LT1932ES6#TRMPBF [Linear]

LT1932 - Constant-Current DC/DC LED Driver in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C;
LT1932ES6#TRMPBF
型号: LT1932ES6#TRMPBF
厂家: Linear    Linear
描述:

LT1932 - Constant-Current DC/DC LED Driver in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C

驱动器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总16页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LT1932  
Constant-Current DC/DC  
LED Driver in ThinSOT  
July 2001  
U
FEATURES  
DESCRIPTIO  
Up to 80% Efficiency  
TheLT®1932isafixedfrequencystep-upDC/DCconverter  
designed to operate as a constant-current source. Be-  
cause it directly regulates output current, the LT1932 is  
ideal for driving light emitting diodes (LEDs) whose light  
intensity is proportional to the current passing through  
them, not the voltage across their terminals.  
Inherently Matched LED Current  
Drives Five White LEDs from 2V  
Drives Six White LEDs from 2.7V  
Drives Eight White LEDs from 3V  
Precise, Adjustable Control of LED Current  
Disconnects LEDs In Shutdown  
1.2MHz Fixed Frequency Switching  
With an input voltage range of 1V to 10V, the device works  
from a variety of input sources. The LT1932 accurately  
regulates LED current even when the input voltage is  
higher than the LED voltage, greatly simplifying battery-  
powered designs. A single external resistor sets LED  
current between 5mA and 40mA, which can then be easily  
adjusted using either a DC voltage or a pulse width  
modulated (PWM) signal. When the LT1932 is placed in  
shutdown, the LEDs are disconnected from the output,  
ensuring a quiescent current of under 1µA for the entire  
circuit. The device’s 1.2MHz switching frequency permits  
theuseoftiny, lowprofilechipinductorsandcapacitorsto  
minimize footprint and cost in space-conscious portable  
applications.  
Uses Tiny Ceramic Capacitors  
Uses Tiny 1mm-Tall Inductors  
Regulates Current Even When VIN > VOUT  
Operates with VIN as Low as 1V  
Low Profile (1mm) ThinSOTTM Package  
U
APPLICATIO S  
Cellular Telephones  
Handheld Computers  
Digital Cameras  
Portable MP3 Players  
Pagers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Li-Ion Driver for Four White LEDs  
Efficiency  
85  
L1  
6.8µH  
D1  
V
IN  
V
V
= 4.2V  
= 2.7V  
IN  
80  
2.7V TO 4.2V  
IN  
75  
70  
C1  
4.7µF  
6
1
V
SW  
IN  
LT1932  
SHDN  
PWM  
DIMMING  
CONTROL  
5
3
C2  
1µF  
65  
60  
55  
LED  
GND  
R
SET  
15mA  
4
2
R
SET  
1.50k  
0
5
10  
LED CURRENT (mA)  
15  
20  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN EMK212BJ105  
D1:ZETEX ZHCS400  
1932 TA01  
1932 TA02  
L1: SUMIDA CLQ4D106R8 OR PANASONIC ELJEA6R8  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
1
LT1932  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
VIN Voltage ............................................................. 10V  
SHDN Voltage ......................................................... 10V  
SW Voltage ............................................................. 36V  
LED Voltage ............................................................. 36V  
NUMBER  
TOP VIEW  
SW 1  
GND 2  
LED 3  
6 V  
IN  
5 SHDN  
4 R  
LT1932ES6  
SET  
R
SET Voltage ............................................................. 1V  
S6 PART MARKING  
LTST  
Junction Temperature.......................................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
S6 PACKAGE  
6-LEAD PLASTIC SOT-23  
TJMAX = 125°C, θJA = 250°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature  
ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VIN = 1.2V, VSHDN = 1.2V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
Quiescent Current  
1
V
V
V
= 0.2V  
= 0V  
1.2  
0.1  
1.6  
1.0  
mA  
µA  
RSET  
SHDN  
R
Pin Voltage  
R
R
= 1.50k  
100  
120  
mV  
mV  
SET  
SET  
SET  
LED Pin Voltage  
LED Pin Current  
= 1.50k, V < V (Figure 1)  
180  
IN  
OUT  
R
R
R
R
= 562, V = 1.5V  
= 750, V = 1.2V  
= 1.50k, V = 1.2V  
= 4.53k, V = 1.2V  
34  
26  
12.5  
38  
30  
15  
5
42  
34  
17.5  
mA  
mA  
mA  
mA  
SET  
SET  
SET  
SET  
IN  
IN  
IN  
IN  
LED Pin Current Temperature Coefficient  
Switching Frequency  
I
= 15mA  
0.02  
1.2  
mA/°C  
MHz  
%
LED  
V
= 1V  
0.8  
90  
1.6  
IN  
Maximum Switch Duty Cycle  
Switch Current Limit  
95  
400  
550  
150  
780  
200  
mA  
Switch V  
I
= 300mA  
mV  
CESAT  
SW  
SHDN Pin Current  
V
V
= 0V  
= 2V  
0
15  
0.1  
30  
µA  
µA  
SHDN  
SHDN  
Start-Up Threshold (SHDN Pin)  
Shutdown Threshold (SHDN Pin)  
0.85  
V
V
0.25  
5
Switch Leakage Current  
Switch Off, V = 5V  
0.01  
µA  
SW  
Note 1: Absolute Maximum Ratings are those values beyond which the life of  
a device may be impaired.  
Note 2: The LT1932E is guaranteed to meet specifications from 0°C to 70°C.  
Specifications over the 40°C to 85°C operating temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
2
LT1932  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch Saturation Voltage (VCESAT  
)
Switch Current Limit  
Switching Frequency  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
700  
600  
400  
350  
300  
250  
V
IN  
= 1.2V  
T
= 125°C  
J
V
IN  
= 10V  
500  
400  
300  
200  
100  
T
= 25°C  
J
V
= 10V  
IN  
V
= 1.2V  
IN  
200  
150  
T
= –50°C  
J
100  
50  
0
0
–50  
–25  
0
25  
50  
75 100 125  
50  
100 125  
–50 –25  
0
25  
75  
100  
200  
400  
0
500  
600  
300  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SWITCH CURRENT (mA)  
1932 G03  
1932 G02  
1932 G01  
LED Pin Voltage  
LED Current  
LED Current  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
400  
350  
300  
250  
R
R
= 562Ω  
= 750Ω  
R
R
= 562Ω  
= 750Ω  
SET  
SET  
SET  
SET  
T
= 125°C  
J
200  
150  
T
= 25°C  
J
R
R
= 1.50k  
= 4.53k  
50  
R
= 1.50k  
= 4.53k  
SET  
SET  
T
= –50°C  
J
100  
50  
0
R
SET  
SET  
0
0
0
5
10 15 20 25 30 35 40  
LED CURRENT (mA)  
1932 G04  
50 25  
0
25  
75 100 125  
0
2
4
6
8
10  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
1932 G05  
1932 G06  
Quiescent Current  
SHDN Pin Current  
Switching Waveforms  
2.00  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VSW  
T
= –50°C  
J
10V/DIV  
1.75  
1.50  
IL1  
200mA/DIV  
VOUT  
V
= 10V  
IN  
T
= 25°C  
1.25  
1.00  
0.75  
0.50  
0.25  
J
20mV/DIV  
AC COUPLED  
V
IN  
= 1.2V  
ILED  
10mA/DIV  
T
= 125°C  
J
1093 G09  
VIN = 3V  
0.5µs/DIV  
4 WHITE LEDs  
I
LED = 15mA  
CIRCUIT ON FIRST PAGE  
OF THIS DATA SHEET  
0
0
25  
0
50  
75 100 125  
2
6
50  
25  
0
4
8
10  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1932 G07  
1932 G08  
3
LT1932  
U
U
U
PI FU CTIO S  
RSET (Pin 4): A resistor between this pin and ground  
programs the LED current (that flows into the LED pin).  
This pin is also used to provide LED dimming.  
SW(Pin1):SwitchPin.Thisisthecollectoroftheinternal  
NPN power switch. Minimize the metal trace area con-  
nected to this pin to minimize EMI.  
SHDN (Pin 5): Shutdown Pin. Tie this pin higher than  
0.85VtoturnontheLT1932;tiebelow0.25Vtoturnitoff.  
GND (Pin 2): Ground Pin. Tie this pin directly to local  
ground plane.  
VIN (Pin 6): Input Supply Pin. Bypass this pin with a  
capacitor to ground as close to the device as possible.  
LED (Pin 3): LED Pin. This is the collector of the internal  
NPN LED switch. Connect the cathode of the bottom LED  
to this pin.  
W
BLOCK DIAGRA  
D1  
L1  
V
OUT  
V
IN  
V
IN  
SW  
SHDN  
C1  
C2  
5
6
1
DRIVER  
Q1  
+
0.04  
×5  
LED  
3
+
1.2MHz  
OSCILLATOR  
Σ
I
LED  
+
Q2  
DRIVER  
S
R
+
Q
A2  
+
A1  
LED CURRENT  
REFERENCE  
1932 F01  
2
4
GND  
R
SET  
I
SET  
R
SET  
Figure 1. LT1932 Block Diagram  
U
OPERATIO  
The LT1932 uses a constant frequency, current mode  
power switch. In this manner, A1 sets the correct peak  
current level to keep the LED current in regulation. If A1’s  
output increases, more current is delivered to the output;  
if it decreases, less current is delivered. A1 senses the  
LED current in switch Q2 and compares it to the current  
reference, which is programmed using resistor RSET. The  
RSET pin is regulated to 100mV and the output current,  
ILED, is regulated to 225 • ISET. Pulling the RSET pin higher  
than 100mV will pull down the output of A1, turning off  
power switch Q1 and LED switch Q2.  
control scheme to regulate the output current, ILED  
.
Operation can be best understood by referring to the  
block diagram in Figure 1. At the start of each oscillator  
cycle, theSRlatchisset, turningonpowerswitchQ1. The  
signal at the noninverting input of the PWM comparator  
A2 is proportional to the switch current, summed to-  
gether with a portion of the oscillator ramp. When this  
signalreachesthelevelsetbytheoutputoferroramplifier  
A1, comparator A2 resets the latch and turns off the  
4
LT1932  
W U U  
APPLICATIO S I FOR ATIO  
U
Inductor Selection  
efficiency by up to 12% over the smaller, thinner ones.  
Keep this in mind when choosing an inductor.  
SeveralinductorsthatworkwellwiththeLT1932arelisted  
in Table 1. Many different sizes and shapes are available.  
Consult each manufacturer for more detailed information  
and for their entire selection of related parts. As core  
losses at 1.2MHz are much lower for ferrite cores that for  
the cheaper powdered-iron ones, ferrite core inductors  
should be used to obtain the best efficiency. Choose an  
inductor that can handle at least 0.5A and ensure that the  
inductor has a low DCR (copper wire resistance) to mini-  
mize I2R power losses. A 4.7µH or 6.8µH inductor will be  
a good choice for most LT1932 designs.  
The value of inductance also plays an important role in the  
overall system efficiency. While a 1µH inductor will have  
a lower DCR and a higher current rating than the 6.8µH  
version of the same part, lower inductance will result in  
higher peak currents in the switch, inductor and diode.  
Efficiency will suffer if inductance is too small. Figure 3  
showstheefficiencyoftheTypicalApplicationonthefront  
page of this data sheet, with several different values of the  
same type of inductor (Panasonic ELJEA). The smaller  
values give an efficiency 3% to 5% lower than the 6.8µH  
value.  
Table 1. Recommended Inductors  
MAX  
DCR  
(m)  
MAX  
HEIGHT  
(mm)  
85  
L
(µH)  
PANASONIC  
ELJEA6R8  
PART  
VENDOR  
80  
SUMIDA  
CLQ4D10-6R8  
ELJEA4R7  
ELJEA6R8  
4.7  
6.8  
180  
250  
2.2  
2.2  
Panasonic  
(714) 373-7334  
www.panasonic.com  
75  
SUMIDA  
CMD4D06-6R8  
70  
LQH3C4R7M24  
LQH3C100M24  
4.7  
10  
260  
300  
2.2  
2.2  
Murata  
(814) 237-1431  
www.murata.com  
65  
60  
55  
TAIYO YUDEN  
LB2016B6R8  
V
IN  
= 3.6V  
LB2016B4R7  
LB2016B100  
4.7  
6.8  
250  
350  
2.0  
2.0  
Taiyo Yuden  
(408) 573-4150  
www.t-yuden.com  
4 WHITE LEDs  
ALL ARE 10µH  
INDUCTORS  
TAIYO YUDEN  
LB2012B6R8  
0
5
10  
15  
20  
CMD4D06-4R7  
CMD4D06-6R8  
CLQ4D10-4R7  
CLQ4D10-6R8  
4.7  
6.8  
4.7  
6.8  
216  
296  
162  
195  
0.8  
0.8  
1.2  
1.2  
Sumida  
(847) 956-0666  
www.sumida.com  
LED CURRENT (mA)  
1932 F02  
Figure 2. Efficiency for Several Different Inductor Types  
Inductor Efficiency Considerations  
85  
Many applications have thickness requirements that re-  
strictcomponentheightsto1mmor2mm. Thereare2mm  
tall inductors currently available that provide a low DCR  
and low core losses that help provide good overall effi-  
ciency. Inductors with a height of 1mm (and less) are  
becoming more common, and a few companies have  
introduced chip inductors that are not only thin, but have  
a very small footprint as well. While these smaller induc-  
tors will be a necessity in some designs, their smaller size  
gives higher DCR and core losses, resulting in lower  
efficiencies. Figure 2 shows efficiency for the Typical  
Applicationcircuitonthefrontpageofthisdatasheet,with  
several different inductors. The larger devices improve  
80  
6.8µH  
75  
70  
22µH  
4.7µH  
2.2µH  
65  
60  
55  
V
IN  
= 3.6V  
4 WHITE LEDs  
PANASONIC ELJEA  
INDUCTORS  
0
5
10  
15  
20  
LED CURRENT (mA)  
1932 F03  
Figure 3. Efficiency for Several Different Inductor Values  
5
LT1932  
W U U  
U
APPLICATIO S I FOR ATIO  
Capacitor Selection  
turnedoff(typicallylessthanone-thirdthetime),soa0.4A  
or 0.5A diode will be sufficient for most designs.  
LowESR(equivalentseriesresistance)capacitorsshould  
be used at the output to minimize the output ripple  
voltage. Because they have an extremely low ESR and are  
available in very small packages, multilayer ceramic ca-  
pacitors are an excellent choice. X5R and X7R type  
capacitors are preferred because they retain their capaci-  
tance over wider voltage and temperature ranges than  
other types such as Y5V or Z5U. A 1µF or 2.2µF output  
capacitor is sufficient for most applications. Always use a  
capacitor with a sufficient voltage rating. Ceramic capaci-  
torsdonotneedtobederated(donotbuyacapacitorwith  
a rating twice what your application needs). A 16V ce-  
ramic capacitor is good to more than 16V, unlike a 16V  
tantalum, which may be good to only 8V when used in  
certain applications. Low profile ceramic capacitors with  
a 1mm maximum thickness are available for designs  
having strict height requirements.  
Table 3. Recommended Schottky Diodes  
PART  
VENDOR  
MBR0520  
MBR0530  
MBR0540  
ON Semiconductor  
(800) 282-9855  
www.onsemi.com  
ZHCS400  
ZHCS500  
Zetex  
(631) 543-7100  
www.zetex.com  
Programming LED Current  
The LED current is programmed with a single resistor  
connected to the RSET pin (see Figure 1). The RSET pin is  
internally regulated to 100mV, which sets the current  
flowing out of this pin, ISET, equal to 100mV/RSET. The  
LT1932regulatesthecurrentintotheLEDpin, ILED, to225  
times the value of ISET. For the best accuracy, a 1% (or  
better) resistor value should be used. Table 4 shows  
several typical 1% RSET values. For other LED current  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT1932. A 2.2µF or 4.7µF input capacitor  
is sufficient for most applications. Table 2 shows a list of  
several ceramic capacitor manufacturers. Consult the  
manufacturers for detailed information on their entire  
selection of ceramic parts.  
values, use the following equation to choose RSET  
.
0.1V  
RSET = 225 •  
ILED  
Table 4. RSET Resistor Values  
I
(mA)  
R
VALUE  
SET  
Table 2. Recommended Ceramic Capacitor Manufacturers  
LED  
40  
562Ω  
VENDOR  
Taiyo Yuden  
Murata  
PHONE  
URL  
30  
20  
15  
10  
5
750Ω  
1.13k  
1.50k  
2.26k  
4.53k  
(408) 573-4150  
(814) 237-1431  
(408) 986-0424  
www.t-yuden.com  
www.murata.com  
www.kemet.com  
Kemet  
Diode Selection  
Schottky diodes, with their low forward voltage drop and  
fast switching speed, are the ideal choice for LT1932  
applications. Table 3 shows several different Schottky  
diodes that work well with the LT1932. Make sure that the  
diode has a voltage rating greater than the output voltage.  
The diode conducts current only when the power switch is  
MostwhiteLEDsaredrivenatmaximumcurrentsof15mA  
to 20mA. Some higher power designs will use two parallel  
strings of LEDs for greater light output, resulting in 30mA  
to 40mA (two strings of 15mA to 20mA) flowing into the  
LED pin.  
6
LT1932  
W U U  
APPLICATIO S I FOR ATIO  
U
Open-Circuit Protection  
If the RSET pin is used, increasing the duty cycle will  
decrease the brightness. Using this method, the LEDs are  
dimmed using RSET and turned off completely using  
SHDN. If the RSET pin is used to provide PWM dimming,  
the approximate value of RPWM should be (where VMAX is  
the “high” value of the PWM signal):  
For applications where the string of LEDs can be discon-  
nectedorcouldpotentiallybecomeanopencircuit,azener  
diode can be added across the LEDs to protect the LT1932  
(see Figure 4). If the device is turned on without the LEDs  
present, no current feedback signal is provided to the LED  
pin. The LT1932 will then switch at its maximum duty  
cycle, generating an output voltage 10 to 15 times greater  
thantheinputvoltage. Withoutthezener, theSWpincould  
see more than 36V and exceed its maximum rating. The  
zener voltage should be larger than the maximum forward  
voltage of the LED string.  
VMAX  
0.15V  
RPWM = RSET  
– 1  
In addition to providing the widest dimming range, PWM  
brightness control also ensures the “purest” white LED  
color over the entire dimming range. The true color of a  
white LED changes with operating current, and is the  
“purest” white at a specific forward current, usually 15mA  
or 20mA. If the LED current is less than or more than this  
value, the emitted light becomes more blue. For color  
LCDs, this often results in a noticeable and undesirable  
blue tint to the display.  
L1  
D1  
6.8µH  
V
IN  
24V  
6
1
V
SW  
IN  
LT1932  
SHDN  
5
3
C1  
4.7µF  
C2  
When a PWM control signal is used to drive the SHDN pin  
of the LT1932 (see Figure 6), the LEDs are turned off and  
on at the PWM frequency. The current through them  
alternates between full current and zero current, so the  
average current changes with duty cycle. This ensures  
that when the LEDs are on, they can be driven at the  
appropriate current to give the purest white light. Figure  
5 shows the LED current when a 5kHz PWM dimming  
control signal is used with the LT1932. The LED current  
waveform cleanly tracks the PWM control signal with no  
delays, so the LED brightness varies linearly with the  
PWM duty cycle.  
LED  
GND  
1µF  
R
SET  
4
15mA  
2
R
1.50k  
SET  
1932 F04  
Figure 4. LED Driver with Open-Circuit Protection  
Dimming Using a PWM Signal  
PWM brightness control provides the widest dimming  
range (greater than 20:1) by pulsing the LEDs on and off  
usingthecontrolsignal. TheLEDsoperateateitherzeroor  
full current, but their average current changes with the  
PWM signal duty cycle. Typically, a 5kHz to 40kHz PWM  
signal is used. PWM dimming with the LT1932 can be  
accomplished two different ways (see Figure 6). The  
SHDN pin can be driven directly or a resistor can be added  
to drive the RSET pin.  
VPWM  
2V/DIV  
ILED  
10mA/DIV  
If the SHDN pin is used, increasing the duty cycle will  
increase the LED brightness. Using this method, the LEDs  
can be dimmed and turned off completely using the same  
control signal. A 0% duty cycle signal will turn off the  
LT1932, reducing the total quiescent current to zero.  
50µs/DIV  
1932 F05  
Figure 5. PWM Dimming Using the SHDN Pin  
7
LT1932  
W U U  
U
APPLICATIO S I FOR ATIO  
Dimming Using a Filtered PWM Signal  
Dimming Using a DC Voltage  
While the direct PWM method provides the widest dim-  
ming range and the purest white light output, it causes the  
LT1932 to enter into Burst ModeTM operation. This opera-  
tion may be undesirable for some systems, as it may  
reflect some noise to the input source at the PWM fre-  
quency.Thesolutionistofilterthecontrolsignalbyadding  
a 10k resistor and a 0.1µF capacitor as shown in Figure 6,  
converting the PWM to a DC level before it reaches the  
Forsomeapplications,thepreferredmethodofbrightness  
control uses a variable DC voltage to adjust the LED  
current. As the DC voltage is increased, current flows  
through RADJ into RSET, reducing the current flowing out  
of the RSET pin, thus reducing the LED current. Choose the  
RADJ value as shown below where VMAX is the maximum  
DC control voltage, ILED(MAX) is the current programmed  
by RSET, and ILED(MIN) is the minimum value of ILED (when  
the DC control voltage is at VMAX).  
R
SET pin. The 10k resistor minimizes the capacitance seen  
by the RSET pin.  
V
MAX – 0.1V  
R
ADJ = 225 •  
Dimming Using a Logic Signal  
I
LED(MAX) ILED(MIN)  
For applications that need to adjust the LED brightness in  
discrete steps, a logic signal can be used as shown in  
Figure 6. RMIN sets the minimum LED current value (when  
the NMOS is off):  
Regulating LED Current when VIN > VOUT  
The LT1932 contains special circuitry that enables it to  
regulate the LED current even when the input voltage is  
higherthantheoutputvoltage.WhenVIN islessthanVOUT  
,
0.1V  
ILED(MIN)  
RMIN = 225 •  
the internal NPN LED switch (transistor Q2 in Figure 1) is  
saturated to provide a lower power loss. When VIN is  
greater than VOUT, the NPN LED switch comes out of  
saturation to keep the LED current in regulation.  
RINCR sets how much the LED current is increased when  
the NMOS is turned on:  
Burst Mode is a trademark of Linear Technology Corporation.  
0.1V  
ILED(INCREASE)  
RINCR = 225 •  
LT1932  
SHDN  
5
LT1932  
LT1932  
LT1932  
LT1932  
R
R
R
R
SET  
4
SET  
4
SET  
4
SET  
4
R
R
R
INCR  
R
PWM  
10k  
ADJ  
PWM  
PWM  
PWM  
PWM  
V
DC  
LOGIC  
SIGNAL  
R
R
0.1µF  
R
R
MIN  
SET  
SET  
SET  
1932 F06  
PWM  
PWM  
FILTERED PWM  
DC VOLTAGE  
LOGIC  
Figure 6. Five Methods of LED Dimming  
8
LT1932  
W U U  
APPLICATIO S I FOR ATIO  
U
Board Layout Considerations  
L1  
As with all switching regulators, careful attention must be  
paid to the PCB board layout and component placement.  
Tomaximizeefficiency, switchriseandfalltimesaremade  
as short as possible. To prevent radiation and high fre-  
quency resonance problems, proper layout of the high  
frequency switching path is essential. Minimize the length  
and area of all traces connected to the SW pin and always  
use a ground plane under the switching regulator to  
minimize interplane coupling. The signal path including  
the switch, output diode D1 and output capacitor C2,  
contains nanosecond rise and fall times and should be  
kept as short as possible. In addition, the ground connec-  
tionfor theRSET resistor should be tieddirectly tothe GND  
pinandnotbesharedwithanyothercomponent, ensuring  
a clean, noise-free connection. Recommended compo-  
nent placement is shown in Figure 7.  
C1  
D1  
V
IN  
C2  
1
6
5
4
SHDN  
2
3
GND  
R
SET  
DIMMING  
CONTROL  
1932 F07  
Figure 7. Recommended Component Placement  
U
TYPICAL APPLICATIO S  
5V Driver for 16 White LEDs  
Efficiency  
80  
75  
D1  
L1  
10µH  
70  
65  
V
IN  
5V  
6
1
60  
55  
50  
V
SW  
IN  
LT1932  
SHDN  
5
3
C1  
C2  
2.2µF  
LED  
GND  
4.7µF  
R
SET  
4
0
5
10  
15  
20  
25  
30  
2
5V DC  
DIMMING  
CONTROL  
51.1k  
100Ω  
100Ω  
LED CURRENT (mA)  
1932 TA14b  
R
750Ω  
SET  
30mA  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN GMK325BJ225  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(814) 237-1431  
1932 TA14a  
L1: MURATA LQH3C100M24  
9
LT1932  
U
TYPICAL APPLICATIO S  
Efficiency  
Single Cell Driver for One White LED  
80  
75  
L1  
D1  
4.7µH  
V
IN  
1V TO 1.5V  
V
= 1.5V  
= 1.1V  
IN  
6
1
70  
65  
V
SW  
IN  
V
IN  
LT1932  
5
3
C1  
C2  
4.7µF  
SHDN  
LED  
GND  
4.7µF  
R
60  
55  
50  
SET  
15mA  
4
2
2.5V PWM  
DIMMING  
CONTROL  
24.9k  
R
SET  
1.50k  
0
2.5  
5
7.5  
10  
12.5  
15  
LED CURRENT (mA)  
C1, C2: TAIYO YUDEN JMK212BJ475 (408) 573-4150  
1932 TA03a  
D1: ZETEX ZHCS400  
(631) 543-7100  
(814) 237-1431  
1932 TA03b  
L1: MURATA LQH3C4R7M24  
Efficiency  
Single Cell Driver for Two White LEDs  
L1  
4.7µH  
D1  
80  
75  
70  
V
IN  
1V TO 1.5V  
V
= 1.5V  
= 1.1V  
IN  
6
1
V
SW  
V
IN  
IN  
LT1932  
SHDN  
5
3
65  
60  
55  
50  
C1  
C2  
2.2µF  
LED  
GND  
4.7µF  
R
SET  
4
15mA  
2
2.5V PWM 24.9k  
DIMMING  
CONTROL  
R
SET  
1.50k  
0
2.5  
5
7.5  
10  
12.5  
15  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN LMK212BJ225  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(814) 237-1431  
1932 TA04a  
LED CURRENT (mA)  
1932 TA04b  
L1: MURATA LQH3C4R7M24  
10  
LT1932  
U
TYPICAL APPLICATIO S  
Efficiency  
2-Cell Driver for Two White LEDs  
85  
80  
75  
70  
65  
60  
55  
L1  
D1  
4.7µH  
V
IN  
1.8V TO 3V  
V
= 3V  
IN  
6
1
V
SW  
IN  
V
= 1.8V  
IN  
LT1932  
SHDN  
5
3
C1  
C2  
2.2µF  
LED  
GND  
4.7µF  
R
SET  
4
15mA  
2
2.5V DC 60.4k  
DIMMING  
CONTROL  
R
SET  
1.50k  
0
5
10  
15  
20  
LED CURRENT (mA)  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN LMK212BJ225  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(814) 237-1431  
1932 TA15a  
1932 TA15b  
L1: MURATA LQH3C4R7M24  
2-Cell Driver for Three White LEDs  
Efficiency  
L1  
4.7µH  
85  
80  
D1  
V
IN  
1.8V TO 3V  
V
IN  
= 3V  
6
1
V
SW  
75  
70  
IN  
V
IN  
= 1.8V  
LT1932  
SHDN  
5
3
C1  
4.7µF  
C2  
2.2µF  
LED  
GND  
R
SET  
4
15mA  
65  
60  
55  
2
2.5V DC  
DIMMING  
CONTROL  
60.4k  
R
1.50k  
SET  
0
5
10  
LED CURRENT (mA)  
15  
20  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN EMK316BJ225  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(814) 237-1431  
1932 TA06a  
1932 TA06b  
L1: MURATA LQH3C4R7M24  
11  
LT1932  
U
TYPICAL APPLICATIO S  
2-Cell Driver for Four White LEDs  
Efficiency  
L1  
4.7µH  
85  
80  
D1  
V
IN  
1.8V TO 3V  
V
IN  
= 3V  
75  
70  
6
1
C1  
4.7µF  
V
IN  
= 1.8V  
V
SW  
IN  
LT1932  
SHDN  
PWM  
5
3
C2  
1µF  
LED  
GND  
DIMMING  
CONTROL  
65  
60  
55  
R
SET  
4
15mA  
2
R
SET  
1.50k  
0
5
10  
15  
20  
LED CURRENT (mA)  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN EMK212BJ105  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(814) 237-1431  
1932 TA07a  
1932 TA07b  
L1: MURATA LQH3C4R7M24  
2-Cell Driver for Five White LEDs  
Efficiency  
L1  
4.7µH  
85  
80  
D1  
V
IN  
2V TO 3V  
6
1
C1  
75  
70  
4.7µF  
V
IN  
= 3V  
V
SW  
IN  
LT1932  
SHDN  
PWM  
5
3
C2  
1µF  
V
IN  
= 2V  
LED  
GND  
DIMMING  
CONTROL  
65  
60  
55  
R
SET  
4
2
R
1.50k  
SET  
15mA  
0
5
10  
LED CURRENT (mA)  
15  
20  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN TMK316BJ105  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(814) 237-1431  
1932 TA05a  
1932 TA05b  
L1: MURATA LQH3C4R7M24  
12  
LT1932  
U
TYPICAL APPLICATIO S  
Li-Ion Driver for Two White LEDs  
Efficiency  
L1  
6.8µH  
85  
80  
D1  
V
IN  
2.7V TO 4.2V  
V
= 4.2V  
= 2.7V  
IN  
6
1
V
75  
70  
IN  
V
SW  
IN  
LT1932  
SHDN  
5
3
C1  
C2  
LED  
GND  
4.7µF  
2.2µF  
R
SET  
4
15mA  
65  
60  
55  
2
3.3V PWM  
DIMMING  
CONTROL  
31.6k  
R
1.50k  
SET  
0
5
10  
15  
20  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN LMK212BJ225  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(714) 373-7334  
1932 TA08a  
LED CURRENT (mA)  
1932 TA08b  
L1: PANASONIC ELJEA6R8  
Li-Ion Driver for Three White LEDs  
Efficiency  
85  
80  
L1  
6.8µH  
D1  
V
IN  
V
IN  
= 4.2V  
2.7V TO 4.2V  
V
= 2.7V  
6
1
IN  
75  
70  
V
SW  
IN  
LT1932  
5
3
C1  
C2  
SHDN  
LED  
GND  
4.7µF  
2.2µF  
R
65  
60  
55  
SET  
15mA  
4
2
3.3V PWM  
DIMMING  
CONTROL  
31.6k  
R
1.50k  
SET  
0
5
10  
LED CURRENT (mA)  
15  
20  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN EMK316BJ225  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(714) 373-7334  
1932 TA09a  
1932 TA09b  
L1: PANASONIC ELJEA6R8  
13  
LT1932  
U
TYPICAL APPLICATIO S  
Li-Ion Driver for Four White LEDs  
Efficiency  
L1  
6.8µH  
85  
80  
D1  
V
IN  
V
= 4.2V  
= 2.7V  
IN  
2.7V TO 4.2V  
V
IN  
75  
70  
C1  
4.7µF  
6
1
V
SW  
IN  
LT1932  
SHDN  
PWM  
DIMMING  
CONTROL  
5
3
C2  
1µF  
65  
60  
55  
LED  
GND  
R
SET  
4
15mA  
2
R
SET  
1.50k  
0
5
10  
15  
20  
LED CURRENT (mA)  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN EMK212BJ105  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(714) 373-7334  
1932 TA10a  
1932 TA10b  
L1: PANASONIC ELJEA6R8  
Li-Ion Driver for Five White LEDs  
Efficiency  
85  
80  
L1  
D1  
4.7µH  
V
IN  
2.7V TO 4.2V  
V
= 4.2V  
= 2.7V  
IN  
6
1
75  
70  
V
IN  
C1  
V
SW  
4.7µF  
IN  
LT1932  
SHDN  
PWM  
5
3
C2  
LED  
GND  
DIMMING  
CONTROL  
1µF  
65  
60  
55  
R
SET  
4
2
R
SET  
1.50k  
15mA  
0
5
10  
LED CURRENT (mA)  
15  
20  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN TMK316BJ105  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(814) 237-1431  
1932 TA11a  
1932 TA11b  
L1: MURATA LQH3C4R7M24  
14  
LT1932  
U
TYPICAL APPLICATIO S  
Li-Ion Driver for Eight White LEDs  
Efficiency  
85  
80  
L1  
4.7µH  
D1  
V
IN  
3V TO 4.2V  
V
= 4.2V  
IN  
6
1
75  
70  
V
SW  
IN  
LT1932  
SHDN  
5
3
V
IN  
= 3V  
C1  
C2  
LED  
GND  
4.7µF  
1µF  
65  
60  
55  
R
SET  
4
2
3.3V DC  
DIMMING  
CONTROL  
80.6k  
R
1.50k  
SET  
15mA  
0
5
10  
LED CURRENT (mA)  
15  
20  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN GMK316BJ105  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(814) 237-1431  
1932 TA13a  
1932 TA13b  
L1: MURATA LQH3C4R7M24  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic SOT-23  
(LTC DWG # 05-08-1634)  
(LTC DWG # 05-08-1636)  
2.80 – 3.10  
(.110 – .118)  
(NOTE 3)  
.20  
(.008)  
A2  
A
2.60 – 3.00 1.50 – 1.75  
(.102 – .118) (.059 – .069)  
(NOTE 3)  
DATUM ‘A’  
PIN ONE ID  
1.90  
(.074)  
REF  
L
.09 – .20  
A1  
(.004 – .008)  
NOTE:  
(NOTE 2)  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
SOT-23  
SOT-23  
(Original)  
(ThinSOT)  
.90 – 1.45  
1.00 MAX  
(.039 MAX)  
A
A1  
A2  
L
.95  
(.037)  
REF  
(.035 – .057)  
3. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE INCLUSIVE OF PLATING  
5. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
6. MOLD FLASH SHALL NOT EXCEED .254mm  
7. PACKAGE EIAJ REFERENCE IS:  
.00 – 0.15  
(.00 – .006)  
.01 – .10  
(.0004 – .004)  
.25 – .50  
(.010 – .020)  
S6 SOT-23 0401  
.90 – 1.30  
.80 – .90  
(.031 – .035)  
(6PLCS, NOTE 2)  
(.035 – .051)  
SC-74A (EIAJ) FOR ORIGINAL  
JEDEL MO-193 FOR THIN  
.35 – .55  
.30 – .50 REF  
(.014 – .021)  
(.012 – .019 REF)  
15  
LT1932  
U
TYPICAL APPLICATIO  
Li-Ion Driver for Ten White LEDs  
Efficiency  
80  
75  
L1  
10µH  
D1  
V
IN  
= 4.2V  
V
IN  
2.7V TO 4.2V  
V
= 2.7V  
IN  
6
1
70  
65  
V
SW  
IN  
LT1932  
SHDN  
C2  
5
3
C1  
4.7µF  
LED  
GND  
4.7µF  
60  
55  
50  
R
SET  
4
2
100Ω  
100Ω  
R
750Ω  
SET  
30mA  
0
5
10  
15  
20  
25  
30  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN TMK325BJ475  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(814) 237-1431  
1932 TA16a  
TOTAL LED CURRENT (mA)  
1932 TA16b  
L1: MURATA LQH3C100M24  
Li-Ion Driver for Six White LEDs  
Efficiency  
L1  
85  
80  
D1  
4.7µH  
V
IN  
2.7V TO 4.2V  
V
V
= 4.2V  
= 2.7V  
IN  
6
1
75  
70  
V
SW  
IN  
IN  
LT1932  
SHDN  
5
3
C1  
C2  
LED  
GND  
4.7µF  
1µF  
65  
60  
55  
R
SET  
4
2
3.3V DC  
DIMMING  
CONTROL  
80.6k  
R
SET  
1.50k  
15mA  
0
5
10  
LED CURRENT (mA)  
15  
20  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN TMK316BJ105  
D1: ZETEX ZHCS400  
(408) 573-4150  
(408) 573-4150  
(631) 543-7100  
(814) 237-1431  
1932 TA12a  
1932 TA12b  
L1: MURATA LQH3C4R7M24  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1615  
LT1617  
LT1618  
LTC1682  
LT1930  
LT1931  
LTC3200  
Micropower DC/DC Converter in 5-Lead ThinSOT  
20V at 12mA from 2.5V Input, ThinSOT Package  
–15V at 12mA from 2.5V Input, ThinSOT Package  
Drives 20 White LEDs from Li-Ion, MS10 Package  
Micropower Inverting DC/DC Converter in 5-Lead ThinSOT  
Constant-Current/Constant-Voltage DC/DC Converter  
Doubler Charge Pump with Low Noise Linear Regulator  
1.4MHz Switching Regulator in 5-Lead ThinSOT  
Inverting 1.2MHz Switching Regulator in 5-Lead ThinSOT  
Low Noise Regulated Charge Pump  
3.3V and 5V Outputs with 60µV  
Noise, Up to 80mA Output  
RMS  
5V at 480mA from 3.3V Input, ThinSOT Package  
5V at 350mA from 5V Input, ThinSOT Package  
5V Output with Up to 100mA Output  
1932i LT/TP 0701 1.5K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LT1933

600mA, 500kHz Step-Down Switching Regulator in SOT-23
Linear

LT1933ES6

600mA, 500kHz Step-Down Switching Regulator in SOT-23
Linear

LT1933ES6#TRM

LT1933 - 600mA, 500kHz Step-Down Switching Regulator in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1933ES6#TRPBF

LT1933 - 600mA, 500kHz Step-Down Switching Regulator in SOT-23; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1933ES6-PBF

600mA, 500kHz Step-Down Switching Regulator in SOT-23 and DFN Packages
Linear

LT1933ES6-TR

600mA, 500kHz Step-Down Switching Regulator in SOT-23 and DFN Packages
Linear

LT1933ES6-TRPBF

600mA, 500kHz Step-Down Switching Regulator in SOT-23 and DFN Packages
Linear

LT1933HDCB

600mA, 500kHz Step-Down Switching Regulator in SOT-23 and DFN Packages
Linear

LT1933HDCB#TR

LT1933 - 600mA, 500kHz Step-Down Switching Regulator in SOT-23; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT1933HDCB#TRM

IC 1.05 A SWITCHING REGULATOR, 600 kHz SWITCHING FREQ-MAX, PDSO6, 2 X 3 MM, 0.75 MM HEIGHT, PLASTIC, MO-229, DFN-6, Switching Regulator or Controller
Linear

LT1933HDCB#TRMPBF

LT1933 - 600mA, 500kHz Step-Down Switching Regulator in SOT-23; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT1933HDCB-PBF

600mA, 500kHz Step-Down Switching Regulator in SOT-23 and DFN Packages
Linear