fb  
11  
LT1764 Series  
W U U  
U
APPLICATIO S I FOR ATIO  
20  
Theprotectionisdesignedtoprovidesomeoutputcurrent  
at all values of input-to-output voltage up to the device  
breakdown.  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
–20  
When power is first turned on, as the input voltage rises,  
the output follows the input, allowing the regulator to start  
up into very heavy loads. During the start-up, as the input  
voltage is rising, the input-to-output voltage differential is  
small, allowing the regulator to supply large output cur-  
rents. With a high input voltage, a problem can occur  
wherein removal of an output short will not allow the  
output voltage to recover. Other regulators, such as the  
LT1085, also exhibit this phenomenon, so it is not unique  
to the LT1764 series.  
–40  
–60  
Y5V  
–80  
–100  
0
14 16  
2
4
6
8
10 12  
DC BIAS VOLTAGE (V)  
1764 F03  
Figure 3. Ceramic Capacitor DC Bias Characteristics  
The problem occurs with a heavy output load when the  
input voltage is high and the output voltage is low. Com-  
mon situations are immediately after the removal of a  
short circuit or when the SHDN pin is pulled high after the  
input voltage has already been turned on. The load line for  
such a load may intersect the output current curve at two  
points. If this happens, there are two stable output oper-  
ating points for the regulator. With this double intersec-  
tion, the input power supply may need to be cycled down  
to zero and brought up again to make the output recover.  
40  
20  
X5R  
0
–20  
–40  
Y5V  
–60  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
Output Voltage Noise  
1764 F04  
The LT1764 regulators have been designed to provide low  
output voltage noise over the 10Hz to 100kHz bandwidth  
while operating at full load. Output voltage noise is typi-  
cally 50nVHz over this frequency bandwidth for the  
LT1764 (adjustable version). For higher output voltages  
(generated by using a resistor divider), the output voltage  
noise will be gained up accordingly. This results in RMS  
noise over the 10Hz to 100kHz bandwidth of 15µVRMS for  
the LT1764 increasing to 37µVRMS for the LT1764-3.3.  
Figure 4. Ceramic Capacitor Temperature Characteristics  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or micro-  
phone works. For a ceramic capacitor the stress can be  
induced by vibrations in the system or thermal transients.  
Higher values of output voltage noise may be measured  
when care is not exercised with regards to circuit layout  
and testing. Crosstalk from nearby traces can induce  
unwanted noise onto the output of the LT1764-X. Power  
supplyripplerejectionmustalsobeconsidered;theLT1764  
regulators do not have unlimited power supply rejection  
and will pass a small portion of the input noise through to  
the output.  
Overload Recovery  
Like many IC power regulators, the LT1764-X has safe  
operating area protection. The safe area protection de-  
creases the current limit as input-to-output voltage in-  
creases and keeps the power transistor inside a safe  
operating region for all values of input-to-output voltage.  
1764fb  
12  
LT1764 Series  
U
W U U  
APPLICATIONS INFORMATION  
Thermal Considerations  
Table 2. FE Package, 16-Lead TSSOP  
COPPER AREA  
THERMAL RESISTANCE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
The power handling capability of the device is limited  
by the maximum rated junction temperature (125°C).  
The power dissipated by the device is made up of two  
components:  
TOPSIDE*  
2500mm2  
1000mm2  
225mm2  
BACKSIDE  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
38°C/W  
43°C/W  
48°C/W  
60°C/W  
100mm2  
1. Output current multiplied by the input/output voltage  
differential: (IOUT)(VIN – VOUT), and  
* Device is mounted on topside  
2. GND pin current multiplied by the input voltage:  
(IGND)(VIN).  
T Package, 5-Lead TO-220  
Thermal Resistance (Junction-to-Case) = 2.5°C/W  
The GND pin current can be found using the GND Pin  
Current curves in the Typical Performance Characteris-  
tics. Power dissipation will be equal to the sum of the two  
components listed above.  
Calculating Junction Temperature  
Example: Given an output voltage of 3.3V, an input voltage  
range of 4V to 6V, an output current range of 0mA to  
500mA and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
The LT1764 series regulators have internal thermal limit-  
ing designed to protect the device during overload condi-  
tions. For continuous normal conditions, the maximum  
junction temperature rating of 125°C must not be  
exceeded. It is important to give careful consideration to  
allsourcesofthermalresistancefromjunctiontoambient.  
Additional heat sources mounted nearby must also be  
considered.  
The power dissipated by the device will be equal to:  
IOUT(MAX)(VIN(MAX) – VOUT) + IGND(VIN(MAX)  
)
where,  
IOUT(MAX) = 500mA  
VIN(MAX) = 6V  
IGND at (IOUT = 500mA, VIN = 6V) = 10mA  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Surface mount heatsinks and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
So,  
P = 500mA(6V – 3.3V) + 10mA(6V) = 1.41W  
Using a DD package, the thermal resistance will be in the  
range of 23°C/W to 33°C/W depending on the copper  
area. So the junction temperature rise above ambient will  
be approximately equal to:  
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 1/16" FR-4 board with one ounce  
copper.  
1.41W(28°C/W) = 39.5°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
Table 1. Q Package, 5-Lead DD  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE* BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2500mm2  
1000mm2  
125mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
23°C/W  
25°C/W  
33°C/W  
TJMAX = 50°C + 39.5°C = 89.5°C  
* Device is mounted on topside  
1764fb  
13  
LT1764 Series  
U
W U U  
APPLICATIONS INFORMATION  
Protection Features  
The ADJ pin of the adjustable device can be pulled above  
or below ground by as much as 7V without damaging the  
device. Iftheinputisleftopencircuitorgrounded, theADJ  
pin will act like an open circuit when pulled below ground  
and like a large resistor (typically 5k) in series with a diode  
when pulled above ground.  
The LT1764 regulators incorporate several protection  
featureswhichmakethemidealforuseinbattery-powered  
circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
limiting and thermal limiting, the devices are protected  
against reverse input voltages, reverse output voltages  
and reverse voltages from output to input.  
In situations where the ADJ pin is connected to a resistor  
divider that would pull the ADJ pin above its 7V clamp  
voltage if the output is pulled high, the ADJ pin input  
current must be limited to less than 5mA. For example, a  
resistor divider is used to provide a regulated 1.5V output  
fromthe1.21Vreferencewhentheoutputisforcedto20V.  
The top resistor of the resistor divider must be chosen to  
limitthecurrentintotheADJpintolessthan5mAwhenthe  
ADJpinisat7V. The13VdifferencebetweenOUTandADJ  
pinsdividedbythe5mAmaximumcurrentintotheADJpin  
yields a minimum top resistor value of 2.6k.  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
The input of the device will withstand reverse voltages of  
20V.Currentflowintothedevicewillbelimitedtolessthan  
1mA and no negative voltage will appear at the output. The  
device will protect both itself and the load. This provides  
protection against batteries which can be plugged in  
backward.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulled to some intermediate voltage, or is left  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 5.  
The output of the LT1764-X can be pulled below ground  
withoutdamagingthedevice.Iftheinputisleftopencircuit  
or grounded, the output can be pulled below ground by  
20V. For fixed voltage versions, the output will act like a  
large resistor, typically 5k or higher, limiting current flow  
to typically less than 600µA. For adjustable versions, the  
output will act like an open circuit; no current will flow out  
of the pin. If the input is powered by a voltage source, the  
output will source the short-circuit current of the device  
and will protect itself by thermal limiting. In this case,  
grounding the SHDN pin will turn off the device and stop  
the output from sourcing the short-circuit current.  
When the IN pin of the LT1764-X is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input current  
will typically drop to less than 2µA. This can happen if the  
input of the device is connected to a discharged (low  
voltage) battery and the output is held up by either a  
backup battery or a second regulator circuit. The state of  
the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
5.0  
T
V
= 25°C  
J
4.5  
= OV  
LT1764  
IN  
CURRENT FLOWS INTO  
OUTPUT PIN  
V
V
4.0  
3.5  
= V (LT1764)  
ADJ  
LT1764-1.8  
OUT  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= V (LT1764-1.8,  
FB  
OUT  
LT1764-2.5, LT1764-3.3)  
LT1764-2.5  
LT1764-3.3  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
1764 F05  
Figure 5. Reverse Output Current  
1764fb  
14  
LT1764 Series  
U
TYPICAL APPLICATIO S  
SCR Preregulator Provides Efficiency Over Line Variations  
L1  
500µH  
LT1764-3.3  
NTE5437  
V
3.3V  
3A  
OUT  
L2  
IN  
SHDN  
GND  
OUT  
FB  
1N4148  
1k  
+
+
10V AC  
10000µF  
22µF  
AT 115V  
IN  
90V AC  
TO 140V AC  
34k*  
10V AC  
AT 115V  
IN  
12.1k*  
NTE5437  
1N4002  
1N4002  
1N4002  
+
V
“SYNC”  
2.4k  
TO  
+
200k  
ALL “V ”  
+
1N4148  
+
POINTS  
C1A  
1/2 LT1018  
22µF  
750  
0.1µF  
+
V
+
V
750Ω  
0.033µF  
+
C1B  
+
1N4148  
10k  
1/2 LT1018  
A1  
LT1006  
10k  
10k  
+
V
L1: COILTRONICS CTX500-2-52  
L2: STANCOR P-8560  
*1% FILM RESISTOR  
1µF  
+
V
LT1004  
1.2V  
1764 TA03  
1764fb  
15  
LT1764 Series  
U
TYPICAL APPLICATIO S  
Adjustable Current Source  
R5  
0.01  
IN  
LT1764-1.8  
SHDN FB  
GND  
OUT  
R1  
1k  
+
C1  
10µF  
LT1004-1.2  
LOAD  
V
IN  
> 2.7V  
R2  
40.2k  
R4  
2.2k  
R6  
2.2k  
R8  
100k  
R3  
2k  
C3  
1µF  
R7  
470Ω  
ADJUST R1 FOR 0A TO 3A  
CONSTANT CURRENT  
2
3
8
1
1/2 LT1366  
+
4
C2  
3.3µF  
1764 TA04  
1764fb  
16  
LT1764 Series  
U
PACKAGE DESCRIPTION  
Q Package  
5-Lead Plastic DD Pak  
(LTC DWG # 05-08-1461)  
.060  
(1.524)  
TYP  
.390 – .415  
(9.906 – 10.541)  
.060  
(1.524)  
.165 – .180  
(4.191 – 4.572)  
.256  
(6.502)  
.045 – .055  
(1.143 – 1.397)  
15° TYP  
+.008  
.004  
–.004  
.060  
(1.524)  
.059  
(1.499)  
TYP  
.183  
(4.648)  
.330 – .370  
(8.382 – 9.398)  
+0.203  
–0.102  
0.102  
(
)
.095 – .115  
(2.413 – 2.921)  
.075  
(1.905)  
.067  
(1.702)  
BSC  
.050  
(1.270  
±
±
.012  
0.305)  
.300  
(7.620)  
.013 – .023  
(0.330 – 0.584)  
+.012  
.143  
–.020  
.028 – .038  
+0.305  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
3.632  
Q(DD5) 0502  
(0.711 – 0.965)  
(
)
–0.508  
TYP  
.420  
.276  
.080  
.420  
.350  
.325  
.205  
.565  
.565  
.320  
.090  
.042  
.090  
.042  
.067  
.067  
RECOMMENDED SOLDER PAD LAYOUT  
NOTE:  
RECOMMENDED SOLDER PAD LAYOUT  
FOR THICKER SOLDER PASTE APPLICATIONS  
1. DIMENSIONS IN INCH/(MILLIMETER)  
2. DRAWING NOT TO SCALE  
1764fb  
17  
LT1764 Series  
PACKAGE DESCRIPTION  
U
T Package  
5-Lead Plastic TO-220 (Standard)  
(LTC DWG # 05-08-1421)  
0.165 – 0.180  
(4.191 – 4.572)  
0.147 – 0.155  
(3.734 – 3.937)  
DIA  
0.390 – 0.415  
(9.906 – 10.541)  
0.045 – 0.055  
(1.143 – 1.397)  
0.230 – 0.270  
(5.842 – 6.858)  
0.570 – 0.620  
(14.478 – 15.748)  
0.620  
(15.75)  
TYP  
0.460 – 0.500  
(11.684 – 12.700)  
0.330 – 0.370  
(8.382 – 9.398)  
0.700 – 0.728  
(17.78 – 18.491)  
0.095 – 0.115  
(2.413 – 2.921)  
SEATING PLANE  
0.152 – 0.202  
(3.861 – 5.131)  
0.155 – 0.195*  
(3.937 – 4.953)  
0.260 – 0.320  
(6.60 – 8.13)  
0.013 – 0.023  
(0.330 – 0.584)  
0.067  
BSC  
0.135 – 0.165  
(3.429 – 4.191)  
0.028 – 0.038  
(0.711 – 0.965)  
(1.70)  
* MEASURED AT THE SEATING PLANE  
T5 (TO-220) 0399  
1764fb  
18  
LT1764 Series  
U
PACKAGE DESCRIPTION  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 ±0.10  
4.50 ±0.10  
2.94  
(.116)  
6.40  
(.252)  
BSC  
SEE NOTE 4  
2.94  
(.116)  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE16 (BB) TSSOP 0204  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
1764fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1764 Series  
U
TYPICAL APPLICATIO  
Paralleling of Regulators for Higher Output Current  
R1  
0.01Ω  
3.3V  
6A  
IN  
OUT  
FB  
+
+
LT1764-3.3  
C1  
100µF  
C2  
22µF  
V
> 3.7V  
IN  
SHDN  
GND  
R2  
0.01Ω  
IN  
OUT  
R6  
6.65k  
LT1764  
SHDN  
SHDN  
ADJ  
R7  
4.12k  
GND  
R3  
2.2k  
R4  
2.2k  
3
2
8
R5  
1k  
+
1
1/2 LT1366  
C3  
0.01µF  
4
1764 TA05  
RELATED PARTS  
PART NUMBER  
LT1120  
DESCRIPTION  
125mA Low Dropout Regulator with 20µA I  
COMMENTS  
Includes 2.5V Reference and Comparator  
Q
LT1121  
150mA Micropower Low Dropout Regulator  
700mA Micropower Low Dropout Regulator  
30µA I , SOT-223 Package  
Q
LT1129  
50µA Quiescent Current  
LT1175  
500mA Negative Low Dropout Micropower Regulator  
4.5A, 500kHz Step-Down Converter  
45µA I , 0.26V Dropout Voltage, SOT-223 Package  
Q
LT1374  
4.5A, 0.07Internal Switch, SO-8 Package  
LT1521  
300mA Low Dropout Micropower Regulator with Shutdown  
15µA I , Reverse Battery Protection  
Q
LT1529  
3A Low Dropout Regulator with 50µA I  
500mV Dropout Voltage  
Q
LT1573  
UltraFastTM Transient Response Low Dropout Regulator  
UltraFast Transient Response Low Dropout Regulator  
Synchronous Step-Down Converter  
Drives External PNP  
LT1575  
Drives External N-Channel MOSFET  
High Efficiency, OPTI-LOOP® Compensation  
LT1735  
LT1761 Series  
LT1762 Series  
LT1763 Series  
LT1962  
100mA, Low Noise, Low Dropout Micropower Regulators in SOT-23 20µA Quiescent Current, 20µV  
Noise, SOT-23 Package  
Noise, MSOP Package  
Noise, SO-8 Package  
RMS  
RMS  
RMS  
150mA, Low Noise, LDO Micropower Regulators  
500mA, Low Noise, LDO Micropower Regulators  
300mA, Low Noise, LDO Micropower Regulator  
1.5A, Low Noise, Fast Transient Response LDO  
25µA Quiescent Current, 20µV  
30µA Quiescent Current, 20µV  
20µV  
40µV  
Noise, MSOP Package  
RMS  
RMS  
LT1963  
Noise, SOT-223 Package  
UltraFast is a trademark of Linear Technology Corporation.  
OPTI-LOOP is a registered trademark of Linear Technology Corporation.  
1764fb  
LT 1205 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LT1764ET-2.5#TR

IC VREG 2.5 V FIXED POSITIVE LDO REGULATOR, 0.66 V DROPOUT, PZFM5, PLASTIC, TO-220, 5 PIN, Fixed Positive Single Output LDO Regulator
Linear

LT1764ET-2.5#TRPBF

IC VREG 2.5 V FIXED POSITIVE LDO REGULATOR, 0.66 V DROPOUT, PZFM5, LEAD FREE, PLASTIC, TO-220, 5 PIN, Fixed Positive Single Output LDO Regulator
Linear

LT1764ET-3.3

3A, Fast Transient Response, Low Noise,LDO Regulators
Linear

LT1764ET-3.3#PBF

LT1764 - 3A, Fast Transient Response, Low Noise, LDO Regulators; Package: TO-220; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1764ET-3.3#TR

IC VREG 3.3 V FIXED POSITIVE LDO REGULATOR, 0.66 V DROPOUT, PZFM5, PLASTIC, TO-220, 5 PIN, Fixed Positive Single Output LDO Regulator
Linear

LT1764ET-3.3#TRPBF

IC VREG 3.3 V FIXED POSITIVE LDO REGULATOR, 0.66 V DROPOUT, PZFM5, LEAD FREE, PLASTIC, TO-220, 5 PIN, Fixed Positive Single Output LDO Regulator
Linear

LT1764_1

3A, Fast Transient Response, Low Noise,LDO Regulators
Linear

LT1765

Monolithic 3A, 1.25MHz Step-Down Switching Regulator
Linear

LT1765-1.8

Monolithic 3A, 1.25MHz Step-Down Switching Regulator
Linear

LT1765-1.8_15

Monolithic 3A, 1.25MHz Step-Down Switching Regulator
Linear

LT1765-2.5

Monolithic 3A, 1.25MHz Step-Down Switching Regulator
Linear

LT1765-2.5_15

Monolithic 3A, 1.25MHz Step-Down Switching Regulator
Linear