LT1950IGN#TRPBF [Linear]

LT1950 - Single Switch PWM Controller with Auxiliary Boost Converter; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C;
LT1950IGN#TRPBF
型号: LT1950IGN#TRPBF
厂家: Linear    Linear
描述:

LT1950 - Single Switch PWM Controller with Auxiliary Boost Converter; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总20页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1950  
Single Switch PWM  
Controller with Auxiliary  
Boost Converter  
U
FEATURES  
DESCRIPTIO  
TheLT®1950isawideinputrange, forward,boost,flyback  
and SEPIC controller that drives an N-channel power  
MOSFET with few external components required.  
Wide Input Range: 3V to 25V  
Programmable Volt-Second Clamp  
Output Power Levels from 25W to 500W  
Auxiliary Boost Converter Provides 10V Gate Drive  
A resistor programmable duty cycle clamp can be used to  
generate a volt-second clamp for forward converter appli-  
cations. Aninternalboostswitcherisavailableforcreating  
a separate supply for the output gate driver, allowing 10V  
gate drive from input voltages as low as 3V. The LT1950’s  
operating frequency can be set with an external resistor  
over a 100kHz to 500kHz range and a SYNC pin allows the  
part to be synchronized to an external clock. Additional  
programmability exists for leading edge blanking and  
slope compensation.  
from VIN as Low as 3V  
Programmable Operating Frequency (100kHz to  
500kHz) with One External Resistor  
Programmable Slope Compensation  
Programmable Leading Edge Blanking  
±2% Internal 1.23V Reference  
Accurate Shutdown Pin Threshold with  
Programmable Hysteresis  
60ns Current Sense Delay  
2.5V Auxiliary Reference Output  
A fast current sense comparator achieves 60ns current  
sense delay and the error amplifier is a true voltage mode  
error amplifier, allowing a wide range of compensation  
networks. An accurate shutdown pin with programmable  
hysteresis is available for undervoltage lockout and shut-  
down. The LT1950 is available in a small 16-Pin SSOP  
package.  
Synchronizable to an External Clock up to 1.5 • fOSC  
Current Mode Control  
Small 16-Pin SSUOP Package  
APPLICATIO S  
Telecom Power Supplies  
Automotive Power Supplies  
Portable Electronic Equipment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Isolated and Nonisolated DC/DC Converters  
U
TYPICAL APPLICATIO  
36V to 72V DC to 26V/5A (Single Switch) Forward Converter  
Efficiency vs Load Current  
95  
90  
85  
80  
75  
70  
10V  
V
IN  
BIAS  
47µH  
47µF  
MBRB20200  
V
26V  
5A  
V
= 36V  
OUT  
IN  
SLOPE  
V
IN  
V
= 48V  
IN  
2.5V  
0.1µF  
470k  
V
V
IN2  
REF  
V
IN  
= 72V  
BOOST  
V
PA0581  
SEC  
R
SHDN  
OSC  
1µF  
18k  
249k  
LT1950  
Si7450  
BLANK  
SYNC  
GND  
FB  
GATE  
I
SENSE  
PGND  
0.015  
COMP  
4.7k  
4.99k  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
100k  
0.022µF  
LOAD CURRENT (A)  
1950 TA01a  
1950 TA01b 1950fa  
1
LT1950  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
TOP VIEW  
BOOST .......................................................0.3V to 35V  
VIN, VIN2, SHDN .........................................0.3V to 25V  
FB, SYNC, VSEC ........................................... –0.3V to 6V  
COMP, BLANK ..........................................0.3V to 3.5V  
SLOPE ......................................................0.3V to 2.5V  
NUMBER  
COMP  
FB  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
SEC  
IN  
LT1950EGN  
LT1950IGN  
R
BOOST  
PGND  
GATE  
OSC  
SYNC  
SLOPE  
V
REF  
V
IN2  
I
SENSE ......................................................... –0.3V to 1V  
SHDN  
GND  
I
SENSE  
ROSC .................................................................... –50µA  
GN PART MARKING  
BLANK  
V
REF .................................................................... –10mA  
GN PACKAGE  
16-LEAD NARROW PLASTIC SSOP  
1950E  
1950I  
Operating Junction Temperature Range  
TJMAX = 125°C, θJA = 110°C/W,  
θJC (PIN 8) = 30°C/W  
LT1950EGN/LT1950IGN (Notes 2, 5) ... 40°C to 125°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COMP = open, FB = 1.4V, ROSC = 249k, SYNC = 0V, SLOPE = open, VREF  
= 0.1µF, SHDN = VIN, BLANK = 0V, ISENSE = 0V, VIN2 = 15V, GATE = 1nF, BOOST = open, VIN = 15V, VSEC = 0V, unless otherwise  
specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PWM Controller  
Operating Input Voltage  
Minimum Start-Up Voltage  
I
I
I
= 0µA  
3.0  
25  
3.0  
V
V
VREF  
VREF  
VREF  
= 0µA  
2.6  
2.3  
5
V
V
Quiescent Current  
Shutdown Current  
= 0µA, FB = 1V, I  
= 0.2V  
SENSE  
3.0  
mA  
µA  
V
IN  
IN  
SHDN = 0V  
3V < V < 25V  
20  
Shutdown Threshold  
1.261  
–7  
1.32  
–10  
7
1.379  
–13  
10  
IN  
Shutdown Pin Current  
SHDN = 70mV Above Threshold  
SHDN = 100mV Below Threshold  
µA  
µA  
mA  
µA  
Shutdown Pin Current Hysteresis  
4
V
V
V
Quiescent Current  
Shutdown Current  
(External Output)  
I(V ) = 0µA, FB = 1V, I = 0.2V  
SENSE  
1.7  
500  
2.5  
IN2  
IN2  
REF  
REF  
SHDN = 0V, V = 2.7V (Boost Diode from V = 3V)  
700  
IN2  
IN  
Output Voltage  
Line Regulation  
Load Regulation  
Oscillator  
I
I
= 0µA  
2.425  
2.500  
2.575  
V
mV  
mV  
VREF  
VREF  
= 0µA, 3V < V < 25V  
1
1
5
5
IN  
0µA < I  
< 2.5mA  
VREF  
Frequency: f  
R
R
R
= 249k, FB = 1V  
= 499k  
170  
85  
200  
100  
500  
20  
230  
115  
560  
kHz  
kHz  
kHz  
k  
V
OSC  
OSC  
OSC  
OSC  
Minimum Programmable f  
OSC  
Maximum Programmable f  
SYNC Input Resistance  
= 90.9k  
440  
OSC  
SYNC Switching Threshold  
1.5  
2.2  
1.5  
SYNC Frequency/f  
(R  
= 249k, f =200kHz), FB = 1V (Note 7)  
OSC  
1.25  
0.05  
0.05  
1
OSC  
OSC  
f
Line Reg  
3V < V < 25V  
0.15  
0.25  
%/V  
%/V  
OSC  
IN  
9.5V < V < 25V  
IN2  
V
V
ROSC  
1950fa  
2
LT1950  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COMP = open, FB = 1.4V, ROSC = 249k, SYNC = 0V, SLOPE = open, VREF  
= 0.1µF, SHDN = VIN, BLANK = 0V, ISENSE = 0V, VIN2 = 15V, GATE = 1nF, BOOST = open, VIN = 15V, VSEC = 0V, unless otherwise  
specified.  
PARAMETER  
CONDITIONS  
MIN  
1.205  
65  
TYP  
MAX  
UNITS  
Error Amplifier  
FB Reference Voltage  
FB Input Bias Current  
Open Loop Voltage Gain  
Unity Gain Bandwidth  
COMP Source Current  
COMP Sink Current  
3V < V < 25V, V + 0.2V < COMP < V – 0.2  
1.230  
–75  
85  
1.254  
–200  
V
nA  
dB  
MHz  
mA  
mA  
V
IN  
OL  
OH  
FB = FB Reference Voltage  
+ 0.2V < COMP < V – 0.2  
V
OL  
OH  
(Note 6)  
3
FB = 1V, COMP = 1.6V  
FB = 1.4V, COMP = 1.6V  
–0.3  
8
–1.1  
13  
–1.8  
COMP High Level: V  
FB = 1V, I  
= – 250µA  
2.5  
1.0  
0.15  
OH  
COMP  
COMP Active Threshold  
Start of GATE Switching (Duty Cycle > 0%)  
FB = 1.4V, I = 250µA  
V
COMP Low Level: V  
V
OL  
COMP  
Current Sense  
I
I
Maximum Threshold  
Input Bias Current  
Duty Cycle < 10%, COMP = V  
90  
100  
–170  
110  
110  
mV  
µA  
ns  
SENSE  
SENSE  
OH  
COMP = 2.5V, I  
= I  
Max Threshold  
SENSE  
–125  
–250  
SENSE  
Default Blanking Time  
FB = 1V, COMP = 2V, I  
FB = 1V, COMP = 2V, I  
= 75mV  
= 75mV  
SENSE  
Adjustable Blanking Time  
290  
ns  
SENSE  
BLANK = 75k to Ground  
Blanking Override Voltage–  
BLANK = Open, COMP = 2.5V (Note 4)  
15  
25  
60  
40  
mV  
ns  
I
Maximum Threshold  
SENSE  
Turn-Off Delay to Gate  
COMP = 2V  
Slope Compensation (Note 4)  
I
Max Threshold (DC < 10%) – (DC = 80%) (Note 4)  
SENSE  
Default, R  
2x Default, R  
3x Default, R  
= ∞  
14  
28  
42  
mV  
mV  
mV  
SLOPE  
= 8k  
= 3.3k  
SLOPE  
SLOPE  
Internal Switcher  
Boost Switch I  
V
V
= 8V, 3V < V < 10V  
70  
250  
9.5  
125  
500  
11.0  
–1.0  
8.2  
180  
1000  
11.75  
mA  
ns  
V
LIMIT  
IN2  
IN2  
IN  
Boost Switch Off Time  
= 8V, 3V < V < 10V  
IN  
V
V
V
V
: Boost Disable  
3V < V < 10V  
IN2  
IN2  
IN2  
IN2  
IN  
: Boost Disable Hysteresis  
: Gate Enable  
3V < V < 10V  
V
IN  
3V < V < 10V, FB = 1V (Note 4)  
7.0  
9.27  
V
IN  
: Gate Enable Hysteresis  
3V < V < 10V, FB = 1V (Note 4)  
–0.6  
V
IN  
GATE Driver Output  
GATE Rise Time  
GATE Fall Time  
FB = 1V, V = 12V, C = 1nF (Notes 3, 6)  
50  
30  
13  
ns  
ns  
V
IN2  
L
FB = 1V, V = 12V, C = 1nF (Notes 3, 6)  
IN2  
L
GATE Clamp Voltage  
GATE Low Level  
I
= 0µA, COMP = 2.5V, FB = 6V  
11.5  
14.5  
GATE  
I
I
= 20mA  
= 200mA  
0.25  
1.2  
0.4  
1.75  
V
V
GATE  
GATE  
GATE High Level  
I
I
= –20mA, V = 12V, COMP = 2.5V, FB = 6V  
10  
9.75  
V
V
GATE  
GATE  
IN2  
= –200mA, V = 12V, COMP = 2.5V, FB = 6V  
IN2  
Maximum Duty Cycle  
FB = 1V, f  
= 200kHz  
90  
95  
97  
%
OSC  
1950fa  
3
LT1950  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. COMP = open, FB = 1.4V, ROSC = 249k, SYNC = 0V, SLOPE = open, VREF  
= 0.1µF, SHDN = VIN, BLANK = 0V, ISENSE = 0V, VIN2 = 15V, GATE = 1nF, BOOST = open, VIN = 15V, VSEC = 0V, unless otherwise  
specified.  
PARAMETER  
CONDITIONS  
= 1.4V, FB = 1V, COMP = V  
MIN  
TYP  
75  
MAX  
87  
UNITS  
%
Maximum Duty Cycle Clamp  
V
63  
SEC  
OH  
V
Input Bias Current  
0V < V  
< 2.8V  
–0.3  
–1.0  
µA  
SEC  
SEC  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 4: Guaranteed by correlation to static test.  
of a device may be impaired.  
Note 5: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 6: Guaranteed but not tested.  
Note 7: Maximum recommended SYNC frequency = 500kHz.  
Note 2: The LT1950EGN is guaranteed to meet performance specifications  
from 0°C to 125°C operating junction temperature. Specifications over the  
–40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LT1950IGN is guaranteed over the full –40°C to 125°C operating  
junction temperature range.  
Note 3: Rise and Fall times are between 10% and 90% levels.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switching Frequency vs  
Temperature  
FB Voltage vs Temperature  
VIN Shutdown IQ vs Temperature  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
240  
230  
220  
210  
200  
190  
180  
170  
160  
16  
14  
12  
10  
8
SHDN = 0V  
6
4
2
0
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
–50 –25  
0
25  
75  
–50 –25  
25  
75  
100  
50  
TEMPERATURE (°C)  
0
125  
–50 –25  
0
25  
75  
100 125  
1950 G01  
1950 • G02  
1950 • G03  
ISENSE Pin Current vs  
Temperature  
Shutdown Threshold vs  
Temperature  
Maximum ISENSE Threshold vs  
Temperature  
125  
120  
115  
110  
105  
100  
95  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
270  
250  
230  
210  
190  
170  
150  
130  
110  
90  
90  
85  
80  
75  
–25  
25  
50  
75  
100  
125  
50  
TEMPERATURE (°C)  
125  
–50  
–50  
0
25  
75  
0
100  
–25  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1950 • G04  
1950 G05  
1950 G06  
1950fa  
4
LT1950  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
BLANK Override Threshold –  
Minimum VIN Start-Up Voltage vs  
Temperature (VIN2 Boosted)  
I
SENSE Maximum Threshold vs  
VIN IQ vs Temperature  
Temperature  
40  
35  
30  
25  
20  
15  
10  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
3.00  
2.75  
2.50  
2.25  
2.00  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
75  
–25  
0
25  
50  
75  
125  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1950 G07  
1950 G09  
1950 G08  
SHDN Input Current *(–1) vs  
Temperature  
SHDN Current Hysteresis vs  
Temperature  
GATE Rise/Fall Time vs  
GATE Capacitance  
125  
100  
75  
50  
25  
0
14  
12  
10  
8
11  
10  
9
T
= 25°C  
A
SHDN = SHDN THRESHOLD + 70mV  
t
r
8
t
f
7
6
6
4
SHDN = SHDN THRESHOLD – 100mV  
5
2
4
0
3
–50  
–25  
0
25  
50  
75  
125  
0
1000  
2000  
3000  
4000  
5000  
100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
GATE CAPACITANCE (pF)  
TEMPERATURE (°C)  
1950 G12  
1950 G11  
1950 G10  
VIN2: BOOST Disable  
vs Temperature  
VIN2: GATE Enable  
vs Temperature  
BOOST Switch ILIMIT vs  
Temperature  
9.2  
8.7  
8.2  
7.7  
7.2  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
250  
200  
150  
100  
50  
GATE ENABLE  
BOOST DISABLE  
HYSTERESIS  
HYSTERESIS  
BOOST RE-ENABLE  
GATE DISABLE  
9.0  
–25  
25  
50  
75  
100  
–50  
0
125  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
1950 G14  
1950 G13  
1950 G15  
1950fa  
5
LT1950  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
BOOST Switch Off Time vs  
Temperature  
Maximum Duty Cycle vs  
VSEC Voltage  
GATE Clamp Voltage vs  
Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
700  
600  
500  
400  
300  
16  
15  
14  
13  
12  
11  
10  
MAX DUTY CYCLE = (105/V )%  
SEC  
1.25V < V  
< 2.8V  
SEC  
= 25°C  
T
A
0.8  
1.6  
2.0  
2.4  
2.8  
3.2  
1.2  
50  
100 125  
–25  
0
25  
50  
75  
125  
–50 –25  
0
25  
75  
–50  
100  
V
VOLTAGE (V)  
SEC  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1950 G17  
1950 G16  
1950 G18  
U
U
U
PI FU CTIO S  
COMP (Pin 1): The COMP pin is the output of the error SLOPE (Pin 5): The SLOPE pin is used to adjust the  
amplifier.Theerroramplifierisatrueopampwhichallows amount of slope compensation. Leaving the pin open  
the use of an RC network to be connected between the circuitresultsinadefaultlevelofslopecompensation. The  
Comp and FB pins to compensate the feedback loop for amount of slope compensation can be adjusted above this  
optimum transient response. The peak switch current in default level by connecting a resistor from the SLOPE pin  
the external MOSFET will be proportional to the voltage on to the VREF pin.  
the COMP pin. Typical operating voltage range for this pin  
is 1V to 2.5V.  
VREF (Pin 6): The VREF pin is the output of an internal 2.5V  
reference. This pin is capable of sourcing up to 2.5mA for  
FB (Pin 2): The FB pin is the inverting input to the error external use. It is recommended that the VREF pin is  
amplifier. The output voltage is set with a resistor divider. bypassed to ground with a 0.1µF ceramic capacitor.  
The error amplifier adjusts the peak switch current to  
SHDN (Pin 7): The SHDN pin is used to put the device into  
maintain the FB pin voltage at the value of the internal  
a low power shutdown state. In shutdown the VIN supply  
reference voltage of 1.23V.  
current drops to 5µA. The SHDN pin has an accurate  
ROSC (Pin 3): A resistor from the ROSC pin to ground threshold of 1.32V which can be used to program an  
programs the operating frequency of the LT1950. Operat- undervoltage lockout threshold. Input current levels on  
ingfrequencyrangeis100kHzto500kHz.Nominalvoltage the SHDN pin can be used to program hysteresis into the  
on the ROSC pin is 1V.  
undervoltage lockout levels.  
SYNC (Pin 4): The SYNC pin is used to synchronize the GND (Pin 8): The GND pin is the analog ground for the  
internal oscillator to an external clock signal. The pin is internalcircuitryoftheLT1950. Sensitivecircuitrysuchas  
directly logic compatible and can be driven with any signal the feedback divider, frequency setting resistor, reference  
with a duty cycle of 10% to 90%. If the SYNC function is bypasscapacitorshouldbetieddirectlytothispin. Seethe  
not used the pin can be left open circuit or connected to Applications Information section for recommendations  
ground.  
on ground connections.  
1950fa  
6
LT1950  
U
U
U
PI FU CTIO S  
BLANK (Pin 9): The BLANK pin is used to adjust the  
leadingedgeblankingperiodofthecurrentsenseamplifier  
during FET turn-on. Shorting the BLANK pin to ground  
providesadefaultblankingperiodofapproximately110ns.  
A resistor from the BLANK pin to ground increases the  
blanking period up to 290ns for RBLANK = 75k.  
BOOST (Pin 14): The BOOST pin is the NPN collector  
output of the internal boost converter which can be used  
to generate an 11V supply for the MOSFET gate driver  
circuit. The boost converter runs with a fixed off-time of  
0.5µs and a current limit of 125mA. The converter runs  
until the VIN2 voltage exceeds 11V and then turns off until  
the VIN2 voltage drops below 10V. If the VIN2 voltage is  
supplied externally, the BOOST pin should be shorted to  
ground or left open.  
ISENSE (Pin 10): The ISENSE pin is the current sense input  
for the control loop. Connect this pin to the sense resistor  
in the source of the external power MOSFET.  
V
IN (Pin 15): The VIN pin is the main supply pin for the  
LT1950. This pin must be closely bypassed to ground. If  
IN2 is generated using the BOOST pin then the LT1950  
VIN2 (Pin 11): The VIN2 pin is the supply pin for the  
MOSFET gate drive circuit. Power can be supplied to this  
pin by an external supply such as VIN, and must exceed 8V  
(the undervoltage lockout threshold for the gate driver  
supply). For low VIN supply voltages an internal boost  
regulator can be used to generate as much as 11V at the  
VIN2 pin. This allows the LT1950 to run with VIN supply  
voltages down to 3V while still supplying enough gate  
drive for standard level MOSFETs.  
V
will be fully functional, internal VREF will be active and the  
gate output will be enabled with a VIN voltage as low as 3V.  
An internal undervoltage lockout threshold exists at ap-  
proximately 2.6V on the VIN pin. Undervoltage lockout  
voltages greater than 3V can be programmed using a  
voltage divider on the SHDN pin.  
VSEC (Pin 16): The VSEC pin is used to program the  
maximum duty cycle of the gate driver circuit. The maxi-  
mum duty cycle will be equal to (105/VSEC)% for VSEC  
between1.4Vand2.8V.Thisisausefulfunctiontolimitthe  
flyback voltage in a forward converter. If the maximum  
duty cycle function is not used then the VSEC pin should be  
tied to ground.  
GATE(PIN12):TheGATEpinistheoutputofahighcurrent  
gate drive circuit used to drive an external MOSFET. The  
output is actively clamped to a max voltage of 13V if VIN2  
is supplied by a high voltage.  
PGND (Pin 13): This is the ground connection for the high  
current gate driver stage. See the Applications Informa-  
tion section for recommendations on ground connec-  
tions.  
1950fa  
7
LT1950  
W
BLOCK DIAGRA  
V
V
REF  
6
V
SEC  
16  
BOOST  
14  
V
IN2  
11  
IN  
15  
V
IN2  
V
REF  
=
INTERNAL +  
EXTERNAL  
SUPPLY  
+
SWITCHING PREREGULATOR  
FIXED OFF TIME  
11V  
DISABLE  
(125mA CURRENT LIMIT)  
2.5V  
(SOURCE 2.5mA  
EXTERNALLY)  
PGND  
+
(V ) (2.6V)  
IN  
U/V LOCKOUT  
(V ) (8V)  
IN2  
U/V LOCKOUT  
8V  
1.23V  
(105/V )%  
SEC  
+
ENABLE  
MAX DC  
CLAMP  
+
1.32V  
3µA  
(TYPICAL 200kHz)  
OSC  
±1A  
DRIVER  
SHDN  
SYNC  
7
4
3
5
S
R
Q
12  
GATE  
+
(100-500)khz  
SLOPE COMP  
RAMP  
13 PGND  
R
OSC  
SLOPE  
13V  
BLANKING  
ERROR AMPLIFIER  
VOLTAGE GAIN = 85dB  
1.23V  
+
CURRENT  
SENSE  
CMP  
BLANKING  
OVERRIDE  
CMP  
+
+
0mV – >100mV  
10  
I
SENSE  
125mV  
2
1
8
9
1950 BD  
FB  
COMP  
GND  
BLANK  
Figure 1. LT1950 Block Diagram  
U
OPERATIO  
The LT1950 is a constant frequency, current mode con-  
troller for DC/DC forward, boost, flyback and SEPIC con-  
verter applications. The Block Diagram in Figure 1 shows  
all of the key functions of the IC.  
11V supply at VIN2 using a small surface mount external  
inductor, diode and capacitor. Since VIN2 supplies the  
output driver of the IC, this architecture achieves high  
GATEdriveforanexternalN-channelpowerMOSFETeven  
though VIN voltage is very low. High GATE drive capability  
reduces MOSFET RDS(ON) for improved efficiency,  
1950fa  
In normal operation, a VIN voltage as low as 3V allows an  
internal switcher at the BOOST pin to generate a separate  
8
LT1950  
U
OPERATIO  
increases the range of MOSFETs that can be selected and  
allows applications requiring high gate drive with a large  
swing in VIN voltage. When VIN2 exceeds 8V, the GATE  
output driver is enabled. The GATE switches between 0V  
and VIN2 at a constant frequency set by a resistor from the  
ROSC pin to ground. When VIN2 reaches 11V, the internal  
switcher at the BOOST pin is disabled to save power and  
only re-enabled when VIN2 drops below 10V. The internal  
boost switcher runs in burst mode operation, asynchro-  
nous to the main oscillator. If low VIN operation with high  
GATE drive is not required, the BOOST pin is left open and  
the VIN2 pin shorted to VIN. With VIN2 shorted to VIN the  
minimum operational VIN voltage will increase from 3V to  
8V (required at VIN2 to enable the GATE output driver). For  
GATE turn on, a PWM latch is set at the start of each main  
oscillator cycle. For GATE turn off, the PWM latch is reset  
when either the current sense comparator is tripped, the  
maximum duty cycle is reached, or the BLANK override  
threshold is exceeded.  
compensation. A default level of slope compensation is  
achieved with the SLOPE pin open. Increased slope com-  
pensation can be programmed by reducing the value of  
resistance inserted between the SLOPE pin and VREF pin.  
A SYNC pin allows the LT1950 main oscillator to be  
synchronized to an external clock . To avoid loss of slope  
compensation during synchronization, the free running  
main oscillator frequency should be programmed to ap-  
proximately 80% of the external clock frequency.  
The LT1950 can be placed into shutdown mode when the  
SHDN pin drops below an accurate 1.32V threshold. This  
threshold can be used to program undervoltage lockout  
(UVLO) at VIN for current limited or high source resistance  
supplies. SHDN pin current hysteresis also exists to allow  
external programming of UVLO voltage hysteresis. When  
VIN andVIN2 exceedinternallysetUVLOthresholdsof2.6V  
and6.8V,theVREF outputbecomesactive.TheVREF output  
is a 2.5V reference supplying the majority of LT1950  
control circuitry and capable of sourcing up to 2.5mA for  
external use.  
A resistor divider from the application’s output voltage  
generates a voltage at the FB pin that is compared to the  
internal 1.23V reference by the error amplifier. The error  
amplifier output (COMP) defines the input threshold  
(ISENSE)ofthecurrentsensecomparator.MaximumISENSE  
voltage is clamped to 100mV. By connecting ISENSE to a  
sense resistor in series with the source of the external  
MOSFET, the peak switch current is controlled by COMP.  
An increase in output load current causing the output  
voltage to fall, will cause COMP to rise, increasing ISENSE  
threshold, increasing the current delivered to the output.  
To prevent noise in the system causing premature turn off  
of the external MOSFET the LT1950 has leading edge  
blanking. This means the current sense comparator out-  
put is ignored during MOSFET turn on and for an extended  
period after turn on. The extended blanking period is  
adjusted by inserting a resistor from the BLANK pin to  
ground. A short to ground defines a minimum default  
blanking period. Increased resistance from the BLANK pin  
togroundwillincreaseblankingduration. Faultconditions  
causing ISENSE to exceed 125mV will override blanking  
and reduce the ISENSE to GATE delay to 60ns.  
This current mode technique means that the error ampli-  
fier commands current to be delivered to the output rather  
than voltage. This makes frequency compensation easier  
and provides faster loop response to output load tran-  
sients.  
For applications requiring maximum duty cycle clamping,  
the VSEC pin reduces duty cycle for increased voltage on  
the pin. The VSEC pin provides a volt-second clamp critical  
in forward converter applications.  
The current mode architecture requires slope compensa-  
tion to be added to the current sensing loop to prevent  
subharmonic oscillations which can occur for duty cycles  
above 50%. Unlike most current mode converters which  
have a slope compensation ramp that is fixed internally,  
placing a constraint on inductor value and operating  
frequency, the LT1950 has externally adjustable slope  
Maximum duty cycle follows (105/VSEC)% for VSEC volt-  
ages between 1.4V to 2.8V. If unused, the VSEC pin should  
be shorted to ground, leaving the natural maximum duty  
cycle of the part to be typically 95% for 200kHz operation.  
1950fa  
9
LT1950  
U
W U U  
APPLICATIO S I FOR ATIO  
LT1950 Input Supplies, VREF Output and GATE Enable  
VIN = VIN2 Operation  
VIN is the main input supply for the LT1950. VIN2 is the  
input supply for the LT1950 output driver. VIN2 can be  
provided by shorting the VIN2 pin to the VIN pin or by  
generating VIN2 using the BOOST pin. Waveforms of VIN,  
VIN2, VREF and GATE switching are shown in Figures 2 and  
3. Figure 2 represents low VIN operation with VIN2 gener-  
ated using the B00ST pin. Figure 3 represents VIN = VIN2  
operation with the BOOST pin open circuit or shorted to  
ground.  
If low VIN operation is not required below approximately  
8V on VIN the LT1950 can be configured to run without the  
use of the BOOST pin by shorting the VIN2 pin to the VIN  
pin. Figure 3 shows that both VIN and VIN2 must now  
exceed 6.8V to activate the 2.5V VREF output and must  
exceed approximately 8V to enable the output driver  
(GATE pin).  
12  
V
IN2  
8
4
0
MIN  
3V  
Low VIN Operation  
GATE  
The LT1950 can be configured to provide a minimum of  
10V GATE drive for an external N-channel MOSFET from  
VIN voltages as low as 3V, if the BOOST pin is used to  
generate a second supply at the VIN2 pin (see Figure 2 and  
Applications Information “ Generating VIN2 Supply Using  
BOOSTPin”). The advantage of this configuration is that a  
lower RDS(ON) is achieved for the external N-channel  
MOSFET, improving efficiency, versus a controller run-  
ning at 3V input without boosted gate drive. In addition,  
typical controllers running at low input voltages have the  
limitation of only being able to use logic level MOSFETs.  
The LT1950 allows a greater range of usable MOSFETs.  
This versatility allows optimization of the overall power  
supply performance and allows applications which would  
otherwise not be possible without a more complex topol-  
ogy. Figure 2 shows that for VIN above 2V, the internal  
switcher at the BOOST pin is enabled. This switch gener-  
ates the VIN2 supply. As VIN2 ramps up above the  
undervoltage lockout threshold of 6.8V the 2.5V reference  
VREF becomes active and powers up internal control  
circuitry. When VIN2 exceeds approximately 8V, the gate  
driver is enabled. VIN2 is regulated between 10V and 11V,  
providing a supply to the LT1950 output driver to ensure  
a minimum of 10V drive at the GATE pin.  
L1  
D1  
V
IN  
BOOST  
LT1950  
4
3
2
1
0
V
V
IN  
IN2  
C1  
V
REF  
50µs/DIV  
1950 F02  
Figure 2. Low VIN Operation  
10.2  
8.5  
6.8  
5.1  
3.4  
V
V
= V  
IN2  
IN  
TYPICAL START-UP INPUT  
>8.2V  
5.0  
2.5  
0
V
IN  
REF  
BOOST  
*
LT1950  
V
IN2  
C1  
10  
5
GATE  
*BOOST PIN CAN BE  
LEFT OPEN OR  
SHORTED TO GROUND  
0
10µs/DIV  
1950 F03  
Figure 3. VIN = VIN2 Operation  
1950fa  
10  
LT1950  
U
W U U  
APPLICATIO S I FOR ATIO  
Example: switching should not start until the input is  
above 11V and is to stop if the input falls below 9V.  
Shutdown and Undervoltage Lockout  
Figure 4 shows how to program undervoltage lockout  
(UVLO) for the VIN supply. Typically, UVLO is used in  
situations where the input supply is current limited, or has  
a relatively high source resistance. A switching regulator  
draws constant power from the source, hence source  
current increases as source voltage drops. This looks like  
a negative load resistance to the source and can cause the  
source to current limit or latch low under low source  
voltage conditions. An internally set undervoltage lockout  
(UVLO)thresholdpreventstheregulatorfromoperatingat  
source voltages where these problems might occur. An  
internal comparator will force the part into shutdown  
below the minimum VIN of 2.6V. This feature can be used  
to prevent excessive discharge of battery-operated sys-  
tems. Alternatively, UVLO threshold is adjustable. The  
shutdown threshold voltage of the SHDN pin is 1.32V.  
Forcing the SHDN pin below this 1.32V threshold causes  
VREF to be disabled and stops switching at the GATE pin.  
If the SHDN pin is left open circuit, a permanent 3µA flows  
out of the pin to ensure that the pin defaults high to allow  
normal operation. Voltages above the 1.32V threshold  
cause an extra 7µA to be sourced out of the pin, providing  
current hysteresis. This can be used to set voltage hyster-  
esis of the UVLO threshold using the following equations:  
VH = 11V  
VL = 9V  
11V – 9V  
R1=  
= 286k  
7µA  
1.32V  
(11V – 1.32V)  
286k  
R2 =  
= 36k  
+ 3µA  
Keep the connections from the resistors to the SHDN pin  
short and make sure that the interplane or surface capaci-  
tance to the switching nodes are minimized. If high resis-  
tance values are used, the SHDN pin should be bypassed  
with a 1nF capacitor to prevent coupling problems from  
the switch node.  
LT1950  
V
IN  
1.32V  
V
REF  
R1  
R2  
3µA  
7µA  
+
C1  
GND  
VH VL  
7µA  
1950 F04  
R1=  
Figure 4. Undervoltage Lockout  
1.32V  
(VH – 1.32V)  
R2 =  
Generating VIN2 Supply Using BOOST Pin  
+ 3µA  
The LT1950’s BOOST pin is used to provide a “boosted”  
11V supply at the VIN2 pin for VIN voltages as low as 3V.  
Since VIN2 supplies the output driver for the GATE pin of  
the IC, it is advantageous to generate a boosted VIN2. This  
architecture achieves high GATE drive for an external  
R1  
VH = Turn on threshold  
VL = Turn off threshold  
1950fa  
11  
LT1950  
U
W
U U  
APPLICATIO S I FOR ATIO  
11V. This hysteretic (burst mode) operation for the inter-  
nal switcher minimizes power dissipation from VIN.  
N-channel power MOSFET even though VIN voltage is very  
low. High GATE drive voltage reduces MOSFET RDS(ON)  
,
improves efficiency and increases the range of MOSFETs  
that can be selected. A small switching regulator at the  
BOOST pin, with fixed current limit and fixed off time,  
generates the VIN2 supply. With an external inductor  
connected between the BOOST pin and VIN (see Figure 5),  
the BOOST pin will draw current until approximately  
125mAisreached,turnofffor0.5µsandthenturnbackon.  
Thecycleisrepeatedforaslongastheswitcherisenabled.  
By using a diode connected from BOOST to VIN2 and a  
capacitor from VIN2 to ground, energy from the external  
inductor is transferred to the VIN2 capacitor during the off-  
time of the internal switcher. An auxiliary boost converter  
is realized providing a supply to the VIN2 pin. The typical  
inductor current, VIN2 voltage and BOOST pin voltage  
waveformsareshowninFigure5.WhenVIN2 reaches11V,  
the internal switcher is disabled. Since VIN2 supplies the  
output driver of the LT1950, switching at the GATE pin will  
eventually discharge the VIN2 capacitor until VIN2 reaches  
alowerlevelofapproximately10V.Atthisleveltheinternal  
switcher is re-enabled and switches until VIN2 returns to  
The VREF output is a 2.5V reference supplying most of the  
LT1950 control circuitry. It is available for external use  
withmaximumcurrentcapabilityof2.5mA.Thepinshould  
be bypassed to ground using a 0.1µF capacitor. Internal  
undervoltage lockout thresholds for VIN and VIN2 of ap-  
proximately 2.6V and 6.8V respectively must be exceeded  
before VREF becomes active.  
Programming Oscillator Frequency  
The oscillator frequency of the LT1950 is programmed  
usinganexternalresistorconnectedbetweentheROSC pin  
and ground. Figure 6 shows typical fOSC vs ROSC resistor  
values. The LT1950 is programmable for a free-running  
oscillator frequency in the range of 100kHz to 500kHz.  
Stray capacitance and potential noise pickup on the ROSC  
pin should be minimized by placing the ROSC resistor as  
close as possible to the ROSC pin and keeping the area of  
the ROSC node as small as possible. The ground side of the  
ROSC resistor should be returned directly to the GND  
(analog ground) pin.  
500  
450  
400  
350  
300  
250  
200  
150  
12  
(V)  
V
IN2  
MIN  
3V  
10  
0.25  
I
D1  
L1  
L1  
D1  
(A)  
V
IN  
BOOST  
LT1950  
0
0.25  
I
(A)  
V
IN2  
C1  
0
15  
BOOST  
(V)  
100  
0
50 100 150 200 250 300 350 400 450 500  
5µs/DIV  
1950 F05  
R
(k)  
OSC  
1950 F06  
Figure 5. VIN2 Generation Using the BOOST Pin  
Figure 6. Oscillator Frequency (fOSC) vs ROSC  
1950fa  
12  
LT1950  
U
W
U U  
APPLICATIO S I FOR ATIO  
Synchronizing  
Electrical Characteristics for 1X, 2X and 3X default slope  
compensation vs RSLOPE  
.
The SYNC pin is used to synchronize the LT1950 main  
oscillator to an external clock. The SYNC pin can be driven  
directly from a logic level output, requiring less  
than 0.8V for a logic level low and greater than 2.2V for a  
logic level high. Duty cycle must be between 10% and  
90%. When synchronizing the part, slope compensation  
will be reduced by approximately SYNC f/fOSC. If the  
reduction of slope compensation affects performance,  
RSLOPE can be reduced to increase slope compensation  
and reestablish correct operation. If unused, the pin is left  
open or shorted to ground. If left open, be aware that the  
internal pin resistance is 20k and board layout should be  
checked to avoid noise coupling to the pin.  
Requirement in Current Mode Converters/Advantage  
of Adjustability  
The LT1950 uses a current mode architecture to provide  
fast response to load transients and to ease frequency  
compensationrequirements.Currentmodeswitchingregu-  
latorswhichoperatewithdutycyclesabove50%andhave  
continuous inductor current, must add slope compensa-  
tion to their current sensing loop to prevent subharmonic  
oscillations. (For more information on slope compensa-  
tionseeApplicationNote19).Typicalcurrentmodeswitch-  
ing regulators have a fixed internal slope compensation.  
This can place constraints on the value of the inductor. If  
too large an inductor is used, the fixed internal slope  
compensation will be greater than needed, causing opera-  
tion to approach voltage mode. If too small an inductor is  
used, the fixed internal slope compensation will be too  
small, resulting in subharmonic oscillations. The LT1950  
increases the range of usable inductor values by allowing  
slope compensation to be adjusted externally.  
SLOPE COMPENSATION  
Programmability  
The LT1950 allows its default level of slope compensation  
tobeeasilyincreasedbyuseofasingleresistorconnected  
between the SLOPE pin and the VREF pin. The ability to  
adjustslopecompensationallowsthedesignertotailorhis  
application for a wider inductor value range as well as to  
optimize the loop bandwidth. A resistor, RSLOPE, con-  
nected between the SLOPE pin and VREF increases the  
LT1950 slope compensation from its default level to as  
high as 3X of default. The curves in Figure 7 show the  
typical ISENSE maximum threshold vs duty cycle for vari-  
ous values of RSLOPE. It can be seen that slope compensa-  
tionsubtractsfromthemaximumISENSE thresholdasduty  
cycle increases from 0%. For example, with RSLOPE open,  
ISENSE max threshold is 100mV at low duty cycle, but falls  
to approximately 86mV at 80% duty cycle. This must be  
accountedforwhendesigningaconvertertooperateupto  
amaximumloadcurrentandoveragivendutycyclerange.  
The application and inductor value will define the  
minimum amount of slope compensation. Refer to the  
100  
R
= OPEN  
SLOPE  
90  
80  
70  
60  
50  
40  
30  
20  
R
= 8k  
SLOPE  
R
= 3.3k  
SLOPE  
40  
60  
80  
0
20  
100  
DUTY CYCLE (%)  
1950 F07  
Figure 7. ISENSE Maximum Threshold vs Duty Cycle  
1950fa  
13  
LT1950  
U
W
U U  
APPLICATIO S I FOR ATIO  
Programming Leading Edge Blank Time  
Programming Volt-Second Clamp  
ForPWMcontrollersdrivingexternalMOSFETs, noisecan  
be generated during GATE rise time due to various para-  
sitic effects. This noise can disturb the input to the current  
sense comparator (ISENSE) and cause premature turn-off  
of the external MOSFET. The LT1950 provides program-  
mable leading edge blanking of the current sense com-  
parator to avoid this effect.  
TheVSEC pinisusedtoprovideanadaptivemaximumduty  
cycle clamp for sophisticated control of the simplest  
forward converter topology (single primary-side switch).  
Thisadaptivemaximumdutycycleclampallowstheuseof  
the smallest transformers, MOSFETs and output rectifiers  
by addressing the biggest concern in single switch for-  
ward converter topologies - transformer reset. The sec-  
tionApplicationCircuits-ForwardConverterApplications”  
covers transformer reset requirements and highlights the  
advantages of the LT1950 adaptive maximum duty cycle  
clamp. The programmable maximum duty cycle clamp is  
controlledbythevoltageontheVSEC pin. Asvoltageonthe  
VSEC pin increases within a specified range, maximum  
duty cycle decreases. By deriving VSEC pin voltage from  
the system input supply, a volt-second clamp is realized.  
Maximum GATE output duty cycle follows a 1/X relation-  
ship given by (105/VSEC)%. (see Maximum Duty Cycle vs  
VSEC Voltage graph in the Typical Performance Character-  
istics section). For example, if the minimum input supply  
foraforwardconverterapplicationis36V,theVSEC pincan  
be programmed with a maximum duty cycle of 75% at  
1.4V. A movement of input voltage to 72V will lift the VSEC  
pin to 2.8V, resulting in a maximum duty cycle of 37.5%.  
As the section on Forward Converter Applications will  
show, transformer reset requirements are met with the  
Blanking is provided in 2 phases: The first phase is during  
GATE rise time. GATE rise times vary depending on  
MOSFET type. For this reason the LT1950 automatically  
blanks the current comparator output until the “leading  
edge” of the GATE is detected. This occurs when the GATE  
voltage has risen within 0.5V of the output driver supply  
(VIN2) or has reached its clamp level of 13V. The second  
phase of blanking starts immediately after “leading edge”  
has been detected. This phase is programmable using a  
resistor (RBLANK) from the BLANK pin to ground. Typical  
values for this portion of the blanking period are 110ns at  
R
BLANK = 0up to 290ns at RBLANK = 75k. Figure 8 shows  
blanking vs RBLANK. Blanking duration can be approxi-  
mated as:  
RBLANK  
25k  
BLANKING (EXTENDED) = 110 + 60•  
ns  
(AUTOMATIC) (DEFAULT)  
LEADING  
(PROGRAMMABLE)  
CURRENT  
EDGE  
EXTENDED  
EXTENDED  
BLANKING  
SENSE  
DELAY  
BLANKING BLANKING  
GATE  
R
BLANK  
= 0  
0< R  
BLANK  
< = 75k  
60ns  
BLANKING  
0
Xns  
[X + 110 + (60 • R /25k)]ns  
BLANK  
1950 F04  
(X + 110)ns  
Figure 8. Blanking Timing Diagram  
1950fa  
14  
LT1950  
U
W U U  
APPLICATIO S I FOR ATIO  
94% Efficient 3.3V, 20A Synchronous Forward  
Converter  
ability of the VSEC pin to follow input voltage and control  
maximum switch duty cycle.  
The synchronous forward converter in Figure 11 is based  
on the LT1950 and uses MOSFETs as synchronous output  
rectifiers to provide an efficient 3.3V, 20A isolated output  
from 48V input. The output rectifiers are driven by the  
LTC1698 which also serves as an error amplifier and  
optocoupler driver. Efficiency and transient response  
are shown in Figures 9 and 10. Peak efficiencies of 94%  
and ultra-fast transient response are superior to presently  
availablepowermodules.Inaddition,thecircuitin Figure 11  
is an all-ceramic capacitor solution providing low output  
ripple voltage and improved reliability. The LT1950-based  
convertercanbeusedtoreplacepowermoduleconverters  
at a much lower cost. The LT1950 solution benefits from  
thermal conduction of the system board resulting in  
higher efficiencies and lower rise in component tempera-  
tures. The 7mm height allows dense packaging and the  
circuit can be easily adjusted to provide an output voltage  
from1.23Vto15V. Inaddition, highercurrentsareachiev-  
ablebysimplescalingofpowercomponents.TheLT1950-  
based solution in Figure 11 is a powerful topology for  
replacement of a wide range of power modules.  
Forward Converter Applications  
TheLT1950providessophisticatedcontrolofthesimplest  
forwardconvertertopology(singleprimaryswitch,seeQ1  
Figure 11). A significant problem in a single switch for-  
ward converter topology is transformer reset. Optimum  
transformer utilization requires maximum duty cycles.  
Unfortunately as duty cycles increase the transformer  
reset time decreases and reset voltages increase. This  
increases the voltage requirements and stress on both  
transformer and switch. The LT1950 incorporates an  
adaptivemaximumdutycycleclampwhichcontrolsmaxi-  
mum switch duty cycle based on system input voltage.  
The adaptive clamp allows the converter to operate at up  
to 75% duty cycle, allowing 25% of the switching period  
for resetting the transformer. This results in greater  
utilization of MOSFET, transformer and output rectifier  
components. The VSEC pin can be programmed from  
system input to adaptively control maximum duty cycle  
(see Applications Information “Programming Volt-Sec-  
ond Clamp” and the Maximum Duty Cycle vs VSEC Voltage  
graphintheTypicalPerformanceCharacteristicssection).  
100  
95  
90  
85  
80  
LT1950  
OUT  
(100mV/DIV)  
V
POWER  
MODULE  
V
OUT  
(100mV/DIV)  
V
V
= 48V  
IN  
75  
70  
= 3.3V  
OUT  
OSC  
f
= 235kHz  
1950 F10  
0
5
10  
LOAD CURRENT (A)  
15  
20  
500µs/DIV  
1950 F09  
Figure 10. Output Voltage Transient Response  
to Load Steps (0A to 3.3A) LT1950 (Trace1)  
vs Power Module (Trace 2)  
Figure 9. LT1950-Based Synchronous Forward  
Converter Efficiency vs Load Current  
1950fa  
15  
LT1950  
W U U  
U
APPLICATIO S I FOR ATIO  
+V  
–V  
IN  
C
IN  
36V  
TO 72V  
INPUT  
2.2µF  
100V  
X5R  
L1  
T1  
C.PI-1365-1R2  
+V  
3.3V  
20A  
STG-0313W  
01  
IN  
10V  
+V  
BIAS  
IN  
COMP  
10V  
8
BIAS  
C
R5  
470k  
16  
01  
U2A  
R7  
R1  
100µF  
R6  
LTC1693-1  
LT1950  
COMP  
Q2  
Si7380  
2×  
Q3  
255  
4.7k  
X5R  
4×  
18k  
1
1
2
7
Q1  
Si4490  
Si7380  
2×  
CG  
FG  
V
SEC  
15  
14  
D1  
BAS516  
2
FB  
R
V
IN  
D2  
BAT760  
R17, 210k  
3
4
5
6
7
8
C
1µF  
U1  
UV  
BOOST  
PGND  
GATE  
OSC  
47Ω  
13  
12  
11  
10  
9
R
S
SYNC  
C4  
1000pF  
C1  
0.1µF  
0.015Ω  
C
S
SLOPE  
7V  
BIAS  
C3  
10nF  
LTC1698  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
REF  
V
IN2  
V
DD  
FG  
FG  
10V  
6
BIAS  
SHDN  
GND  
I
SENSE  
1µF  
X5R  
SYNC  
CG  
CG  
SYNC  
U2B  
LTC1693-1  
5
R4, 18k  
BLANK  
PGND  
GND  
OPTO  
V
T2  
AUX  
3
R18  
27k  
0.1µF  
R9  
470k  
SYNC  
R13  
270Ω  
I
COMP  
4
560Ω  
220pF  
+I  
SNS  
–I  
SNS  
+V  
IN  
C
S
C9, 33nF  
V
COMP  
R2  
U4  
4.7k  
R14  
1.2k  
HCPL-M453  
MARG  
P OK  
WT  
10V  
BIAS  
6
1
2
3
V
FB  
=1.233V  
OVP  
R3  
4.7k  
100k  
Q4  
BC847BF  
100k  
UV  
+V  
5
4
01  
R15  
4.7k  
R16  
2.8k  
C6  
4.7µF  
D3  
BAT760  
0.1µF  
COMP  
Figure 11. 36V to 72V Input to 3.3V at 20A Synchronous Forward Converter  
1950fa  
16  
LT1950  
W U U  
APPLICATIO S I FOR ATIO  
U
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
High Efficiency, Isolated 26V 5A Output,  
Nonsynchronous Forward Converter  
Figure 13 illustrates a nonsynchronous forward converter  
based on the LT1950 to provide a highly efficient, 26V 5A  
isolated output from 48V input. The LT1950-based con-  
verter using a single switch topology and utilizing the  
LT1950s adaptive maximum duty cycle clamp is a simple  
and highly optimized solution. Peak efficiencies of 92.8%  
(Figure 12) are achievable. Transformer and inductor are  
standard components. The quarter brick sized DC/DC  
converter (2.3" by 1.45") delivers over 125W and is only  
0.4" high. The 26V converter can be used as a “front line”  
(isolating) converter in telecom systems with multiple  
outputs.  
V
V
= 48V  
IN  
= 26V  
OUT  
OSC  
f
= 235kHz  
1
2
3
4
5
LOAD CURRENT (A)  
1950 F12  
Figure 12. LT1950-Based Nonsynchronous  
Forward Converter Efficiency vs Load  
Current (Figure 13 Circuit)  
+V  
IN  
IN  
C
IN  
36V  
TO 72V  
INPUT  
2.2µF  
100V  
X5R  
T1  
PA0581  
MBR20200CT  
+V  
OUT  
–V  
47µH  
232k  
10V  
BIAS  
+V  
IN  
47µF  
LT1950  
SLOPE  
6.8k  
5
6
15  
11  
16  
7
24.9k  
V
IN  
V
V
470k  
REF  
IN2  
470pF  
0.1µF  
18k  
V
SEC  
3
9
4
2
1
18k  
R
SHDN  
GATE  
OSC  
210k  
27k  
12  
10  
8
4
3
5
2
Si7450  
0.015  
U3  
LT1797  
BLANK  
SYNC  
FB  
1
47k  
330R  
OC1  
FMMT625  
22k  
8.2V  
+
I
SENSE  
GND  
1µF  
1µF  
13  
COMP  
PGND  
1950 F13  
U2  
LT1009  
Figure 13. 36V to 72V Input to 26V at 5A Nonsynchronous Forward Converter  
1950fa  
17  
LT1950  
W U U  
U
APPLICATIO S I FOR ATIO  
3.3V BIAS  
+V  
OUT  
V
IN  
4V TO 36V  
C1  
C3  
4.7µF  
16V  
C
IN  
R3  
2200pF  
R1  
10.5k  
LT1950  
COMP  
10µF  
50V  
18k  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
L1  
4.7µH  
V
SEC  
TDK  
C5  
FB  
R
V
L2*  
IN  
10µF  
D1  
MBRD660CT  
50V  
BOOST  
PGND  
GATE  
OSC  
+V  
OUT  
12V, 1.5A  
D2  
R4  
133k  
R5  
16.2k  
SYNC  
BAS516  
Q1  
Si7456  
R2  
1.21k  
SLOPE  
C
OUT  
V
V
47µF, 16V  
REF  
IN2  
R9, 47  
L3*  
X5R, TDK  
×4  
C2  
0.1µF  
SHDN  
GND  
I
SENSE  
C4  
4.7µF  
16V  
R10  
0.010Ω  
C6  
0.01µF  
BLANK  
R6  
35.7k  
R7  
R8  
47k  
71.5k  
*L2, L3 (COUPLED INDUCTORS)  
VP5-0155  
V
IN  
Figure 14. 4V to 36V Input, 12V/1.5A Automotive SEPIC Converter  
1950fa  
18  
LT1950  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.053 – .068  
(1.351 – 1.727)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
(0.203 – 0.305)  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
GN16 (SSOP) 0502  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1950fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1950  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1534  
Ultralow Noise 2A Switching Regulator  
Reduces Conducted and Radiated EMI, Low Switching Harmonics,  
20kHz to 250kHz Switching Frequency  
LT1619  
Low Voltage Current Mode Controller  
Dual Transistor Synchronous Forward Controller  
High Speed MOSFET Driver  
1.9V V 18V, 300kHz Operation, Boost, Flyback, SEPIC  
IN  
LT1681/LT3781  
LTC1693  
Operation Up to 72V Maximum  
1.5A Peak Output Current, 16ns Rise/Fall Time at V = 12V, C = 1nF  
CC  
L
LTC1698  
Secondary Synchronous Rectifier Controller  
Use with the LT1950 or LT1681, Isolated Power Supplies,  
Contains Voltage Margining, Optocoupler Driver, Synchronization  
Circuit with the Primary Side  
LT1725  
General Purpose Isolated Flyback Controller  
No Optoisolator Required, Accurate Regulation Without User Trims,  
50kHz to 250kHz Switching Frequency, SSOP-16 Package  
LTC1871  
LT1910  
Wide Input Range, No R  
TM Controller  
Operation as Low as 2.5V Input, Boost, Flyback, SEPIC  
8V to 48V Supply Range, Protected –15V to 60V Supply Transient  
Synchronous, Single Inductor, No Schottky Diode Required  
SENSE  
Protected High Side MOSFET Driver  
Micropower Buck-Boost DC/DC Converter  
Positive-to-Negative DC/DC Controller  
LTC3440  
LTC3704  
2.5V V 36V, No R  
Current Mode Operation,  
SENSE  
IN  
Excellent Transient Response  
No RSENSE is a trademark of Linear Technology Corporation.  
1950fa  
LT/TP 0504 1K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1952

Single Switch Synchronous Forward Controller
Linear

LT1952-1

Single Switch Synchronous Forward Controller
Linear

LT1952-1_15

Single Switch Synchronous Forward Controller
Linear

LT1952EGN

Single Switch Synchronous Forward Controller
Linear

LT1952EGN-1

Single Switch Synchronous Forward Controller
Linear

LT1952EGN-1#TR

LT1952 - Single Switch Synchronous Forward Controller; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1952EGN-1PBF

Single Switch Synchronous Forward Controller
Linear

LT1952EGN-1TR

Single Switch Synchronous Forward Controller
Linear

LT1952EGN-1TRPBF

Single Switch Synchronous Forward Controller
Linear

LT1952EGNPBF

Single Switch Synchronous Forward Controller
Linear

LT1952EGNTR

Single Switch Synchronous Forward Controller
Linear

LT1952EGNTRPBF

Single Switch Synchronous Forward Controller
Linear