LT1946 [Linear]

1.2MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start; 的1.2MHz升压型DC / DC转换器与1.5A开关和软启动
LT1946
型号: LT1946
厂家: Linear    Linear
描述:

1.2MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
的1.2MHz升压型DC / DC转换器与1.5A开关和软启动

转换器 开关 软启动
文件: 总12页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1946  
1.2MHz Boost  
DC/DC Converter with  
1.5A Switch and Soft-Start  
U
FEATURES  
DESCRIPTIO  
TheLT®1946isafixedfrequencystep-upDC/DCconverter  
containing an internal 1.5A, 36V switch. Capable of gener-  
ating 8V at 430mA from a 3.3V input, the LT1946 is ideal  
for large TFT-LCD panel power supplies. The LT1946  
switches at 1.2MHz, allowing the use of tiny, low profile  
inductors and low value ceramic capacitors. Loop com-  
pensationcanbeeitherinternalorexternal, givingtheuser  
flexibility in setting loop compensation and allowing opti-  
mized transient response with low ESR ceramic output  
capacitors.Soft-startiscontrolledwithanexternalcapaci-  
tor, which determines the input current ramp rate during  
start-up.  
1.5A, 36V Internal Switch  
1.2MHz Switching Frequency  
Integrated Soft-Start Function  
Output Voltage Up to 34V  
Low VCESAT Switch: 300mV at 1.5A (Typ)  
8V at 430mA from a 3.3V Input  
Small 8-Lead MSOP Package  
U
APPLICATIO S  
TFT-LCD Bias Supplies  
GPS Receivers  
DSL Modems  
Local Power Supplies  
The 8-lead MSOP package and high switching frequency  
ensurealowprofileoverallsolutionlessthan1.2mmhigh.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Efficiency  
L1  
D1  
90  
85  
80  
75  
4.7µH  
V
OUT  
V
IN  
8V  
3.3V  
430mA  
6
5
SW  
V
R1  
28.7k  
IN  
3
1
OFF ON  
SHDN  
C1  
LT1946  
2
2.2µF  
C2  
20µF  
70  
65  
V
C
FB  
R
C
SS COMP GND  
49.9k  
R2  
5.23k  
8
7
4
C
C
C
SS  
60  
55  
50  
470pF  
100nF  
1946 F01  
C1: 2.2µF, X5R OR X7R, 6.3V  
C2: 2 × 10µF, X5R OR X7R, 10V  
D1: MICROSEMI UPS120 OR EQUIVALENT  
L1: TDK RLF5018T-4R7M1R4  
100  
200  
LOAD CURRENT (mA)  
400  
0
500  
300  
1946 F01b  
Figure 1. 3.3V to 8V, 430mA Step-Up DC/DC Converter  
sn1946 1946fs  
1
LT1946  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
VIN Voltage ............................................................. 16V  
SW Voltage ............................................... 0.4V to 36V  
FB Voltage ............................................................. 2.5V  
SHDN Voltage ......................................................... 16V  
Current Into FB Pin .............................................. ±1mA  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
NUMBER  
TOP VIEW  
V
1
2
3
4
8 SS  
7 COMP  
C
LT1946EMS8  
FB  
SHDN  
GND  
6 V  
5 SW  
IN  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PART MARKING  
LTUG  
TJMAX = 125°C, θJA = 125°C/W  
(4-LAYER BOARD)  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3V, VSHDN = VIN unless otherwise specified. (Note 2)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
2.6  
UNITS  
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage  
2.45  
V
V
16  
1.230  
1.220  
1.250  
1.270  
1.270  
V
V
FB Pin Bias Current  
V
FB  
= 1.250V (Note 3)  
20  
40  
120  
nA  
µmhos  
V/V  
Error Amp Transconductance  
Error Amp Voltage Gain  
Quiescent Current  
I = 2µA  
300  
3.2  
0
V
V
= 2.5V, Not Switching  
5
1
mA  
SHDN  
Quiescent Current in Shutdown  
Reference Line Regulation  
Switching Frequency  
= 0V, V = 3V  
µA  
SHDN  
IN  
2.6V V 16V  
0.01  
1.2  
0.05  
%/V  
IN  
0.9  
0.8  
1.4  
1.5  
MHz  
MHz  
Switching Frequency in Foldback  
Maximum Duty Cycle  
V
= 0V  
0.4  
90  
MHz  
%
FB  
86  
Switch Current Limit  
(Note 4)  
= 1A  
1.5  
2.1  
240  
0.01  
4
3.1  
340  
1
A
Switch V  
I
mV  
µA  
µA  
V
CESAT  
SW  
Switch Leakage Current  
Soft-Start Charging Current  
SHDN Input Voltage High  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
V
SW  
V
SS  
= 5V  
= 0.5V  
2.5  
2.4  
6
0.5  
V
V
SHDN  
V
SHDN  
= 3V  
= 0V  
16  
0
32  
0.1  
µA  
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 3: Current flows out of FB pin.  
of a device may be impaired.  
Note 4: Current limit guaranteed by design and/or correlation to static test.  
Note 2: The LT1946E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Current limit is independent of duty cycle and is guaranteed by design.  
sn1946 1946fs  
2
LT1946  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Feedback Pin Voltage  
Oscillator Frequency  
Current Limit  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
1.28  
1.27  
1.26  
T
= –30°C  
T
T
= 100°C  
= 25°C  
1.25  
1.24  
1.23  
1.22  
1.21  
A
A
A
1.20  
–50 –25  
0
25  
50  
75 100 125  
25  
0
50  
75 100 125  
0.8  
1.2  
50  
25  
0
0.2  
0.4  
0.6  
1.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FEEDBACK VOLTAGE (V)  
1946 G03  
1946 G01  
1946 G02  
Switching Waveforms  
for Figure 1 Circuit  
Switch Saturation Voltage  
Quiescent Current  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
0.35  
0.30  
VOUT  
20mV/DIV  
AC COUPLED  
0.25  
VSW  
5V/DIV  
0.20  
0.15  
0.10  
0.05  
0V  
ILI  
0.5A/DIV  
AC COUPLED  
0.5µs/DIV  
1946 G06  
2.0  
0
–50 –25  
0
25  
50  
125  
75 100  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
TEMPERATURE (°C)  
SWITCH CURRENT (A)  
1946 G05  
1946 G04  
sn1946 1946fs  
3
LT1946  
U
U
U
PI FU CTIO S  
VC (Pin 1): Error Amplifier Output Pin. Tie external com-  
pensation network to this pin, or use the internal compen-  
sation network by shorting the VC pin to the COMP pin.  
VIN (Pin 6): Input Supply Pin. Must be locally bypassed.  
COMP (Pin 7): Internal Compensation Pin. Provides an  
internal compensation network. Tie directly to the VC pin  
for internal compensation. Tie to GND if not used.  
FB (Pin 2): Feedback Pin. Reference voltage is 1.250V.  
Connect resistive divider tap here. Minimize trace area at  
FB. Set VOUT according to VOUT = 1.250(1 + R1/R2).  
SS (Pin 8): Soft-Start Pin. Place a soft-start capacitor  
here. Upon start-up, 4µA of current charges the capacitor  
to 1.5V. Use a larger capacitor for slower start-up. Leave  
floating if not in use.  
SHDN(Pin3):ShutdownPin.Tieto2.4Vormoretoenable  
device. Ground to shut down. Do not float this pin.  
GND (Pin 4): Ground. Tie directly to local ground plane.  
SW (Pin 5): Switch Pin. This is the collector of the internal  
NPN power switch. Minimize the metal trace area con-  
nected to this pin to minimize EMI.  
W
BLOCK DIAGRA  
SS  
8
V
COMP  
C
1
7
120k  
90pF  
4µA  
SW  
5
COMPARATOR  
+
DRIVER  
R
Q
A2  
Q1  
S
V
IN  
1.250V  
REFERENCE  
6
+
+
0.01Ω  
A1  
Σ
V
OUT  
RAMP  
GENERATOR  
R1 (EXTERNAL)  
FB  
4
0.5V  
+
GND  
R2 (EXTERNAL)  
÷3  
1946 BD  
1.2MHz  
OSCILLATOR  
A3  
SHUTDOWN  
3
2
SHDN  
FB  
Figure 2. Block Diagram  
sn1946 1946fs  
4
LT1946  
U
OPERATIO  
The LT1946 uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion. Please refer to Figure 2 for the following description  
of the part’s operation. At the start of the oscillator cycle,  
the SR latch is set, turning on the power switch Q1. The  
switch current flows through the internal current sense  
resistor generating a voltage. This voltage is added to a  
stabilizing ramp and the resulting sum is fed into the  
positive terminal of the PWM comparator A2. When this  
voltageexceedsthelevelatthenegativeinputofA2,theSR  
latch is reset, turning off the power switch. The level at the  
negative input of A2 (VC pin) is set by the error amplifier  
(A1) and is simply an amplified version of the difference  
between the feedback voltage and the reference voltage of  
1.250V. In this manner, the error amplifier sets the correct  
peak current level to keep the output in regulation.  
below a nominal value of 0.5V. This is accomplished via  
comparator A3. This feature reduces the minimum duty  
cycle that the part can achieve thus allowing better control  
of the switch current during start-up. When the FB pin  
voltage exceeds 0.5V, the oscillator returns to the normal  
frequencyof1.2MHz.Asoft-startfunctionisalsoprovided  
by the LT1946. When the part is brought out of shutdown,  
4µA of current is sourced out of the SS pin. By connecting  
an external capacitor to the SS pin, the rate of voltage rise  
on the pin can be set. Typical values for the soft-start  
capacitor range from 10nF to 200nF. The SS pin directly  
limits the rate of rise on the VC pin, which in turn limits the  
peak switch current. Current limit is not shown in Figure 2.  
The switch current is constantly monitored and not al-  
lowed to exceed the nominal value of 2.1A. If the switch  
current reaches 2.1A, the SR latch is reset regardless of  
the output of comparator A2. This current limit helps  
protect the power switch as well as the external compo-  
nents connected to the LT1946.  
Two functions are provided to enable a very clean start-up  
for the LT1946. Frequency foldback is used to reduce the  
oscillator frequency by a factor of 3 when the FB pin is  
W U U  
U
APPLICATIO S I FOR ATIO  
TheinductorsshowninTable1werechosenforsmallsize.  
For better efficiency, use similar valued inductors with a  
larger volume.  
Inductor Selection  
SeveralinductorsthatworkwellwiththeLT1946arelisted  
in Table 1. This table is not exclusive; there are many other  
manufacturers and inductors that can be used. Consult  
each manufacturer for more detailed information and for  
their entire selection of related parts, as many different  
sizes and shapes are available. Ferrite core inductors  
shouldbeusedtoobtainthebestefficiency, ascorelosses  
at 1.2MHz are much lower for ferrite cores than for the  
cheaperpowdered-ironones. Chooseaninductorthatcan  
handleatleast1.5Awithoutsaturating,andensurethatthe  
inductor has a low DCR (copper wire resistance) to mini-  
mize I2R power losses. A 4.7µH to 10µH inductor will be  
the best choice for most LT1946 designs. Note that in  
some applications, the current handling requirements of  
the inductor can be lower, such as in the SEPIC topology  
where each inductor only carries one-half of the total  
switch current.  
Table 1. Recommended Inductors  
MAX  
DCR  
(µH) (m)  
SIZE  
L × W × H  
(mm)  
L
PART  
VENDOR  
CDRH5D18-4R1  
CDRH5D18-5R4  
CDRH5D28-5R3  
CDRH5D28-6R2  
CDRH5D28-8R2  
4.1  
5.4  
5.3  
6.2  
8.2  
57  
76  
38  
45  
53  
5.7 × 5.7 × 2  
Sumida  
(847) 956-0666  
www.sumida.com  
5.7 × 5.7 × 3  
ELL6SH-4R7M  
ELL6SH-5R6M  
ELL6SH-6R8M  
4.7  
5.6  
6.8  
50  
59  
62  
6.4 × 6 × 3  
Panasonic  
(408) 945-5660  
www.panasonic.com  
RLF5018T-  
4R7M1R4  
4.7  
45  
5.6 × 5.2 × 1.8 TDK  
(847) 803-6100  
www.tdk.com  
sn1946 1946fs  
5
LT1946  
W U U  
U
APPLICATIO S I FOR ATIO  
Capacitor Selection  
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multilayer ceramic capacitors are an excellent choice, as  
they have an extremely low ESR and are available in very  
small packages. X5R dielectrics are preferred, followed by  
X7R, as these materials retain the capacitance over wide  
voltage and temperature ranges. A 4.7µF to 20µF output  
capacitor is sufficient for most applications, but systems  
withverylowoutputcurrentsmayneedonlya1µFor2.2µF  
output capacitor. Solid tantalum or OS-CON capacitors  
can be used, but they will occupy more board area than a  
ceramicandwillhaveahigherESR.Alwaysuseacapacitor  
with a sufficient voltage rating.  
VOUT  
20mV/DIV  
AC COUPLED  
ILI  
0.5A/DIV  
AC COUPLED  
R
C = 7.5k  
200µs/DIV  
1946 F03a  
Figure 3a. Transient Response Shows Excessive Ringing  
VOUT  
20mV/DIV  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT1946. A 2.2µF to 4.7µF input capacitor is  
sufficient for most applications. Table 2 shows a list of  
several ceramic capacitor manufacturers. Consult the  
manufacturers for detailed information on their entire  
selection of ceramic parts.  
AC COUPLED  
ILI  
0.5A/DIV  
AC COUPLED  
RC = 18k  
200µs/DIV  
1946 F03b  
Figure 3b. Transient Response is Better  
Table 2. Ceramic Capacitor Manufacturers  
Taiyo Yuden  
(408) 573-4150  
www.t-yuden.com  
AVX  
(803) 448-9411  
www.avxcorp.com  
Murata  
(714) 852-2001  
www.murata.com  
VOUT  
20mV/DIV  
AC COUPLED  
Compensation—Adjustment  
ILI  
0.5A/DIV  
To compensate the feedback loop of the LT1946, a series  
resistor-capacitor network should be connected from the  
COMP pin to GND. For most applications, a capacitor in  
the range of 220pF to 680pF will suffice. A good starting  
value for the compensation capacitor, CC, is 470pF. The  
compensation resistor, RC, is usually in the range of 20k  
to 100k. A good technique to compensate a new applica-  
tion is to use a 100kpotentiometer in place of RC, and  
use a 470pF capacitor for CC. By adjusting the potentiom-  
eter while observing the transient response, the optimum  
value for RC can be found. Figures 3a to 3c illustrate this  
process for the circuit of Figure 1 with a load current  
steppedfrom250mAto300mA.Figure3ashowsthetran-  
sient response with RC equal to 7.5k. The phase margin is  
AC COUPLED  
RC = 49.9k  
200µs/DIV  
1946 F03b  
Figure 3c. Transient Response is Well Damped  
poor as evidenced by the excessive ringing in the output  
voltage and inductor current. In Figure 3b, the value of RC  
is increased to 18k, which results in a more damped re-  
sponse. Figure 3c shows the results when RC is increased  
further to 49.9k. The transient response is nicely damped  
and the compensation procedure is complete. The COMP  
pin provides access to an internal resistor (120k) and  
capacitor (90pF). For some applications, these values will  
suffice and no external RC and CC will be needed.  
sn1946 1946fs  
6
LT1946  
W U U  
APPLICATIO S I FOR ATIO  
U
Compensation—Theory  
+
Like all other current mode switching regulators, the  
LT1946 needs to be compensated for stable and efficient  
operation. Two feedback loops are used in the LT1946: a  
fast current loop which does not require compensation,  
and a slower voltage loop which does. Standard Bode plot  
analysis can be used to understand and adjust the voltage  
feedback loop.  
g
mp  
V
OUT  
C
R
L
OUT  
1.250V  
REFERENCE  
+
V
C
g
ma  
R1  
R
C
R
O
R2  
1946 F04  
C
C
C : COMPENSATION CAPACITOR  
C
As with any feedback loop, identifying the gain and phase  
contribution of the various elements in the loop is critical.  
Figure 4 shows the key equivalent elements of a boost  
converter. Because of the fast current control loop, the  
power stage of the IC, inductor and diode have been  
replaced by the equivalent transconductance amplifier  
C
g
mp  
: OUTPUT CAPACITOR  
OUT  
: TRANSCONDUCTANCE AMPLIFIER INSIDE IC  
ma  
g
: POWER STAGE TRANSCONDUCTANCE AMPLIFIER  
R : COMPENSATION RESISTOR  
C
L
O
R : OUTPUT RESISTANCE DEFINED AS V  
DIVIDED BY I  
LOAD(MAX)  
OUT  
R : OUTPUT RESISTANCE OF g  
ma  
R1, R2: FEEDBACK RESISTOR DIVIDER NETWORK  
Figure 4. Boost Converter Equivalent Model  
g
mp. gmp actsasacurrentsourcewheretheoutputcurrent  
is proportional to the VC voltage. Note that the maximum  
output current of gmp is finite due to the current limit in the  
IC.  
The Current Mode zero is a right half plane zero which can  
be an issue in feedback control design, but is manageable  
with proper external component selection.  
From Figure 4, the DC gain, poles and zeroes can be  
calculated as follows:  
Using the circuit of Figure 1 as an example, the following  
tableshowstheparametersusedtogeneratetheBodeplot  
shown in Figure 5.  
Table 3. Bode Plot Parameters  
2
Output Pole: P1=  
Parameter  
Value  
18.6  
20  
Units  
Comment  
2• π RL COUT  
R
L
Application Specific  
Application Specific  
Not Adjustable  
Adjustable  
1
Error Amp Pole: P2 =  
2• π RO CC  
1
Error Amp Zero: Z1=  
2• π RC CC  
C
OUT  
µF  
R
C
R
10  
MΩ  
pF  
O
C
C
470  
49.9  
8
kΩ  
V
Adjustable  
V
OUT  
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Application Specific  
Not Adjustable  
1.25  
VOUT  
DC GAIN: A =  
gma RO gmp RL  
V
3.3  
40  
V
IN  
g
g
µmho  
mho  
µH  
ma  
1
ESR Zero: Z2 =  
5
mp  
2• π ESR•COUT  
L
5.4  
1.2  
V
2 RL  
f
MHz  
IN  
S
RHP Zero: Z3 =  
2• π VOUT2 L  
From Figure 5, the phase is 120° when the gain reaches  
0dB giving a phase margin of 60°. This is more than  
adequate. The crossover frequency is 25kHz, which is  
aboutthreetimeslowerthanthefrequencyoftherighthalf  
plane zero Z2. It is important that the crossover frequency  
be at least three times lower than the frequency of the RHP  
fS  
3
High Frequency Pole: P3 >  
zero to achieve adequate phase margin.  
sn1946 1946fs  
7
LT1946  
W U U  
U
APPLICATIO S I FOR ATIO  
100  
Diode Selection  
ASchottkydiodeisrecommendedforusewiththeLT1946.  
The Microsemi UPS120 is a very good choice. Where the  
input to output voltage differential exceeds 20V, use the  
UPS140(a40Vdiode).Thesediodesareratedtohandlean  
average forward current of 1A. For applications where the  
average forward current of the diode is less than 0.5A, an  
ON Semiconductor MBR0520 diode can be used  
50  
0
–50  
Setting Output Voltage  
100  
1k  
10k 25k 100k  
FREQUENCY (Hz)  
1M  
To set the output voltage, select the values of R1 and R2  
(see Figure 1) according to the following equation:  
1946 F05a  
0
VOUT  
1.25V  
R1= R2  
– 1  
A good range for R2 is from 5k to 30k.  
–100  
Layout Hints  
60°  
ThehighspeedoperationoftheLT1946demandscareful  
attention to board layout. You will not get advertised  
performance with careless layout. Figure 6 shows the  
recommended component placement for a boost  
converter.  
–180  
–200  
100  
1k  
10k 25k 100k  
FREQUENCY (Hz)  
1M  
1946 F05b  
Figure 5. Bode Plot of Figure 1’s Circuit  
GROUND PLANE  
C
SS  
C1  
+
C
C
C
V
IN  
R
1
8
7
6
5
R1  
2
3
4
L1  
LT1946  
R2  
SHUTDOWN  
MULTIPLE  
VIAs  
C2  
GND  
V
OUT  
1946 F06  
Figure 6. Recommended Component Placement for Boost Converter. Note Direct High Current Paths Using Wide PC Traces. Minimize  
Trace Area at Pin 1 (VC) and Pin 2 (FB). Use Multiple Vias to Tie Pin 4 Copper to Ground Plane. Use Vias at One Location Only to Avoid  
Introducing Switching Currents Into the Ground Plane  
sn1946 1946fs  
8
LT1946  
U
TYPICAL APPLICATIO S  
Low Profile, Triple Output TFT Supply (10V, –10V, 20V)  
D2  
D3  
V
ON  
20V  
5mA  
C5  
0.1µF  
L1  
5.4µH  
AV  
D1  
DD  
V
10V  
IN  
3.3V TO 5V  
450mA, V = 5V  
IN  
6
5
SW  
275mA, V = 3.3V  
IN  
R1  
V
IN  
3
8
7
75k  
OFF ON  
SHDN  
SS LT1946  
COMP  
2
+
C2  
20µF  
C3  
1µF  
FB  
C1  
4.7µF  
V
GND  
4
C
1
R
33.3k  
R2  
10.5k  
C
SS  
C
100nF  
C
C
470pF  
C6  
0.1µF  
C1 TO C6: X5R OR X7R  
C1: 4.7µF, 6.3V  
C2: 2 × 10µF, 10V  
C3: 1µF, 25V  
C4: 2.2µF, 10V  
C5, C6: 0.1µF, 10V  
D4  
D5  
C4  
2.2µF  
V
OFF  
D1: MICROSEMI UPS120 OR EQUIVALENT  
D2 TO D5: ZETEX BAT54S OR EQUIVALENT  
L1: SUMIDA CDRH5D18-5R4  
–10V  
1946 TA01  
10mA  
Efficiency  
Transient Response  
90  
85  
80  
75  
AVDD  
V
= 5V  
IN  
50mV/DIV  
AC COUPLED  
V
= 3.3V  
IN  
ILI  
0.5A/DIV  
70  
65  
60  
55  
50  
AVDD  
150mA  
LOAD 100mA  
V
V
LOAD = 5mA  
LOAD = 10mA  
ON  
OFF  
V
IN = 5V  
100µs/DIV  
1946 TA01b  
100  
200  
400  
0
500  
300  
AV LOAD CURRENT (mA)  
DD  
1946 TA01a  
sn1946 1946fs  
9
LT1946  
U
TYPICAL APPLICATIO S  
12V Output Boost Converter  
L1  
D1  
V
OUT  
4.7µH  
V
12V  
410mA, V = 5V  
IN  
3.3V TO 5V  
IN  
IN  
6
5
SW  
275mA, V = 3.3V  
V
IN  
R1  
84.5k  
3
1
OFF ON  
SHDN  
C1  
LT1946  
2
4.7µF  
C2  
4.7µF  
V
FB  
C
R
C
SS COMP GND  
33.3k  
R2  
9.76k  
8
7
4
C
C
C
SS  
470pF  
100nF  
1946 TA02  
C1: 4.7µF, X5R OR X7R, 6.3V  
C2: 4.7µF, X5R OR X7R, 16V  
D1: MICROSEMI UPS120 OR EQUIVALENT  
L1: TDK RLF5018T-4R7M1R4  
Efficiency  
Transient Response  
90  
85  
80  
75  
V
= 5V  
IN  
VOUT  
100mV/DIV  
V
= 3.3V  
AC COUPLED  
IN  
70  
65  
ILI  
0.5A/DIV  
60  
55  
50  
175mA  
100mA  
ILOAD  
V
IN = 3.3V  
100µs/DIV  
1946 TA02b  
100  
200  
300  
400  
0
500  
LOAD CURRENT (mA)  
1946 TA02a  
sn1946 1946fs  
10  
LT1946  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.206)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
(.0165 ± .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.88 ± 0.1  
(.192 ± .004)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
0.13 ± 0.05  
(.005 ± .002)  
0.65  
(.0256)  
BCS  
MSOP (MS8) 1001  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
sn1946 1946fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1946  
U
TYPICAL APPLICATIO  
Low Profile, Triple Output TFT Supply (8V, 8V, 23V)  
D2  
D3  
D4  
D5  
V
ON  
23V  
5mA  
C5  
0.1µF  
C6  
0.1µF  
C7  
0.1µF  
L1  
5.4µH  
D1  
AV  
8V  
DD  
V
IN  
3.3V  
375mA  
6
5
V
SW  
R2  
28.7k  
IN  
SHDN  
3
8
7
OFF ON  
SS LT1946  
COMP  
2
+
C2  
20µF  
C4  
1µF  
FB  
C1  
4.7µF  
V
GND  
4
C
1
R
49.9k  
R3  
5.23k  
C
SS  
100nF  
C
C
C
470pF  
C8  
0.1µF  
C1 TO C8: X5R OR X7R  
C1: 4.7µF, 6.3V  
D7  
D6  
C3  
2.2µF  
C2: 2 × 10µF, 10V  
C3: 2.2µF, 10V  
C4: 1µF, 25V  
C5, C6, C8: 0.1µF, 10V  
C7: 0.1µF, 16V  
V
OFF  
–8V  
D1: MICROSEMI UPS120 OR EQUIVALENT  
D2 TO D5: ZETEX BAT54S OR EQUIVALENT  
L1: SUMIDA CDRH5D18-5R4  
1946 TA03  
10mA  
Efficiency  
Start-Up Waveforms  
85  
80  
75  
AVDD  
2V/DIV  
VON  
70  
65  
60  
55  
50  
10V/DIV  
VOFF  
5V/DIV  
V
V
LOAD = 5mA  
ON  
OFF  
IIN  
200mA/V  
LOAD = 10mA  
0
100  
200  
300  
400  
1ms/DIV  
1946 TA04  
AV LOAD CURRENT (mA)  
DD  
1946 TA03a  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
1.4MHz Switching Regulator in 5-Lead ThinSOTTM  
Micropower Constant Off-Time DC/DC Converter in 5-Lead ThinSOT 20V at 12mA from 2.5V, ThinSOT Package  
1.2MHz/2.2MHz, 1A Switching Regulator in 5-Lead ThinSOT 12V at 300mA from 5V Input, ThinSOT Package  
COMMENTS  
LT1613  
5V at 200mA from 3.3V Input, ThinSOT Package  
LT1615  
LT1930/LT1930A  
LT1944/LT1944-1 Dual 350mA Boost Converter  
V
V
V
= 1.2V to 15V, V  
= 1.2V to 15V, V  
to 34V, MS10 Package  
IN  
IN  
IN  
OUT  
OUT  
LT1945  
LT1946A  
LT1947  
Dual ±250mA Boost Converter  
to ±34V, MS10 Package  
12.7MHz, 1.5A Boost DC/DC Converter  
3MHz, Dual Switching Regulator  
= 2.45V to 16V, V  
to 34V, MS8E Package  
OUT  
8V at 200mA from 3.3V Input, 10-Lead MSOP Package  
Burst Mode and ThinSOT are trademarks of Linear Technology Corporation.  
sn1946 1946fs  
LT/TP 1002 2K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LT1946/LT1946A

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN
Linear

LT1946A

2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1946AEMS8E

2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1946AEMS8E#PBF

LT1946A - 2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1946AEMS8E#TR

暂无描述
Linear

LT1946AEMS8E#TRPBF

LT1946A - 2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1946EMS8

1.2MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1947

Adjustable Output TFT-LCD Triple Switching Regulator
Linear

LT1947EMS

Adjustable Output TFT-LCD Triple Switching Regulator
Linear

LT1947EMS#PBF

LT1947 - Adjustable Output TFT-LCD Triple Switching Regulator; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C
Linear

LT1947EMS#TRPBF

LT1947 - Adjustable Output TFT-LCD Triple Switching Regulator; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C
Linear

LT1947EMSE

Adjustable Output TFT-LCD Triple Switching Regulator
Linear