LT1886 [Linear]

Dual 700MHz, 200mA Operational Amplifier; 双700MHz的型,200mA运算放大器
LT1886
型号: LT1886
厂家: Linear    Linear
描述:

Dual 700MHz, 200mA Operational Amplifier
双700MHz的型,200mA运算放大器

运算放大器
文件: 总16页 (文件大小:334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1886  
Dual 700MHz, 200mA  
Operational Amplifier  
U
DESCRIPTIO  
FEATURES  
The LT®1886 is a 200mA minimum output current dual op  
amp with outstanding distortion performance. The ampli-  
fiersaregain-of-tenstable, butcanbeeasilycompensated  
for lower gains. The LT1886 features balanced, high  
impedance inputs with 4µA maximum input bias current,  
and 4mV maximum input offset voltage. Single supply  
applications are easy to implement and have lower total  
noise than current feedback amplifier implementations.  
700MHz Gain Bandwidth  
±200mA Minimum IOUT  
Low Distortion: –72dBc at 1MHz, 4VP-P, 25, AV = 2  
Stable in AV 10, Simple Compensation for AV < 10  
±4.3V Minimum Output Swing, VS = ±6V, RL = 25Ω  
7mA Supply Current per Amplifier  
200V/µs Slew Rate  
Stable with 1000pF Load  
6nV/Hz Input Noise Voltage  
2pA/Hz Input Noise Current  
The output drives a 25load to ±4.3V with ±6V supplies.  
On ±2.5V supplies the output swings ±1.5V with a 100Ω  
load. The amplifier is stable with a 1000pF capacitive  
load which makes it useful in buffer and cable driver  
applications.  
4mV Maximum Input Offset Voltage  
4µA Maximum Input Bias Current  
400nA Maximum Input Offset Current  
±4.5V Minimum Input CMR, VS = ±6V  
The LT1886 is manufactured on Linear Technology’s  
advancedlowvoltagecomplementarybipolarprocessand  
is available in a thermally enhanced SO-8 package.  
Specified at ±6V, ±2.5V  
U
APPLICATIO S  
DSL Modems  
xDSL PCI Cards  
USB Modems  
Line Drivers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Single 12V Supply ADSL Modem Line Driver  
12V  
ADSL Modem Line Driver Distortion  
0.1µF  
–60  
+
IN  
+
V
A
= 12V  
= 10  
S
V
12.4Ω  
1/2 LT1886  
f = 200kHz  
100LINE  
1:2 TRANSFORMER  
–70  
–80  
909Ω  
10k  
10k  
20k  
20k  
HD2  
HD3  
1:2*  
100Ω  
100Ω  
1µF  
1µF  
100Ω  
–90  
909Ω  
*COILCRAFT X8390-A  
OR EQUIVALENT  
–100  
12.4Ω  
0
2
4
6
8
10 12 14 16  
1886 TA01  
0.1µF  
1/2 LT1886  
+
LINE VOLTAGE (V  
)
P-P  
IN  
1886 TA01a  
1
LT1886  
W W U W  
W
U
ABSOLUTE MAXIMUM RATINGS  
/O  
PACKAGE RDER I FOR ATIO  
(Note 1)  
Total Supply Voltage (V+ to V) ........................... 13.2V  
Input Current (Note 2) ....................................... ±10mA  
Input Voltage (Note 2) ............................................ ±VS  
Maximum Continuous Output Current (Note 3)  
DC ............................................................... ±100mA  
AC ............................................................... ±300mA  
Operating Temperature Range (Note 10) 40°C to 85°C  
Specified Temperature Range (Note 9).. 40°C to 85°C  
Maximum Junction Temperature ......................... 150°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
ORDER PART  
TOP VIEW  
NUMBER  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
OUT B  
–IN B  
+IN B  
LT1886CS8  
A
B
V
S8 PART MARKING  
1886  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 80°C/W (Note 4)  
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating temp-  
erature range, otherwise specifications are at TA = 25°C. VS = ±6V, VCM = 0V, pulse power tested unless otherwise noted. (Note 9)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
(Note 5)  
1
4
5
mV  
mV  
OS  
Input Offset Voltage Drift  
Input Offset Current  
(Note 8)  
3
17  
µV/°C  
I
I
150  
400  
600  
nA  
nA  
OS  
Input Bias Current  
1.5  
4
6
µA  
µA  
B
e
Input Noise Voltage  
Input Noise Current  
Input Resistance  
f = 10kHz  
f = 10kHz  
6
2
nV/Hz  
pA/Hz  
n
i
n
R
V
= ±4.5V  
CM  
5
10  
35  
MΩ  
kΩ  
IN  
Differential  
C
Input Capacitance  
2
pF  
IN  
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
4.5  
77  
5.9  
–5.2  
V
V
–4.5  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Minimum Supply Voltage  
V
= ±4.5V  
98  
dB  
V
CM  
Guaranteed by PSRR  
V = ±2V to ±6.5V  
±2  
Power Supply Rejection Ratio  
80  
78  
86  
12  
12  
5
dB  
dB  
S
A
Large-Signal Voltage Gain  
Output Swing  
V
V
= ±4V, R = 100Ω  
5.0  
4.5  
V/mV  
V/mV  
VOL  
OUT  
OUT  
L
= ±4V, R = 25Ω  
4.5  
4.0  
V/mV  
V/mV  
L
V
R = 100, 10mV Overdrive  
4.85  
4.70  
±V  
±V  
OUT  
L
R = 25, 10mV Overdrive  
4.30  
4.10  
4.6  
4.5  
±V  
±V  
L
I
= 200mA, 10mV Overdrive  
4.30  
4.10  
±V  
±V  
OUT  
I
Short-Circuit Current (Sourcing)  
Short-Circuit Current (Sinking)  
(Note 3)  
800  
500  
mA  
mA  
SC  
2
LT1886  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temp-  
erature range, otherwise specifications are at TA = 25°C. VS = ±6V, VCM = 0V, pulse power tested unless otherwise noted. (Note 9)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SR  
Slew Rate  
A = –10 (Note 6)  
V
133  
110  
200  
V/µs  
V/µs  
Full Power Bandwidth  
Gain Bandwidth  
Rise Time, Fall Time  
Overshoot  
4V Peak (Note 7)  
f = 1MHz  
8
700  
4
MHz  
MHz  
ns  
GBW  
t , t  
A = 10, 10% to 90% of 0.1V, R = 100Ω  
V L  
r
f
A = 10, 0.1V, R = 100Ω  
1
%
V
L
Propagation Delay  
Settling Time  
A = 10, 50% V to 50% V , 0.1V, R = 100Ω  
2.5  
50  
ns  
V
IN  
OUT  
L
t
6V Step, 0.1%  
ns  
S
Harmonic Distortion  
HD2, A = 10, 2V , f = 1MHz, R = 100/25Ω  
75/63  
85/71  
dBc  
dBc  
V
P-P  
L
HD3, A = 10, 2V , f = 1MHz, R = 100/25Ω  
V
P-P  
L
IMD  
Intermodulation Distortion  
Output Resistance  
A = 10, f = 0.9MHz, 1MHz, 14dBm, R = 100/25Ω  
81/80  
0.1  
dBc  
V
L
R
OUT  
A = 10, f = 1MHz  
V
Channel Separation  
V
= ±4V, R = 25Ω  
82  
80  
92  
dB  
dB  
OUT  
L
I
Supply Current  
Per Amplifier  
7
8.25  
8.50  
mA  
mA  
S
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS = ±2.5V, VCM = 0V, pulse power tested unless otherwise noted. (Note 9)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
(Note 5)  
1.5  
5
6
mV  
mV  
OS  
Input Offset Voltage Drift  
Input Offset Current  
(Note 8)  
5
17  
µV/°C  
I
I
100  
350  
550  
nA  
nA  
OS  
Input Bias Current  
1.2  
3.5  
5.5  
µA  
µA  
B
e
Input Noise Voltage  
Input Noise Current  
Input Resistance  
f = 10kHz  
f = 10kHz  
6
2
nV/Hz  
pA/Hz  
n
i
n
R
V
= ±1V  
CM  
10  
20  
50  
MΩ  
kΩ  
IN  
Differential  
C
Input Capacitance  
2
pF  
IN  
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
1
2.4  
–1.7  
V
V
–1  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
V
= ±1V  
75  
91  
10  
dB  
CM  
A
= ±1V, R = 100Ω  
5.0  
4.5  
V/mV  
V/mV  
VOL  
OUT  
L
V
= ±1V, R = 25Ω  
4.5  
4.0  
10  
1.65  
1.50  
1
V/mV  
V/mV  
OUT  
L
V
Output Swing  
R = 100, 10mV Overdrive  
1.50  
1.40  
±V  
±V  
OUT  
L
R = 25, 10mV Overdrive  
1.35  
1.25  
±V  
±V  
L
I
= 200mA, 10mV Overdrive  
0.87  
0.80  
±V  
±V  
OUT  
3
LT1886  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temp-  
erature range, otherwise specifications are at TA = 25°C. VS = ±2.5V, VCM = 0V, pulse power tested unless otherwise noted. (Note 9)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Short-Circuit Current (Sourcing)  
Short-Circuit Current (Sinking)  
(Note 3)  
600  
400  
mA  
mA  
SC  
SR  
Slew Rate  
A = –10 (Note 6)  
V
66  
60  
100  
V/µs  
V/µs  
Full Power Bandwidth  
Gain Bandwidth  
1V Peak (Note 7)  
f = 1MHz  
16  
530  
7
MHz  
MHz  
ns  
GBW  
t , t  
Rise Time, Fall Time  
Overshoot  
A = 10, 10% to 90% of 0.1V, R = 100Ω  
V L  
r
f
A = 10, 0.1V, R = 100Ω  
5
%
V
L
Propagation Delay  
Harmonic Distortion  
A = 10, 50% V to 50% V , 0.1V, R = 100Ω  
5
ns  
V
IN  
OUT  
L
HD2, A = 10, 2V , f = 1MHz, R = 100/25Ω  
75/64  
80/66  
dBc  
dBc  
V
P-P  
L
HD3, A = 10, 2V , f = 1MHz, R = 100/25Ω  
V
P-P  
L
IMD  
Intermodulation Distortion  
Output Resistance  
A = 10, f = 0.9MHz, 1MHz, 5dBm, R = 100/25Ω  
77/85  
0.2  
dBc  
V
L
R
OUT  
A = 10, f = 1MHz  
V
Channel Separation  
V
= ±1V, R = 25Ω  
82  
80  
92  
dB  
dB  
OUT  
L
I
Supply Current  
Per Amplifier  
5
5.75  
6.25  
mA  
mA  
S
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: Slew rate is measured between ±2V on a ±4V output with ±6V  
supplies, and between ±1V on a ±1.5V output with ±2.5V supplies.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 0.7V, the input current should be limited to less than  
10mA.  
Note 7: Full power bandwidth is calculated from the slew rate:  
FPBW = SR/2πV .  
P
Note 8: This parameter is not 100% tested.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum.  
Note 9: The LT1886C is guaranteed to meet specified performance from 0°C  
to 70°C. The LT1886C is designed, characterized and expected to meet  
specified performance from –40°C to 85°C but is not tested or QA sampled  
at these temperatures. For guaranteed I-grade parts, consult the factory.  
Note 4: Thermal resistance varies depending upon the amount of PC board  
2
metal attached to the device. θ is specified for a 2500mm test board  
JA  
covered with 2 oz copper on both sides.  
Note 5: Input offset voltage is exclusive of warm-up drift.  
Note10:TheLT1886Cisguaranteedfunctionalovertheoperatingtemperature  
range of –40°C to 85°C.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias Current vs Input  
Common Mode Voltage  
Input Common Mode Range vs  
Supply Current vs Temperature  
Supply Voltage  
+
15  
10  
5
V
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
I
= 25°C  
B
A
B
V
V
= ±6V  
S
S
= (I + + I )/2  
–0.1  
–0.2  
–0.3  
1.5  
B
= ±2.5V  
V
V
= ±6V  
S
S
T
= 25°C  
OS  
A
V > 1mV  
= ±2.5V  
1.0  
0.5  
0
V
–50 –25  
0
25  
50  
75 100 125  
–6  
–4  
–2  
0
2
4
6
0
2
4
6
8
10  
12  
14  
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
1886 G01  
1886 G03  
1886 G02  
4
LT1886  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias Current vs  
Temperature  
Output Short-Circuit Current vs  
Temperature  
Input Noise Spectral Density  
100  
10  
1
100  
10  
1
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25°C  
A
V
I
= (I + + I )/2  
B B  
B
A
= 101  
SOURCE, V = ±6V  
S
SOURCE, V = ±2.5V  
S
V
V
= ±6V  
S
S
SINK, V = ±6V  
S
e
i
n
SINK, V = ±2.5V  
S
= ±2.5V  
n
V = 0.2V  
IN  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1886 G05  
1886 G04  
1886 G06  
Output Saturation Voltage vs  
Output Saturation Voltage vs  
Temperature, VS = ±6V  
Temperature, VS = ±2.5V  
Settling Time vs Output Step  
+
+
V
V
6
4
V
= ±6V  
S
–0.5  
–1.0  
–1.5  
1.5  
–0.5  
–1.0  
–1.5  
1.5  
R
L
= 100Ω  
R
L
= 100Ω  
10mV  
1mV  
2
I
I
= 150mA  
= 150mA  
I
= 200mA  
= 200mA  
I
I
= 150mA  
= 150mA  
I
= 200mA  
= 200mA  
L
L
L
L
L
L
L
0
I
I
L
–2  
–4  
–6  
1.0  
1.0  
R
= 100Ω  
L
R
= 100Ω  
L
0.5  
0.5  
10mV  
1mV  
50  
V
V
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
0
10  
20  
30  
40  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SETTLING TIME (ns)  
1886 G07  
1886 G08  
1886 G09  
Gain Bandwidth vs Supply  
Voltage  
Gain and Phase vs Frequency  
Output Impedance vs Frequency  
100  
10  
80  
70  
100  
800  
T
= 25°C  
A
V
80  
A
= –10  
V
= ±6V  
PHASE  
= ±2.5V  
S
R
= 1k  
L
60  
60  
700  
600  
500  
400  
300  
V
S
50  
40  
A
= 100  
= 10  
V
V
40  
20  
V
= ±6V  
R
R
= 100Ω  
= 25Ω  
S
L
L
30  
0
1
V
= ±2.5V  
20  
–20  
–40  
–60  
–80  
–100  
S
GAIN  
10  
0.1  
A
T
= 25°C  
0
A
V
L
A
= –10  
–10  
–20  
R
= 100Ω  
0.01  
100k  
0
2
4
6
8
10  
12  
14  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
FREQUENCY (Hz)  
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
1886 G10  
1886 G12  
1886 G11  
5
LT1886  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Frequency Response vs Supply  
Voltage, AV = 10  
Frequency Response vs Supply  
Voltage, AV = –10  
Frequency Response vs Supply  
Voltage, AV = 2  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
9
8
T
= 25°C  
= 10  
= 100Ω  
T
= 25°C  
A = –10  
V
L
A
V
L
A
A
V
V
= ±2.5V  
= ±6V  
S
S
7
R
R
= 100Ω  
6
5
V
= ±6V  
V = ±6V  
S
S
4
T
= 25°C  
= 2  
A
V
L
F
C
C
3
A
V
= ±2.5V  
V = ±2.5V  
S
S
R
R
R
= 100Ω  
2
= R = 1k  
G
1
= 124Ω  
C
= 100pF  
0
SEE FIGURE 3  
–1  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1886 G13  
1886 G14  
1886 G15  
Frequency Response vs Supply  
Voltage, AV = –1  
Frequency Response vs  
Capacitive Load  
Slew Rate vs Temperature  
3
2
38  
35  
32  
29  
26  
23  
20  
17  
14  
11  
8
350  
300  
250  
200  
150  
100  
50  
V
T
= ±6V  
= 25°C  
= 10  
A
= –10  
= 100Ω  
S
A
V
V
L
1000pF  
500pF  
R
V
V
= ±2.5V  
= ±6V  
S
S
1
A
NO R  
L
0
V
V
= ±6V  
S
S
200pF  
100pF  
50pF  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
+SR  
–SR  
T
= 25°C  
= –1  
A
V
L
F
C
A
+SR  
–SR  
R
R
R
C
= 100Ω  
= R = 1k  
G
= ±2.5V  
= 124Ω  
= 100pF  
C
SEE FIGURE 2  
0
1M  
10M  
100M  
1G  
–50 –25  
0
25  
50  
75 100 125  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
1886 G16  
1886 G17  
1886 G18  
Power Supply Rejection vs  
Frequency  
Common Mode Rejection Ratio vs  
Frequency  
Amplifier Crosstalk vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
A
= ±6V  
= 10  
V
V
= ±6V  
V
A
= ±6V  
S
S
V
L
S
A
= 10  
T
= 25°C  
R
= 100Ω  
INPUT = –20dBm  
(–) SUPPLY  
(+) SUPPLY  
B A  
A B  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1886 G19  
1886 G20  
1886 G21  
6
LT1886  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Harmonic Distortion vs  
Frequency, AV = 10, VS = ±6V  
Harmonic Distortion vs  
Frequency, AV = 10, VS = ±2.5V  
Harmonic Distortion vs Resistive  
Load  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= 25°C  
T
= 25°C  
T
V
A
= 25°C  
= ±6V  
= 10  
A
V
A
V
A
S
V
A
= 10  
A
= 10  
2V OUT  
2V OUT  
P-P  
P-P  
2V OUT  
P-P  
f = 1MHz  
2nd  
3rd  
R
L
= 25Ω  
R
L
= 25Ω  
2nd  
3rd  
2nd  
3rd  
2nd  
3rd  
2nd  
3rd  
R
L
= 100Ω  
R
L
= 100Ω  
100k  
1M  
FREQUENCY (Hz)  
10M  
100k  
1M  
FREQUENCY (Hz)  
10M  
1
10  
100  
1k  
LOAD RESISTANCE ()  
1886 G22  
1886 G23  
1886 G24  
Harmonic Distortion vs Resistive  
Load  
Harmonic Distortion vs Output  
Swing, AV = 10, VS = ±6V  
Harmonic Distortion vs Output  
Swing, AV = 10, VS = ±2.5V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
A
= 25°C  
= ±2.5V  
= 10  
T
= 25°C  
T = 25°C  
A
A
S
V
A
f = 1MHz  
f = 1MHz  
2V OUT  
P-P  
f = 1MHz  
R
= 25Ω  
R
= 25Ω  
L
L
2nd  
3rd  
2nd  
2nd  
3rd  
3rd  
2nd  
3rd  
2nd  
3rd  
R
= 100Ω  
R
= 100Ω  
L
L
1
10  
100  
1k  
0
2
4
6
8
10  
12  
0
1
2
3
4
5
LOAD RESISTANCE ()  
OUTPUT VOLTAGE (V  
)
P-P  
OUTPUT VOLTAGE (V  
)
P-P  
1886 G25  
1886 G26  
1886 G27  
Harmonic Distortion vs Output  
Swing, AV = 2, VS = ±6V  
Harmonic Distortion vs Output  
Swing, AV = 2, VS = ±2.5V  
Harmonic Distortion vs Output  
Current, VS = ±6V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
T
= 25°C  
T
= 25°C  
T = 25°C  
A
A
F
C
C
A
F
C
C
R
R
C
= R = 1k  
R
R
C
= R = 1k  
A = 10  
V
G
G
= 124Ω  
= 124Ω  
f = 1MHz  
= 100pF  
= 100pF  
R
R
= 5Ω  
L
f = 1MHz  
SEE FIGURE 3  
f = 1MHz  
SEE FIGURE 3  
= 10Ω  
L
R
= 25Ω  
R = 100Ω  
L
L
R
= 25Ω  
L
2nd  
2nd  
R
L
= 25Ω  
2nd  
3rd  
2nd  
3rd  
3rd  
R
= 100Ω  
L
3rd  
0
2
4
6
8
10  
12  
0
1
2
3
4
5
0
100  
200  
300  
400  
500  
OUTPUT VOLTAGE (V  
)
P-P  
OUTPUT VOLTAGE (V  
)
P-P  
PEAK OUTPUT CURRENT (mA)  
1886 G28  
1886 G29  
1886 G30  
7
LT1886  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Harmonic Distortion vs Output  
Current, VS = ±2.5V  
Undistorted Output Swing vs  
Frequency  
–30  
12  
10  
8
T
= 25°C  
A
V
V
S
= ±6V  
A
= 10  
–40  
–50  
–60  
–70  
–80  
f = 1MHz  
R
= 5Ω  
L
T
= 25°C  
= 10  
A
V
L
A
6
R
= 10Ω  
R
= 100Ω  
L
1% DISTORTION  
4
V
S
= ±2.5V  
R
L
= 25Ω  
2
0
100k  
1M  
FREQUENCY (Hz)  
10M  
0
50  
100  
150  
200  
250  
PEAK OUTPUT CURRENT (mA)  
1886 G32  
1886 G30  
Small-Signal Transient, AV = 10,  
CL = 1000pF  
Small-Signal Transient, AV = 10  
Small-Signal Transient, AV = –10  
1886 G33  
1886 G34  
1886 G35  
Large-Signal Transient, AV = 10,  
CL = 1000pF  
Large-Signal Transient, AV = 10  
Large-Signal Transient, AV = –10  
1886 G36  
1886 G37  
1886 G38  
8
LT1886  
U
W
U U  
APPLICATIO S I FOR ATIO  
Input Considerations  
the efficiency of the PC board as a heat sink. The PCB  
material can be very effective at transmitting heat between  
the pad area attached to the Vpin and a ground or power  
plane layer. Copper board stiffeners and plated through-  
holes can also be used to spread the heat generated by the  
device. Table 1 lists the thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with 2oz copper.  
This data can be used as a rough guideline in estimating  
thermal resistance. The thermal resistance for each appli-  
cation will be affected by thermal interactions with other  
components as well as board size and shape.  
The inputs of the LT1886 are an NPN differential pair  
protected by back-to-back diodes (see the Simplified  
Schematic). There are no series protection resistors  
onboard which would degrade the input voltage noise. If  
theinputscanhaveavoltagedifferenceofmorethan0.7V,  
the input current should be limited to less than 10mA with  
externalresistance(usuallythefeedbackresistororsource  
resistor).EachinputalsohastwoESDclampdiodes—one  
to each supply. If an input drive exceeds the supply, limit  
the current with an external resistor to less than 10mA.  
TheLT1886designisatrueoperationalamplifierwithhigh  
impedance inputs and low input bias currents. The input  
offset current is a factor of ten lower than the input bias  
current. To minimize offsets due to input bias currents,  
match the equivalent DC resistance seen by both inputs.  
The low input noise current can significantly reduce total  
noisecomparedtoacurrentfeedbackamplifier, especially  
for higher source resistances.  
Table 1. Fused 8-Lead SO Package  
COPPER AREA (2oz)  
TOPSIDE  
TOTAL  
COPPER AREA  
BACKSIDE  
2500 sq. mm  
2500 sq. mm  
2500 sq. mm  
2500 sq. mm  
1000 sq. mm  
600 sq. mm  
300 sq. mm  
100 sq. mm  
0 sq. mm  
θJA  
2500 sq. mm  
1000 sq. mm  
600 sq. mm  
180 sq. mm  
180 sq. mm  
180 sq. mm  
180 sq. mm  
180 sq. mm  
180 sq. mm  
5000 sq. mm  
3500 sq. mm  
3100 sq. mm  
2680 sq. mm  
1180 sq. mm  
780 sq. mm  
480 sq. mm  
280 sq. mm  
180 sq. mm  
80°C/W  
°
92 C/W  
°
96 C/W  
°
98 C/W  
°
112 C/W  
°
116 C/W  
Layout and Passive Components  
°
118 C/W  
With a gain bandwidth product of 700MHz the LT1886  
requires attention to detail in order to extract maximum  
performance. Use a ground plane, short lead lengths and  
a combination of RF-quality supply bypass capacitors  
(i.e., 470pF and 0.1µF). As the primary applications have  
high drive current, use low ESR supply bypass capacitors  
(1µF to 10µF). For best distortion performance with high  
drive current a capacitor with the shortest possible trace  
lengths should be placed between Pins 4 and 8. The  
optimum location for this capacitor is on the back side of  
thePCboard. TheDSLdriverdemoboard(DC304)forthis  
partusesaTaiyoYuden10µFceramic(TMK432BJ106MM).  
°
120 C/W  
°
122 C/W  
Calculating Junction Temperature  
The junction temperature can be calculated from the  
equation:  
TJ = (PD)(θJA) + TA  
TJ = Junction Temperature  
TA = Ambient Temperature  
PD = Device Dissipation  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input can combine with  
the input capacitance to form a pole which can cause  
frequency peaking. In general, use feedback resistors of  
1kor less.  
θJA = Thermal Resistance (Junction-to-Ambient)  
As an example, calculate the junction temperature for the  
circuitinFigure1assumingan85°Cambienttemperature.  
The device dissipation can be found by measuring the  
supply currents, calculating the total dissipation and then  
subtracting the dissipation in the load.  
Thermal Issues  
The LT1886 enhanced θJA SO-8 package has the Vpin  
fusedtotheleadframe.Thisthermalconnectionincreases  
9
LT1886  
U
W U U  
APPLICATIO S I FOR ATIO  
6V  
Typical Performance Curve of Frequency Response vs  
Capacitive Load shows the peaking for various capacitive  
loads.  
+
This stability is useful in the case of directly driving a  
coaxial cable or twisted pair that is inadvertently  
unterminated. For best pulse fidelity, however, a termina-  
tionresistorofvalueequaltothecharacteristicimpedance  
of the cable or twisted pair (i.e., 50/75/100/135)  
should be placed in series with the output. The other end  
of the cable or twisted pair should be terminated with the  
same value resistor to ground.  
909  
100Ω  
4V  
50Ω  
–4V  
1K  
f = 1MHz  
100Ω  
+
Compensation  
1886 F01  
–6V  
The LT1886 is stable in a gain 10 or higher for any supply  
and resistive load. It is easily compensated for lower gains  
with a single resistor or a resistor plus a capacitor.  
Figure 2 shows that for inverting gains, a resistor from the  
inverting node to AC ground guarantees stability if the  
parallel combination of RC and RG is less than or equal to  
RF/9. For lowest distortion and DC output offset, a series  
capacitor,CC,canbeusedtoreducethenoisegainatlower  
frequencies. The break frequency produced by RC and CC  
should be less than 15MHz to minimize peaking. The  
Typical Curve of Frequency Response vs Supply Voltage,  
AV = –1 shows less than 1dB of peaking for a break  
frequency of 12.8MHz.  
Figure 1. Thermal Calculation Example  
The dissipation for the amplifiers is:  
PD = (63.5mA)(12V) – (4V/2)2/(50) = 0.6W  
Thetotalpackagepowerdissipationis0.6W. Whena2500  
sq. mm PC board with 2oz copper on top and bottom is  
used, the thermal resistance is 80°C/W. The junction  
temperature TJ is:  
TJ = (0.6W)(80°C/W) + 85°C = 133°C  
The maximum junction temperature for the LT1886 is  
150°C so the heat sinking capability of the board is  
adequate for the application.  
R
F
V
–R  
F
o
R
=
G
+
V
R
G
i
V
i
If the copper area on the PC board is reduced to 180 sq.  
mm the thermal resistance increases to 122°C/W and the  
junction temperature becomes:  
(R || R ) R /9  
R
V
C
G
F
C
o
C
1
C
< 15MHz  
(OPTIONAL)  
2πR C  
C
C
1886 F02  
TJ = (0.6W)(122°C/W) + 85°C = 158°C  
Figure 2. Compensation for Inverting Gains  
which is above the maximum junction temperature indi-  
cating that the heat sinking capability of the board is  
inadequate and should be increased.  
Figure3showscompensationinthenoninvertingconfigu-  
ration. The RC, CC network acts similarly to the inverting  
case. The input impedance is not reduced because the  
network is bootstrapped. This network can also be placed  
between the inverting input and an AC ground.  
Capacitive Loading  
The LT1886 is stable with a 1000pF capacitive load. The  
photo of the small-signal response with 1000pF load in a  
gain of 10 shows 50% overshoot. The photo of the large-  
signal response with a 1000pF load shows that the output  
slew rate is not limited by the short-circuit current. The  
Anothercompensationschemefornoninvertingcircuitsis  
showninFigure4.Thecircuitisunitygainatlowfrequency  
and a gain of 1 + RF/RG at high frequency. The DC output  
offset is reduced by a factor of ten. The techniques of  
10  
LT1886  
U
W
U U  
APPLICATIO S I FOR ATIO  
Figures3and4canbecombinedasshowninFigure5. The  
gainisunityatlowfrequencies, 1+RF/RG atmid-bandand  
for stability, a gain of 10 or greater at high frequencies.  
termination resistor is used, a capacitor to ground at the  
load can eliminate ringing.  
Line Driving Back-Termination  
V
R
R
o
F
= 1 +  
+
The standard method of cable or line back-termination is  
shown in Figure 6. The cable/line is terminated in its  
characteristic impedance (50, 75, 100, 135, etc.).  
A back-termination resistor also equal to to the  
chararacteristic impedance should be used for maximum  
pulse fidelity of outgoing signals, and to terminate the line  
for incoming signals in a full-duplex application. There are  
three main drawbacks to this approach. First, the power  
dissipated in the load and back-termination resistors is  
equal so half of the power delivered by the amplifier is  
wasted in the termination resistor. Second, the signal is  
halved so the gain of the amplifer must be doubled to have  
the same overall gain to the load. The increase in gain  
increases noise and decreases bandwidth (which can also  
increase distortion). Third, the output swing of the ampli-  
fier is doubled which can limit the power it can deliver to  
the load for a given power supply voltage.  
V
V
i
i
G
R
C
V
o
(R || R ) R /9  
C
C
G
F
C
1
(OPTIONAL)  
< 15MHz  
R
F
2πR C  
C
C
R
G
1886 F03  
Figure 3. Compensation for Noninverting Gains  
V
o
+
= 1 (LOW FREQUENCIES)  
V
G
V
i
i
R
F
= 1 +  
(HIGH FREQUENCIES)  
V
O
R
G
R
G
R /9  
F
R
F
1
< 15MHz  
2πR C  
G
C
R
C
C
1886 F04  
CABLE OR LINE WITH  
Figure 4. Alternate Noninverting Compensation  
CHARACTERISTIC IMPEDANCE R  
L
+
V
i
R
BT  
V
O
+
V
i
R
L
R
C
V
o
C
R
F
R
= R  
=
BT  
L
C
V
o
V
1
2
o
R
G
R
= 1 AT LOW FREQUENCIES  
F
(1 + R /R )  
F
G
V
i
V
i
R
F
1886 F06  
= 1 +  
= 1 +  
AT MEDIUM FREQUENCIES  
R
G
R
G
Figure 6. Standard Cable/Line Back-Termination  
C
BIG  
R
F
AT HIGH FREQUENCIES  
(R || R )  
1886 F05  
C
G
An alternate method of back-termination is shown in  
Figure 7. Positive feedback increases the effective back-  
termination resistance so RBT can be reduced by a factor  
ofn.Toanalyzethiscircuit,firstgroundtheinput.AsRBT  
RL/n, and assuming RP2>>RL we require that:  
Figure 5. Combination Compensation  
Output Loading  
=
The LT1886 output stage is very wide bandwidth and able  
to source and sink large currents. Reactive loading, even  
isolated with a back-termination resistor, can cause ring-  
ingatfrequenciesofhundredsofMHz.Forthisreason,any  
design should be evaluated over a wide range of output  
conditions. To reduce the effects of reactive loading, an  
optionalsnubbernetworkconsistingofaseriesRCacross  
the load can provide a resistive load at high frequency.  
Another option is to filter the drive to the load. If a back-  
Va = Vo (1 – 1/n) to increase the effective value of  
RBT by n.  
Vp = Vo (1 – 1/n)/(1 + RF/RG)  
Vo = Vp (1 + RP2/RP1)  
Eliminating Vp, we get the following:  
(1 + RP2/RP1) = (1 + RF/RG)/(1 – 1/n)  
11  
LT1886  
U
W U U  
APPLICATIO S I FOR ATIO  
For example, reducing RBT by a factor of n = 4, and with an  
amplifer gain of (1 + RF/RG) = 10 requires that RP2/RP1  
= 12.3.  
modems. The key advantages are: ±200mA output drive  
with only 1.7V worst-case total supply voltage headroom,  
high bandwidth, which helps achieve low distortion, low  
quiescent supply current of 7mA per amplifier and a  
space-saving, thermally enhanced SO-8 package.  
Note that the overall gain is increased:  
RP2 / R + RP1  
Vo  
V
i
(
)
An ADSL remote terminal driver must deliver an average  
power of 13dBm (20mW) into a 100line. This corre-  
spondsto1.41VRMS intotheline.TheDMT-ADSLpeak-to-  
average ratio of 5.33 implies voltage peaks of 7.53V into  
the line. Using a differential drive configuration and trans-  
former coupling with standard back-termination, a trans-  
formerratioof1:2iswellsuited. Thisisshownonthefront  
page of this data sheet along with the distortion perfor-  
mance vs line voltage at 200kHz, which is beyond ADSL  
requirements. Note that the distortion is better than  
–73dBc for all swings up to 16VP-P into the line. The gain  
of this circuit from the differential inputs to the line voltage  
is 10. Lower gains are easy to implement using the  
compensation techniques of Figure 5. Table 2 shows the  
drive requirements for this standard circuit.  
P2  
=
1+ 1/n / 1+ R /R R / R +RP1  
) ( )  
(
[
)
(
] [  
]
F
G
P1  
P2  
A simpler method of using positive feedback to reduce the  
back-termination is shown in Figure 8. In this case, the  
drivers are driven differentially and provide complemen-  
tary outputs. Grounding the inputs, we see there is invert-  
ing gain of –RF/RP from –Vo to Va  
Va = Vo (RF/RP)  
and assuming RP >> RL, we require  
Va = Vo (1 – 1/n)  
solving  
RF/RP = 1 – 1/n  
The above design is an excellent choice for desktop  
applications and draws typically 550mW of power. For  
portable applications, power savings can be achieved by  
reducingtheback-terminationresistorusingpositivefeed-  
back as shown in Figure 9. The overall gain of this circuit  
is also 10, but the power consumption has been reduced  
to 350mW, a savings of 36% over the previous design.  
Note that the reduction of the back-termination resistor  
has allowed use of a 1:1 transformer ratio.  
So to reduce the back-termination by a factor of 3 choose  
RF/RP = 2/3. Note that the overall gain is increased to:  
Vo/Vi = (1 + RF/RG + RF/RP)/[2(1 – RF/RP)]  
ADSL Driver Requirements  
The LT1886 is an ideal choice for ADSL upstream (CPE)  
R
P2  
R
P1  
+
V
i
V
+
i
V
R
V
o
a
BT  
V
V
R
BT  
P
a
V
o
R
L
R
L
FOR R  
n =  
=
BT  
R
R
R
F
F
F
n
1
R
R
L
G
R
R
R
R
G
G
L
L
R
FOR R  
=
F
BT  
1 –  
=
R
R
n
P
P
R
P
1
n
R
R
R
P1  
F
R
R
R
R
1 +  
= 1 –  
F
F
1 +  
+
(
) (  
)
R
+ R  
P2  
G
P1  
V
o
G
P
R
F
V
i
2 1 –  
R
/(R + R  
P2 P2  
)
P1  
+
(
)
R
P
V
R
R
1 + 1/n  
o
P1  
BT  
=
–V  
o
V
R
+ R  
P1  
i
R
R
P2  
F
–V  
1 +  
a
(
)
–V  
i
G
1886 F08  
1886 F07  
Figure 7. Back-Termination Using Positive Feedback  
Figure 8. Back-Termination Using Differential Positive Feedback  
12  
LT1886  
U
W
U U  
APPLICATIO S I FOR ATIO  
Table 2. ADSL Upstream Driver Designs  
by the same amount as the reduction in the back-termina-  
tionresistor. Takingintoaccountthedifferenttransformer  
turns ratios, the received signal of the low power design  
will be one third of the standard design received signal.  
The reduced signal has system implications for the sensi-  
tivityofthereceiver.Thepowerreductionmay,ormaynot,  
be an acceptable system tradeoff for a given design.  
STANDARD  
100Ω  
13dBm  
5.33  
LOW POWER  
100Ω  
Line Impedance  
Line Power  
13dBm  
5.33  
Peak-to-Average Ratio  
Transformer Turns Ratio  
Reflected Impedance  
Back-Termination Resistors  
Transformer Insertion Loss  
Average Amplifier Swing  
Average Amplifier Current  
Peak Amplifier Swing  
Peak Amplifier Current  
Total Average Power Consumption  
Supply Voltage  
2
1
25Ω  
100Ω  
8.35Ω  
0.5dB  
0.87V  
12.5Ω  
1dB  
Demo Board  
0.79V  
DemoboardDC304hasbeencreatedtoprovideaversatile  
platformforalinedriver/receiverdesign.(Figure11shows  
acompleteschematic.)Theboardissetupforeithersingle  
or dual supply designs with Jumpers 1–4. The LT1886 is  
set up for differential, noninverting gain of 3. Each amp is  
configured as in Figure 5 for maximum flexibility. The  
amplifiers drive a 1:2 transformer through back-termina-  
tion resistors that can be reduced with optional positive  
feedback. The secondary of the transformer can be iso-  
lated from the primary with Jumper 5.  
RMS  
RMS  
31.7mA  
15mA  
RMS  
RMS  
4.21V Peak  
169mA Peak  
550mW  
4.65V Peak  
80mA Peak  
350mW  
Single 12V  
Single 12V  
Table 2 compares the two approaches. It may seem that  
thelowpowerdesignisaclearchoice,buttherearefurther  
system issues to consider. In addition to driving the line,  
the amplifiers provide back-termination for signals that  
are received simultaneously from the line. In order to  
reject the drive signal, a receiver circuit is used such as  
shown in Figure 10. Taking advantage of the differential  
nature of the signals, the receiver can subtract out the  
drive signal and amplify the received signal. This method  
works well for standard back-termination. If the back-  
termination resistors are reduced by positive feedback, a  
portion of the received signal also appears at the amplifier  
outputs. The result is that the received signal is attenuated  
A differential receiver is included using the LT1813, a dual  
100MHz, 750V/µs operational amplifier. The receiver gain  
from the transformer secondary is 2, and the drive signals  
are rejected by approximately a factor of 14dB. Other  
optional components include filter capacitors and an RC  
snubber network at the transformer primary.  
R
BT  
V
a
V
L
1:n  
R
L
R
BT  
–V  
a
–V  
L
V
+
i
8.45  
R
F
R
R
D
1k  
G
R
L
= REFLECTED IMPEDANCE  
+
2
1:1  
n
1.21k  
523Ω  
+
LT1813  
R
L
100Ω  
2
2n  
1µF  
= ATTENUATION OF V  
a
523Ω  
R
L
1.21k  
1k  
V
RX  
V
BIAS  
+ R  
BT  
=
2
2n  
+
R
L
A
V
= 10  
2
2n  
R
R
G
LT1813  
8.45Ω  
SET  
R
R
D
R
L
2
D
+ R  
BT  
+
2n  
–V  
i
R
F
G
1886 F10  
1886 F09  
Figure 9. Power Saving ADSL Modem Driver  
Figure 10. Receiver Configuration  
13  
LT1886  
U
W U U  
APPLICATIO S I FOR ATIO  
+
V
C1  
0.1µF  
C8  
0.1µF  
C9  
470pF  
JP1  
TP1  
TP2  
3
2
8
R9  
12.4Ω  
+
C21  
1
470pF  
R20  
LT1886  
+DRV  
130Ω  
TP5 TP6  
C19  
100pF  
R5  
1k  
R3  
20k  
+
4
V
6
7
R1  
9
R18  
R6  
JP3  
LINE  
OUT  
10k  
499Ω  
C4  
1µF  
C3  
1µF  
R2  
10k  
10  
2
C5  
1µF  
V
C23  
470pF  
JP5  
R7  
12.4Ω  
R8  
499Ω  
R19  
R4  
20k  
R7  
1k  
TP3  
TP4  
C20  
SEPARATE  
SECONDARY  
GROUND  
6
R10  
12.4Ω  
100pF  
R4  
130Ω  
7
–DRV  
5 + LT1886  
C22  
470pF  
4
JP2  
C6  
10pF  
C10  
470pF  
C11  
0.1µF  
COILCRAFT X8390-A  
OR EQUIVALENT  
C2  
0.1µF  
R11  
4.02k  
R12  
2k  
+
V
C12  
R13  
1k  
0.1µF  
8
2
+
–RCV  
1
LT1813  
3
+
+
V
V
+
+
C14  
C15  
C18  
10µF  
5
6
10µF  
1µF  
+
+RCV  
GND  
7
R15  
2k  
LT1813  
4
C16  
10µF  
C17  
1µF  
JP4  
V
C13  
V
0.1µF  
R16  
1k  
R14  
4.02k  
C7  
10pF  
1886 F11  
Figure 11. LT1886, LT1813 DSL Demo Board (DC304)  
14  
LT1886  
W
W
SI PLIFIED SCHE ATIC  
+
V
I
4
Q8  
Q9  
Q3  
Q4  
Q5  
Q6  
OUT  
Q7  
D1  
D2  
C1  
Q1  
Q2  
–IN  
+IN  
I
1
I
I
3
2
1886 SS  
V
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1886  
U
TYPICAL APPLICATIO  
Split Supply ±5V ADSL CPE Line Driver  
5V  
8
3
2
+
6.19Ω  
1
130Ω  
1/2 LT1886  
1k  
1k  
100pF  
1:2*  
+
2k  
866Ω  
866Ω  
+
V
IN  
100Ω  
V
L
2k  
100pF  
6
*COILCRAFT X8390-A  
OR EQUIVALENT  
6.19Ω  
7
1/2 LT1886  
+
130Ω  
5
4
–5V  
V
L
= 5  
(ASSUME 0.5dB TRANSFORMER POWER LOSS)  
2
V
IN  
REFLECTED LINE IMPEDANCE = 100/ 2 = 25Ω  
2kΩ  
EFFECTIVE TERMINATION = 2 • 6.19 •  
= 24.8Ω  
1kΩ  
EACH AMPLIFIER: 0.56V  
, 29.9mA  
RMS  
RMS  
±3V PEAK, ±160mA PEAK  
1886 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1207  
Dual 250mA, 60MHz Current Feedback Amplifier  
Dual 50MHz, 800V/µs Op Amp  
Shutdown/Current Set Function  
LT1361  
±15V Operation, 1mV V , 1µA I  
OS B  
LT1396  
Dual 400MHz, 800V/µs Current Feedback Amplifier  
Dual 125mA, 50MHz Current Feedback Amplifier  
Dual 500mA, 50MHz Current Feedback Amplifier  
Dual 100MHz, 750V/µs, 8nV/Hz Op Amp  
4.6mA Supply Current Set, 80mA I  
OUT  
LT1497  
900V/µs Slew Rate  
LT1795  
Shutdown/Current Set Function, ADSL CO Driver  
Low Noise, Low Power Differential Receiver  
LT1813  
1886f LT/TP 0400 4K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 1999  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1886CS8

Dual 700MHz, 200mA Operational Amplifier
Linear

LT1886CS8#PBF

LT1886 - Dual 700MHz, 200mA Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1886CS8#TR

暂无描述
Linear

LT1886CS8#TRPBF

暂无描述
Linear

LT1893-11-0125

PHOTOTRANSISTOR | NPN | DOME-5.0
ETC

LT190Z

GREEN OVAL LAMP LED
SEOUL

LT191

INFRARED LAMP LED
SEOUL

LT1910

Protected High Side MOSFET Driver
Linear

LT1910ES8

Protected High Side MOSFET Driver
Linear

LT1910ES8#PBF

LT1910 - Protected High Side MOSFET Driver; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1910ES8#TRPBF

LT1910 - Protected High Side MOSFET Driver; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1910IS8

LT1910 - Protected High Side MOSFET Driver; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear