LT1800CS5#PBF [Linear]

LT1800 - 80MHz, 25V/µs Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C;
LT1800CS5#PBF
型号: LT1800CS5#PBF
厂家: Linear    Linear
描述:

LT1800 - 80MHz, 25V/µs Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:267K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1800  
80MHz, 25V/µs Low Power  
Rail-to-Rail Input and Output  
Precision Op Amp  
U
FEATURES  
DESCRIPTIO  
The LT®1800 is a low power, high speed rail-to-rail input  
and output operational amplifier with excellent DC perfor-  
mance.TheLT1800featuresreducedsupplycurrent,lower  
input offset voltage, lower input bias current and higher  
DC gain than other devices with comparable bandwidth.  
Gain Bandwidth Product: 80MHz  
Input Common Mode Range Includes Both Rails  
Output Swings Rail-to-Rail  
Low Quiescent Current: 2mA Max  
Input Offset Voltage: 350µV Max  
Input Bias Current: 250nA Max  
The LT1800 has an input range that includes both supply  
rails and an output that swings within 20mV of either sup-  
plyrailtomaximizethesignaldynamicrangeinlowsupply  
applications.  
Low Voltage Noise: 8.5nV/Hz  
Slew Rate: 25V/µs  
Common Mode Rejection: 105dB  
Power Supply Rejection: 97dB  
The LT1800 maintains its performance for supplies from  
2.3V to 12.6V and is specified at 3V, 5V and ±5V supplies.  
The inputs can be driven beyond the supplies without  
damage or phase reversal of the output.  
Open-Loop Gain: 85V/mV  
Available in the 8-Pin SO and 5-Pin Low Profile  
(1mm) ThinSOTTM Packages  
Operating Temperature Range: 40°C to 85°C  
The LT1800 is available in the 8-pin SO package with the  
standard op amp pinout and in the 5-pin SOT-23 package.  
FordualandquadversionsoftheLT1800,seetheLT1801/  
LT1802 data sheet. The LT1800 can be used as a plug-in  
replacement for many op amps to improve input/output  
range and performance.  
U
APPLICATIO S  
Low Voltage, High Frequency Signal Processing  
Driving A/D Converters  
Rail-to-Rail Buffer Amplifiers  
Active Filters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
Video Line Driver  
U
TYPICAL APPLICATIO  
Laser Driver Amplifier  
500mA Pulse Response  
Single Supply 1A Laser Driver Amplifier  
5V  
+
V
IN  
R3  
10  
DO NOT FLOAT  
Q1  
ZETEX  
FMMT619  
100mA/DIV  
LT1800  
C1  
39pF  
IR LASER  
INFINEON  
SFH495  
R2  
330  
R1  
1Ω  
1800 TA01  
50ns/DIV  
1800 TA02  
1800f  
1
LT1800  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (VSto VS ) ......................... 12.6V  
Input Current (Note 2) ........................................ ±10mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 4) .. 40°C to 85°C  
Specified Temperature Range (Note 5)... 40°C to 85°C  
Junction Temperature.......................................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
+
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
NUMBER  
TOP VIEW  
NC  
1
2
3
4
8
7
6
5
NC  
+
+
V
1
2
5 V  
S
+
LT1800CS8  
LT1800IS8  
OUT  
LT1800CS5  
LT1800IS5  
–IN  
V
V
S
V
S
+
+IN  
OUT  
+IN 3  
4 –IN  
V
S
NC  
S8 PART MARKING  
S5 PART MARKING  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
S8 PACKAGE  
8-LEAD PLASTIC SO  
1800  
1800I  
LTRN  
LTRP  
TJMAX = 150°C, θJA = 250°C/ W  
TJMAX = 150°C, θJA = 190°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
= 0V  
75  
300  
0.5  
0.7  
350  
750  
3
µV  
µV  
mV  
mV  
= 0V (SOT-23)  
= V  
S
= V (SOT-23)  
3.5  
S
V  
Input Offset Shift  
Input Bias Current  
V
= 0V to V – 1.5V  
20  
180  
µV  
OS  
CM  
S
I
V
CM  
V
CM  
= 1V  
25  
500  
250  
1500  
nA  
nA  
B
= V  
S
I
Input Offset Current  
V
CM  
V
CM  
= 1V  
25  
25  
200  
200  
nA  
nA  
OS  
= V  
S
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
1.4  
8.5  
1
µV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/Hz  
pA/Hz  
pF  
i
f = 10kHz  
n
C
A
f = 100kHz  
2
IN  
Large-Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k at V /2  
35  
3.5  
30  
85  
8
85  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1V to 4V, R = 100at V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k at V /2  
S
O
L
S
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
85  
78  
105  
97  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Common Mode Range  
Power Supply Rejection Ratio  
Minimum Supply Voltage (Note 6)  
0
V
V
dB  
V
S
V = 2.5V to 10V, V = 0V  
80  
97  
S
CM  
2.3  
2.5  
1800f  
2
LT1800  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Output Voltage Swing Low (Note 7)  
Output Voltage Swing High (Note 7)  
Short-Circuit Current  
No Load  
12  
80  
50  
mV  
mV  
mV  
OL  
I
I
= 5mA  
160  
450  
SINK  
SINK  
= 20mA  
225  
V
OH  
No Load  
16  
120  
450  
60  
250  
750  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 20mA  
I
I
V = 5V  
20  
20  
45  
40  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
1.6  
80  
2
mA  
MHz  
V/µs  
MHz  
dBc  
ns  
S
GBW  
SR  
Frequency = 2MHz  
40  
13  
V = 5V, A = 1, R = 1k, V = 4V  
S
25  
V
L
O
FPBW  
HD  
Full Power Bandwidth  
Harmonic Distortion  
Settling Time  
V = 5V, V  
S
= 4V  
2
OUT  
P-P  
V = 5V, A = 1, R = 1k, V = 2V , f = 500kHz  
S
–75  
250  
0.35  
0.4  
V
L
O
P-P C  
t
0.01%, V = 5V, V  
= 2V, A = 1, R = 1k  
S
S
STEP V L  
G  
Differential Gain (NTSC)  
Differential Phase (NTSC)  
V = 5V, A = +2, R = 150Ω  
S
%
V
L
∆θ  
V = 5V, A = +2, R = 150Ω  
S
Deg  
V
L
The denotes the specifications which apply over the temperature range of 0°C TA 70°C. VS = 5V, 0V;  
VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
= 0V  
125  
300  
0.6  
500  
1250  
3.5  
µV  
µV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
= 0V (SOT-23)  
= V  
S
= V (SOT-23)  
0.7  
3.75  
S
V  
Input Offset Shift  
V
= 0V to V – 1.5V  
30  
275  
5
µV  
OS  
CM  
S
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
1.5  
µV/°C  
OS  
I
V
V
= 1V  
50  
550  
300  
1750  
nA  
nA  
B
CM  
CM  
= V – 0.2V  
S
I
Input Offset Current  
V
V
= 1V  
25  
25  
250  
250  
nA  
nA  
OS  
CM  
CM  
= V – 0.2V  
S
A
Large-Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k at V /2  
30  
3
25  
75  
6
75  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1V to 4V, R = 100at V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k at V /2  
S
O
L
S
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
82  
74  
101  
93  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Common Mode Range  
0
V
V
dB  
V
S
Power Supply Rejection Ratio  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing Low (Note 7)  
V = 2.5V to 10V, V = 0V  
74  
91  
S
CM  
2.3  
2.5  
V
V
No Load  
14  
100  
300  
60  
200  
550  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
Output Voltage Swing High (Note 7)  
Short-Circuit Current  
No Load  
25  
150  
600  
80  
300  
950  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
= 20mA  
SOURCE  
I
I
V = 5V  
20  
20  
40  
30  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
2
2.75  
mA  
MHz  
V/µs  
1800f  
S
GBW  
SR  
Frequency = 2MHz  
V = 5V, A = 1, R = 1k, V = 4V  
P-P  
35  
11  
75  
22  
S
V
L
O
3
LT1800  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range  
of 40°C TA 85°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
= 0V  
175  
400  
0.75  
0.9  
700  
2000  
4
µV  
µV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
= 0V (SOT-23)  
= V  
S
= V (SOT-23)  
4
S
V  
Input Offset Shift  
V
= 0V to V – 1.5V  
30  
300  
5
µV  
OS  
CM  
S
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
1.5  
µV/°C  
OS  
I
V
V
= 1V  
50  
600  
400  
2000  
nA  
nA  
B
CM  
CM  
= V – 0.2V  
S
I
Input Offset Current  
V
V
= 1V  
25  
25  
300  
300  
nA  
nA  
OS  
CM  
CM  
= V – 0.2V  
S
A
Large-Signal Voltage Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k at V /2  
25  
2.5  
20  
65  
6
65  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1.5V to 3.5V, R = 100at V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k at V /2  
S
O
L
S
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
81  
73  
101  
93  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Common Mode Range  
0
V
V
dB  
V
S
Power Supply Rejection Ratio  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing Low (Note 7)  
V = 2.5V to 10V, V = 0V  
73  
90  
S
CM  
2.3  
2.5  
V
V
No Load  
15  
105  
170  
70  
210  
400  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 10mA  
SINK  
SINK  
Output Voltage Swing High (Note 7)  
Short-Circuit Current  
No Load  
25  
150  
300  
90  
350  
700  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 10mA  
I
I
V = 5V  
12.5  
12.5  
30  
30  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
2.1  
70  
18  
3
mA  
MHz  
V/µs  
S
GBW  
SR  
Frequency = 2MHz  
V = 5V, A = 1, R = 1k, V = 4V  
30  
10  
S
V
L
O
TA = 25°C, VS = ±5V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
= V  
S
150  
400  
0.7  
1
500  
1000  
3.5  
µV  
µV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
= V (SOT-23)  
S
+
+
= V  
S
= V (SOT-23)  
4.5  
S
+
V  
Input Offset Shift  
Input Bias Current  
V
= V to V – 1.5V  
30  
475  
µV  
OS  
CM  
S
S
I
V
V
= V + 1V  
25  
400  
350  
1500  
nA  
nA  
B
CM  
CM  
S
= V  
+
S
+
I
Input Offset Current  
V
V
= V + 1V  
20  
20  
250  
250  
nA  
nA  
OS  
CM  
CM  
S
= V  
S
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
1.4  
8.5  
1
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/Hz  
pA/Hz  
pF  
n
i
f = 10kHz  
n
C
f = 100kHz  
2
IN  
1800f  
4
LT1800  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = ±5V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER CONDITIONS  
V = –4V to 4V, R = 1k  
MIN  
TYP  
MAX  
UNITS  
A
VOL  
Large-Signal Voltage Gain  
25  
2.5  
70  
7
V/mV  
V/mV  
O
L
V = –2V to 2V, R = 100Ω  
O
L
CMRR  
Common Mode Rejection Ratio  
Input Common Mode Range  
V
V
= V to 3.5V  
85  
109  
dB  
V
CM  
S
+
V
V
S
S
+
PSRR  
Power Supply Rejection Ratio  
Output Voltage Swing Low (Note 7)  
= 2.5V to 10V, V = 0V  
80  
97  
dB  
S
S
V
V
No Load  
15  
85  
225  
60  
170  
450  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
Output Voltage Swing High (Note 7)  
No Load  
17  
130  
450  
70  
260  
750  
mV  
mV  
mV  
OH  
I
I
= 5mA  
= 20mA  
SOURCE  
SOURCE  
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
30  
50  
1.8  
70  
mA  
mA  
SC  
2.75  
S
GBW  
SR  
Frequency = 2MHz  
A = 1, R = 1k, V = ±4V, Measured at V = ±2V  
MHz  
V/µs  
MHz  
dBc  
ns  
23  
V
L
O
O
FPBW  
HD  
Full Power Bandwidth  
Harmonic Distortion  
Settling Time  
V = 8V  
0.9  
–75  
300  
0.35  
0.2  
O
P-P  
A = 1, R = 1k, V = 2V , f = 500kHz  
V
L
O
P-P C  
t
0.01%, V = 5V, A = 1V, R = 1k  
STEP V L  
S
G  
Differential Gain (NTSC)  
Differential Phase (NTSC)  
A = +2, R = 150Ω  
%
V
L
∆θ  
A = +2, R = 150Ω  
Deg  
V
L
The denotes the specifications which apply over the temperature range of 0°C TA 70°C. VS = ±5V, VCM = 0V, VOUT = 0V, unless  
otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
= V  
S
200  
450  
0.75  
1
800  
1500  
4
µV  
µV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
= V (SOT-23)  
S
+
+
= V  
S
= V (SOT-23)  
5
S
+
V  
Input Offset Shift  
V
= V to V – 1.5V  
45  
675  
5
µV  
OS  
CM  
S
S
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
1.5  
µV/°C  
OS  
I
V
V
= V + 1V  
30  
450  
400  
1750  
nA  
nA  
B
CM  
CM  
S
S
+
= V – 0.2V  
+
I
Input Offset Current  
V
V
= V + 1V  
25  
25  
300  
300  
nA  
nA  
OS  
CM  
CM  
S
= V – 0.2V  
S
A
Large-Signal Voltage Gain  
V = –4V to 4V, R = 1k  
20  
2
55  
5
V/mV  
V/mV  
VOL  
O
L
V = –2V to 2V, R = 100Ω  
O
L
CMRR  
Common Mode Rejection Ratio  
Input Common Mode Range  
V
= V to 3.5V  
82  
105  
dB  
V
CM  
S
+
V
S
V
S
+
PSRR  
Power Supply Rejection Ratio  
Output Voltage Swing Low (Note 7)  
V
= 2.5V to 10V, V = 0V  
74  
91  
dB  
S
S
V
V
No Load  
17  
105  
250  
70  
210  
575  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
Output Voltage Swing High (Note 7)  
No Load  
25  
150  
600  
90  
310  
975  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
SOURCE  
SOURCE  
1800f  
5
LT1800  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range  
of 0°C TA 70°C. VS = ±5V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
45  
MAX  
UNITS  
mA  
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
25  
SC  
S
2.4  
70  
3.5  
mA  
GBW  
SR  
Frequency = 2MHz  
MHz  
V/µs  
A = 1, R = 1k, V = ±4V, Measured at V = ±2V  
20  
V
L
O
O
The denotes the specifications which apply over the temperature range of 40°C TA 85°C. VS = ±5V, VCM = 0V, VOUT = 0V,  
unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
V
V
V
= V  
S
350  
500  
0.75  
1
900  
2250  
4.5  
µV  
µV  
mV  
mV  
OS  
CM  
CM  
CM  
CM  
= V (SOT-23)  
S
+
+
= V  
S
= V (SOT-23)  
5.5  
S
+
V  
Input Offset Shift  
V
= V to V – 1.5V  
50  
750  
5
µV  
OS  
CM  
S
S
V
TC  
Input Offset Voltage Drift (Note 8)  
Input Bias Current  
1.5  
µV/°C  
OS  
I
V
V
= V + 1V  
50  
450  
450  
2000  
nA  
nA  
B
CM  
CM  
S
S
+
= V – 0.2V  
+
I
Input Offset Current  
V
V
= V + 1V  
25  
25  
350  
350  
nA  
nA  
OS  
CM  
CM  
S
= V – 0.2V  
S
A
Large-Signal Voltage Gain  
V = –4V to 4V, R = 1k  
16  
2
55  
5
V/mV  
V/mV  
VOL  
O
L
V = –1V to 1V, R = 100Ω  
O
L
CMRR  
Common Mode Rejection Ratio  
Input Common Mode Range  
V
= V to 3.5V  
81  
104  
dB  
V
CM  
S
+
V
S
V
S
+
PSRR  
Power Supply Rejection Ratio  
Output Voltage Swing Low (Note 7)  
V
= 2.5V to 10V, V = 0V  
73  
90  
dB  
S
S
V
V
No Load  
15  
105  
170  
80  
220  
400  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 10mA  
SINK  
SINK  
Output Voltage Swing High (Note 7)  
No Load  
25  
150  
300  
100  
350  
700  
mV  
mV  
mV  
I
I
= 5mA  
= 10mA  
SOURCE  
SOURCE  
I
I
Short-Circuit Current  
Supply Current per Amplifier  
Gain Bandwidth Product  
Slew Rate  
12.5  
30  
2.6  
65  
15  
mA  
mA  
SC  
4
S
GBW  
SR  
Frequency = 2MHz  
A = 1, R = 1k, V = ±4V, Measured at V = ±2V  
MHz  
V/µs  
V
L
O
O
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 2: The inputs are protected by back-to-back diodes and by ESD  
diodes to the supply rails. If the differential input voltage exceeds 1.4V or  
either input goes outside the rails, the input current should be limited to  
less than 10mA.  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 5: The LT1800C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1800C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LT1800I is guaranteed to meet  
specified performance from –40°C to 85°C.  
Note 6: Minimum supply voltage is guaranteed by power supply rejection  
ratio test.  
Note 7: Output voltage swings are measured between the output and  
power supply rails.  
Note 4: The LT1800C/LT1800I are guaranteed functional over the  
temperature range of 40°C to 85°C.  
Note 8: This parameter is not 100% tested.  
1800f  
6
LT1800  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VOS Distribution, VCM = 0V  
(SO-8, PNP Stage)  
VOS Distribution, VCM = 5V  
(SO-8, NPN Stage)  
VOS Distribution, VCM = 0V  
(SOT-23, PNP Stage)  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
V
= 5V, 0V  
CM  
V
V
= 5V, 0V  
CM  
S
S
V
V
= 5V, 0V  
CM  
S
= 0V  
= 5V  
= 0V  
0
0
0
–250  
–150  
–50  
250  
–2000 –1200  
–400  
2000  
–1250 –750  
–250  
250  
750  
1250  
50  
150  
400  
1200  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
1800 G01  
1800 G02  
1800 G38  
V
OS Distribution, VCM = 5V  
Offset Voltage  
vs Input Common Mode Voltage  
(SOT-23, NPN Stage)  
Supply Current vs Supply Voltage  
500  
400  
35  
30  
4
3
2
1
0
V
= 5V, 0V  
V
V
= 5V, 0V  
CM  
S
S
T
= –55°C  
A
TYPICAL PART  
= 5V  
300  
T
= 125°C  
A
T
A
25  
200  
T
= 25°C  
A
100  
20  
15  
10  
5
= 25°C  
A
0
–100  
–200  
–300  
–400  
–500  
T
= –55°C  
T
= 125°C  
A
0
–2500 –1500 –500  
500  
1500  
2500  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
INPUT OFFSET VOLTAGE (µV)  
TOTAL SUPPLY VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
1800 G39  
1800 G03  
1800 G04  
Input Bias Current  
vs Common Mode Voltage  
Input Bias Current  
vs Temperature  
Output Saturation Voltage  
vs Load Current (Output Low)  
10  
1
0.8  
1.0  
0.8  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
T
A
T
A
T
A
= 25°C  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
= 125°C  
= –55°C  
NPN ACTIVE  
0.6  
V
= 5V, 0V  
CM  
S
0.4  
V
= 5V  
0.2  
0.1  
0
T
= 125°C  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
A
PNP ACTIVE  
= 5V, 0V  
0.01  
0.001  
V
S
CM  
T
= 25°C  
T
= –55°C  
A
A
V
= 1V  
–0.1  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
6
–60 –40 –20  
0
20  
40  
60  
80  
–1  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
1800 G07  
1800 G06  
1800 G05  
1800f  
7
LT1800  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Saturation Voltage  
vs Load Current (Output High)  
Output Short-Circuit Current  
vs Power Supply Voltage  
Minimum Supply Voltage  
70  
60  
50  
40  
30  
10  
1
0.6  
0.4  
T
T
= 25°C  
V
= 5V, 0V  
A
S
T
A
= –55°C  
= 125°C  
A
0.2  
T
= –55°C  
SINKING  
= 5V, 0V  
A
20  
T
= 25°C  
10  
0
A
V
S
0.1  
0
T
= 125°C  
= –55°C  
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
T
= –55°C  
= 125°C  
SOURCING  
A
–0.2  
T
A
= 125°C  
T
0.01  
0.001  
A
T
= 25°C  
T
A
A
–0.4  
–0.6  
T
= 25°C  
A
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0.01  
0.1  
1
10  
100  
POWER SUPPLY VOLTAGE (±V)  
LOAD CURRENT (mA)  
TOTAL SUPPLY VOLTAGE (V)  
1800 G08  
1800 G09  
1800 G10  
Open-Loop Gain  
Open-Loop Gain  
Open-Loop Gain  
2000  
1600  
1200  
800  
2000  
1600  
1200  
800  
2000  
1600  
1200  
800  
V
= 3V, 0V  
TO GND  
V
= 5V, 0V  
TO GND  
V = ±5V  
S
R TO GND  
L
S
L
S
L
R
R
400  
400  
400  
R
L
= 1k  
R
= 1k  
R
L
= 1k  
L
0
0
0
–400  
–800  
–1200  
–1600  
–2000  
–400  
–800  
–1200  
–1600  
–2000  
–400  
–800  
–1200  
–1600  
–2000  
R
= 100Ω  
L
R
= 100Ω  
L
R
= 100Ω  
L
0
0.5  
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
–5 –4 –3 –2 –1  
0
1
2
3
4
5
1
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
1800 G11  
1800 G12  
1800 G13  
Warm-Up Drift vs Time  
(LT1800S8)  
Input Noise Voltage vs Frequency  
Offset Voltage vs Output Current  
60  
120  
110  
100  
90  
2.0  
1.5  
V = 5V, 0V  
S
V
S
= ±5V  
V
S
= ±5V  
50  
40  
1.0  
T
= –55°C  
A
0.5  
NPN ACTIVE  
= 4.25V  
V
= ±2.5V  
= ±1.5V  
S
S
30  
20  
80  
0
V
CM  
70  
–0.5  
–1.0  
–1.5  
–2.0  
T
A
= 25°C  
T
= 125°C  
A
60  
V
10  
0
PNP ACTIVE  
= 2.5V  
50  
V
CM  
TYPICAL PART  
40  
0.01  
0.1  
1
FREQUENCY (kHz)  
10  
100  
0
15  
20  
40  
80 100 120 140  
–60 –45 –30 –15  
30 45 60  
0
60  
OUTPUT CURRENT (mA)  
TIME AFTER POWER-UP (SECONDS)  
1800 G16  
1800 G14  
1800 G15  
1800f  
8
LT1800  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
0.1Hz to 10Hz Output Voltage  
Noise  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Input Current Noise vs Frequency  
3.0  
2000  
1000  
0
100  
90  
80  
70  
60  
V
S
= 5V, 0V  
V
= 5V, 0V  
T
= 25°C  
S
A
2.5  
2.0  
GAIN BANDWIDTH  
PRODUCT  
PNP ACTIVE  
= 2.5V  
60  
50  
40  
30  
20  
1.5  
1.0  
V
CM  
PHASE MARGIN  
–1000  
–2000  
NPN ACTIVE  
= 4.25V  
0.5  
0
V
CM  
0.01  
0.1  
1
FREQUENCY (kHz)  
10  
100  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (SECONDS)  
TOTAL SUPPLY VOLTAGE (V)  
1800 G17  
1800 G18  
1800 G19  
Gain Bandwidth and Phase  
Margin vs Temperature  
Slew Rate vs Temperature  
Gain and Phase vs Frequency  
70  
60  
50  
40  
100  
80  
100  
35  
A
= –1  
G
= 1k  
V
F
L
GBW PRODUCT  
= ±2.5V  
90  
80  
70  
60  
50  
R = R = 1k  
V
S
V
S
= ±2.5V  
PHASE  
R
30  
25  
60  
GBW PRODUCT  
= ±5V  
40  
V
S
30  
20  
20  
0
V
= ±5V  
S
GAIN  
PHASE MARGIN  
= ±2.5V  
60  
50  
40  
30  
20  
10  
V
S
10  
0
–20  
–40  
–60  
–80  
–100  
20  
15  
10  
PHASE MARGIN  
= ±5V  
V
S
–10  
–20  
–30  
V
V
= ±2.5V  
= ±5V  
S
S
0.01  
0.1  
1
10  
100 300  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
1800 G22  
1800 G20  
1800 G21  
Gain vs Frequency (AV = 1)  
Gain vs Frequency (AV = 2)  
Output Impedance vs Frequency  
600  
12  
9
18  
15  
12  
9
R
C
V
= 1k  
= 10pF  
= 2  
R
C
V
= 1k  
= 10pF  
= 1  
V
S
= ±2.5V  
L
L
L
L
100  
10  
A
A
6
A
V
= 10  
3
V
= ±2.5V  
S
A
V
= 1  
1
0
6
V
S
= ±2.5V  
V
= ±5V  
S
A
V
= 2  
–3  
–6  
–9  
–12  
3
0.1  
V
S
= ±5V  
0
0.01  
–3  
–6  
0.001  
0.1  
1
10  
100 300  
0.1  
1
10  
100 300  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1800 G23  
1800 G24  
1800 G25  
1800f  
9
LT1800  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Series Output Resistor  
vs Capacitive Load  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
120  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
90  
80  
70  
60  
V
S
= 5V, 0V  
V
= 5V, 0V  
= 25°C  
V
A
= 5V, 0V  
= 1  
S
A
S
V
T
100  
80  
NEGATIVE  
SUPPLY  
POSITIVE  
SUPPLY  
R
= 10Ω  
OS  
50  
40  
60  
40  
R
= 20Ω  
OS  
30  
20  
10  
20  
0
R
= R = 50Ω  
L
OS  
0
0
–10  
0.01  
0.1  
1
10  
100  
10  
100  
1000  
10000  
0.001  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
CAPACITIVE LOAD (pF)  
FREQUENCY (MHz)  
1800 G26  
1800 G28  
1800 G27  
Series Output Resistor  
vs Capacitive Load  
Distortion vs Frequency  
Distortion vs Frequency  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–40  
–50  
–40  
–50  
V
A
= 5V, 0V  
= 2  
V
A
V
= 5V, 0V  
= 1  
V
A
V
= 5V, 0V  
= 2  
S
V
S
V
S
V
= 2V  
= 2V  
OUT  
P-P  
OUT  
P-P  
R
= 1k,  
L
–60  
–60  
2ND  
R
L
= 150, 2ND  
R
L
= 150, 2ND  
R
= 1k, 2ND  
L
–70  
–70  
R
L
= 150,  
3RD  
R
L
= 150, 3RD  
R
= 10Ω  
OS  
–80  
–80  
R
= 20Ω  
OS  
–90  
–90  
–100  
–100  
R
L
= 1k, 3RD  
R
L
= 1k, 3RD  
R
= R = 50Ω  
L
OS  
0
–110  
–110  
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
CAPACITIVE LOAD (pF)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1800 G29  
1800 G30  
1800 G31  
Maximum Undistorted Output  
Signal vs Frequency  
5V Small-Signal Response  
5V Large-Signal Response  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
50mV/DIV  
0V  
A
= 2  
V
1V/DIV  
0V  
A
= –1  
V
VS = 5V, 0V  
AV = 1  
50ns/DIV  
1800 G34  
V
= 5V, 0V  
= 1k  
VS = 5V, 0V  
AV = 1  
100ns/DIV  
1800 G33  
S
L
R
R
L = 1k  
R
L = 1k  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1800 G32  
1800f  
10  
LT1800  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
±5V Small-Signal Response  
Output Overdriven Recovery  
±5V Large-Signal Response  
VIN  
1V/DIV  
50mV/DIV  
0V  
2V/DIV  
0V  
0V  
VOUT  
2V/DIV  
0V  
VS = ±5V  
AV = 1  
RL = 1k  
50ns/DIV  
1800 G36  
V
S = 5V, 0V  
100ns/DIV  
1800 G37  
VS = ±5V  
200ns/DIV  
1800 G35  
AV = 2  
AV = 1  
RL = 1k  
R
L = 1k  
W U U  
U
APPLICATIO S I FOR ATIO  
Circuit Description  
the positive supply. As the input voltage moves closer  
toward the positive supply, the transistor Q5 will steer the  
tail current I1 to the current mirror Q6/Q7, activating the  
NPN differential pair and the PNP pair becomes inactive  
for the rest of the input common mode range up to the  
positive supply. Also at the input stage, devices Q17 to  
Q19 act to cancel the bias current of the PNP input pair.  
When Q1-Q2 are active, the current in Q16 is controlled to  
be the same as the current in Q1-Q2, thus the base current  
The LT1800 has an input and output signal range that  
covers from the negative power supply to the positive  
power supply. Figure 1 depicts a simplified schematic of  
the amplifier. The input stage is comprised of two differ-  
entialamplifiers, aPNPstageQ1/Q2andanNPNstageQ3/  
Q4 that are active over the different ranges of common  
mode input voltage. The PNP differential pair is active  
between the negative supply to approximately 1.2V below  
+
V
R3  
R4  
R5  
+
V
V
Q12  
+
+
D1  
ESDD1  
ESDD2  
Q11  
Q13  
Q15  
I
2
I
1
C2  
+IN  
–IN  
+
D6  
D5  
D8  
D7  
Q5  
V
BIAS  
I
3
D2  
OUT  
C
C
V
Q4 Q3  
Q1 Q2  
D3  
BUFFER  
AND  
OUTPUT BIAS  
ESDD4  
ESDD3  
Q10  
+
V
V
D4  
Q9  
R1  
Q8  
R2  
Q16  
C1  
Q17  
Q18  
Q14  
Q7  
Q6  
Q19  
V
1800 F01  
Figure 1. LT1800 Simplified Schematic Diagram  
1800f  
11  
LT1800  
W U U  
U
APPLICATIO S I FOR ATIO  
of Q16 is nominally equal to the base current of the input  
devices. The base current of Q16 is then mirrored by  
devices Q17-Q19 to cancel the base current of the input  
devices Q1-Q2.  
the NPN input stage is activated for the remaining input  
range up to the positive supply rail during which the PNP  
stage remains inactive. The offset voltage is typically less  
than 75µV in the range that the PNP input stage is active.  
ApairofcomplementarycommonemitterstagesQ14/Q15  
that enable the output to swing from rail to rail constructs  
the output stage. The capacitors C2 and C3 form the local  
feedback loops that lower the output impedance at high  
frequency. These devices are fabricated on Linear  
Technology’s proprietary high-speed complementary bi-  
polar process.  
Input Bias Current  
The LT1800 employs a patent-pending technique to trim  
the input bias current to less than 250nA for the input  
commonmodevoltageof0.2Vabovenegativesupplyrail  
to 1.2V of the positive rail. The low input offset voltage  
and low input bias current of the LT1800 provide the  
precision performance especially for high source imped-  
ance applications.  
Power Dissipation  
TheLT1800amplifierisofferedinasmallpackage,SOT-23,  
which has a thermal resistance of 250°C/W, θJA. So there  
is a need to ensure that the die’s junction temperature  
should not exceed 150°C. Junction temperature TJ is  
calculated from the ambient temperature TA, power dissi-  
pation PD and thermal resistance θJA:  
Output  
The LT1800 can deliver a large output current, so the  
short-circuit current limit is set around 50mA to prevent  
damage to the device. Attention must be paid to keep the  
junction temperature of the IC below the absolute maxi-  
mum rating of 150°C (refer to the Power Dissipation  
section) when the output is continuously short circuited.  
The output of the amplifier has reverse-biased diodes  
connected to each supply. If the output is forced beyond  
either supply, unlimited current will flow through these  
diodes. If the current is transient and limited to several  
hundred mA, and the total supply voltage is less than  
12.6V, the absolute maximum rating, no damage will  
occur to the device.  
TJ = TA + (PD θJA)  
ThepowerdissipationintheICisthefunctionofthesupply  
voltage,outputvoltageandtheloadresistance.Foragiven  
supply voltage, the worst-case power dissipation PDMAX  
occurs at the maximum supply current and the output  
voltage is at half of either supply voltage (or the maximum  
swing is less than 1/2 supply voltage). PDMAX is given by:  
PDMAX = (VS • ISMAX) + (VS/2)2/RL  
Example: An LT1800 in a SOT-23 package operating on  
±5V supplies and driving a 50load, the worst-case  
power dissipation is given by:  
Overdrive Protection  
When the input voltage exceeds the power supplies, two  
pairs of crossing diodes D1 to D4 will prevent the output  
from reversing polarity. If the input voltage exceeds either  
power supply by 700mV, diode D1/D2 or D3/D4 will turn  
on to keep the output at the proper polarity. For the phase  
reversal protection to perform properly, the input current  
must be limited to less than 10mA. If the amplifier is  
severelyoverdriven, anexternalresistorshouldbeusedto  
limit the overdrive current.  
PDMAX=(104mA)+(2.5)2/50=0.04+0.125=0.165W  
The maximum ambient temperature that the part is al-  
lowed to operate is:  
TA = TJ – (PDMAX • 250°C/W)  
= 150°C – (0.165W • 250°C/W) = 108°C  
Input Offset Voltage  
The LT1800’s input stages are also protected against a  
large differential input voltage of 1.4V or higher by a pair  
of back-back diodes D5/D8 to prevent the emitter-base  
breakdown of the input transistors. The current in these  
Theoffsetvoltagewillchangedependinguponwhichinput  
stage is active. The PNP input stage is active from the  
negative supply rail to 1.2V of the positive supply rail, then  
1800f  
12  
LT1800  
W U U  
APPLICATIO S I FOR ATIO  
U
diodes should be limited to less than 10mA when they are  
active. The worst-case differential input voltage usually  
occurs when the input is driven while the output is shorted  
to ground in a unity gain configuration. In addition, the  
amplifier is protected against ESD strikes up to 3kV on all  
pins by a pair of protection diodes on each pin that are  
connected to the power supplies as shown in Figure1.  
stability. Graphs on capacitive loads indicate the transient  
responseoftheamplifierwhendrivingcapacitiveloadwith  
a specified series resistor.  
Feedback Components  
Whenfeedbackresistorsareusedtosetupgain,caremust  
be taken to ensure that the pole formed by the feedback  
resistors and the total capacitance at the inverting input  
does not degrade stability. For instance, the LT1800 in a  
noninverting gain of 2, set up with two 5k resistors and a  
capacitance of 5pF (part plus PC board) will probably ring  
in transient response. The pole is formed at 12.7MHz that  
will reduce phase margin by 32 degrees when the cross-  
overfrequencyoftheamplifierisaround20MHz.Acapaci-  
tor of 5pF or higher connected across the feedback resis-  
tor will eliminate any ringing or oscillation.  
Capacitive Load  
The LT1800 is optimized for high bandwidth, low power  
and precision applications. It can drive a capacitive load of  
about 75pF in a unity gain configuration, and more for  
higher gain. When driving a larger capacitive load, a  
resistor of 10to 50should be connected between the  
output and the capacitive load to avoid ringing or oscilla-  
tion. The feedback should still be taken from the output so  
that the resistor will isolate the capacitive load to ensure  
W U U  
U
APPLICATIO S I FOR ATIO  
Single Supply 1A Laser Driver Amplifier  
Fast 1A Current Sense Amplifier  
The circuit in the front page of this data sheet shows the  
LT1800 used in a 1A laser driver application. One of the  
reasonstheLT1800iswellsuitedtothiscontroltaskisthat  
its 2.3V operation ensures that it will be awake during  
power-up and operated before the circuit can otherwise  
causesignificantcurrenttoflowinthe2.1Vthresholdlaser  
diode. Driving the noninverting input of the LT1800 to a  
voltage VIN will control the turning on of the high current  
NPN transistor, FMMT619 and the laser diode. A current  
equal to VIN/R1 flows through the laser diode. The LT1800  
low offset voltage and low input bias current allows it to  
control the current that flows through the laser diode  
precisely. The overall circuit is a 1A per Volt V-to-I con-  
verter. Frequency compensation components R2 and C1  
are selected for fast but zero-overshoot time domain  
response to avoid overcurrent conditions in the laser. The  
time domain response of this circuit, measured at R1 and  
given a 500mV 230ns input pulse, is also shown in the  
graphiconthefrontpage. Whilethecircuitiscapableof1A  
operation, the laser diode and the transistor are thermally  
limitedduetopowerdissipation, sotheymustbeoperated  
at low duty cycles.  
Asimple,fastcurrentsenseamplifierinFigure2issuitable  
for quickly responding to out-of-range currents. The cir-  
cuit amplifies the voltage across the 0.1sense resistor  
by a gain of 20, resulting in a conversion gain of 2V/A. The  
–3dBbandwidthofthecircuitis4MHz,andtheuncertainty  
due to VOS and IB is less than 4mA. The minimum output  
voltageis60mV,correspondingto30mA.Thelarge-signal  
response of the circuit is shown in Figure 3.  
I
L
3V  
0A TO 1A  
52.3Ω  
+
V
OUT  
LT1800  
0V TO 2V  
0.1  
1k  
52.3Ω  
1800 F02  
V
= 2 • I  
= 4MHz  
OUT  
L
f
–3dB  
UNCERTAINTY DUE TO V  
I
B
< 4mA  
OS,  
Figure 2. Fast 1A Current Sense  
1800f  
13  
LT1800  
U
TYPICAL APPLICATIO S  
Single 3V Supply, 1MHz, 4th Order Butterworth Filter  
The circuit shown in Figure 4 makes use of the low voltage  
operation and the wide bandwidth of the LT1800 to create  
aDCaccurate1MHz4thorderlowpassfilterpoweredfrom  
a 3V supply. The amplifiers are configured in the inverting  
mode for the lowest distortion and the output can swing  
rail-to-rail for maximum dynamic range. Figure 5 displays  
the frequency response of the filter. Stopband attenuation  
is greater than 100dB at 50MHz. With a 2.25VP-P, 250kHz  
input signal, the filter has harmonic distortion products of  
less than –85dBc. Worst case output offset voltage is less  
than 6mV.  
500mV/DIV  
0V  
VS = 3V  
50ns/DIV  
1800 F03  
Figure 3. Current Sense Amplifier Large-Signal Response  
47pF  
909Ω  
3V  
909  
2.67k  
22pF  
1.1k  
2.21k  
V
IN  
1.1k  
220pF  
LT1800  
+
470pF  
V
LT1800  
OUT  
+
V /2  
S
1800 F04  
Figure 4. 3V, 1MHz, 4th Order Butterworth Filter  
0
–20  
–40  
–60  
–80  
–100  
–120  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
1800 F05  
Figure 5. Frequency Response of Filter  
1800f  
14  
LT1800  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 1298  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
1800f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1800  
U
TYPICAL APPLICATIO  
precise DC output voltage. When no signal is present, the  
op amp output sits at about mid-supply. Transistors Q1  
and Q3 create bias voltages for Q2 and Q4, which are  
forced into a low quiescent current by degeneration resis-  
tors R4 and R5. When a transient signal arrives at VIN, the  
op amp output moves and causes the current in Q2 or Q4  
to change depending on the signal polarity. The current,  
limited by the clipping of the LT1800 output and the 3kΩ  
of total emitter degeneration, is mirrored to the output  
devices to drive the capacitive load. The LT1800 output  
then returns to near mid-supply, providing the precise DC  
outputvoltagetotheload. Theattentiontolimitthecurrent  
of the output devices minimizes power dissipation thus  
allowing for dense layout, and inherits better reliability.  
Figure 7 shows the time domain response of the amplifier  
providing a 200V output swing into a 100pF load.  
Low Power High Voltage Amplifier  
Certain materials used in optical applications have charac-  
teristics that change due to the presence and strength of  
a DC electric field. The voltage applied across these  
materials should be precisely controlled to maintain de-  
sired properties, sometimes as high as 100’s of volts. The  
materials are not conductive and represent a capacitive  
load.  
The circuit of Figure 6 shows the LT1800 used in an  
amplifier capable of a 250V output swing and providing  
130V  
5V  
10k  
4.99k  
1k  
Q6  
Q5  
0.1µF  
Q2  
Q1  
5V  
5V  
R4  
2k  
R6  
2k  
+
R2  
2k  
V
OUT  
MATERIAL UNDER  
LT1800  
R5  
2k  
R7  
2k  
VIN  
2V/DIV  
ELECTRIC FIELD  
100pF  
Q3  
Q4  
V
IN  
R1  
2k  
VOUT  
50V/DIV  
A
V
= V /V = –100  
OUT IN  
C1  
39pF  
10k  
±130V SUPPLY I = 130µA  
OUTPUT SWING = ±128.8V  
OUTPUT OFFSET 20mV  
OUTPUT SHORT-CIRCUIT CURRENT 3mA  
10% TO 90% RISE TIME 8µs, 200V OUTPUT STEP  
SMALL-SIGNAL BANDWIDTH 150kHz  
Q1, Q2, Q7, Q8: ON SEMI MPSA42  
Q
Q7  
Q8  
1k  
C2  
R3  
200k  
8pF  
4.99k  
150V  
–130V  
10µs/DIV  
1800 F07  
Q3, Q4, Q5, Q6: ON SEMI MPSA92  
1800 F06  
Figure 7. Large-Signal Time Domain  
Response of the Amplifier  
Figure 6. Low Power, High Voltage Amplifier  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
0.1dB Gain Flatness to 150MHz, Shutdown  
High DC Accuracy, 475µV V , 4µV/°C Max Drift,  
LT1399  
Triple 300MHz Current Feedback Amplifier  
LT1498/LT1499 Dual/Quad 10MHz, 6Vµs Rail-to-Rail Input and Output C-LoadTM  
OS(MAX)  
Op Amps  
Max Supply Current 2.2mA per Amp  
LT1630/LT1631 Dual/Quad 30MHz, 10V/µs Rail-to-Rail Input and Output Op Amps  
High DC Accuracy, 525µV V , 70mA Output Current,  
OS(MAX)  
Max Supply Current 4.4mA per Amplifier  
LT1801/LT1802 80MHz, 25V/µs Low Power Rail-to-Rail Input/Output Precision Op Amps Dual/Quad Version of the LT1800  
LT1806/LT1807 Single/Dual 325MHz, 140V/µs Rail-to-Rail Input and Output Op Amps  
LT1809/LT1810 Single/Dual 180MHz Rail-to-Rail Input/Output Op Amps  
C-Load is a trademark of Linear Technology Corporation.  
High DC Accuracy, 550µV V  
, Low Noise 3.5nV/Hz,  
OS(MAX)  
Low Distortion –80dB at 5MHz, Power-Down (LT1806)  
350V/µs Slew Rate, Low Distortion –90dBc at 5MHz,  
Power-Down (LT1809)  
1800f  
LT/TP 0402 2K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LT1800CS5#TR

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1800CS5#TRM

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1800CS5#TRMPBF

暂无描述
Linear

LT1800CS5#TRPBF

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1800CS8

80MHz, 25V/ms Low Power Rail-to-Rail Input and Output Precision Op Amp
Linear

LT1800CS8#PBF

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1800CS8#TRPBF

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1800IS5

80MHz, 25V/ms Low Power Rail-to-Rail Input and Output Precision Op Amp
Linear

LT1800IS5#TR

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1800IS8

80MHz, 25V/ms Low Power Rail-to-Rail Input and Output Precision Op Amp
Linear

LT1800IS8#PBF

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1800IS8#TR

LT1800 - 80MHz, 25V/&#181;s Low Power Rail-to-Rail Input and Output Precision Op Amp; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear