LT1813IS8 [Linear]

Dual 3mA, 100MHz, 750V/us Operational Amplifier; 双3mA电流,为100MHz , 750V / us的运算放大器
LT1813IS8
型号: LT1813IS8
厂家: Linear    Linear
描述:

Dual 3mA, 100MHz, 750V/us Operational Amplifier
双3mA电流,为100MHz , 750V / us的运算放大器

运算放大器
文件: 总12页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1813  
Dual 3mA, 100MHz, 750V/µs  
Operational Amplifier  
U
FEATURES  
DESCRIPTIO  
The LT®1813 is a low power, high speed, very high slew  
rate operational amplifier with excellent DC performance.  
The LT1813 features reduced supply current, lower input  
offset voltage, lower input bias current and higher DC gain  
thanotherdeviceswithcomparablebandwidth.Thecircuit  
topology is a voltage feedback amplifier with the slewing  
characteristics of a current feedback amplifier.  
100MHz Gain Bandwidth  
750V/µs Slew Rate  
3.6mA Maximum Supply Current per Amplifier  
8nV/Hz Input Noise Voltage  
Unity-Gain Stable  
1.5mV Maximum Input Offset Voltage  
4µA Maximum Input Bias Current  
400nA Maximum Input Offset Current  
Theoutputdrivesa100loadto±3.5Vwith±5Vsupplies.  
Onasingle5Vsupply,theoutputswingsfrom1.1Vto3.9V  
witha100loadconnectedto2.5V.Theamplifierisstable  
with a 1000pF capacitive load which makes it useful in  
buffer and cable driver applications.  
40mA Minimum Output Current, VOUT = ±3V  
±3.5V Minimum Input CMR, VS = ±5V  
Specified at ±5V, Single 5V  
Available in MS8 and SO-8 Packages  
U
The LT1813 is manufactured on Linear Technology’s  
advanced low voltage complementary bipolar process.  
For higher supply voltage single, dual and quad opera-  
tionalamplifierswithupto70MHzgainbandwidth, seethe  
LT1351 through LT1365 data sheets.  
APPLICATIO S  
Wideband Amplifiers  
Buffers  
Active Filters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Video and RF Amplification  
Cable Drivers  
Data Acquisition Systems  
U
TYPICAL APPLICATIO  
4MHz, 4th Order Butterworth Filter  
Filter Frequency Response  
10  
0
232  
274Ω  
–10  
–20  
–30  
47pF  
232Ω  
665Ω  
V
IN  
22pF  
274Ω  
562Ω  
–40  
–50  
–60  
–70  
–80  
–90  
1/2 LT1813  
+
220pF  
1/2 LT1813  
V
OUT  
470pF  
+
1813 TA01  
V
V
= ±5V  
S
= 600mV  
P-P  
IN  
PEAKING < 0.12dB  
0.1  
1
10  
100  
FREQUENCY (MHz)  
1813 TA02  
1
LT1813  
W W U W  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Total Supply Voltage (V+ to V)............................. 12.6V  
Differential Input Voltage (Transient Only, Note 2) ... ±3V  
Input Voltage ........................................................... ±VS  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range ................ 40°C to 85°C  
Specified Temperature Range  
(Notes 8, 9)......................................... 40°C to 85°C  
Maximum Junction Temperature ......................... 150°C  
Storage Temperature Range .................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................... 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
LT1813CS8  
LT1813IS8  
LT1813DS8*  
LT1813DMS8*  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8 V  
OUT B  
–IN B  
+IN B  
7 OUT B  
6 –IN B  
5 +IN B  
A
V
B
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PART MARKING  
LTGZ  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 150°C/ W  
TJMAX = 150°C, θJA = 250°C/ W  
1813  
1813I  
1813D  
Consult factory for Military grade parts. *See note 9.  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = ±5V, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.5  
50  
MAX  
1.5  
UNITS  
mV  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
(Note 4)  
OS  
I
I
400  
±4  
nA  
OS  
0.9  
8
µA  
B
e
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
n
i
1
n
R
V
CM  
= ±3.5V  
3
10  
1.5  
MΩ  
MΩ  
IN  
Differential  
C
IN  
Input Capacitance  
2
pF  
Input Voltage Range (High)  
Input Voltage Range (Low)  
3.5  
4.2  
4.2  
V
V
3.5  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±3.5V  
75  
78  
85  
96  
dB  
dB  
CM  
V = ±2V to ±5.5V  
S
A
VOL  
V
OUT  
V
OUT  
= ±3V, R = 500Ω  
= ±3V, R = 100Ω  
1.5  
1.0  
3.0  
2.5  
V/mV  
V/mV  
L
L
V
OUT  
Output Swing  
R = 500, 30mV Overdrive  
R = 100, 30mV Overdrive  
L
±3.80  
±3.35  
±4.0  
±3.5  
V
V
L
I
I
Output Current  
V
V
= ±3V, 30mV Overdrive  
±40  
±75  
500  
±60  
±100  
750  
40  
mA  
mA  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
= 0V, V = ±1V  
IN  
SR  
A = 1 (Note 5)  
V
V/µs  
MHz  
Full Power Bandwidth  
3V Peak (Note 6)  
2
LT1813  
ELECTRICAL CHARACTERISTICS TA = 25°C, VS = ±5V, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
100  
2
MAX  
UNITS  
MHz  
ns  
GBW  
Gain Bandwidth  
Rise Time, Fall Time  
Overshoot  
f = 200kHz  
75  
t , t  
A = 1, 10% to 90%, 0.1V, R = 100Ω  
V L  
r
f
A = 1, 0.1V, R = 100Ω  
V
25  
2.8  
0.4  
90  
3
%
L
Propagation Delay  
Output Resistance  
Channel Separation  
Supply Current  
50% V to 50% V , 0.1V, R = 100Ω  
ns  
IN  
OUT  
L
R
A = 1, f = 1MHz  
V
O
V
OUT  
= ±3V, R = 100Ω  
82  
dB  
L
I
Per Amplifier  
3.6  
mA  
S
TA = 25°C, VS = 5V, VCM = 2.5V, RL to 2.5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.7  
50  
–1  
8
MAX  
2
UNITS  
mV  
V
OS  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
(Note 4)  
I
I
400  
±4  
nA  
OS  
µA  
B
e
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
n
i
1
n
R
IN  
V
= 1.5V to 3.5V  
3
20  
1.5  
MΩ  
MΩ  
CM  
Differential  
C
IN  
Input Capacitance  
2
pF  
Input Voltage Range (High)  
Input Voltage Range (Low)  
3.5  
73  
4
1
V
V
1.5  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= 1.5V to 3.5V  
82  
dB  
CM  
A
VOL  
V
OUT  
V
OUT  
= 1.5V to 3.5V, R = 500Ω  
= 1.5V to 3.5V, R = 100Ω  
1.0  
0.7  
2.0  
1.5  
V/mV  
V/mV  
L
L
V
OUT  
Output Swing (High)  
Output Swing (Low)  
R = 500, 30mV Overdrive  
L
3.9  
3.7  
4.1  
3.9  
V
V
L
R = 100, 30mV Overdrive  
R = 500, 30mV Overdrive  
0.9  
1.1  
1.1  
1.3  
V
V
L
R = 100, 30mV Overdrive  
L
I
I
Output Current  
V
V
= 3.5V or 1.5V, 30mV Overdrive  
±25  
±55  
200  
±35  
±75  
350  
55  
mA  
mA  
V/µs  
MHz  
MHz  
ns  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
= 2.5V, V = ±1V  
IN  
SR  
A = 1 (Note 5)  
V
Full Power Bandwidth  
Gain Bandwidth  
Rise Time, Fall Time  
Overshoot  
1V Peak (Note 6)  
f = 200kHz  
GBW  
65  
94  
t , t  
A = 1, 10% to 90%, 0.1V, R = 100Ω  
V
2.1  
25  
r
f
L
A = 1, 0.1V, R = 100Ω  
V
%
L
Propagation Delay  
Output Resistance  
Channel Separation  
Supply Current  
50% V to 50% V , 0.1V, R = 100Ω  
3
ns  
IN  
OUT  
L
R
A = 1, f = 1MHz  
V
0.45  
92  
O
V
OUT  
= 1.5V to 3.5V, R = 100Ω  
81  
dB  
L
I
Per Amplifier  
2.9  
3.6  
mA  
S
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range  
0°C TA 70°C. VS = ±5V, VCM = 0V unless otherwise noted (Note 9).  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 4)  
MIN  
TYP  
MAX  
2
UNITS  
mV  
V
Input Offset Voltage  
OS  
Input V Drift  
(Note 7)  
10  
15  
µV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
500  
±5  
OS  
µA  
B
3
LT1813  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range  
0°C TA 70°C. VS = ±5V, VCM = 0V unless otherwise noted (Note 9).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Range (High)  
Input Voltage Range (Low)  
3.5  
V
V
3.5  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= ±3.5V  
73  
76  
dB  
dB  
CM  
V = ±2V to ±5.5V  
S
A
V
OUT  
V
OUT  
= ±3V, R = 500Ω  
= ±3V, R = 100Ω  
1.0  
0.7  
V/mV  
V/mV  
VOL  
L
L
V
Output Swing  
R = 500, 30mV Overdrive  
L
±3.70  
±3.25  
V
V
OUT  
L
R = 100, 30mV Overdrive  
I
I
Output Current  
Short-Circuit Current  
Slew Rate  
V
V
= ±3V, 30mV Overdrive  
±35  
±60  
400  
65  
mA  
mA  
OUT  
SC  
OUT  
OUT  
= 0V, V = ±1V  
IN  
SR  
A = 1 (Note 5)  
V
V/µs  
MHz  
dB  
GBW  
Gain Bandwidth  
Channel Separation  
Supply Current  
f = 200kHz  
V
OUT  
, ±3V, R = 100Ω  
81  
L
I
Per Amplifier  
4.5  
mA  
S
0°C TA 70°C, VS = 5V, VCM = 2.5V, RL to 2.5V unless otherwise noted (Note 9).  
V
Input Offset Voltage  
(Note 4)  
2.5  
15  
mV  
µV/°C  
nA  
OS  
Input V Drift  
(Note 7)  
10  
OS  
I
I
Input Offset Current  
Input Bias Current  
500  
±5  
OS  
µA  
B
Input Voltage Range (High)  
Input Voltage Range (Low)  
3.5  
71  
V
V
1.5  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= 1.5V to 3.5V  
dB  
CM  
A
V
OUT  
V
OUT  
= 1.5V to 3.5V, R = 500Ω  
= 1.5V to 3.5V, R = 100Ω  
0.7  
0.5  
V/mV  
V/mV  
VOL  
L
L
V
Output Swing (High)  
Output Swing (Low)  
R = 500, 30mV Overdrive  
L
3.8  
3.6  
V
V
OUT  
L
R = 100, 30mV Overdrive  
R = 500, 30mV Overdrive  
1.2  
1.4  
V
V
L
R = 100, 30mV Overdrive  
L
I
I
Output Current  
Short-Circuit Current  
Slew Rate  
V
V
= 3.5V or 1.5V, 30mV Overdrive  
±20  
±45  
150  
55  
mA  
mA  
OUT  
SC  
OUT  
OUT  
= 2.5V, V = ±1V  
IN  
SR  
A = 1 (Note 5)  
V
V/µs  
MHz  
dB  
GBW  
Gain Bandwidth  
Channel Separation  
Supply Current  
f = 200kHz  
V
OUT  
, 1.5V to 3.5V, R = 100Ω  
80  
L
I
Per Amplifier  
4.5  
mA  
S
40°C TA 85°C. VS = ±5V, VCM = 0V unless otherwise noted (Notes 8, 9).  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 4)  
MIN  
TYP  
MAX  
3
UNITS  
mV  
V
Input Offset Voltage  
OS  
Input V Drift  
(Note 7)  
10  
30  
µV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
600  
±6  
OS  
µA  
B
Input Voltage Range (High)  
Input Voltage Range (Low)  
3.5  
V
V
3.5  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
V
= ±3.5V  
72  
75  
dB  
dB  
CM  
V = ±2V to ±5.5V  
S
4
LT1813  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range  
40°C TA 85°C. VS = ±5V, VCM = 0V unless otherwise noted (Notes 8, 9).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
A
V
Large-Signal Voltage Gain  
V
V
= ±3V, R = 500Ω  
0.8  
0.6  
V/mV  
V/mV  
VOL  
OUT  
OUT  
OUT  
L
= ±3V, R = 100Ω  
L
Output Swing  
R = 500, 30mV Overdrive  
R = 100, 30mV Overdrive  
±3.60  
±3.15  
V
V
L
L
I
I
Output Current  
Short-Circuit Current  
Slew Rate  
V
V
= ±3V, 30mV Overdrive  
±30  
±55  
350  
60  
mA  
mA  
OUT  
SC  
OUT  
OUT  
= 0V, V = ±1V  
IN  
SR  
A = 1 (Note 5)  
V
V/µs  
MHz  
dB  
GBW  
Gain Bandwidth  
Channel Separation  
Supply Current  
f = 200kHz  
V
OUT  
, ±3V, R = 100Ω  
80  
L
I
Per Amplifier  
5
mA  
S
40°C TA 85°C, VS = 5V, VCM = 2.5V, RL to 2.5V unless otherwise noted (Notes 8, 9).  
V
Input Offset Voltage  
(Note 4)  
(Note 7)  
3.5  
30  
mV  
µV/°C  
nA  
OS  
Input V Drift  
10  
OS  
I
I
Input Offset Current  
Input Bias Current  
600  
±6  
OS  
µA  
B
Input Voltage Range (High)  
Input Voltage Range (Low)  
3.5  
70  
V
V
1.5  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= 1.5V to 3.5V  
dB  
CM  
A
V
OUT  
V
OUT  
= 1.5V to 3.5V, R = 500Ω  
= 1.5V to 3.5V, R = 100Ω  
0.6  
0.4  
V/mV  
V/mV  
VOL  
L
L
V
Output Swing (High)  
Output Swing (Low)  
R = 500, 30mV Overdrive  
R = 100, 30mV Overdrive  
L
3.7  
3.5  
V
V
OUT  
L
R = 500, 30mV Overdrive  
1.3  
1.5  
V
V
L
R = 100, 30mV Overdrive  
L
I
I
Output Current  
Short-Circuit Current  
Slew Rate  
V
V
= 3.5V or 1.5V, 30mV Overdrive  
±17  
±40  
125  
50  
mA  
mA  
OUT  
SC  
OUT  
OUT  
= 2.5V, V = ±1V  
IN  
SR  
A = 1 (Note 5)  
V
V/µs  
MHz  
dB  
GBW  
Gain Bandwidth  
Channel Separation  
Supply Current  
f = 200kHz  
V
OUT  
, 1.5V to 3.5V, R = 100Ω  
79  
L
I
Per Amplifier  
5
mA  
S
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: Full power bandwidth is calculated from the slew rate:  
FPBW = SR/2πV .  
P
Note 2: Differential inputs of ±3V are appropriate for transient operation  
only, such as during slewing. Large sustained differential inputs can cause  
excessive power dissipation and may damage the part.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted indefinitely.  
Note 7: This parameter is not 100% tested.  
Note 8: The LT1813C is guaranteed to meet specified performance from  
0°C to 70°C and is designed, characterized and expected to meet these  
extended temperature limits, but is not tested at 40°C and 85°C. The  
LT1813I is guaranteed to meet the extended temperature limits.  
Note 9: The LT1813D is 100% production tested at 25°C. It is designed,  
characterized and expected to meet the 0°C to 70°C specifications  
although it is not tested or QA sampled at these temperatures. The  
LT1813D is guaranteed functional from –40°C to 85°C but may not meet  
those specifications.  
Note 4: Input offset voltage is pulse tested and is exclusive of warm-up  
drift.  
Note 5: Slew rate is measured between ±2V on the output with ±3V input  
for ±5V supplies and 2V on the output with a 3V input for single 5V  
P-P  
P-P  
supplies.  
5
LT1813  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Common Mode Range  
Input Bias Current  
vs Supply Voltage  
vs Common Mode Voltage  
Supply Current vs Temperature  
+
5
4
3
2
1
0
V
0
0.5  
–1.0  
–1.5  
2.0  
T
= 25°C  
= ±5V  
PER AMPLIFIER  
A
S
0.5  
–1.0  
–1.5  
2.0  
V
V
S
= ±5V  
V
= ±2.5V  
S
T = 25°C  
A
V < 1mV  
OS  
2.0  
1.5  
1.0  
0.5  
V
–50 –25  
0
25  
50  
75 100 125  
0
2
3
4
5
6
7
0
1
5.0  
2.5  
5.0  
2.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (± V)  
INPUT COMMON MODE VOLTAGE (V)  
1813 G01  
1813 G02  
1813 G03  
Input Bias Current  
vs Temperature  
Open-Loop Gain  
vs Resistive Load  
Input Noise Spectral Density  
100  
10  
1
10  
0.6  
0.7  
0.8  
0.9  
75.0  
72.5  
70.0  
67.5  
65.0  
62.5  
60  
T
A
= 25°C  
= ±5V  
= 101  
= 10k  
T
= 25°C  
V
S
= ±5V  
A
V
A
S
V
R
S
V
V
= ±5V  
S
S
i
n
1
e
n
= ±2.5V  
–1.0  
–1.1  
–1.2  
0.1  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
50  
TEMPERATURE (°C)  
100 125  
50 25  
0
25  
75  
100  
1k  
LOAD RESISTANCE ()  
10k  
1813 G05  
1813 G06  
1813 G04  
Output Voltage Swing  
vs Supply Voltage  
Output Voltage Swing  
vs Load Current  
Open-Loop Gain vs Temperature  
+
+
V
75.0  
72.5  
70.0  
67.5  
V
V
V
= ±5V  
= 30mV  
85°C  
V
S
V
O
= ±5V  
= ±3V  
T
= 25°C  
IN  
S
IN  
A
0.5  
–1.0  
–1.5  
2.0  
0.5  
–1.0  
–1.5  
2.0  
V
= 30mV  
R
= 500Ω  
L
25°C  
– 40°C  
R
R
= 500Ω  
= 100Ω  
R
= 100Ω  
L
L
L
2.0  
1.5  
1.0  
0.5  
2.0  
1.5  
1.0  
0.5  
65.0  
62.5  
60.0  
R
= 100Ω  
L
R
= 500Ω  
L
V
V
50  
100 125  
4
7
–50 –25  
0
25  
75  
0
2
3
5
–60  
–40  
0
20  
1
6
–20  
40  
60  
SUPPLY VOLTAGE (± V)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
1813 G07  
1813 G02  
1813 G09  
6
LT1813  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Short-Circuit Current  
vs Temperature  
Settling Time vs Output Step  
Output Impedance vs Frequency  
5
4
120  
110  
100  
90  
100  
10  
V
S
= ±5V  
A
V
= 100  
A
SOURCE  
3
= 10  
A
2
V
1
= 1  
1
V
0
SINK  
–1  
–2  
–3  
–4  
–5  
0.1  
V
A
= ±5V  
= –1  
= 500Ω  
= 3pF  
S
V
F
0.01  
0.001  
R
C
T
= 25°C  
= ± 5V  
F
A
S
0.1% SETTLING  
10  
SETTLING TIME (ns)  
V
80  
–50 –25  
0
25  
50  
75 100 125  
0
15  
20  
25  
30  
35  
5
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
TEMPERATURE (°C)  
1813 G12  
1813 G10  
1813 G11  
Gain Bandwidth and Phase  
Margin vs Temperature  
Gain and Phase vs Frequency  
Crosstalk vs Frequency  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
0
115  
105  
95  
T
= 25°C  
= 10  
V
T
= 25°C  
A
A
V
F
A
V
A
= –1  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
= 0dBm  
R = R = 500Ω  
IN  
= 100Ω  
G
GBW  
S
R
L
V
= ±5V  
PHASE  
GAIN  
60  
±2.5V ±5V  
±2.5V ±5V  
40  
GBW  
= ±2.5V  
V
PHASE MARGIN  
= ±5V  
S
85  
42  
40  
38  
20  
V
S
0
PHASE MARGIN  
= ±2.5V  
–20  
–40  
V
S
–10  
10k  
100k  
1M  
10M  
100M 1000M  
100k  
1M  
10M  
100M  
1000M  
–50 –25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1813 G13  
1813 G14  
1813 G15  
Frequency Response  
vs Supply Voltage, AV = 1  
Frequency Response  
vs Supply Voltage, AV = 2  
Frequency Response  
vs Capacitive Load, AV = 1  
6
12  
8
8
6
C = 1000pF  
L
T
A
V
= 25°C  
= –1  
T
= 25°C  
T
= 25°C  
A
V
S
A
A
V
4
2
0
A
= 1  
A
= 2  
V
C = 500pF  
L
V
= ±2.5V  
S
= ±5V  
NO R  
R = 100Ω  
L
L
R = R = 500Ω  
NO R  
F
G
C = 200pF  
L
4
L
V
= ±5V  
C = 100pF  
L
S
–2  
–4  
4
2
C = 50pF  
L
V
= ±2.5V  
V = ±5V  
S
S
0
C = 0  
L
–6  
–8  
0
–2  
–4  
–6  
–10  
–12  
–14  
–4  
–8  
1M  
10M  
100M  
500M  
1M  
10M  
100M  
500M  
1
10M  
100M 200M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1813 G16  
1813 G17  
1813 G18  
7
LT1813  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
105  
100  
T = 25°C  
A
T
A
V
= 25°C  
T
= 25°C  
A
V
S
A
V
= ±5V  
= 1  
S
= ±5V  
GBW  
= 500Ω  
R
–PSRR  
L
95  
90  
85  
80  
+PSRR  
GBW  
= 100Ω  
R
L
44  
42  
40  
PHASE MARGIN  
= 100Ω  
R
L
PHASE MARGIN  
R
= 500Ω  
L
38  
1k  
10k  
100k  
1M  
10M  
100M  
4
6
7
0
1
2
3
5
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
1813 G21  
1813 G20  
1813 G19  
Slew Rate vs Supply Voltage  
Slew Rate vs Supply Voltage  
Slew Rate vs Input Level  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
450  
400  
350  
300  
250  
200  
1200  
1000  
800  
T
A
V
=25°C  
T
A
V
=25°C  
T
=25°C  
A
V
A
V
A
V
S
= –1  
= –1  
A
V
= –1  
+
SR  
= V  
S(TOTAL)  
/2  
= ±1V  
= ±5V  
IN  
IN  
R = R = R = 500Ω  
R = R = R = 500Ω  
R
= R = R = 500Ω  
F
G
L
F
G
L
F
G
L
SR  
+
SR  
+
SR  
SR  
SR  
600  
400  
200  
0
2
3
4
5
6
7
0
2
3
4
5
6
7
0
2
3
4
5
6
7
8
1
1
1
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
INPUT LEVEL (V  
)
P-P  
1813 G22  
1813 G23  
1813 G24  
Total Harmonic Distortion + Noise  
vs Frequency  
Undistorted Output Swing  
vs Frequency  
Slew Rate vs Temperature  
9
8
7
6
5
4
3
2
1
0
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
0.01  
A
V
= 1  
+
SR  
V
= ±5V  
S
A
V
= 1  
A
V
= –1  
SR  
= ±5V  
V
S
0.005  
A
V
= 1  
0.002  
0.001  
T
= 25°C  
= ±5V  
= 2V  
A
S
O
SR  
V = ±2.5V  
S
V
= ±5V  
= 100Ω  
V
V
S
L
R
P-P  
+
SR  
V = ±2.5V  
S
2% MAX DISTORTION  
1M  
FREQUENCY (Hz)  
R
= 500Ω  
L
100k  
10M  
100M  
–50 –25  
0
75 100 125  
25  
50  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TEMPERATURE (°C)  
1813 G27  
1813 G26  
1813 G25  
8
LT1813  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Differential Gain and Phase  
vs Supply Voltage  
Capacitive Load Handling  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
90  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= 25°C  
= ±5V  
A
V
V
= 2  
A
S
V
S
O
V
= ±5V  
DIFFERENTIAL GAIN  
= 2V  
R = 150  
L
P-P  
80  
A
= 1  
V
DIFFERENTIAL GAIN  
= 1k  
70  
2ND HARMONIC  
3RD HARMONIC  
R
L
60  
50  
R
L
= 100Ω  
0.5  
0.4  
0.3  
0.2  
0.1  
0
A
= –1  
V
DIFFERENTIAL PHASE  
= 150Ω  
40  
30  
20  
10  
0
R
L
3RD HARMONIC  
2ND HARMONIC  
DIFFERENTIAL PHASE  
= 1k  
R
L
R
= 500Ω  
L
4
8
10  
TOTAL SUPPLY VOLTAGE (V)  
12  
10  
100  
1000  
10000  
100k  
10M  
1M  
6
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
1813 G30  
1813 G28  
1813 G29  
Small-Signal Transient  
(AV = 1, CL = 100pF)  
Small-Signal Transient (AV = 1)  
Small-Signal Transient (AV = –1)  
1813 G32  
1813 G33  
1813 G31  
Large-Signal Transient  
(AV = –1, CL = 200pF)  
Large-Signal Transient (AV = 1)  
Large-Signal Transient (AV = –1)  
1813 G34  
1813 G35  
1813 G36  
9
LT1813  
U
W U U  
APPLICATIONS INFORMATION  
Layout and Passive Components  
Capacitive Loading  
The LT1813 amplifier is more tolerant of less than ideal  
layouts than other high speed amplifiers. For maximum  
performance (for example, fast settling) use a ground  
plane,shortleadlengthsandRF-qualitybypasscapacitors  
(0.01µF to 0.1µF). For high drive current applications, use  
low ESR bypass capacitors (1µF to 10µF tantalum).  
The LT1813 is stable with a 1000pF capacitive load which  
is outstanding for a 100MHz amplifier. This is accom-  
plished by sensing the load induced output pole and  
adding compensation at the amplifier gain node. As the  
capacitive load increases, both the bandwidth and phase  
margin decrease so there will be peaking in the frequency  
domainandinthetransientresponse. Coaxialcablecanbe  
driven directly, but for best pulse fidelity, a resistor of  
value equal to the characteristic impedance of the cable  
(i.e., 75) should be placed in series with the output. The  
other end of the cable should be terminated with the same  
value resistor to ground.  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input combine with the  
input capacitance to form a pole that can cause peaking or  
oscillations. Iffeedbackresistorsgreaterthan2kareused,  
a parallel capacitor of value  
CF > RG • CIN/RF  
Slew Rate  
should be used to cancel the input pole and optimize  
dynamic performance. For applications where the DC  
noise gain is 1 and a large feedback resistor is used, CF  
should be greater than or equal to CIN. An example would  
be an I-to-V converter.  
The slew rate is proportional to the differential input  
voltage. Highest slew rates are therefore seen in the  
lowest gain configurations. For example, a 5V output step  
in a gain of 10 has a 0.5V input step, whereas in unity gain  
there is a 5V input step. The LT1813 is tested for slew rate  
in a gain of 1. Lower slew rates occur in higher gain  
configurations.  
Input Considerations  
Each of the LT1813 amplifier inputs is the base of an NPN  
and PNP transistor whose base currents are of opposite  
polarity and provide first-order bias current cancellation.  
BecauseofvariationinthematchingofNPNandPNPbeta,  
thepolarityoftheinputcurrentcanbepositiveornegative.  
The offset current does not depend on beta matching and  
is well controlled. The use of balanced source resistance  
at each input is recommended for applications where DC  
accuracy must be maximized. The inputs can withstand  
differential input voltages of up to 3V without damage and  
need no clamping or source resistance for protection.  
Differential inputs generate the large supply currents (up  
to 40mA) required for high slew rates. Typically, power  
dissipation does not significantly increase in normal,  
closed-loop operation because of the low duty cycle of the  
transient inputs.  
Power Dissipation  
The LT1813 combines high speed and large output drive  
in a small package. It is possible to exceed the maximum  
junction temperature under certain conditions. Maximum  
junction temperature (TJ) is calculated from the ambient  
temperature (TA) and power dissipation (PD) as follows:  
LT1813CS8: TJ = TA + (PD • 150°C/W)  
Power dissipation is composed of two parts. The first is  
due to the quiescent supply current and the second is  
due to on-chip dissipation caused by the load current.  
The worst-case load induced power occurs when the  
output voltage is at 1/2 of either supply voltage (or the  
maximum swing if less than 1/2 supply voltage). For each  
amplifier:  
The device should not be used as a comparator because  
with sustained differential inputs, excessive power dissi-  
pation may result.  
PDMAX = (V+ V)(ISMAX) + (V+/2)2/RL or  
PDMAX = (V+ V)(ISMAX) + (V+ – VOMAX)(VOMAX/RL)  
10  
LT1813  
U
W U U  
APPLICATIONS INFORMATION  
Example: LT1813 in SO-8 at 70°C, VS = ±5V, RL = 100Ω  
PDMAX = (10V)(4.5mA) + (2.5V)2/100= 108mW  
is the differential input voltage divided by R1, so the slew  
rate is proportional to the input. Highest slew rates are  
therefore seen in the lowest gain configurations.  
T
JMAX = 70°C + (2 • 108mW)(150°C/W) = 102°C  
The RC network across the output stage is bootstrapped  
when the amplifier is driving a light or moderate load and  
has no effect under normal operation. When driving ca-  
pacitive loads (or a low value resistive load) the network is  
incompletely bootstrapped and adds to the compensation  
at the high impedance node. The added capacitance slows  
down the amplifier which improves the phase margin by  
movingtheunity-gaincrossawayfromthepoleformedby  
the output impedance and the capacitive load. The zero  
created by the RC combination adds phase to ensure that  
the total phase lag does not exceed 180 degrees (zero  
phase margin) and the amplifier remains stable. In this  
way, the LT1813 is stable with up to 1000pF capacitive  
loads in unity gain, and even higher capacitive loads in  
higher closed-loop gain configurations.  
Circuit Operation  
The LT1813 circuit topology is a true voltage feedback  
amplifier that has the slewing behavior of a current feed-  
back amplifier. The operation of the circuit can be under-  
stood by referring to the Simplified Schematic. The inputs  
are buffered by complementary NPN and PNP emitter  
followers which drive a 300resistor. The input voltage  
appears across the resistor generating currents that are  
mirrored into the high impedance node.  
Complementary followers form an output stage that buff-  
ers the gain node from the load. The bandwidth is set by  
the input resistor and the capacitance on the high imped-  
ance node. The slew rate is determined by the current  
availabletochargethegainnodecapacitance.Thiscurrent  
W
W
SI PLIFIED SCHEMATIC  
+
V
R1  
300Ω  
C
C
+IN  
R
C
OUT  
–IN  
C
V
1813 SS  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1813  
TYPICAL APPLICATION  
U
Two Op Amp Instrumentation Amplifier  
R5  
220Ω  
R4  
10k  
R1  
10k  
R2  
1k  
R3  
1k  
1/2  
LT1813  
1/2  
LT1813  
+
+
V
OUT  
V
IN  
+
R2 +R3  
(
)
R4  
R3  
1
2
R2 R3  
R1 R4  
GAIN =  
1+  
+
+
= 102  
R5  
TRIM R5 FOR GAIN  
1813 TA03  
TRIM R1 FOR COMMON MODE REJECTION  
BW = 1MHz  
U
PACKAGE DESCRIPTION  
S8 Package  
MS8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
7
5
8
6
8
7
6
5
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.193 ± 0.006  
(4.90 ± 0.15)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
2
3
4
1
0.053 – 0.069  
2
3
4
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
(1.346 – 1.752)  
0.007  
(0.18)  
0° – 6° TYP  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
SEATING  
PLANE  
0.012  
(0.30)  
0.0256  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
0.016 – 0.050  
(0.406 – 1.270)  
MSOP (MS8) 1098  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
(0.65)  
BSC  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 1298  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1360/LT1361/LT1362  
LT1363/LT1364/LT1365  
LT1398/LT1399  
Single/Dual/Quad 50MHz, 800V/µs, C-LoadTM Amplifiers  
Single/Dual/Quad 70MHz, 1000V/µs C-Load Amplifiers  
Dual/Triple 300MHz Current Feedback Amplifiers  
±15V Operation, 1mV Max V , 1µA Max I  
OS B  
±15V Operation, 1.5mV Max V , 2µA Max I  
OS  
B
4.5mA Supply Current, 80mA Output Current, Shutdown  
C-Load is a trademark of Linear Technology Corporation.  
1813f LT/TP 0999 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1999  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1813_1

Dual/Quad 3mA, 100MHz, 750V/® Operational Amplifiers
Linear

LT1813_15

Dual/Quad 3mA, 100MHz, 750V/s Operational Amplifiers
Linear

LT1814

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF
Linear

LT1814CGN

Dual/Quad 3mA, 100MHz, 750V/® Operational Amplifiers
Linear

LT1814CGN#PBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1814CGN#TRPBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1814CS

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SO; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1814CS#PBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SO; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1814CS#TRPBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SO; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1814G

Optoelectronic
ETC

LT1814IGN

Dual/Quad 3mA, 100MHz, 750V/® Operational Amplifiers
Linear

LT1814IGN#PBF

LT1814 - Quad 3mA, 100MHz, 750V/&#181;s Operational Amplifier; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear