LT1880CS5#TRM [Linear]

LT1880 - SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C;
LT1880CS5#TRM
型号: LT1880CS5#TRM
厂家: Linear    Linear
描述:

LT1880 - SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C

运算放大器
文件: 总12页 (文件大小:234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1880  
SOT-23, Rail-to-Rail Output,  
Picoamp Input Current  
Precision Op Amp  
U
FEATURES  
DESCRIPTIO  
The LT®1880 op amp brings high accuracy input perfor-  
mance and rail-to-rail output swing to the SOT-23 pack-  
age.Inputoffsetvoltageistrimmedtolessthan150µVand  
the low drift maintains this accuracy over the operating  
temperature range. Input bias current is an ultra low  
900pA maximum.  
Offset Voltage: 150µV Max  
Input Bias Current: 900pA Max  
Offset Voltage Drift: 1.2µV/°C Max  
Rail-to-Rail Output Swing  
Operates with Single or Split Supplies  
Open-Loop Voltage Gain: 1 Million Min  
1.2mA Supply Current  
The amplifier works on any total power supply voltage  
between 2.7V and 36V (fully specified from 5V to ±15V).  
Output voltage swings to within 55mV of the negative  
supplyand250mVofthepositivesupply,whichmakesthe  
amplifier a good choice for low voltage single supply  
operation.  
Slew Rate: 0.4V/µs  
Gain Bandwidth: 1.1MHz  
Low Noise: 13nV/Hz at 1kHz  
Low Profile (1mm) ThinSOTTM Package  
U
APPLICATIO S  
Slew rates of 0.4V/µs with a supply current of 1.2mA give  
superior response and settling time performance in a low  
power precision amplifier.  
Thermocouple Amplifiers  
Bridge Transducer Conditioners  
Instrumentation Amplifiers  
The LT1880 is available in a 5-lead SOT-23 package.  
Battery-Powered Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Photocurrent Amplifiers  
ThinSOT is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Precision Photodiode Amplifier  
Distribution of Input Offset Voltage  
C1  
39pF  
35  
30  
25  
20  
15  
10  
5
R1  
100k, 1%  
+
V
S
V
λ
+
LT1880  
OUT  
S1  
V
= 0.1V/µA  
OUT  
V
S
0
1880 TA01  
20  
100 140  
–140 –100 –60 –20  
60  
320µV OUTPUT OFFSET, WORST CASE OVER 0°C TO 70°C  
60kHz BANDWIDTH  
INPUT OFFSET VOLTAGE (µV)  
1880 TA01b  
5.8µs RISE TIME, 10% TO 90%, 100mV OUTPUT STEP  
52µV  
OUTPUT NOISE, MEASURED ON A 100kHz BW  
RMS  
V
= ±1.5V TO ±18V  
S
S1: SIEMENS INFINEON BPW21 PHOTODIODE (~580pF)  
1
LT1880  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
Supply Voltage (V+ to V) ....................................... 40V  
Differential Input Voltage (Note 2) ......................... ±10V  
Input Voltage .................................................... V+ to V–  
Input Current (Note 2) ........................................ ±10mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 4) .. 40°C to 85°C  
Specified Temperature Range (Note 5)... 40°C to 85°C  
Maximum Junction Temperature .......................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
NUMBER  
TOP VIEW  
LT1880CS5  
LT1880IS5  
+
OUT 1  
5 V  
V
2
+IN 3  
4 –IN  
S5 PART  
MARKING  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
TJMAX = 150°C, θJA = 250°C/W  
LTUM  
LTVW  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V; VCM = 2.5V unless otherwise noted. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
40  
150  
200  
250  
µV  
µV  
µV  
OS  
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
Input Offset Voltage Drift  
(Note 6)  
0°C < T < 70°C  
0.3  
0.3  
1.2  
1.2  
µV/°C  
µV/°C  
A
–40°C < T < 85°C  
A
I
I
Input Offset Current  
150  
900  
1200  
1400  
pA  
pA  
pA  
OS  
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
Input Bias Current  
150  
900  
1200  
1500  
pA  
pA  
pA  
B
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
0.5  
13  
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
nV/Hz  
pA/Hz  
n
i
f = 1kHz  
0.07  
n
R
IN  
Differential  
Common Mode, V = 1V to 3.8V  
380  
210  
MΩ  
GΩ  
CM  
C
V
Input Capacitance  
3.7  
pF  
V
IN  
+
Input Voltage Range  
(V + 1.0)  
116  
(V – 1.2)  
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Minimum Operating Supply Voltage  
Large Signal Voltage Gain  
1V < V < 3.8V  
135  
135  
2.4  
dB  
dB  
V
CM  
+
V = 0V, V = 1.5V; 2.7V < V < 32V  
110  
CM  
2.7  
A
R = 10k; 1V < V < 4V  
L OUT  
500  
400  
400  
300  
300  
250  
1600  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
R = 2k; 1V < V  
< 4V  
800  
400  
L
OUT  
OUT  
R = 1k; 1V < V  
L
< 4V  
V
Output Voltage Swing Low  
No Load  
20  
35  
130  
55  
65  
200  
mV  
mV  
mV  
OL  
I
I
= 100µA  
= 1mA  
SINK  
SINK  
2
LT1880  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V; VCM = 2.5V unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Output Voltage Swing High  
(Referred to V )  
V = 5V; No Load  
130  
150  
220  
250  
270  
380  
mV  
mV  
mV  
OH  
+
+
V = 5V; I  
= 100µA  
SOURCE  
= 5V; I  
+
V
= 1mA  
SOURCE  
+
I
Supply Current per Amplifier  
V = 3V  
1.2  
1.8  
2.2  
mA  
mA  
S
+
V = 5V  
1.2  
1.9  
2.3  
mA  
mA  
+
V = 12V  
1.35  
2
2.4  
mA  
mA  
I
Short-Circuit Current  
V
V
Short to GND  
Short to V  
10  
10  
18  
20  
mA  
mA  
SC  
OUT  
OUT  
+
GBW  
Gain-Bandwidth Product  
Settling Time  
f = 20kHz  
0.01%, V  
0.8  
1.1  
10  
MHz  
t
= 1.5V to 3.5V  
OUT  
µs  
S
A = –1, R = 2k  
V
L
FPBW  
THD  
Full Power Bandwidth (Note 7)  
V
= 4V  
32  
kHz  
OUT  
P-P  
Total Harmonic Distortion and Noise  
V = 2V , A = –1, f = 1kHz, R = 1k, BW = 22kHz  
V = 2V , A = 1, f = 1kHz, R = 10k, BW = 22kHz  
0.002  
0.0008  
%
%
O
P-P  
V
f
O
P-P  
V
L
+
SR  
Slew Rate Positive  
Slew Rate Negative  
A = –1  
0.25  
0.2  
0.4  
V/µs  
V/µs  
V
SR  
A = –1  
V
0.25  
0.25  
0.55  
V/µs  
V/µs  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS= ±15V, VCM = 0V unless otherwise noted. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
40  
150  
200  
250  
µV  
µV  
µV  
OS  
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
Input Offset Voltage Drift  
(Note 6)  
0°C < T < 70°C  
0.3  
0.3  
1.2  
1.2  
µV/°C  
µV/°C  
A
–40°C < T < 85°C  
A
I
I
Input Offset Current  
150  
900  
1200  
1400  
pA  
pA  
pA  
OS  
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
Input Bias Current  
150  
900  
1200  
1500  
pA  
pA  
pA  
B
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
0.5  
13  
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
nV/Hz  
pA/Hz  
n
i
f = 1kHz  
0.07  
n
R
IN  
Differential  
Common Mode, V = –13.5V to 13.5V  
380  
190  
MΩ  
GΩ  
CM  
C
V
Input Capacitance  
3.7  
pF  
V
IN  
Input Voltage Range  
–13.5  
118  
13.5  
CM  
CMRR  
+PSRR  
–PSRR  
Common Mode Rejection Ratio  
Positive Power Supply Rejection Ratio  
Negative Power Supply Rejection Ratio  
Minimum Operating Supply Voltage  
–13.5V < V < 13.5V  
135  
135  
135  
±1.2  
dB  
dB  
dB  
V
CM  
+
V = –15V, V = 0V; 1.5V < V < 18V  
110  
CM  
+
V = 15V, V = 0V; –1.5V < V < –18V  
110  
CM  
±1.35  
3
LT1880  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±15V; VCM = 0V unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
R = 10k; –13.5V < V < 13.5V  
OUT  
MIN  
TYP  
MAX  
UNITS  
A
Large Signal Voltage Gain  
1000  
700  
500  
300  
1600  
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
L
R = 2k; –13.5V < V  
< 13.5V  
OUT  
1000  
L
V
V
Output Voltage Swing Low  
No Load  
25  
35  
130  
65  
75  
200  
mV  
mV  
mV  
OL  
OH  
(Referred to V  
)
EE  
I
I
= 100µA  
= 1mA  
SINK  
SINK  
Output Voltage Swing High  
(Referred to V  
No Load  
185  
195  
270  
350  
370  
450  
mV  
mV  
mV  
)
CC  
I
I
= 100µA  
= 1mA  
SOURCE  
SOURCE  
I
I
Supply Current per Amplifier  
Short-Circuit Current  
1.5  
1.8  
2.3  
2.8  
mA  
mA  
S
V
V
V
Short to V  
10  
10  
25  
25  
mA  
mA  
SC  
OUT  
OUT  
OUT  
+
Short to V  
10  
10  
20  
20  
mA  
mA  
FPBW  
GBW  
THD  
Full Power Bandwidth (Note 7)  
Gain Bandwidth Product  
= 14V  
9
kHz  
P-P  
f = 20kHz  
0.8  
1.1  
MHz  
Total Harmonic Distortion and Noise V = 25V , A = –1, f = 100kHz, R = 10k, BW = 22kHz  
0.00029  
0.00029  
%
%
O
P-P  
V
f
V = 25V , A = 1, f = 100kHz, R = 10k, BW = 22kHz  
O
P-P  
V
L
+
SR  
Slew Rate Positive  
Slew Rate Negative  
A = –1  
0.25  
0.2  
0.4  
V/µs  
V/µs  
V
SR  
A = –1  
V
0.25  
0.2  
0.55  
V/µs  
V/µs  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 10V, see Application Information, the input current  
should be limited to less than 10mA.  
Note 5: The LT1880C is guaranteed to meet specified performance from  
0°C to 70°C and is designed, characterized and expected to meet specified  
performance from –40°C to 85°C but is not tested or QA sampled at these  
temperatures. The LT1880I is guaranteed to meet specified performance  
from –40°C to 85°C.  
Note 6: This parameter is not 100% tested.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum ratings.  
Note 7: Full power bandwidth is calculated from the slew rate.  
Note 4: The LT1880C and LT1880I are guaranteed functional over the  
operating temperature range of –40°C to 85°C.  
FPBW = SR/(2πV )  
P
4
LT1880  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Offset Voltage vs  
Temperature  
Input Bias Current vs Common  
Mode Voltage  
Input Bias Current vs Common  
Mode Near VCC  
1000  
500  
1000  
800  
200  
150  
100  
50  
V
= ±15V  
TEMPCO: –55°C TO 125°C  
10 REPRESENTATIVE UNITS  
T
T
T
= 25°C  
= –40°C  
= 85°C  
S
A
A
A
I
B
600  
400  
I
B
200  
0
0
0
+
I
B
–200  
–400  
–600  
–800  
–1000  
–50  
–100  
–150  
–200  
+
I
B
–500  
–1000  
T
T
T
= –45°C  
= 25°C  
= 85°C  
A
A
A
V
= ±15V  
S
13.8  
14.2  
13.0  
14.6  
13.4  
5
25  
–55 –35 –15  
45 65 85 105 125  
–15  
–10  
0
5
10  
15  
–5  
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
1880 G02A  
1880 G01  
1880 G02  
Output Voltage Swing  
vs Load Current  
Input Bias Current vs Common  
Mode Near VEE  
Input Bias Current vs  
Temperature  
1000  
500  
200  
150  
100  
50  
V
= ±15V  
V
= ±15V  
S
S
T
= –40°C  
A
–0.5  
I
B
T
A
= 85°C  
–1.0  
–1.5  
1.5  
0
T
= 25°C  
A
0
I
B
–50  
–100  
–150  
–200  
–250  
–300  
T
= 25°C  
A
+
I
B
1.0  
–500  
–1000  
+
T
= 85°C  
I
B
A
T
T
T
= –40°C  
= 25°C  
= 85°C  
A
A
A
0.5  
T
= –40°C  
A
–14.2  
–13.8  
–13.0  
–14.6  
–13.4  
–10 –8  
–4  
0
2
4
6
8
10  
–6  
–2  
–50  
–25  
25  
50  
75  
100  
0
COMMON MODE VOLTAGE (V)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
1880 G02B  
1880 G04  
1880 G03  
Warm Up Drift  
en, in vs Frequency  
0.1 to 10Hz Noise  
6
5
4
3
2
1
0
1000  
100  
10  
V
= ±15V  
= 25°C  
T
= 25°C  
S
A
A
T
CURRENT NOISE  
V
= ±15V  
S
VOLTAGE NOISE  
V
= ±2.5V  
S
V
= ±15V  
= 25°C  
S
A
T
1
0
1
2
3
4
5
1
10  
100  
1k  
0
2
4
6
8
10  
TIME AFTER POWER ON (MIN)  
FREQUENCY (Hz)  
TIME (SEC)  
1880 G08  
1880 G05  
1880 G09a  
5
LT1880  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
PSRR vs Frequency  
0.01 to 1Hz Noise  
Gain vs Frequency  
160  
140  
120  
100  
80  
140  
120  
100  
80  
V
S
= ±15V  
V
= ±15V  
S
–PSRR  
60  
40  
+PSRR  
60  
20  
40  
0
20  
V
= ±15V  
= 25°C  
–20  
–40  
S
A
T
0
0
20  
40  
60  
80  
100  
1M  
10M  
0.1  
1
10 100 1k 10k 100k 1M  
FREQUENCY (Hz)  
0.1  
1
10 100 1k 10k 100k  
FREQUENCY (Hz)  
TIME (SEC)  
1880 G11  
1880 G09b  
1880 G10  
CMRR vs Frequency  
Settling Time vs Output Step  
Gain and Phase vs Frequency  
70  
60  
100  
10  
8
160  
140  
120  
100  
80  
V
S
A
V
= ±15V  
= –1  
V
= ±15V  
V
= ±15V  
S
S
80  
50  
60  
6
0.1%  
0.01%  
40  
40  
4
PHASE SHIFT  
30  
20  
2
20  
0
0
10  
–20  
–40  
–60  
–80  
–100  
–2  
–4  
–6  
–8  
–10  
60  
GAIN  
0
0.01%  
40  
0.1%  
–10  
–20  
–30  
20  
0
10k  
100k  
1M  
10M  
0
20  
SETTLING TIME (µs)  
30 35  
5
10 15  
25  
40  
1
100  
1k  
10k  
100k 1M  
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1880 G13  
1880 G14  
1880 G12  
Slew Rate, Gain-Bandwidth  
Product and Phase Margin vs  
Temperature  
Slew Rate, Gain-Bandwidth  
Product and Phase Margin vs  
Power Supply  
Settling Time vs Output Step  
10  
8
0.5  
0.4  
0.5  
0.4  
V
S
A
V
= ±15V  
= 1  
T
= 25°C  
V
= ±15V  
A
S
SLEW RATE  
6
0.01%  
SLEW RATE  
0.1%  
4
64  
60  
56  
68  
64  
60  
2
0.3  
0.3  
Φ
M
0
Φ
M
–2  
–4  
–6  
–8  
–10  
1.12  
1.11  
1.10  
1.14  
1.12  
1.10  
0.01%  
0.1%  
10  
GBW  
GBW  
0
20  
30  
35  
5
15  
25  
0
2.5  
7.5  
10  
12.5  
15  
5
–50  
–25  
25  
50  
75  
100  
0
SETTLING TIME (µs)  
POWER SUPPLY (±V)  
TEMPERATURE (°C)  
1880 G15  
1880 G17  
1880 G16  
6
LT1880  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain vs Frequency  
with CLOAD, AV = –1  
Gain vs Frequency  
with CLOAD, AV = 1  
Output Impedance vs Frequency  
100  
10  
10  
0
10  
0
V
= ±15V  
S
1000pF  
500pF  
1000pF  
500pF  
A
= 100  
–10  
–20  
–30  
–40  
A = 10  
V
–10  
–20  
–30  
–40  
0pF  
V
0pF  
1.0  
A
= 1  
V
0.1  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
0.01  
0.1  
1.0  
FREQUENCY (MHz)  
10  
100  
FREQUENCY (Hz)  
1880 G19  
1880 G17A  
1880 G18  
Total Harmonic Distortion + Noise  
vs Frequency  
Small Signal Response  
Small Signal Response  
V
V
= 5V, 0V  
S
= 2.5V  
G
CM  
R = R = 1k  
f
1.0  
0.1  
V
R
= 2V  
OUT  
P-P  
= 10k  
L
V
OUT  
(20mV/DIV)  
V
OUT  
(20mV/DIV)  
0.01  
A
= –1  
V
0.001  
1880 G21  
1880 G20  
A
= 1  
TIME (2µs/DIV)  
V
A = –1  
V
NO LOAD  
TIME (2µs/DIV)  
A
= 1  
V
NO LOAD  
0.0001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
1880 G17B  
Small Signal Response  
Large Signal Response  
Large Signal Response  
V
V
V
OUT  
OUT  
OUT  
(5V/DIV)  
(20mV/DIV)  
(5V/DIV)  
1880 G23  
1880 G22  
1880 G24  
A
= –1  
TIME (50µs/DIV)  
A
C
= 1  
= 500pF  
TIME (2µs/DIV)  
A
= 1  
V
TIME (50µs/DIV)  
V
V
L
7
LT1880  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT1880 single op amp features exceptional input moderangewillcausethegaintodroptozero, howeverno  
precision with rail-to-rail output swing. Slew rate and gain reversal will occur.  
small signal bandwidth are superior to other amplifiers  
Input Protection  
with comparable input precision. These characteristics  
make the LT1880 a convenient choice for precision low  
voltage systems and for improved AC performance in  
higher voltage precision systems. Obtaining beneficial  
advantage of the precision inherent in the amplifier de-  
pends upon proper applications circuit design and board  
layout.  
The inverting and noninverting input pins of the LT1880  
have limited on-chip protection. ESD protection is pro-  
vided to prevent damage during handling. The input tran-  
sistors have voltage clamping and limiting resistors to  
protect against input differentials up to 10V. Short tran-  
sients above this level will also be tolerated. If the input  
pins can see a sustained differential voltage above 10V,  
external limiting resistors should be used to prevent  
Preserving Input Precision  
Preserving the input voltage accuracy of the LT1880 damage to the amplifier. A 1k resistor in each input lead  
requires that the applications circuit and PC board layout will provide protection against a 30V differential voltage.  
do not introduce errors comparable to or greater than the  
Capacitive Loads  
40µV offset. Temperature differentials across the input  
connections can generate thermocouple voltages of 10’s  
of microvolts. PC board layouts should keep connections  
to the amplifier’s input pins close together and away from  
heat dissipating components. Air currents across the  
board can also generate temperature differentials.  
TheLT1880candrivecapacitiveloadsupto600pFinunity  
gain. The capacitive load driving capability increases as  
the amplifier is used in higher gain configurations, see the  
graph labled Capacitive Load Response. Capacitive load  
driving may be increased by decoupling the capacitance  
from the output with a small resistance.  
The extremely low input bias currents, 150pA, allow high  
accuracy to be maintained with high impedance sources  
and feedback networks. The LT1880’s low input bias  
currents are obtained by using a cancellation circuit on-  
Capacitance Load Response  
30  
V
T
= ±15V  
= 25°C  
S
A
25  
20  
15  
10  
5
+
chip. This causes the resulting IBIAS and IBIAS to be  
uncorrelated, as implied by the lOS specification being  
comparabletoIBIAS. Theusershouldnottrytobalancethe  
input resistances in each input lead, as is commonly  
recommended with most amplifiers. The impedance at  
either input should be kept as small as possible to mini-  
mize total circuit error.  
A
= 1  
V
A
= 10  
V
PC board layout is important to insure that leakage cur-  
rents do not corrupt the low IBIAS of the amplifier. In high  
precision, high impedance circuits, the input pins should  
be surrounded by a guard ring of PC board interconnect,  
with the guard driven to the same common mode voltage  
as the amplifier inputs.  
0
10  
100  
1000  
10000  
CAPACITIVE LOAD (pF)  
1880 G25  
Getting Rail-to-Rail Operation without Rail-to-Rail  
Inputs  
The LT1880 does not have rail-to-rail inputs, but for most  
inverting applications and noninverting gain applications,  
thisislargelyinconsequential.Figure1showsthebasicop  
amp configurations, what happens to the op amp inputs,  
and whether or not the op amp must have rail-to-rail  
inputs.  
Input Common Mode Range  
The LT1880 output is able to swing nearly to each power  
supply rail, but the input stage is limited to operating  
between V+ 1V and V+ – 1.2V. Exceeding this common  
8
LT1880  
W U U  
APPLICATIO S I FOR ATIO  
U
V
V
V
REF  
IN  
+
+
+
IN  
R
G
V
IN  
R
F
R
F
R
G
V
REF  
INVERTING: A = –R /R  
NONINVERTING: A = 1 + R /R  
G
NONINVERTING: A = +1  
V
INPUTS MOVE AS MUCH AS  
OUTPUT  
V
F
G
V
F
OP AMP INPUTS DO NOT MOVE,  
BUT ARE FIXED AT DC BIAS  
INPUTS MOVE BY AS MUCH AS  
V
, BUT THE OUTPUT MOVES  
IN  
POINT V  
MORE  
REF  
INPUT MUST BE RAIL-TO-  
RAIL FOR OVERALL CIRCUIT  
RAIL-TO-RAIL PERFORMANCE  
INPUT DOES NOT HAVE TO BE  
RAIL-TO-RAIL  
INPUT MAY NOT HAVE TO BE  
RAIL-TO-RAIL  
Figure 1. Some Op Amp Configurations Do Not Require  
Rail-to Rail Inputs to Achieve Rail-to-Rail Outputs  
Precision Photodiode Amplifier  
The circuit of Figure 2 shows an extreme example of the  
inverting case. The input voltage at the 1M resistor can  
swing ±13.5V and the LT1880 will output an inverted,  
divided-by-ten version of the input voltage. The input  
accuracy is limited by the resistors to 0.2%. Output  
referred, this error becomes 2.7mV. The 40µV input offset  
voltage contribution, plus the additional error due to input  
bias current times the ~100k effective source impedance,  
contribute only negligibly to error.  
Photodiode amplifiers usually employ JFET op amps be-  
cause of their low bias current; however, when precision  
is required, JFET op amps are generally inadequate due to  
their relatively high input offset voltage and drift. The  
LT1880 provides a high degree of precision with very low  
bias current (IB = 150pA typical) and is therefore appli-  
cable to this demanding task. Figure 3 shows an LT1880  
configured as a transimpedance photodiode amplifier.  
C
F
1.5V  
±1.35V  
OUTPUT  
SWING  
±13.5V SWINGS  
WELL OUTSIDE  
SUPPLY RAILS  
WORST-CASE  
OUTPUT OFFSET  
R
51.1k  
5V  
F
196µV AT 25°C  
262µV 0°C TO 70°C  
323µV –40°C TO 85°C  
+
LT1880  
V
IN  
+
1M, 0.1%  
PHOTODIODE  
(SEE TEXT)  
LT1880  
–5V  
OUT  
C
D
100k, 0.1%  
–1.5V  
Figure 2. Extreme Inverting Case: Circuit Operates Properly  
with Input Voltage Swing Well Outside Op Amp Supply Rails.  
Figure 3. Precision Photodiode Amplifier  
9
LT1880  
W U U  
U
APPLICATIO S I FOR ATIO  
The transimpedance gain is set to 51.1kby RF. The  
feedback capacitor, CF, may be as large as desired where  
response time is not an issue, or it may be selected for  
maximally flat response and highest possible bandwidth  
givenaphotodiodecapacitanceCD. Figure4showsachart  
of CF and rise time versus CD for maximally flat response.  
Total output offset is below 262µV, worst-case, over  
temperature (0°C–70°C). With a 5V output swing, this  
guarantees a minimum 86dB dynamic range over  
temperature (0°C–70°C), and a full-scale photodiode  
current of 98µA.  
connection. The LT1634 reference places 1.25V at the  
noninvertinginputoftheLT1880,whichthenmaintainsits  
inverting input at the same voltage by driving 1mA of  
current through the RTD and the total 1.25kof resis-  
tance set by R1 and R2. Imprecise components R4 and C1  
ensure circuit stability, which would otherwise be exces-  
sively dependant on the cable characteristics. R5 is also  
noncritical and is included to improve ESD immunity and  
decoupleanycablecapacitancefromtheLT1880’soutput.  
The 4-wire cable allows Kelvin sensing of the RTD voltage  
while excluding the cable IR drops from the voltage  
reading. With 1mA excitation, a 1kRTD will have 1V  
across it at 0°C, and +3.85mV/°C temperature response.  
This voltage can be easily read in myriad ways, with the  
best method depending on the temperature region to be  
emphasized and the particular ADC that will be reading the  
voltage.  
Single-Supply Current Source for Platinum RTD  
The precision, low bias current input stage of the LT1880  
makesitidealforprecisionintegratorsandcurrentsources.  
Figure 5 shows the LT1880 providing a simple precision  
current source for a remote 1kRTD on a 4-wire  
R5  
180, 5%  
+
100  
V
OUT  
= 1.00V AT 0°C + 3.85mV/°C  
–50°C TO 600°C  
1kΩ  
AT 0°C  
RTD*  
C
F
10  
1
C1  
5V  
0.1µF  
R4  
1k, 5%  
R1  
RISE TIME  
LT1880  
1.24K  
0.1%  
+
R2  
10Ω  
1%  
R3  
150k, 1%  
100mV OUTPUT STEP  
10 100 1000  
0.1  
0.1  
1
C
D
(pF)  
LT1634ACS8  
-1.25  
5V  
Figure 4. Feedback CF and Rise Time vs Photodiode CD  
*OMEGA F3141 1k, 0.1% PLATINUM RTD  
(800) 826-6342  
Figure 5. Single Supply Current Source for Platinum RTD  
10  
LT1880  
W
W
SI PLIFIED SCHE ATIC  
+
5
V
R3  
R4  
R5  
R27  
CX1  
100µA  
Q41  
Q23  
Q24  
Q6  
Q38  
CM1  
RCM1  
Q5  
Q4  
Q3  
OUT  
1
Q47  
B
A
35µA  
Q48  
CM2  
Q58  
Q59  
RCM2  
Q12  
Q16  
CM3  
V
R1  
Q46  
Q14  
500Ω  
Q20  
C
B
A
4
–IN  
+IN  
R22  
500Ω  
3
7µA  
10µA  
R2  
500Ω  
Q1  
Q2  
Q45  
Q7  
Q44  
Q8  
R38  
21µA  
1880 SD  
2
V
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic SOT-23  
(Reference LTC DWG # 05-08-1633)  
(Reference LTC DWG # 05-08-1635)  
2.80 – 3.10  
(.110 – .118)  
(NOTE 3)  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
SOT-23  
SOT-23  
(Original)  
(ThinSOT)  
3. DRAWING NOT TO SCALE  
.90 – 1.45  
(.035 – .057)  
1.00 MAX  
(.039 MAX)  
4. DIMENSIONS ARE INCLUSIVE OF PLATING  
5. DIMENSIONS ARE EXCLUSIVE OF MOLD  
FLASH AND METAL BURR  
A
A1  
A2  
L
2.60 – 3.00  
(.102 – .118) (.059 – .069)  
(NOTE 3)  
1.50 – 1.75  
.00 – .15  
(.00 – .006)  
.01 – .10  
(.0004 – .004)  
6. MOLD FLASH SHALL NOT EXCEED .254mm  
7. PACKAGE EIAJ REFERENCE IS:  
SC-74A (EIAJ) FOR ORIGINAL  
.90 – 1.30  
(.035 – .051)  
.80 – .90  
(.031 – .035)  
JEDEL MO-193 FOR THIN  
.35 – .55  
(.014 – .021)  
.30 – .50 REF  
(.012 – .019 REF)  
PIN ONE  
.95  
(.037)  
REF  
.25 – .50  
(.010 – .020)  
(5PLCS, NOTE 2)  
.20  
(.008)  
A2  
A
DATUM ‘A’  
1.90  
(.074)  
REF  
L
.09 – .20  
(.004 – .008)  
(NOTE 2)  
A1  
S5 SOT-23 0401  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1880  
U
TYPICAL APPLICATIO  
All SOT-23 JFET Input Transimpedance Photodiode Amplifier  
C4  
1.2pF  
1k  
TIME DOMAIN  
RESPONSE TRIM  
+
R5  
100k, 1%  
V
C5  
1.2pF  
J1  
R2  
220k, 5%  
C1  
0.01µF  
+
R7  
47Ω  
5%  
U1  
LT1880  
U2  
LT1806  
V
OUT  
R3  
10k  
5%  
+
R1  
220k, 5%  
N1  
J1: ON SEMI MMBF4416 JFET  
C2  
0.1µF  
N1:ON SEMI MMBT3904 NPN  
S1  
R6  
47Ω  
5%  
C3  
0.01µF  
S1: SIEMENS/INFINEON SFH213FA PHOTODIODE (~3pF)  
V
= ±5V  
SUPPLY  
BANDWIDTH = 7MHz  
NOISE FIGURE = 2dB AT 100kHz, 25°C  
A
Z
= 100kΩ  
V
1880 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Rail-to-Rail I/O  
4.2nV/Hz  
LT1782  
Rugged, General Purpose SOT-23 Op Amp  
Low Noise JFET Op Amp  
LT1792  
LT1881/LT1882  
LTC2050  
Dual/Quad Precision Op Amps  
Zero Drift Op Amp in SOT-23  
50µV V  
, 200pA I  
Rail-to-Rail Output  
OS(MAX)  
B(MAX)  
3µV V  
, Rail-to-Rail Output  
OS(MAX)  
1880f LT/TP 0801 2K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2001  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1880CS5#TRPBF

LT1880 - SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1880CS5PBF

暂无描述
Linear

LT1880IS5

SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp
Linear

LT1880IS5#PBF

LT1880 - SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1880IS5#TR

LT1880 - SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1880IS5#TRM

LT1880 - SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1880IS5#TRMPBF

LT1880 - SOT-23, Rail-to-Rail Output, Picoamp Input Current Precision Op Amp; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1881

Dual and Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps
Linear

LT1881ACN8

Dual and Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps
Linear

LT1881ACN8#PBF

LT1881 - Dual Rail-to-Rail Output, Picoamp Input Precision Op Amps; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1881ACN8#TR

IC DUAL OP-AMP, 85 uV OFFSET-MAX, 0.85 MHz BAND WIDTH, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Operational Amplifier
Linear

LT1881ACN8#TRPBF

IC DUAL OP-AMP, 85 uV OFFSET-MAX, 0.85 MHz BAND WIDTH, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Operational Amplifier
Linear