LT1944-1EMS [Linear]

Dual Micropower Step-Up DC/DC Converter; 双微升压型DC / DC转换器
LT1944-1EMS
型号: LT1944-1EMS
厂家: Linear    Linear
描述:

Dual Micropower Step-Up DC/DC Converter
双微升压型DC / DC转换器

转换器
文件: 总8页 (文件大小:155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1944-1  
Dual Micropower Step-Up  
DC/DC Converter  
U
FEATURES  
DESCRIPTIO  
The LT®1944-1 is a dual micropower step-up DC/DC  
converter in a 10-pin MSOP package. One converter is  
designed with a 100mA current limit and a 400ns off-time;  
the other with a 175mA current limit and a 1.5µs off-time.  
The 1.5µs off-time converter is ideal for generating an  
output voltage that is close to the input voltage (i.e. a Li-  
Ion to 5V converter, or a two-cell to 3.3V converter). With  
aninputvoltagerangeof1.2Vto15V,theLT1944-1isideal  
for a wide variety of applications. Both converters feature  
a quiescent current of only 20µA at no load, which further  
reduces to 0.5µA in shutdown. A current limited, fixed off-  
time control scheme conserves operating current, result-  
ing in high efficiency over a broad range of load current.  
Tiny, low profile inductors and capacitors can be used to  
minimize footprint and cost in space-conscious portable  
applications.  
Low Quiescent Current:  
20  
µ
A in Active Mode  
<1µA in Shutdown Mode  
Operates with VIN as Low as 1.2V  
Low VCESAT Switches: 85mV at 70mA  
Uses Small Surface Mount Components  
High Output Voltage: Up to 34V  
Tiny 10-Pin MSOP Package  
U
APPLICATIO S  
Small TFT LCD Panels  
Handheld Computers  
Battery Backup  
Digital Cameras  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Triple Output Power Supply (5V, 15V, –10V) for LCD Displays  
L1  
5V Output Efficiency  
D1  
22µH  
V
IN  
5V  
40mA  
90  
2.7V  
TO 4.2V  
8
6
85  
80  
75  
70  
65  
60  
55  
50  
4.7pF  
1M  
V
SW2  
IN  
V
= 4.2V  
IN  
4
2
5
1
SHDN2  
FB2  
C1  
4.7µF  
C2  
4.7µF  
V
= 2.7V  
IN  
LT1944-1  
SHDN1  
FB1  
324k  
GND PGND PGND SW1  
10  
3
7
9
178k  
2M  
C3  
1µF  
0.1  
1
10  
100  
4.7pF  
D2  
L2  
22µH  
LOAD CURRENT (mA)  
1944-1 TA01a  
15V  
2.5mA  
D3  
C1, C2: TAIYO YUDEN JMK212BJ475  
C3, C4: TAIYO YUDEN EMK212BJ105  
C5: TAIYO YUDEN EMK107BJ104  
D1, D2, D3, D4: CENTRAL SEMI CMDSH3  
L1, L2: MURATA LQH3C220  
C4  
5V  
1µF  
C5  
0.1µF  
D4  
–10V  
1mA  
1944-1 TA01  
1
LT1944-1  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
TOP VIEW  
VIN, SHDN1, SHDN2 Voltage ................................... 15V  
SW1, SW2 Voltage .................................................. 36V  
FB1, FB2 Voltage .......................................................VIN  
Current into FB1, FB2 Pins ..................................... 1mA  
Junction Temperature........................................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
FB1  
SHDN1  
GND  
SHDN2  
FB2  
1
2
3
4
5
10 SW1  
9
8
7
6
PGND  
V
LT1944-1EMS  
IN  
PGND  
SW2  
MS10 PACKAGE  
10-LEAD PLASTIC MSOP  
MS10 PART  
MARKING  
TJMAX = 125°C, θJA = 160°C/W  
LTTU  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.2V, VSHDN = 1.2V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
Quiescent Current, Each Switcher  
1.2  
V
Not Switching  
20  
30  
1
µA  
µA  
V
= 0V  
SHDN  
FB Comparator Trip Point  
1.205  
1.23  
8
1.255  
V
mV  
%/V  
nA  
FB Comparator Hysteresis  
FB Voltage Line Regulation  
FB Pin Bias Current (Note 3)  
Switch Off Time, Switcher 1 (Note 4)  
1.2V < V < 12V  
0.05  
30  
0.1  
80  
IN  
V
= 1.23V  
FB  
V
V
> 1V  
< 0.6V  
400  
1.5  
ns  
µs  
FB  
FB  
Switch Off Time, Switcher 2 (Note 4)  
V
V
> 1V  
< 0.6V  
1.5  
1.5  
µs  
µs  
FB  
FB  
Switch V  
I
= 70mA  
85  
120  
125  
225  
mV  
mA  
mA  
CESAT  
SW  
Switch Current Limit, Switcher 1  
Switch Current Limit, Switcher 2  
SHDN Pin Current  
65  
100  
175  
130  
V
V
= 1.2V  
= 5V  
2
8
3
12  
µA  
µA  
SHDN  
SHDN  
SHDN Input Voltage High  
SHDN Input Voltage Low  
Switch Leakage Current  
0.9  
V
V
0.25  
5
Switch Off, V = 5V  
0.01  
µA  
SW  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 2: The LT1944-1E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
Note 3: Bias current flows into the FB pin.  
Note 4: See Figure 1 for Switcher 1 and Switcher 2 locations.  
2
LT1944-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch Saturation Voltage  
Feedback Pin Voltage and  
Bias Current  
(VCESAT  
)
Quiescent Current  
0.15  
0.13  
0.10  
0.08  
0.05  
0.03  
0
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
50  
40  
30  
20  
10  
0
25  
23  
21  
19  
17  
15  
V
= 1.23V  
FB  
NOT SWITCHING  
I
= 100mA  
SWITCH  
VOLTAGE  
CURRENT  
I
= 70mA  
SWITCH  
V
= 12V  
IN  
V
= 1.2V  
50  
IN  
–50  
0
25  
50  
75  
100  
–25  
–50  
–25  
0
25  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1944-1 G01  
1944-1 G03  
1944-1 G02  
Switch Off Time  
Switch Current Limit  
Shutdown Pin Current  
2000  
1800  
1600  
1400  
1200  
1000  
800  
25  
20  
15  
10  
5
200  
175  
150  
125  
100  
75  
V
= 12V  
IN  
SWITCHER 2  
SWITCHER 2  
SWITCHER 1  
V
= 1.2V  
IN  
25°C  
V
= 12V  
IN  
100°C  
600  
V
= 1.2V  
IN  
SWITCHER 1  
25  
400  
200  
0
0
–50  
50  
0
5
10  
15  
–50  
0
25  
50  
75  
100  
–25  
50  
75  
100  
–25  
0
SHUTDOWN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1944-1 G03  
1944-1 G05  
1944-1 G04  
U
U
U
PI FU CTIO S  
FB1 (Pin 1): Feedback Pin for Switcher 1. Set the output  
SW2 (Pin 6): Switch Pin for Switcher 2. This is the  
collector of the internal NPN power switch. Minimize the  
metal trace area connected to the pin to minimize EMI.  
voltage by selecting values for R1 and R2.  
SHDN1 (Pin 2): Shutdown Pin for Switcher 1. Tie this pin  
to 0.9V or higher to enable device. Tie below 0.25V to turn  
it off.  
PGND (Pins 7, 9): Power Ground. Tie these pins directly  
to the local ground plane. Both pins must be tied.  
GND (Pin 3): Ground. Tie this pin directly to the local  
ground plane.  
VIN (Pin 8): Input Supply Pin. Bypass this pin with a  
capacitor as close to the device as possible.  
SHDN2 (Pin 4): Shutdown Pin for Switcher 2. Tie this pin  
to 0.9V or higher to enable device. Tie below 0.25V to turn  
it off.  
SW1 (Pin 10): Switch Pin for Switcher 1. This is the  
collector of the internal NPN power switch. Minimize the  
metal trace area connected to the pin to minimize EMI.  
FB2 (Pin 5): Feedback Pin for Switcher 2. Set the output  
voltage by selecting values for R1B and R2B.  
3
LT1944-1  
W
BLOCK DIAGRA  
D1  
D2  
L1  
L2  
V
IN  
V
V
V
IN  
OUT1  
OUT2  
C3  
C1  
C2  
V
IN  
SHDN1  
SW1  
SW2  
SHDN2  
8
2
10  
6
4
V
IN  
R5  
40k  
R6  
40k  
R6B  
40k  
R5B  
40k  
A1  
A1B  
+
+
ENABLE  
ENABLE  
V
V
OUT1  
OUT2  
R1B  
R1  
Q1B  
(EXTERNAL)  
(EXTERNAL)  
FB1  
FB2  
Q1  
400ns  
1.5µs  
Q2  
Q2B  
X10  
1
5
Q3  
Q3B  
ONE-SHOT  
ONE-SHOT  
X10  
R2  
R2B  
(EXTERNAL)  
DRIVER  
DRIVER  
(EXTERNAL)  
R3  
30k  
R3B  
30k  
RESET  
RESET  
+
+
R4  
140k  
R4B  
140k  
0.12Ω  
0.12Ω  
12mV  
21mV  
A2  
A2B  
SWITCHER 1  
SWITCHER 2  
GND  
PGND PGND  
3
9
7
1944-1 BD  
Figure 1. LT1944-1 Block Diagram  
U
OPERATIO  
The LT1944-1 uses a constant off-time control scheme to  
provide high efficiencies over a wide range of output  
current. Operation can be best understood by referring to  
theblockdiagraminFigure1.Q1andQ2alongwithR3and  
R4 form a bandgap reference used to regulate the output  
voltage. When the voltage at the FB1 pin is slightly above  
1.23V, comparator A1 disables most of the internal cir-  
cuitry. Output current is then provided by capacitor C2,  
which slowly discharges until the voltage at the FB1 pin  
drops below the lower hysteresis point of A1 (typical  
hysteresis at the FB pin is 8mV). A1 then enables the  
internal circuitry, turns on power switch Q3, and the  
current in inductor L1 begins ramping up. Once the switch  
current reaches 100mA, comparator A2 resets the one-  
shot, which turns off Q3 for 400ns. L1 then delivers  
current to the output through diode D1 as the inductor  
current ramps down. Q3 turns on again and the inductor  
current ramps back up to 100mA, then A2 resets the one-  
shot, again allowing L1 to deliver current to the output.  
This switching action continues until the output voltage is  
charged up (until the FB1 pin reaches 1.23V), then A1  
turns off the internal circuitry and the cycle repeats. The  
LT1944-1 contains additional circuitry to provide protec-  
tion during start-up and under short-circuit conditions.  
When the FB1 pin voltage is less than approximately  
600mV, the switch off-time is increased to 1.5µs and the  
current limit is reduced to around 70mA (70% of its  
normal value). This reduces the average inductor current  
and helps minimize the power dissipation in the power  
switch and in the external inductor and diode.  
The second switching regulator operates in the same  
manner, but with a 175mA current limit and an off-time of  
1.5µs. Withthislongeroff-time, switcher2isidealforvery  
low duty cycle applications (i.e. Li-Ion to 5V boost  
converters).  
4
LT1944-1  
U
W U U  
APPLICATIO S I FOR ATIO  
Choosing an Inductor  
systems with output voltages below 7V, a 10µH inductor  
is the best choice, even though the equation above might  
specify a smaller value. This is due to the inductor current  
overshootthatoccurswhenverysmallinductorvaluesare  
used (see Current Limit Overshoot section).  
Several recommended inductors that work well with the  
LT1944-1 are listed in Table 1, although there are many  
other manufacturers and devices that can be used. Con-  
sult each manufacturer for more detailed information and  
for their entire selection of related parts. Many different  
sizes and shapes are available. Use the equations and  
recommendations in the next few sections to find the  
correct inductance value for your design.  
For higher output voltages, the formula above will give  
large inductance values. For a 2V to 20V converter (typical  
LCD Bias application), a 74µH inductor is called for with  
the above equation, but a 22µH inductor could be used  
without excessive reduction in maximum output current.  
Table 1. Recommended Inductors  
PART  
VALUE (  
µH)  
MAX DCR (  
)  
VENDOR  
Inductor Selection—SEPIC Regulator  
LQH3C4R7  
LQH3C100  
LQH3C220  
4.7  
10  
22  
0.26  
0.30  
0.92  
Murata  
(714) 852-2001  
www.murata.com  
The formula below calculates the approximate inductor  
valuetobeusedforaSEPICregulatorusingtheLT1944-1.  
As for the boost inductor selection, a larger or smaller  
value can be used.  
CD43-4R7  
CD43-100  
CDRH4D18-4R7  
CDRH4D18-100  
4.7  
10  
4.7  
10  
0.11  
0.18  
0.16  
0.20  
Sumida  
(847) 956-0666  
www.sumida.com  
VOUT + VD  
DO1608-472  
DO1608-103  
DO1608-223  
4.7  
10  
22  
0.09  
0.16  
0.37  
Coilcraft  
(847) 639-6400  
www.coilcraft.com  
L = 2  
tOFF  
ILIM  
Current Limit Overshoot  
Inductor Selection—Boost Regulator  
Fortheconstantoff-timecontrolschemeoftheLT1944-1,  
the power switch is turned off only after the current limit  
is reached. There is a 100ns delay between the time when  
the current limit is reached and when the switch actually  
turns off. During this delay, the inductor current exceeds  
the current limit by a small amount. The peak inductor  
current can be calculated by:  
The formula below calculates the appropriate inductor  
value to be used for a boost regulator using the LT1944-1  
(or at least provides a good starting point). This value  
provides a good tradeoff in inductor size and system  
performance. Pick a standard inductor close to this value.  
A larger value can be used to slightly increase the available  
output current, but limit it to around twice the value  
calculated below, as too large of an inductance will in-  
crease the output voltage ripple without providing much  
additional output current. A smaller value can be used  
(especially for systems with output voltages greater than  
12V) to give a smaller physical size. Inductance can be  
calculated as:  
V
IN(MAX) VSAT  
IPEAK = ILIM  
+
100ns  
L
Where VSAT = 0.25V (switch saturation voltage). The  
current overshoot will be most evident for systems with  
high input voltages and for systems where smaller induc-  
tor values are used. This overshoot can be beneficial as it  
helps increase the amount of available output current for  
smaller inductor values. This will be the peak current seen  
by the inductor (and the diode) during normal operation.  
For designs using small inductance values (especially at  
input voltages greater than 5V), the current limit over-  
shoot can be quite high. Although it is internally current  
V
OUT V  
) + VD  
IN MIN  
(
L =  
tOFF  
ILIM  
where VD = 0.4V (Schottky diode voltage), ILIM = 100mA  
(or 175mA) and tOFF = 400ns (or 1.5µs); for designs with  
varying VIN such as battery powered applications, use the  
minimum VIN value in the above equation. For most  
5
LT1944-1  
U
W U U  
APPLICATIO S I FOR ATIO  
limited to 100mA (or 175mA), the power switch of the  
LT1944-1canhandlelargercurrentswithoutproblem, but  
the overall efficiency will suffer. Best results will be ob-  
tained when IPEAK is kept below 400mA for the LT1944-1.  
Setting the Output Voltage  
Set the output voltage for each switching regulator by  
choosing the appropriate values for feedback resistors R1  
and R2 (see Figure 1).  
Capacitor Selection  
VOUT  
1.23V  
R1= R2  
1  
LowESR(EquivalentSeriesResistance)capacitorsshould  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multilayer ceramic capacitors are the best choice, as they  
have a very low ESR and are available in very small  
packages. Their small size makes them a good companion  
to the LT1944-1’s MS10 package. Solid tantalum capaci-  
tors(liketheAVXTPS, Sprague593Dfamilies)orOS-CON  
capacitors can be used, but they will occupy more board  
areathanaceramicandwillhaveahigherESR. Alwaysuse  
a capacitor with a sufficient voltage rating.  
Diode Selection  
For most LT1944-1 applications, the Philips BAT54 or  
CentralSemiconductorCMDSH-3surfacemountSchottky  
diodes are an ideal choice. Schottky diodes, with their low  
forward voltage drop and fast switching speed, are the  
best match for the LT1944-1. Many different manufactur-  
ers make equivalent parts, but make sure that the compo-  
nent is rated to handle at least 100mA.  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT1944-1. A 4.7µF input capacitor is  
sufficient for most applications. Table 2 shows a list of  
severalcapacitormanufacturers. Consultthemanufactur-  
ers for more detailed information and for their entire  
selection of related parts.  
Lowering Output Voltage Ripple  
Using low ESR capacitors will help minimize the output  
ripple voltage, but proper selection of the inductor and the  
output capacitor also plays a big role. The LT1944-1  
provides energy to the load in bursts by ramping up the  
inductor current, then delivering that current to the load.  
If too large of an inductor value or too small of a capacitor  
value is used, the output ripple voltage will increase  
because the capacitor will be slightly overcharged each  
burst cycle. To reduce the output ripple, increase the  
outputcapacitorvalueoradda4.7pFfeed-forwardcapaci-  
tor in the feedback network of the LT1944-1 (see the  
circuits in the Typical Applications section). Adding this  
small, inexpensive 4.7pF capacitor will greatly reduce the  
output voltage ripple.  
Table 2. Recommended Capacitors  
CAPACITOR TYPE  
VENDOR  
Ceramic  
Taiyo Yuden  
(408) 573-4150  
www.t-yuden.com  
Ceramic  
Ceramic  
AVX  
(803) 448-9411  
www.avxcorp.com  
Murata  
(714) 852-2001  
www.murata.com  
6
LT1944-1  
U
TYPICAL APPLICATIO S  
Dual Output (5V, 24V) Boost Converter  
L1  
22µH  
D1  
V
IN  
24V  
1mA  
2.7V  
TO 4.2V  
8
10  
SW1  
4.7pF  
1M  
V
IN  
2
4
1
5
SHDN1  
FB1  
C1  
4.7µF  
C2  
1µF  
LT1944-1  
SHDN2  
FB2  
53.6k  
GND PGND PGND SW2  
3
7
9
6
324k  
C3  
4.7pF  
D2  
1M  
4.7µF  
L2  
22µH  
5V  
40mA  
1944-1 TA02  
C1, C3: TAIYO YUDEN JMK212BJ475 (408) 573-4150  
C2: TAIYO YUDEN TMK316BJ105  
D1, D2: CENTRAL SEMI CMDSH-3  
L1, L2: MURATA LQH3C220  
(408) 573-4150  
(631) 435-1110  
(814) 237-1431  
U
PACKAGE DESCRIPTIO  
MS10 Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
0.034  
(0.86)  
REF  
0.043  
(1.10)  
MAX  
0.118 ± 0.004*  
(3.00 ± 0.102)  
10 9  
8
7 6  
0.007  
(0.18)  
0° – 6° TYP  
SEATING  
PLANE  
0.007 – 0.011  
(0.17 – 0.27)  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.005 ± 0.002  
(0.13 ± 0.05)  
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.193 ± 0.006  
(4.90 ± 0.15)  
0.0197  
(0.50)  
BSC  
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
1
2
3
4 5  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
MSOP (MS10) 1100  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LT1944-1  
U
TYPICAL APPLICATIO  
Four Output Power Supply (±5V, ±15V)  
D5  
–5V  
20mA  
C6  
0.1µF  
C7  
4.7µF  
D6  
L1  
22µH  
D1  
V
IN  
5V  
20mA  
2.7V  
TO 4.2V  
8
6
4.7pF  
1M  
V
SW2  
IN  
4
2
5
1
SHDN2  
FB2  
C1  
4.7µF  
C2  
4.7µF  
LT1944-1  
SHDN1  
FB1  
324k  
GND PGND PGND SW1  
10  
3
7
9
178k  
2M  
C3  
4.7pF  
D2  
1µF  
L2  
22µH  
15V  
2mA  
D3  
C1, C2, C7: TAIYO YUDEN JMK212BJ475  
C3, C4: TAIYO YUDEN EMK212BJ105  
C5, C6: TAIYO YUDEN EMK107BJ104  
D1, D2, D3, D4, D5, D6: CENTRAL SEMI CMDSH3  
L1, L2: MURATA LQH3C220  
C5  
0.1µF  
C4  
D4  
1µF  
–15V  
2mA  
1944-1 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1307  
Single-Cell Micropower 600kHz PWM DC/DC Converter  
3.3V at 75mA from One Cell, MSOP Package  
LT1316  
Burst ModeTM Operation DC/DC with Programmable Current Limit  
2-Cell Micropower DC/DC with Low-Battery Detector  
Single-Cell Micropower DC/DC Converter  
1.5V Minimum, Precise Control of Peak Current Limit  
3.3V at 200mA from Two Cells, 600kHz Fixed Frequency  
3V at 30mA from 1V, 1.7MHz Fixed Frequency  
5V at 150mA from 5V Input, Tiny ThinSOT Package  
5V at 200mA from 3.3V Input, Tiny ThinSOT Package  
20V at 12mA from 2.5V Input, Tiny ThinSOT Package  
–15V at 12mA from 2.5V Input, Tiny ThinSOT Package  
5V at 450mA from 3.3V, Tiny ThinSOT Package  
5V at 80mA and 30V at 8mA, MSOP Package  
LT1317  
LT1610  
LT1611  
1.4MHz Inverting Switching Regulator in 5-Lead ThinSOT  
1.4MHz Switching Regulator in 5-Lead ThinSOT  
Micropower DC/DC Converter in 5-Lead ThinSOT  
Micropower Inverting DC/DC Converter in 5-Lead ThinSOT  
2.2MHz Boost DC/DC Converter in ThinSOT  
LT1613  
LT1615  
LT1617  
LT1930A  
LT1944  
Dual Micropower Step-Up DC/DC Converter  
Burst Mode is a trademark of Linear Technology Corporation  
19441f LT/TP 0801 2K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 2001  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1944-1EMS#PBF

LT1944-1 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1944EMS

Dual Micropower Step-Up DC/DC Converter
Linear

LT1944EMS#PBF

LT1944 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1944EMS#TR

LT1944 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1944EMS#TRPBF

LT1944 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945

Dual Micropower DC/DC Converter with Positive and Negative Outputs
Linear

LT1945EMS

Dual Micropower DC/DC Converter with Positive and Negative Outputs
Linear

LT1945EMS#PBF

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945EMS#TR

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945EMS#TRPBF

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945IMS

暂无描述
Linear

LT1945IMS#PBF

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear