LT1944EMS [Linear]

Dual Micropower Step-Up DC/DC Converter; 双微升压型DC / DC转换器
LT1944EMS
型号: LT1944EMS
厂家: Linear    Linear
描述:

Dual Micropower Step-Up DC/DC Converter
双微升压型DC / DC转换器

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总8页 (文件大小:164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1944  
Dual Micropower Step-Up  
DC/DC Converter  
U
FEATURES  
DESCRIPTIO  
The LT®1944 is a dual micropower step-up DC/DC con-  
verter in a 10-pin MSOP package. Each converter is  
designed with a 350mA current limit and an input voltage  
range of 1.2V to 15V, making the LT1944 ideal for a wide  
variety of applications. Both converters feature a quies-  
centcurrentofonly20µAatnoload,whichfurtherreduces  
to 0.5µA in shutdown. A current limited, fixed off-time  
control scheme conserves operating current, resulting in  
highefficiencyoverabroadrangeofloadcurrent. The36V  
switch allows high voltage outputs up to 34V to be easily  
generated in a simple boost topology without the use of  
costly transformers. The LT1944’s low off-time of 400ns  
permits the use of tiny, low profile inductors and capaci-  
tors to minimize footprint and cost in space-conscious  
portable applications.  
Low Quiescent Current:  
20  
<1  
µ
A in Active Mode  
µA in Shutdown Mode  
Operates with VIN as Low as 1.2V  
Low VCESAT Switch: 250mV at 300mA  
Uses Small Surface Mount Components  
High Output Voltage: Up to 34V  
Tiny 10-Pin MSOP Package  
U
APPLICATIO S  
LCD Bias  
Handheld Computers  
Battery Backup  
Digital Cameras  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Dual Output (5V, 30V) Boost Converter  
5V Output Efficiency  
90  
L1  
4.7µH  
D1  
V
IN  
5V  
80mA  
85  
2.7V  
V
= 4.2V  
IN  
TO 4.2V  
8
10  
SW1  
80  
75  
70  
65  
60  
55  
50  
4.7pF  
1M  
V
IN  
V
= 2.7V  
IN  
2
4
1
5
SHDN1  
FB1  
C1  
4.7µF  
C2  
10µF  
LT1944  
SHDN2  
FB2  
324k  
GND PGND PGND SW2  
3
7
9
6
86.6k  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
C3  
4.7pF  
D2  
2M  
1944 TA01a  
1µF  
L2  
10µH  
30V  
8mA  
1944 TA01  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN JMK316BJ106  
C3: TAIYO YUDEN GMK316BJ105  
D1, D2: ON SEMI MBR0540  
L1: MURATA LQH3C4R7  
L2: MURATA LQH3C100  
1
LT1944  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
TOP VIEW  
VIN, SHDN1, SHDN2 Voltage ................................... 15V  
SW1, SW2 Voltage .................................................. 36V  
FB1, FB2 Voltage .......................................................VIN  
Current into FB1, FB2 Pins ..................................... 1mA  
Junction Temperature........................................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
FB1  
SHDN1  
GND  
SHDN2  
FB2  
1
2
3
4
5
10 SW1  
9
8
7
6
PGND  
V
LT1944EMS  
IN  
PGND  
SW2  
MS10 PACKAGE  
10-LEAD PLASTIC MSOP  
MS10 PART  
MARKING  
TJMAX = 125°C, θJA = 160°C/W  
LTTR  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.2V, VSHDN = 1.2V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
Quiescent Current, Each Switcher  
1.2  
V
Not Switching  
20  
30  
1
µA  
µA  
V
= 0V  
SHDN  
FB Comparator Trip Point  
FB Comparator Hysteresis  
FB Voltage Line Regulation  
FB Pin Bias Current (Note 3)  
Switch Off Time  
1.205  
1.23  
8
1.255  
V
mV  
%/V  
nA  
1.2V < V < 12V  
0.05  
30  
0.1  
80  
IN  
V
= 1.23V  
FB  
V
V
> 1V  
< 0.6V  
400  
1.5  
ns  
µs  
FB  
FB  
Switch V  
I
= 300mA  
250  
350  
350  
400  
mV  
mA  
CESAT  
SW  
Switch Current Limit  
SHDN Pin Current  
250  
0.9  
V
V
= 1.2V  
= 5V  
2
8
3
12  
µA  
µA  
SHDN  
SHDN  
SHDN Input Voltage High  
SHDN Input Voltage Low  
Switch Leakage Current  
V
V
0.25  
5
Switch Off, V = 5V  
0.01  
µA  
SW  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The LT1944 is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 3: Bias current flows into the FB pin.  
2
LT1944  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch Saturation Voltage  
(VCESAT  
Feedback Pin Voltage and  
Bias Current  
)
Quiescent Current  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
50  
40  
30  
20  
10  
0
25  
23  
21  
19  
17  
15  
V
= 1.23V  
FB  
NOT SWITCHING  
VOLTAGE  
CURRENT  
I
I
= 500mA  
= 300mA  
SWITCH  
V
IN  
= 12V  
SWITCH  
V
IN  
= 1.2V  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1944 G03  
1944 G01  
1944 G02  
Switch Off Time  
Switch Current Limit  
Shutdown Pin Current  
550  
500  
450  
400  
350  
300  
250  
400  
350  
300  
250  
200  
150  
100  
50  
25  
20  
15  
10  
5
V
IN  
= 12V  
V
= 1.2V  
IN  
V
IN  
= 1.2V  
25°C  
V
IN  
= 12V  
100°C  
0
0
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
0
5
10  
15  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHUTDOWN PIN VOLTAGE (V)  
1944 G04  
1944 G05  
1944 G03  
U
U
U
PI FU CTIO S  
FB1 (Pin 1): Feedback Pin for Switcher 1. Set the output  
SW2 (Pin 6): Switch Pin for Switcher 2. This is the  
collector of the internal NPN power switch. Minimize the  
metal trace area connected to the pin to minimize EMI.  
voltage by selecting values for R1 and R2.  
SHDN1 (Pin 2): Shutdown Pin for Switcher 1. Tie this pin  
to 0.9V or higher to enable device. Tie below 0.25V to turn  
it off.  
PGND (Pins 7, 9): Power Ground. Tie these pins directly  
to the local ground plane. Both pins must be tied.  
GND (Pin 3): Ground. Tie this pin directly to the local  
ground plane.  
VIN (Pin 8): Input Supply Pin. Bypass this pin with a  
capacitor as close to the device as possible.  
SHDN2 (Pin 4): Shutdown Pin for Switcher 2. Tie this pin  
to 0.9V or higher to enable device. Tie below 0.25V to turn  
it off.  
SW1 (Pin 10): Switch Pin for Switcher 1. This is the  
collector of the internal NPN power switch. Minimize the  
metal trace area connected to the pin to minimize EMI.  
FB2 (Pin 5): Feedback Pin for Switcher 2. Set the output  
voltage by selecting values for R1B and R2B.  
3
LT1944  
W
BLOCK DIAGRA  
D1  
D2  
L1  
L2  
V
IN  
V
V
V
IN  
OUT1  
OUT2  
C3  
C1  
C2  
V
IN  
SHDN1  
SW1  
SW2  
SHDN2  
8
2
10  
6
4
V
IN  
R5  
40k  
R6  
40k  
R6B  
40k  
R5B  
40k  
A1  
A1B  
+
+
ENABLE  
ENABLE  
V
V
OUT1  
OUT2  
R1B  
R1  
Q1B  
(EXTERNAL)  
(EXTERNAL)  
FB1  
FB2  
Q1  
400ns  
400ns  
Q2  
Q2B  
X10  
1
5
Q3  
Q3B  
ONE-SHOT  
ONE-SHOT  
X10  
R2  
R2B  
(EXTERNAL)  
DRIVER  
DRIVER  
(EXTERNAL)  
R3  
30k  
R3B  
30k  
RESET  
RESET  
+
+
R4  
140k  
R4B  
140k  
0.12  
0.12Ω  
42mV  
42mV  
A2  
A2B  
GND  
PGND PGND  
3
9
7
1944 BD  
Figure 1. LT1944 Block Diagram  
U
OPERATIO  
The LT1944 uses a constant off-time control scheme to  
provide high efficiencies over a wide range of output  
current. Operation can be best understood by referring to  
theblockdiagraminFigure1.Q1andQ2alongwithR3and  
R4 form a bandgap reference used to regulate the output  
voltage. When the voltage at the FB1 pin is slightly above  
1.23V, comparator A1 disables most of the internal cir-  
cuitry. Output current is then provided by capacitor C2,  
which slowly discharges until the voltage at the FB1 pin  
drops below the lower hysteresis point of A1 (typical  
hysteresis at the FB pin is 8mV). A1 then enables the  
internal circuitry, turns on power switch Q3, and the  
current in inductor L1 begins ramping up. Once the switch  
current reaches 350mA, comparator A2 resets the one-  
shot, which turns off Q3 for 400ns. L1 then delivers  
current to the output through diode D1 as the inductor  
current ramps down. Q3 turns on again and the inductor  
current ramps back up to 350mA, then A2 resets the one-  
shot, again allowing L1 to deliver current to the output.  
This switching action continues until the output voltage is  
charged up (until the FB1 pin reaches 1.23V), then A1  
turns off the internal circuitry and the cycle repeats. The  
LT1944 contains additional circuitry to provide protection  
during start-up and under short-circuit conditions. When  
the FB1 pin voltage is less than approximately 600mV, the  
switch off-time is increased to 1.5µs and the current limit  
is reduced to around 250mA (70% of its normal value).  
This reduces the average inductor current and helps  
minimize the power dissipation in the power switch and in  
the external inductor and diode. The second switching  
regulator operates in the same manner.  
4
LT1944  
U
W U U  
APPLICATIO S I FOR ATIO  
Choosing an Inductor  
voltages below 7V, a 4.7µH inductor is the best choice,  
even though the equation above might specify a smaller  
value. This is due to the inductor current overshoot that  
occurs when very small inductor values are used (see  
Current Limit Overshoot section).  
Several recommended inductors that work well with the  
LT1944arelistedinTable1,althoughtherearemanyother  
manufacturers and devices that can be used. Consult each  
manufacturer for more detailed information and for their  
entire selection of related parts. Many different sizes and  
shapesareavailable. Usetheequationsandrecommenda-  
tionsinthenextfewsectionstofindthecorrectinductance  
value for your design.  
For higher output voltages, the formula above will give  
large inductance values. For a 2V to 20V converter (typical  
LCD Bias application), a 21µH inductor is called for with  
the above equation, but a 10µH inductor could be used  
without excessive reduction in maximum output current.  
Table 1. Recommended Inductors  
PART  
VALUE (  
µH)  
MAX DCR (  
)  
VENDOR  
Inductor Selection—SEPIC Regulator  
LQH3C4R7  
LQH3C100  
LQH3C220  
4.7  
10  
22  
0.26  
0.30  
0.92  
Murata  
(714) 852-2001  
www.murata.com  
The formula below calculates the approximate inductor  
value to be used for a SEPIC regulator using the LT1944.  
As for the boost inductor selection, a larger or smaller  
value can be used.  
CD43-4R7  
CD43-100  
CDRH4D18-4R7  
CDRH4D18-100  
4.7  
10  
4.7  
10  
0.11  
0.18  
0.16  
0.20  
Sumida  
(847) 956-0666  
www.sumida.com  
V
OUT + VD  
ILIM  
DO1608-472  
DO1608-103  
DO1608-223  
4.7  
10  
22  
0.09  
0.16  
0.37  
Coilcraft  
(847) 639-6400  
www.coilcraft.com  
L = 2  
tOFF  
Current Limit Overshoot  
Inductor Selection—Boost Regulator  
For the constant off-time control scheme of the LT1944,  
thepowerswitchisturnedoffonlyafterthe350mAcurrent  
limit is reached. There is a 100ns delay between the time  
when the current limit is reached and when the switch  
actually turns off. During this delay, the inductor current  
exceeds the current limit by a small amount. The peak  
inductor current can be calculated by:  
The formula below calculates the appropriate inductor  
valuetobeusedforaboostregulatorusingtheLT1944(or  
at least provides a good starting point). This value pro-  
vides a good tradeoff in inductor size and system perfor-  
mance. Pick a standard inductor close to this value. A  
larger value can be used to slightly increase the available  
output current, but limit it to around twice the value  
calculated below, as too large of an inductance will in-  
crease the output voltage ripple without providing much  
additional output current. A smaller value can be used  
(especially for systems with output voltages greater than  
12V) to give a smaller physical size. Inductance can be  
calculated as:  
V
IN(MAX) VSAT  
IPEAK =ILIM  
+
100ns  
L
Where VSAT = 0.25V (switch saturation voltage). The  
current overshoot will be most evident for systems with  
high input voltages and for systems where smaller induc-  
tor values are used. This overshoot can be beneficial as it  
helps increase the amount of available output current for  
smaller inductor values. This will be the peak current seen  
by the inductor (and the diode) during normal operation.  
For designs using small inductance values (especially at  
input voltages greater than 5V), the current limit over-  
shoot can be quite high. Although it is internally current  
V
OUT V  
) + VD  
IN MIN  
(
L =  
tOFF  
ILIM  
where VD = 0.4V (Schottky diode voltage), ILIM = 350mA  
and tOFF = 400ns; for designs with varying VIN such as  
battery powered applications, use the minimum VIN value  
in the above equation. For most systems with output  
5
LT1944  
U
W U U  
APPLICATIO S I FOR ATIO  
limited to 350mA, the power switch of the LT1944 can  
handle larger currents without problem, but the overall  
efficiency will suffer. Best results will be obtained when  
Setting the Output Voltage  
Set the output voltage for each switching regulator by  
choosing the appropriate values for feedback resistors R1  
and R2 (see Figure 1).  
IPEAK is kept below 700mA for the LT1944.  
Capacitor Selection  
VOUT  
1.23V  
R1= R2  
1  
LowESR(EquivalentSeriesResistance)capacitorsshould  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multilayer ceramic capacitors are the best choice, as they  
have a very low ESR and are available in very small  
packages. Their small size makes them a good companion  
to the LT1944’s MS10 package. Solid tantalum capacitors  
(like the AVX TPS, Sprague 593D families) or OS-CON  
capacitors can be used, but they will occupy more board  
areathanaceramicandwillhaveahigherESR. Alwaysuse  
a capacitor with a sufficient voltage rating.  
Diode Selection  
For most LT1944 applications, the Motorola MBR0520  
surface mount Schottky diode (0.5A, 20V) is an ideal  
choice. Schottky diodes, with their low forward voltage  
drop and fast switching speed, are the best match for the  
LT1944. For higher output voltage applications the 30V  
MBR0530 or 40V MBR0540 can be used. Many different  
manufacturers make equivalent parts, but make sure that  
the component is rated to handle at least 0.35A.  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT1944. A 4.7µF input capacitor is suffi-  
cient for most applications. Table 2 shows a list of several  
capacitor manufacturers. Consult the manufacturers for  
more detailed information and for their entire selection of  
related parts.  
Lowering Output Voltage Ripple  
Using low ESR capacitors will help minimize the output  
ripple voltage, but proper selection of the inductor and the  
output capacitor also plays a big role. The LT1944 pro-  
vides energy to the load in bursts by ramping up the  
inductor current, then delivering that current to the load.  
If too large of an inductor value or too small of a capacitor  
value is used, the output ripple voltage will increase  
because the capacitor will be slightly overcharged each  
burst cycle. To reduce the output ripple, increase the  
outputcapacitorvalueoradda4.7pFfeed-forwardcapaci-  
tor in the feedback network of the LT1944 (see the circuits  
in the Typical Applications section). Adding this small,  
inexpensive 4.7pF capacitor will greatly reduce the output  
voltage ripple.  
Table 2. Recommended Capacitors  
CAPACITOR TYPE  
VENDOR  
Ceramic  
Taiyo Yuden  
(408) 573-4150  
www.t-yuden.com  
Ceramic  
Ceramic  
AVX  
(803) 448-9411  
www.avxcorp.com  
Murata  
(714) 852-2001  
www.murata.com  
6
LT1944  
U
TYPICAL APPLICATIO S  
2-Cell Dual Output (3.3V, 5V) Boost Converter  
L1  
4.7µH  
D1  
V
IN  
5V  
40mA  
1.8V  
TO 3V  
8
10  
SW1  
4.7pF  
1M  
V
IN  
2
4
1
5
SHDN1  
FB1  
C1  
4.7µF  
C2  
10µF  
LT1944  
SHDN2  
FB2  
324k  
GND PGND PGND SW2  
3
7
9
6
604k  
C3  
C1: TAIYO YUDEN JMK212BJ475  
(408) 573-4150  
4.7pF  
D2  
1M  
10µF  
C2, C3: TAIYO YUDEN JMK316BJ106 (408) 573-4150  
L2  
4.7µH  
D1, D2: ON SEMI MBR0520  
L1, L2: MURATA LQH3C4R7  
(800) 282-9855  
(814) 237-1431  
3.3V  
80mA  
1944 TA02  
2-Cell to 5V Efficiency  
2-Cell to 3.3V Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 3V  
IN  
V
V
= 3V  
IN  
= 1.8V  
IN  
V
= 1.8V  
IN  
0.1  
1
10  
100  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1944 TA02a  
1944 TA02b  
U
PACKAGE DESCRIPTIO  
MS10 Package  
10-Lead Plastic MSOP  
(LTC DWG # 05-08-1661)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
0.034  
(0.86)  
REF  
0.043  
(1.10)  
MAX  
10 9 8  
7 6  
0.007  
(0.18)  
0° – 6° TYP  
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.193 ± 0.006  
(4.90 ± 0.15)  
SEATING  
PLANE  
0.007 – 0.011  
(0.17 – 0.27)  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.005 ± 0.002  
(0.13 ± 0.05)  
0.0197  
(0.50)  
BSC  
MSOP (MS10) 1100  
1
2
3
4 5  
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LT1944  
U
TYPICAL APPLICATIO  
Four Output Power Supply for Color LCD Displays  
Q1  
C7  
0.1µF  
–6.5V  
500µA  
C6  
2.2µF  
D3A  
D3B  
Q2  
140k  
D2B  
D2A  
20V  
C3  
0.1µF  
500µA  
C5  
1µF  
C4  
0.1µF  
L1  
10µH  
D1  
V
IN  
10V  
5mA  
2.7V  
TO 4.2V  
8
10  
SW1  
1M  
V
IN  
2
4
1
5
SHDN1  
FB1  
C1  
4.7µF  
C2  
2.2µF  
LT1944  
SHDN2  
FB2  
140k  
GND PGND PGND SW2  
3
7
9
6
C8  
1µF  
82.5Ω  
L2  
10µH  
D4  
15mA  
5 WHITE LEDs  
1944 TA03  
C1: TAIYO YUDEN JMK212BJ475  
(408) 573-4150  
(408) 573-4150  
C2, C6: TAIYO YUDEN LMK212BJ225  
C3, C4, C7: TAIYO YUDEN EMK107BJ104 (408) 573-4150  
C5, C8: TAIYO YUDEN TMK316BJ105  
D1, D4: ON SEMI MBR0530  
D2, D3: ZETEX BAT54S  
L1, L2: SUMIDA CLQ4D10-100  
Q1, Q2: ON SEMI MMBT3906  
(408) 573-4150  
(800) 282-9855  
(631) 543-7100  
(847) 956-0666  
(800) 282-9855  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1307  
Single-Cell Micropower 600kHz PWM DC/DC Converter  
Burst Mode® Operation DC/DC with Programmable Current Limit  
2-Cell Micropower DC/DC with Low-Battery Detector  
Single-Cell Micropower DC/DC Converter  
3.3V at 75mA from One Cell, MSOP Package  
LT1316  
1.5V Minimum, Precise Control of Peak Current Limit  
3.3V at 200mA from Two Cells, 600kHz Fixed Frequency  
3V at 30mA from 1V, 1.7MHz Fixed Frequency  
5V at 150mA from 5V Input, Tiny SOT-23 Package  
5V at 200mA from 3.3V Input, Tiny SOT-23 Package  
20V at 12mA from 2.5V Input, Tiny SOT-23 Package  
–15V at 12mA from 2.5V Input, Tiny SOT-23 Package  
5V at 450mA from 3.3V, Tiny SOT-23 Package  
LT1317  
LT1610  
LT1611  
1.4MHz Inverting Switching Regulator in 5-Lead SOT-23  
1.4MHz Switching Regulator in 5-Lead SOT-23  
LT1613  
LT1615  
Micropower DC/DC Converter in 5-Lead SOT-23  
Micropower Inverting DC/DC Converter in 5-Lead SOT-23  
2.2MHz Boost DC/DC Converter in SOT-23  
LT1617  
LT1930A  
Burst Mode is a registered trademark of Linear Technology Corporation  
1944f LT/TP 1001 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LT1944EMS#PBF

LT1944 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1944EMS#TR

LT1944 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1944EMS#TRPBF

LT1944 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945

Dual Micropower DC/DC Converter with Positive and Negative Outputs
Linear

LT1945EMS

Dual Micropower DC/DC Converter with Positive and Negative Outputs
Linear

LT1945EMS#PBF

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945EMS#TR

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945EMS#TRPBF

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945IMS

暂无描述
Linear

LT1945IMS#PBF

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945IMS#TR

IC 0.4 A DUAL SWITCHING CONTROLLER, PDSO8, PLASTIC, MSOP-10, Switching Regulator or Controller
Linear

LT1945IMS#TRPBF

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear