LT1812CS6#TRMPBF [Linear]

LT1812 - 3mA, 100MHz, 750V/µs Operational Amplifier with Shutdown; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C;
LT1812CS6#TRMPBF
型号: LT1812CS6#TRMPBF
厂家: Linear    Linear
描述:

LT1812 - 3mA, 100MHz, 750V/µs Operational Amplifier with Shutdown; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总16页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1812  
3mA, 100MHz, 750V/µs  
Operational Amplifier  
with Shutdown  
FEATURES  
DESCRIPTION  
The LT®1812 is a low power, high speed, very high slew  
rate operational amplifier with excellent DC performance.  
The LT1812 features reduced supply current, lower input  
offset voltage, lower input bias current and higher DC gain  
than other devices with comparable bandwidth. A power  
saving shutdown feature reduces supply current to 50μA.  
Thecircuittopologyisavoltagefeedbackamplifierwiththe  
slewing characteristics of a current feedback amplifier.  
n
100MHz Gain Bandwidth  
n
750V/μs Slew Rate  
n
3.6mA Maximum Supply Current  
50μA Supply Current in Shutdown  
n
n
8nV/√Hz Input Noise Voltage  
Unity-Gain Stable  
n
n
1.5mV Maximum Input Offset Voltage  
n
4μA Maximum Input Bias Current  
n
400nA Maximum Input Offset Current  
Theoutputdrivesa100Ωloadto 3.5Vwith 5Vsupplies.  
On a single 5V supply, the output swings from 1.1V to  
3.9V with a 100Ω load connected to 2.5V. The amplifier  
is stable with a 1000pF capacitive load which makes it  
useful in buffer and cable driver applications.  
n
40mA Minimum Output Current, V  
= 3V  
OUT  
n
n
n
n
n
3.5V Minimum Input CMꢀ, V = 5V  
S
30ns Settling Time to 0.1%, 5V Step  
Specified at 5V, Single 5V Supplies  
Operating Temperature ꢀange: –40°C to 85°C  
The LT1812 is manufactured on Linear Technology’s  
advanced low voltage complementary bipolar process.  
The dual version is the LT1813. For higher supply voltage  
single, dual and quad operational amplifiers with up to  
70MHz gain bandwidth, see the LT1351 through LT1365  
data sheets.  
Low Profile (1mm) SOT-23 (ThinSOT )  
and S8 Packages  
APPLICATIONS  
n
Wideband Amplifiers  
Buffers  
Active Filters  
Video and ꢀF Amplification  
Cable Drivers  
Data Acquisition Systems  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. ThinSOT is a Trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
n
n
n
n
Filter Frequency Response  
TYPICAL APPLICATION  
10  
0
4MHz, 4th Order Butterworth Filter  
232Ω  
–10  
–20  
274Ω  
–30  
–40  
47pF  
232Ω  
665Ω  
220pF  
+
V
IN  
22pF  
274Ω  
562Ω  
470pF  
+
–50  
–60  
LT1812  
LT1812  
V
OUT  
–70  
V
V
=
IN  
5V  
S
= 600mV  
P-P  
–80  
1812 TA01  
PEAKING < 0.12dB  
–90  
0.1  
1
10  
100  
FꢀEQUENCY (MHz)  
1812 TA02  
1812fb  
1
LT1812  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
+
Total Supply Voltage (V to V ) ..............................12.6V  
Differential Input Voltage (Transient Only, Note 2)...... 3V  
Specified Temperature ꢀange  
(Note 8).................................................... –40°C to 85°C  
Maximum Junction Temperature........................... 150°C  
Storage Temperature ꢀange................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ................... 300°C  
Input Voltage, Shutdown Voltage............................... V  
S
Output Short-Circuit Duration (Note 3) ............. Indefinite  
Operating Temperature ꢀange (Note 8)..... 40°C to 85°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
TOP VIEW  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
SHDN  
+
+
V
1
2
6 V  
V
1
2
5 V  
OUT  
OUT  
+
V
+
V
5 SHDN  
V
V
+
+
OUT  
+IN 3  
4 –IN  
+IN 3  
4 –IN  
V
NC  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
JMAX  
= 150°C, θ = 230°C/ W  
T
= 150°C, θ = 250°C/ W  
JA  
JMAX  
JA  
(NOTE 9)  
T
= 150°C, θ = 150°C/ W  
(NOTE 9)  
JMAX  
JA  
(NOTE 9)  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1812CS5#PBF  
LT1812IS5#PBF  
LT1812CS6#PBF  
LT1812IS6#PBF  
LT1812CS8#PBF  
LT1812IS8#PBF  
TAPE AND REEL  
PART MARKING  
LTLH  
PACKAGE DESCRIPTION  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
8-Lead Plastic SO  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT1812CS5#TꢀPBF  
LT1812IS5#TꢀPBF  
LT1812CS6#TꢀPBF  
LT1812IS6#TꢀPBF  
LT1812CS8#TꢀPBF  
LT1812IS8#TꢀPBF  
LTLJ  
–40°C to 85°C  
LTLK  
0°C to 70°C  
LTLL  
–40°C to 85°C  
1812  
0°C to 70°C  
1812I  
8-Lead Plastic SO  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1812fb  
2
LT1812  
TA = 25°C, VS = 5V, VCM = 0V unless otherwise noted (Note 10).  
ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
0.4  
30  
MAX  
1.5  
400  
4
UNITS  
mV  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
(Note 4)  
OS  
I
I
nA  
OS  
0.9  
8
μA  
B
e
Input Noise Voltage Density  
Input Noise Current Density  
Input ꢀesistance  
f = 10kHz  
f = 10kHz  
nV/√Hz  
pA/√Hz  
n
i
n
1
V
=
3.5V  
3
10  
1.5  
MΩ  
MΩ  
IN  
CM  
Differential  
C
V
Input Capacitance  
2
pF  
IN  
Input Voltage ꢀange (Positive)  
Input Voltage ꢀange (Negative)  
3.5  
75  
4.2  
–4.2  
V
V
CM  
–3.5  
2
CMꢀꢀ  
Common Mode ꢀejection ꢀatio  
Minimum Supply Voltage  
V
=
3.5V  
85  
dB  
V
CM  
1.25  
97  
PSꢀꢀ  
Power Supply ꢀejection ꢀatio  
Large-Signal Voltage Gain  
V = 2V to 5.5V  
S
78  
dB  
A
VOL  
V
OUT  
V
OUT  
=
=
3V, ꢀ = 500Ω  
3V, ꢀ = 100Ω  
1.5  
1.0  
3.0  
2.5  
V/mV  
V/mV  
L
L
V
Maximum Output Swing  
ꢀ = 500Ω, 30mV Overdrive  
L
3.80  
3.35  
4.0  
3.5  
V
V
OUT  
L
ꢀ = 100Ω, 30mV Overdrive  
I
I
Maximum Output Current  
Output Short-Circuit Current  
Slew ꢀate  
V
V
=
3V, 30mV Overdrive  
40  
75  
60  
110  
750  
40  
mA  
mA  
V/μs  
MHz  
MHz  
ns  
OUT  
OUT  
OUT  
= 0V, 1V Overdrive (Note 3)  
SC  
Sꢀ  
A = –1 (Note 5)  
V
500  
FPBW  
GBW  
Full Power Bandwidth  
Gain Bandwidth Product  
ꢀise Time, Fall Time  
Overshoot  
3V Peak (Note 6)  
f = 200kHz  
75  
100  
2
t , t  
r
A = 1, 10% to 90%, 0.1V, ꢀ = 100Ω  
V L  
f
OS  
A = 1, 0.1V, ꢀ = 100Ω  
V
25  
%
L
t
PD  
t
s
Propagation Delay  
Settling Time  
A = 1, 50% V to 50% V , 0.1V, ꢀ = 100Ω  
2.8  
30  
ns  
V
IN  
OUT  
L
5V Step, 0.1%, A = 1  
ns  
V
THD  
Total Harmonic Distortion  
Differential Gain  
f = 1MHz, V  
= 2V , A = 2, ꢀ = 500Ω  
–76  
0.12  
0.07  
0.4  
dB  
OUT  
P-P  
V
L
V
OUT  
V
OUT  
= 2V , A = 2, ꢀ = 150Ω  
%
P-P  
V
L
Differential Phase  
Output ꢀesistance  
SHDN Pin Current  
= 2V , A = 2, ꢀ = 150Ω  
DEG  
Ω
P-P  
V
L
OUT  
A = 1, f = 1MHz  
V
I
SHDN > V + 2.0V (On) (Note 11)  
0
–50  
1
μA  
μA  
SHDN  
SHDN < V + 0.4V (Off) (Note 11)  
–100  
I
Supply Current  
SHDN > V + 2.0V (On) (Note 11)  
3
50  
3.6  
100  
mA  
μA  
S
SHDN < V + 0.4V (Off) (Note 11)  
TA = 25°C, VS = 5V, VCM = 2.5V, RL to 2.5V unless otherwise noted (Note 10).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
0.5  
30  
MAX  
2.0  
400  
4
UNITS  
mV  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
(Note 4)  
OS  
I
I
nA  
OS  
–1.0  
8
μA  
B
e
Input Noise Voltage Density  
Input Noise Current Density  
Input ꢀesistance  
f = 10kHz  
f = 10kHz  
nV/√Hz  
pA/√Hz  
n
i
n
1
V
= 1.5V to 3.5V  
3
10  
1.5  
MΩ  
MΩ  
IN  
CM  
Differential  
1812fb  
3
LT1812  
ELECTRICAL CHARACTERISTICS TA = 25°C, VS = 5V, VCM = 0V unless otherwise noted (Note 10).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
V
Input Capacitance  
2
pF  
IN  
Input Voltage ꢀange (Positive)  
Input Voltage ꢀange (Negative)  
3.5  
73  
4
1
V
V
CM  
1.5  
CMꢀꢀ  
Common Mode ꢀejection ꢀatio  
Large-Signal Voltage Gain  
V
= 1.5V to 3.5V  
82  
dB  
CM  
A
VOL  
V
OUT  
V
OUT  
= 1.5V to 3.5V, ꢀ = 500Ω  
= 1.5V to 3.5V, ꢀ = 100Ω  
1.0  
0.7  
2.0  
1.5  
V/mV  
V/mV  
L
L
V
Maximum Output Swing (Positive)  
Maximum Output Swing (Negative)  
ꢀ = 500Ω, 30mV Overdrive  
L
3.9  
3.7  
4.1  
3.9  
V
V
OUT  
L
ꢀ = 100Ω, 30mV Overdrive  
ꢀ = 500Ω, 30mV Overdrive  
0.9  
1.1  
1.1  
1.3  
V
V
L
ꢀ = 100Ω, 30mV Overdrive  
L
I
I
Maximum Output Current  
Output Short-Circuit Current  
Slew ꢀate  
V
V
= 3.5V or 1.5V, 30mV Overdrive  
= 2.5V, 1V Overdrive (Note 3)  
25  
55  
40  
80  
mA  
mA  
V/μs  
MHz  
MHz  
ns  
OUT  
OUT  
OUT  
SC  
Sꢀ  
A = –1 (Note 5)  
V
200  
350  
55  
FPBW  
GBW  
Full Power Bandwidth  
Gain Bandwidth Product  
ꢀise Time, Fall Time  
Overshoot  
1V Peak (Note 6)  
f = 200kHz  
65  
94  
t , t  
r
A = 1, 10% to 90%, 0.1V, ꢀ = 100Ω  
V
2.1  
25  
f
L
OS  
A = 1, 0.1V, ꢀ = 100Ω  
V
%
L
t
PD  
t
s
Propagation Delay  
Settling Time  
A = 1, 50% V to 50% V , 0.1V, ꢀ = 100Ω  
3
ns  
V
IN  
OUT  
L
2V Step, 0.1%, A = –1  
30  
ns  
V
THD  
Total Harmonic Distortion  
Differential Gain  
f = 1MHz, V  
= 2V , A = 2, ꢀ = 500Ω  
–75  
0.22  
0.21  
0.45  
dB  
OUT  
P-P  
V
L
V
OUT  
V
OUT  
= 2V , A = 2, ꢀ = 150Ω  
%
P-P  
V
L
Differential Phase  
Output ꢀesistance  
SHDN Pin Current  
= 2V , A = 2, ꢀ = 150Ω  
DEG  
Ω
P-P  
V
L
OUT  
A = 1, f = 1MHz  
V
I
SHDN > V + 2.0V (On) (Note 11)  
0
–20  
1
μA  
μA  
SHDN  
SHDN < V + 0.4V (Off) (Note 11)  
–50  
I
Supply Current  
SHDN > V + 2.0V (On) (Note 11)  
2.7  
20  
3.6  
50  
mA  
μA  
S
SHDN < V + 0.4V (Off) (Note 11)  
0°C ≤ TA ≤ 70°C, VS = 5V, VCM = 0V unless otherwise noted (Note 10).  
SYMBOL PARAMETER  
Input Offset Voltage  
ΔV /ΔT Input Offset Voltage Drift  
CONDITIONS  
(Note 4)  
MIN  
TYP  
MAX  
2
UNITS  
mV  
V
OS  
OS  
(Note 7)  
10  
15  
500  
5
μV/°C  
nA  
I
I
Input Offset Current  
Input Bias Current  
OS  
B
μA  
V
Input Voltage ꢀange (Positive)  
Input Voltage ꢀange (Negative)  
3.5  
73  
V
V
CM  
–3.5  
2
CMꢀꢀ  
Common Mode ꢀejection ꢀatio  
Minimum Supply Voltage  
V
CM  
=
3.5V  
dB  
V
PSꢀꢀ  
Power Supply ꢀejection ꢀatio  
Large-Signal Voltage Gain  
V = 2V to 5.5V  
76  
dB  
S
A
VOL  
V
OUT  
V
OUT  
=
=
3V, ꢀ = 500Ω  
1.0  
0.7  
V/mV  
V/mV  
L
3V, ꢀ = 100Ω  
L
V
Maximum Output Swing  
Maximum Output Current  
ꢀ = 500Ω, 30mV Overdrive  
L
3.70  
3.25  
V
V
OUT  
OUT  
L
ꢀ = 100Ω, 30mV Overdrive  
I
V
OUT  
=
3V, 30mV Overdrive  
35  
mA  
1812fb  
4
LT1812  
ELECTRICAL CHARACTERISTICS 0°C ≤ TA ≤ 70°C, VS = 5V, VCM = 0V unless otherwise noted (Note 10).  
SYMBOL PARAMETER  
CONDITIONS  
= 0V, 1V Overdrive (Note 3)  
MIN  
60  
TYP  
MAX  
UNITS  
mA  
I
Output Short-Circuit Current  
Slew ꢀate  
V
OUT  
SC  
Sꢀ  
A = –1 (Note 5)  
V
400  
65  
V/μs  
MHz  
GBW  
Gain Bandwidth Product  
SHDN Pin Current  
f = 200kHz  
I
SHDN > V + 2.0V (On) (Note 11)  
1.5  
μA  
μA  
SHDN  
SHDN < V + 0.4V (Off) (Note 11)  
–150  
I
Supply Current  
SHDN > V + 2.0V (On) (Note 11)  
4.6  
150  
mA  
μA  
S
SHDN < V + 0.4V (Off) (Note 11)  
0°C ≤ TA ≤ 70°C, VS = 5V, VCM = 2.5V, RL to 2.5V unless otherwise noted (Note 10).  
SYMBOL PARAMETER  
Input Offset Voltage  
ΔV /ΔT Input Offset Voltage Drift  
CONDITIONS  
(Note 4)  
MIN  
TYP  
MAX  
2.5  
15  
UNITS  
mV  
V
OS  
OS  
(Note 7)  
10  
μV/°C  
nA  
I
I
Input Offset Current  
Input Bias Current  
500  
5
OS  
B
μA  
V
Input Voltage ꢀange (Positive)  
Input Voltage ꢀange (Negative)  
3.5  
71  
V
V
CM  
1.5  
CMꢀꢀ  
Common Mode ꢀejection ꢀatio  
Large-Signal Voltage Gain  
V
= 1.5V to 3.5V  
dB  
CM  
A
VOL  
V
OUT  
V
OUT  
= 1.5V to 3.5V, ꢀ = 500Ω  
= 1.5V to 3.5V, ꢀ = 100Ω  
0.7  
0.5  
V/mV  
V/mV  
L
L
V
OUT  
Maximum Output Swing (Positive)  
Maximum Output Swing (Negative)  
ꢀ = 500Ω, 30mV Overdrive  
L
3.8  
3.6  
V
V
L
ꢀ = 100Ω, 30mV Overdrive  
ꢀ = 500Ω, 30mV Overdrive  
1.2  
1.4  
V
V
L
ꢀ = 100Ω, 30mV Overdrive  
L
I
I
Maximum Output Current  
Output Short-Circuit Current  
Slew ꢀate  
V
V
= 3.5V or 1.5V, 30mV Overdrive  
= 2.5V, 1V Overdrive (Note 3)  
20  
45  
mA  
mA  
OUT  
OUT  
OUT  
SC  
Sꢀ  
A = –1 (Note 5)  
V
150  
55  
V/μs  
MHz  
GBW  
Gain Bandwidth Product  
SHDN Pin Current  
f = 200kHz  
I
SHDN > V + 2.0V (On) (Note 11)  
SHDN < V + 0.4V (Off) (Note 11)  
1.5  
μA  
μA  
SHDN  
–75  
I
Supply Current  
SHDN > V + 2.0V (On) (Note 11)  
4.5  
75  
mA  
μA  
S
SHDN < V + 0.4V (Off) (Note 11)  
40°C ≤ TA ≤ 85°C. VS = 5V, VCM = 0V unless otherwise noted (Notes 8, 10).  
SYMBOL PARAMETER  
Input Offset Voltage  
ΔV /ΔT Input Offset Voltage Drift  
CONDITIONS  
(Note 4)  
MIN  
TYP  
MAX  
3
UNITS  
mV  
V
OS  
OS  
(Note 7)  
10  
30  
600  
6
μV/°C  
nA  
I
OS  
I
B
Input Offset Current  
Input Bias Current  
μA  
V
Input Voltage ꢀange (Positive)  
Input Voltage ꢀange (Negative)  
3.5  
72  
V
V
CM  
–3.5  
2
CMꢀꢀ  
Common Mode ꢀejection ꢀatio  
Minimum Supply Voltage  
V
CM  
=
3.5V  
dB  
V
PSꢀꢀ  
Power Supply ꢀejection ꢀatio  
Large-Signal Voltage Gain  
V = 2V to 5.5V  
75  
dB  
S
A
VOL  
V
OUT  
V
OUT  
=
=
3V, ꢀ = 500Ω  
0.8  
0.6  
V/mV  
V/mV  
L
3V, ꢀ = 100Ω  
L
1812fb  
5
LT1812  
ELECTRICAL CHARACTERISTICS 40°C ≤ TA ≤ 85°C. VS = 5V, VCM = 0V unless otherwise noted (Notes 8, 10).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Maximum Output Swing  
ꢀ = 500Ω, 30mV Overdrive  
L
3.60  
3.15  
V
V
OUT  
L
ꢀ = 100Ω, 30mV Overdrive  
I
I
Maximum Output Current  
Output Short-Circuit Current  
Slew ꢀate  
V
V
=
3V, 30mV Overdrive  
30  
55  
mA  
mA  
OUT  
OUT  
OUT  
= 0V, 1V Overdrive (Note 3)  
SC  
Sꢀ  
A = –1 (Note 5)  
V
350  
60  
V/μs  
MHz  
GBW  
Gain Bandwidth Product  
SHDN Pin Current  
f = 200kHz  
I
SHDN > V + 2.0V (On) (Note 11)  
SHDN < V + 0.4V (Off) (Note 11)  
2
μA  
μA  
SHDN  
–200  
I
Supply Current  
SHDN > V + 2.0V (On) (Note 11)  
5
200  
mA  
μA  
S
SHDN < V + 0.4V (Off) (Note 11)  
40°C ≤ TA ≤ 85°C, VS = 5V, VCM = 2.5V, RL to 2.5V unless otherwise noted (Notes 8, 10).  
SYMBOL PARAMETER  
Input Offset Voltage  
ΔV /ΔT Input Offset Voltage Drift  
CONDITIONS  
MIN  
TYP  
MAX  
3.5  
30  
UNITS  
mV  
V
(Note 4)  
OS  
OS  
(Note 7)  
10  
μV/°C  
nA  
I
I
Input Offset Current  
Input Bias Current  
600  
6
OS  
B
μA  
V
Input Voltage ꢀange (Positive)  
Input Voltage ꢀange (Negative)  
3.5  
70  
V
V
CM  
1.5  
CMꢀꢀ  
Common Mode ꢀejection ꢀatio  
Large-Signal Voltage Gain  
V
= 1.5V to 3.5V  
dB  
CM  
A
VOL  
V
OUT  
V
OUT  
= 1.5V to 3.5V, ꢀ = 500Ω  
= 2.0V to 3.0V, ꢀ = 100Ω  
0.6  
0.4  
V/mV  
V/mV  
L
L
V
Maximum Output Swing (Positive)  
Maximum Output Swing (Negative)  
ꢀ = 500Ω, 30mV Overdrive  
L
3.7  
3.5  
V
V
OUT  
L
ꢀ = 100Ω, 30mV Overdrive  
ꢀ = 500Ω, 30mV Overdrive  
1.3  
1.5  
V
V
L
ꢀ = 100Ω, 30mV Overdrive  
L
I
I
Maximum Output Current  
Output Short-Circuit Current  
Slew ꢀate  
V
V
= 3.5V or 1.5V, 30mV Overdrive  
= 2.5V, 1V Overdrive (Note 3)  
17  
40  
mA  
mA  
OUT  
OUT  
OUT  
SC  
Sꢀ  
A = –1 (Note 5)  
V
125  
50  
V/μs  
MHz  
GBW  
Gain Bandwidth Product  
SHDN Pin Current  
f = 200kHz  
I
SHDN > V + 2.0V (On) (Note 11)  
SHDN < V + 0.4V (Off) (Note 11)  
2
μA  
μA  
SHDN  
–100  
I
Supply Current  
SHDN > V + 2.0V (On) (Note 11)  
5
100  
mA  
μA  
S
SHDN < V + 0.4V (Off) (Note 11)  
Note 1: Stresses beyond those listed under Absolute Maximum ꢀatings may  
cause permanent damage to the device. Exposure to any Absolute Maximum  
ꢀating condition for extended periods may affect device reliability and lifetime.  
Note 2: Differential inputs of 3V are appropriate for transient operation  
only, such as during slewing. Large sustained differential inputs can cause  
excessive power dissipation and may damage the part.  
Note 3: A heat sink may be required to keep the junction temperature below  
absolute maximum when the output is shorted indefinitely.  
Note 4: Input offset voltage is pulse tested and is exclusive of warm-up drift.  
Note 5: Slew rate is measured between 2V on the output with 3V input for  
Note 8: The LT1812C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1812C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LT1812I is guaranteed to meet specified  
performance from –40°C to 85°C.  
Note 9: Thermal resistance varies with the amount of PC board metal conn-  
ected to the package. The nominal values are for short traces connected to the  
pins. The thermal resistance can be substantially reduced by connecting Pin 2  
of the 5-lead or 6-lead TSOT-23 or Pin 4 of the SO-8 to a large metal area.  
Note 10: For the 8-lead SO and 6-lead TSOT-23 parts, the electrical charac-  
teristics apply to the “ON” state, unless otherwise noted. These parts are in  
5V supplies and 2V on the output with a 3V input for single 5V supplies.  
P-P  
P-P  
the “ON” state when either SHDN is not connected, or SHDN > V + 2.0V.  
Note 6: Full power bandwidth is calculated from the slew rate: FPBW = Sꢀ/2πV .  
P
Note 11: The shutdown (SHDN) feature is not available on the 5-lead  
Note 7: This parameter is not 100% tested.  
SOT-23 parts. These parts are always in the “ON” state.  
1812fb  
6
LT1812  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Common Mode Range  
Input Bias Current  
vs Common Mode Voltage  
Supply Current vs Temperature  
vs Supply Voltage  
+
5
4
3
2
1
0
V
0
–0.5  
–1.0  
–1.5  
–2.0  
T
= 25°C  
= 5V  
A
S
–0.5  
–1.0  
–1.5  
–2.0  
V
V
= 5V  
S
T
= 25°C  
OS  
A
V
= 2.5V  
S
ēV < 1mV  
2.0  
1.5  
1.0  
0.5  
V
0
2.5  
5.0  
–50 –25  
0
25  
50  
75 100 125  
0
2
3
4
5
6
7
–5.0  
–2.5  
1
TEMPEꢀATUꢀE (°C)  
SUPPLY VOLTAGE ( V)  
INPUT COMMON MODE VOLTAGE (V)  
1812 G03  
1812 G01  
1812 G02  
Input Bias Current  
vs Temperature  
Open-Loop Gain  
vs Resistive Load  
Input Noise Spectral Density  
100  
10  
1
10  
0
75.0  
72.5  
70.0  
67.5  
65.0  
62.5  
60  
T
= 25°C  
T
= 25°C  
A
A
S
V
V
A
= 5V  
–0.2  
= 101  
= 10k  
S
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
V
V
=
=
5V  
S
S
i
n
1
e
n
V
=
5V  
2.5V  
S
V
=
2.5V  
S
0.1  
100k  
–1.4  
50  
TEMPEꢀATUꢀE (°C)  
100 125  
–50 –25  
0
25  
75  
10  
100  
1k  
FꢀEQUENCY (Hz)  
10k  
100  
1k  
LOAD ꢀESISTANCE (Ω)  
10k  
1812 G05  
1812 G06  
1812 G04  
Output Voltage Swing  
vs Supply Voltage  
Output Voltage Swing  
vs Load Current  
Open-Loop Gain vs Temperature  
+
+
V
75.0  
72.5  
70.0  
67.5  
V
T
= 25°C  
IN  
V
V
= 5V  
V
V
=
=
5V  
3V  
A
S
S
O
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
V
= 30mV  
= 30mV  
85°C  
IN  
= 500Ω  
L
25°C  
–40°C  
= 500Ω  
= 100Ω  
ꢀ = 100Ω  
L
L
L
2.0  
1.5  
1.0  
0.5  
2.0  
1.5  
1.0  
0.5  
65.0  
62.5  
60.0  
= 100Ω  
L
= 500Ω  
L
V
V
50  
100 125  
0
2
3
4
5
6
7
–50 –25  
0
25  
75  
1
–60  
–40  
–20  
0
20  
40  
60  
SUPPLY VOLTAGE ( V)  
TEMPEꢀATUꢀE (°C)  
OUTPUT CUꢀꢀENT (mA)  
1812 G07  
1812 G08  
1812 G09  
1812fb  
7
LT1812  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Short-Circuit Current  
vs Temperature  
Open-Loop Gain and Phase  
vs Frequency  
Gain vs Frequency  
6
4
2
0
120  
115  
110  
105  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
V
= 5V  
T
= 25°C  
T
= 25°C  
A = 1  
V
S
A
V
F
A
SOUꢀCE  
A
= –1  
V
=
2.5V  
5V  
S
= ꢀ = 500Ω  
G
NO ꢀ  
L
PHASE  
GAIN  
V
=
S
60  
–2  
–4  
SINK  
2.5V  
5V  
5V  
40  
2.5V  
–6  
–8  
20  
100  
95  
0
–10  
–12  
–14  
–20  
–40  
90  
–10  
50  
TEMPEꢀATUꢀE (°C)  
100 125  
1M  
10M  
100M  
500M  
–50 –25  
0
25  
75  
10k  
100k  
1M  
10M  
100M 1000M  
FꢀEQUENCY (Hz)  
FꢀEQUENCY (Hz)  
1812 G13  
1812 G16  
1812 G10  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Settling Time vs Output Step  
Gain vs Frequency  
5
4
110  
90  
8
6
T
= 25°C  
T
= 25°C  
A
A
V
L
GBW  
A
= 2  
= 500Ω  
L
= 100Ω  
3
4
2
GBW  
= 100Ω  
L
1
2
0
V
=
2.5V  
V = 5V  
S
70  
45  
40  
35  
S
0
PHASE MAꢀGIN  
–1  
–2  
–3  
–4  
–5  
= 100Ω  
L
T
V
A
C
= 25°C  
A
S
V
F
F
–2  
–4  
–6  
= 5V  
= –1  
= 500Ω  
= 3pF  
PHASE MAꢀGIN  
= 500Ω  
L
0.1% SETTLING  
1
2
4
5
6
7
1M  
10M  
FꢀEQUENCY (Hz)  
100M  
500M  
0
3
0
10  
15  
20  
25  
30  
35  
5
SETTLING TIME (ns)  
SUPPLY VOLTAGE ( V)  
1812 G17  
1812 G19  
1812 G11  
Gain Bandwidth and Phase  
Margin vs Temperature  
Output Impedance vs Frequency  
Gain vs Frequency  
12  
8
100  
10  
115  
105  
95  
C = 1000pF  
L
= 500Ω  
T
= 25°C  
= –1  
L
A
V
S
A
V
C = 500pF  
L
=
5V  
A
= 100  
V
GBW  
5V  
= ꢀ = 500Ω  
F
G
C = 200pF  
L
V
=
S
A
= 10  
A
NO ꢀ  
L
V
GBW  
2.5V  
C = 100pF  
L
V
=
= 1  
1
4
S
V
C = 50pF  
L
C = 0  
L
0.1  
0
85  
40  
38  
36  
PHASE MAꢀGIN  
5V  
V
=
S
–4  
–8  
0.01  
0.001  
PHASE MAꢀGIN  
V
=
2.5V  
T
= 25°C  
S
A
S
V
=
5V  
–50 –25  
50  
75 100 125  
1
10M  
FꢀEQUENCY (Hz)  
100M 200M  
10k  
100k 1M  
FꢀEQUENCY (Hz)  
10M  
100M  
0
25  
TEMPEꢀATUꢀE (°C)  
1812 G12  
1812 G18  
1812 G15  
1812fb  
8
LT1812  
TYPICAL PERFORMANCE CHARACTERISTICS  
Shutdown Supply Current  
vs Temperature  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
70  
60  
T
A
V
= 25°C  
= 1  
=
V
= V + 0.4V  
T = 25°C  
A
A
V
S
SHDN  
V
= 5V  
S
5V  
V
=
5V  
S
50  
40  
30  
20  
10  
–PSꢀꢀ  
+PSꢀꢀ  
V
=
2.5V  
S
0
50  
TEMPEꢀATUꢀE (°C)  
100 125  
1k  
10k  
100k  
1M  
10M  
100M  
–50 –25  
0
25  
75  
1k  
10k  
100k  
1M  
10M  
100M  
FꢀEQUENCY (Hz)  
FꢀEQUENCY (Hz)  
1812 G20  
1812 G21  
1812 G14  
Slew Rate vs Supply Voltage  
Slew Rate vs Supply Voltage  
Slew Rate vs Input Level  
600  
500  
400  
300  
200  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
1200  
1000  
800  
T
=25°C  
= –1  
T
=25°C  
= –1  
= V  
T
=25°C  
= –1  
A
V
A
V
IN  
F
A
V
S
A
V
A
V
A
V
=
1V  
/2  
=
5V  
IN  
S(TOTAL)  
= ꢀ = ꢀ = 500Ω  
= ꢀ = ꢀ = 500Ω  
= ꢀ = ꢀ = 500Ω  
G
F
G
L
G
L
F
L
Sꢀ  
Sꢀ  
+
Sꢀ  
Sꢀ  
+
Sꢀ  
600  
+
Sꢀ  
400  
200  
4
5
7
0
2
3
4
5
6
7
0
1
2
3
6
0
2
3
4
5
6
7
8
1
1
SUPPLY VOLTAGE ( V)  
SUPPLY VOLTAGE ( V)  
INPUT LEVEL (V  
)
P-P  
1812 G23  
1812 G22  
1812 G24  
Total Harmonic Distortion + Noise  
vs Frequency  
Undistorted Output Swing  
vs Frequency  
Slew Rate vs Temperature  
1200  
1000  
800  
0.01  
9
8
7
6
5
4
3
2
1
0
A
= –1  
V
Sꢀ  
S
+
V
=
5V  
Sꢀ  
S
A
= –1  
= 1  
A
V
= 1  
V
V
= 5V  
0.005  
A
V
600  
Sꢀ  
=
V
V
2.5V  
S
S
400  
200  
0
0.002  
0.001  
+
Sꢀ  
=
T
= 25°C  
T
= 25°C  
A
S
O
A
S
L
2.5V  
V
V
=
5V  
V
=
5V  
= 2V  
= 100Ω  
P-P  
= 500Ω  
2% MAX DISTOꢀTION  
1M  
FꢀEQUENCY (Hz)  
L
50  
100 125  
100k  
10M  
100M  
–50 –25  
0
25  
75  
10  
100  
1k  
10k  
100k  
FꢀEQUENCY (Hz)  
TEMPEꢀATUꢀE (°C)  
1812 G27  
1812 G26  
1812 G25  
1812fb  
9
LT1812  
TYPICAL PERFORMANCE CHARACTERISTICS  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Differential Gain and Phase  
vs Supply Voltage  
Capacitive Load Handling  
100  
90  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= 25°C  
= 5V  
T
= 25°C  
= 2  
A
S
A
DIFFEꢀENTIAL GAIN  
V
A
V
V
V
S
O
= 150Ω  
L
=
5V  
80  
= 2V  
P-P  
A
= 1  
V
70  
2ND HAꢀMONIC  
3ꢀD HAꢀMONIC  
DIFFEꢀENTIAL GAIN  
= 1k  
60  
50  
L
L
= 100Ω  
0.25  
0.20  
0.15  
0.10  
0.05  
0
A
= –1  
DIFFEꢀENTIAL PHASE  
= 150Ω  
V
40  
30  
20  
10  
0
L
DIFFEꢀENTIAL PHASE  
ꢀ = 1k  
L
3ꢀD HAꢀMONIC  
2ND HAꢀMONIC  
L
= 500Ω  
T
= 25°C  
A
10000  
100k  
10M  
4
8
10  
TOTAL SUPPLY VOLTAGE (V)  
12  
10  
100  
1000  
1M  
FꢀEQUENCY (Hz)  
6
CAPACITIVE LOAD (pF)  
1812 G30  
1812 G28  
1812 G29  
Small-Signal Transient,  
AV = –1  
Small-Signal Transient,  
AV = 1  
Small-Signal Transient,  
AV = 1, CL = 1000pF  
Large-Signal Transient,  
AV = –1  
Large-Signal Transient,  
AV = 1  
Large-Signal Transient,  
AV = 1, CL = 1000pF  
1812fb  
10  
LT1812  
APPLICATIONS INFORMATION  
Layout and Passive Components  
the capacitive load increases, both the bandwidth and  
phase margin decrease so there will be peaking in the  
frequency domain and in the transient response. Coaxial  
cable can be driven directly, but for best pulse fidelity, a  
resistor of value equal to the characteristic impedance of  
the cable (i.e., 75Ω) should be placed in series with the  
output. The other end of the cable should be terminated  
with the same value resistor to ground.  
The LT1812 amplifier is more tolerant of less than ideal  
layouts than other high speed amplifiers. For maximum  
performance (for example, fast settling) use a ground  
plane,shortleadlengthsandF-qualitybypasscapacitors  
(0.01μF to 0.1μF). For high drive current applications, use  
low ESꢀ bypass capacitors (1μF to 10μF tantalum).  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input combine with the  
input capacitance to form a pole that can cause peaking  
or even oscillations. If feedback resistors greater than 2k  
are used, a parallel capacitor of value  
Slew Rate  
The slew rate is proportional to the differential input  
voltage.Highestslewratesarethereforeseeninthelowest  
gain configurations. For example, a 5V output step in a  
gain of 10 has a 0.5V input step, whereas in unity gain  
there is a 5V input step. The LT1812 is tested for slew  
rate in a gain of 1. Lower slew rates occur in higher  
gain configurations.  
C > ꢀ • C /ꢀ  
F
F
G
IN  
should be used to cancel the input pole and optimize  
dynamic performance. For applications where the DC  
noise gain is 1 and a large feedback resistor is used, C  
F
should be greater than or equal to C . An example would  
IN  
Shutdown  
be an I-to-V converter.  
The LT1812 has a shutdown pin (SHDN, Pin 8) for  
conserving power. When this pin is open or biased at  
least 2V above the negative supply, the part operates  
Input Considerations  
Each of the LT1812 amplifier inputs is the base of an NPN  
and PNP transistor whose base currents are of opposite  
polarity and provide first-order bias current cancellation.  
Because of variation in the matching of NPN and PNP  
beta, the polarity of the input bias current can be positive  
or negative. The offset current does not depend on beta  
matchingandiswellcontrolled.Theuseofbalancedsource  
resistance at each input is recommended for applications  
where DC accuracy must be maximized. The inputs can  
withstand differential input voltages of up to 3V without  
damage and need no clamping or source resistance for  
protection.  
normally. When pulled down to V , the supply current  
drops to about 50μA. Typically, the turn-off delay is  
1μs and the turn-on delay 0.5μs. The current out of the  
SHDN pin is also typically 50μA. In shutdown mode, the  
amplifier output is not isolated from the inputs, so the  
LT1812shutdownfeaturecannotbeusedformultiplexing  
applications. The 50μA typical shutdown current is  
exclusiveofanyoutput(load)current. Inordertoprevent  
load current (and maximize the power savings), either  
the load needs to be disconnected, or the input signal  
needs to be 0V. Even in shutdown mode, the LT1812 can  
still drive significant current into a load. For example, in  
The device should not be used as a comparator because  
with sustained differential inputs, excessive power dissi-  
pation may result.  
an A = 1 configuration, when driven with a 1V DC input,  
V
the LT1812 drives 2mA into a 100Ω load. It takes about  
500μs for the load current to reach this value.  
Capacitive Loading  
Power Dissipation  
The LT1812 is stable with a 1000pF capacitive load,  
which is outstanding for a 100MHz amplifier. This is  
accomplished by sensing the load induced output pole  
and adding compensation at the amplifier gain node. As  
The LT1812 combines high speed and large output drive  
in a small package. It is possible to exceed the maximum  
junction temperature under certain conditions. Maximum  
1812fb  
11  
LT1812  
APPLICATIONS INFORMATION  
junction temperature (T ) is calculated from the ambient  
the resistor generating currents that are mirrored into the  
high impedance node. Complementary followers form an  
output stage that buffers the gain node from the load. The  
bandwidth is set by the input resistor and the capacitance  
onthehighimpedancenode.Theslewrateisdeterminedby  
the current available to charge the gain node capacitance.  
This current is the differential input voltage divided by ꢀ1,  
so the slew rate is proportional to the input. Highest slew  
rates are therefore seen in the lowest gain configurations.  
The ꢀC network across the output stage is bootstrapped  
when the amplifier is driving a light or moderate load  
and has no effect under normal operation. When driving  
capacitive loads (or a low value resistive load) the network  
isincompletelybootstrappedandaddstothecompensation  
at the high impedance node. The added capacitance slows  
down the amplifier which improves the phase margin by  
moving the unity-gain cross away from the pole formed  
by the output impedance and the capacitive load. The zero  
created by the ꢀC combination adds phase to ensure that  
the total phase lag does not exceed 180 degrees (zero  
phase margin) and the amplifier remains stable. In this  
way, the LT1812 is stable with up to 1000pF capacitive  
loads in unity gain, and even higher capacitive loads in  
higher closed-loop gain configurations.  
J
temperature (T ) and power dissipation (P ) as follows:  
A
D
T = T + (P • θ ) (Note 9)  
J
A
D
JA  
Powerdissipationiscomposedoftwoparts.Therstisdue  
to the quiescent supply current and the second is due to  
on-chipdissipationcausedbytheloadcurrent. Theworst-  
case load induced power occurs when the output voltage  
is at 1/2 of either supply voltage (or the maximum swing  
if less than 1/2 supply voltage). Therefore P  
is:  
DMAX  
+
+
2
P
P
= (V – V )(I  
) + (V /2) /ꢀ or  
DMAX  
DMAX  
SMAX  
L
+
+
= (V – V )(I  
) + (V – V  
)(V  
/ꢀ )  
SMAX  
OMAX  
OMAX L  
Example: LT1812CS5 at 70°C, V = 5V, ꢀ = 100Ω  
S
L
2
P
= (10V)(4.5mA) + (2.5V) /100Ω = 108mW  
= 70°C + (108mW)(250°C/W) = 97°C  
DMAX  
JMAX  
T
Circuit Operation  
The LT1812 circuit topology is a true voltage feedback  
amplifierthathastheslewingbehaviorofacurrentfeedback  
amplifier. The operation of the circuit can be understood  
by referring to the Simplified Schematic. The inputs are  
bufferedbycomplementaryNPNandPNPemitterfollowers  
thatdrivea300Ωresistor.Theinputvoltageappearsacross  
SIMPLIFIED SCHEMATIC  
+
V
B
ꢀ1  
300Ω  
C
C
+IN  
C
OUT  
–IN  
C
BIAS  
CONTꢀOL  
SHDN  
V
1812 SS  
1812fb  
12  
LT1812  
PACKAGE DESCRIPTION  
S5 Package  
5-Lead Plastic TSOT-23  
(ꢀeference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
ꢀEF  
2.90 BSC  
(NOTE 4)  
1.22 ꢀEF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 ꢀEF  
PIN ONE  
ꢀECOMMENDED SOLDEꢀ PAD LAYOUT  
PEꢀ IPC CALCULATOꢀ  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 ꢀEF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 ꢀEV B  
1. DIMENSIONS AꢀE IN MILLIMETEꢀS  
2. DꢀAWING NOT TO SCALE  
3. DIMENSIONS AꢀE INCLUSIVE OF PLATING  
4. DIMENSIONS AꢀE EXCLUSIVE OF MOLD FLASH AND METAL BUꢀꢀ  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE ꢀEFEꢀENCE IS MO-193  
1812fb  
13  
LT1812  
PACKAGE DESCRIPTION  
S6 Package  
6-Lead Plastic TSOT-23  
(ꢀeference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
ꢀEF  
1.22 ꢀEF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 ꢀEF  
(NOTE 4)  
PIN ONE ID  
ꢀECOMMENDED SOLDEꢀ PAD LAYOUT  
PEꢀ IPC CALCULATOꢀ  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 ꢀEF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 ꢀEV B  
NOTE:  
1. DIMENSIONS AꢀE IN MILLIMETEꢀS  
2. DꢀAWING NOT TO SCALE  
3. DIMENSIONS AꢀE INCLUSIVE OF PLATING  
4. DIMENSIONS AꢀE EXCLUSIVE OF MOLD FLASH AND METAL BUꢀꢀ  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE ꢀEFEꢀENCE IS MO-193  
1812fb  
14  
LT1812  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(ꢀeference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
ꢀECOMMENDED SOLDEꢀ PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
s 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETEꢀS)  
2. DꢀAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH Oꢀ PꢀOTꢀUSIONS.  
MOLD FLASH Oꢀ PꢀOTꢀUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1812fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT1812  
TYPICAL APPLICATION  
Single 5V Supply 10MS/s 12-Bit ADC Buffer  
V
P-P  
IN  
2V  
+
12 BITS  
10MS/s  
68Ω  
2.5V  
DC  
LT1812  
LTC1420  
470pF  
1812 TA03  
RELATED PARTS  
PART NUMBER  
LT1360/LT1361/LT1362  
LT1363/LT1364/LT1365  
LT1395/LT1396/LT1397  
LT1806  
DESCRIPTION  
COMMENTS  
Single/Dual/Quad 50MHz, 800V/μs, C-Load Amplifiers 4mA Supply Current, 1mV Max V , 1μA Max I  
OS  
B
Single/Dual/Quad 70MHz, 1000V/μs, C-Load Amplifiers 50mA Output Current, 1.5mV Max V , 2μA Max I  
OS  
B
Single/Dual/Quad 400MHz Current Feedback Amplifiers 4.6mA Supply Current, 800V/μs, 80mA Output Current  
325MHz, 140V/μs ꢀail-to-ꢀail I/O Op Amp  
180MHz, 350V/μs ꢀail-to-ꢀail I/O Op Amp  
Dual 3mA, 100MHz, 750V/μs Operational Amplifier  
Low Noise 3.5nV/√Hz  
LT1809  
Low Distortion –90dBc at 5MHz  
Dual Version of the LT1812  
LT1813  
C-Load is a trademark of Linear Technology Corporation.  
1812fb  
LT 0909 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 1999  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1812CS6#TRPBF

LT1812 - 3mA, 100MHz, 750V/&#181;s Operational Amplifier with Shutdown; Package: SOT; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1812CS8

3mA, 100MHz, 750V/us Operational Amplifier with Shutdown
Linear

LT1812CS8#PBF

暂无描述
Linear

LT1812CS8#TR

LT1812 - 3mA, 100MHz, 750V/&#181;s Operational Amplifier with Shutdown; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1812CS8#TRPBF

暂无描述
Linear

LT1812G

Optoelectronic
ETC

LT1812IS5

3mA, 100MHz, 750V/us Operational Amplifier with Shutdown
Linear

LT1812IS5#PBF

3mA, 100MHz, 750V/µs Operational Amplifier with Shutdown
ADI

LT1812IS5#TR

暂无描述
Linear

LT1812IS5#TRM

LT1812 - 3mA, 100MHz, 750V/&#181;s Operational Amplifier with Shutdown; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1812IS5#TRMPBF

LT1812 - 3mA, 100MHz, 750V/&#181;s Operational Amplifier with Shutdown; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1812IS5#TRPBF

LT1812 - 3mA, 100MHz, 750V/&#181;s Operational Amplifier with Shutdown; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear