LT1952 [Linear]

Single Switch Synchronous Forward Controller; 单开关同步正向控制器
LT1952
型号: LT1952
厂家: Linear    Linear
描述:

Single Switch Synchronous Forward Controller
单开关同步正向控制器

开关 控制器
文件: 总24页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1952  
Single Switch Synchronous  
Forward Controller  
U
DESCRIPTIO  
FEATURES  
Synchronous Rectifier Control for High Efficiency  
The LT®1952 is a current mode PWM controller optimized  
to control the forward converter topology, using one  
primary MOSFET. The LT1952 provides synchronous  
rectifier control, resulting in extremely high efficiency. A  
programmable Volt-Second clamp provides a safeguard  
for transformer reset that prevents saturation. This allows  
a single MOSFET on the primary side to reliably run at  
greater than 50% duty cycle for high MOSFET, trans-  
former and rectifier utilization. The LT1952 includes  
soft-start for controlled exit from shutdown, overcurrent  
conditions and undervoltage lockout. A precision 100mV  
current limit threshold, independent of duty cycle, com-  
bineswithsoft-starttoprovidehiccupshortcircuitprotec-  
tion. Micropower start-up allows the LT1952 to be effi-  
ciently started from high input voltages. Programmable  
slope compensation and leading edge blanking allow  
optimization of loop bandwidth with a wide range of  
inductorsandMOSFETs. TheLT1952canbeprogrammed  
over a 100kHz to 500kHz frequency range and the part can  
be synchronized to an external clock. The error amplifier  
is a true op amp, allowing a wide range of compensation  
networks. The LT1952 is available in a small 16-pin SSOP  
Programmable Volt-Second Clamp  
Output Power Levels from 25W to 500W  
Low Current Start-Up  
True PWM Soft-Start  
Low Stress Short Circuit Protection  
Precision 100mV Current Limit Threshold  
Adjustable Delay for Synchronous Timing  
Accurate Shutdown Threshold with Programmable  
Hysteresis  
Programmable Slope Compensation  
Programmable Leading Edge Blanking  
Programmable Frequency (100kHz to 500kHz)  
Synchronizable to an External Clock up to 1.5 • fOSC  
Internal 1.23V Reference  
2.5V External Reference  
Current Mode Control  
Small 16-Pin SSOP Package  
U
APPLICATIO S  
Telecommunications Power Supplies  
Industrial and Distributed Power  
Isolated and Non-Isolated DC/DC Converters  
package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
36V to 72V Input, 12V at 20A Semi-Regulated Bus Converter  
L1  
12V Bus Converter  
VOUT vs VIN  
T1  
PA0905  
V
IN  
PA1494.242  
V
12V  
20A  
OUT  
SUPPLY FROM BIAS  
WINDING OF T1  
16  
14  
12  
10  
8
10µF  
47µF  
16V  
X5R  
×2  
V
V
IN  
REF  
52.3k  
100k  
Si7370  
×2  
PH4840  
COMP  
×2  
Si7450  
SS_MAXDC  
OUT  
OC  
V
IN  
340k  
LT1952  
I
0.005  
SENSE  
SD_V  
FB  
SEC  
LTC3900  
FG  
CG  
13k  
T2  
SYNC  
GND  
SOUT  
SYNC  
560Ω  
R
220pF  
OSC  
36  
48  
54  
(V)  
60  
66  
72  
42  
PGND BLANK DELAY  
40k 40k  
V
IN  
0.1µF  
0.1µF  
1952 TA01b  
178k  
1952 TA01  
1952f  
1
LT1952  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
TOP VIEW  
VIN (Note 8) ............................................... –0.3V to 25V  
NUMBER  
COMP  
FB  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SOUT  
SYNC, SS_MAXDC, SD_VSEC, ISENSE  
,
V
IN  
OC, COMP, BLANK, DELAY ......................... –0.3V to 6V  
FB ................................................................ –0.3V to 3V  
ROSC ...................................................................................... –50µA  
LT1952EGN  
LT1952IGN  
R
OSC  
OUT  
SYNC  
PGND  
DELAY  
OC  
SS_MAXDC  
V
REF .................................................................... –10mA  
V
REF  
GN PART  
MARKING  
Operating Junction Temperature Range  
SD_V  
SEC  
I
SENSE  
(Notes 2, 5) ....................................... –40°C to 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
GND  
BLANK  
1952E  
1952I  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 110°C/W, θJC = 40°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COMP = open, FB = 1.4V, ROSC = 178k, SYNC = 0V, SS_MAXDC = VREF, VREF  
= 0.1µF, SD_VSEC = 2V, BLANK = 40k, DELAY = 40k, ISENSE = 0V, OC = 0V, OUT = 1nF, VIN = 15V, SOUT = open, unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PWM CONTROLLER  
Operational Input Voltage  
I
I
= 0µA  
V
25  
6.5  
V
mA  
µA  
µA  
V
(VREF)  
(VREF)  
IN OFF  
V
V
V
Quiescent Current  
Startup Current  
= 0µA, FB = 0V, I  
= OC = Open  
SENSE  
5.2  
460  
240  
1.32  
0
IN  
IN  
IN  
FB = 0V, SS_MAXDC = 0V (Notes 4, 9)  
SD_V = 0V  
700  
350  
1.379  
Shutdown Current  
SEC  
SD_V  
SD_V  
SD_V  
Threshold  
10V < V < 25V  
1.261  
SEC  
IN  
Current  
Current  
SD_V  
SD_V  
= SD_V  
= SD_V  
Threshold + 100mV  
Threshold – 100mV  
µA  
µA  
V
SEC (ON)  
SEC (OFF)  
SEC  
SEC  
SEC  
SEC  
9.5  
12.75  
8.0  
11.2  
14.25  
8.75  
5.5  
12.9  
15.75  
9.25  
V
V
V
V
IN ON  
IN OFF  
V
3.75  
6.75  
V
IN HYSTERESIS  
REF  
Output Voltage  
Line Regulation  
Load Regulation  
OSCILLATOR  
I
I
= 0µA  
2.425  
2.5  
1
2.575  
10  
V
mV  
mV  
(VREF)  
(VREF)  
= 0µA, 10V < V < 25V  
IN  
0µA < I  
< 2.5mA  
1
10  
(VREF)  
Frequency: f  
R
OSC  
= 178k, FB = 1V  
165  
200  
240  
kHz  
OSC  
Minimum Programmable f  
Maximum Programmable f  
R
OSC  
R
OSC  
= 365k  
80  
440  
100  
500  
120  
560  
kHz  
kHz  
OSC  
= 64.9k, COMP = 2.5V, SD_V  
= 2.64V  
OSC  
SEC  
SYNC Input Resistance  
18  
k  
SYNC Switching Threshold  
FB = 1V  
1.5  
2.2  
1.5  
V
SYNC Frequency/f  
FB = 1V (Note 7)  
1.25  
0.05  
OSC  
f
Line Reg  
FB = 1V, R  
= 178k; 10V < V < 25V,  
0.33  
%/V  
OSC  
OSC  
IN  
SS_MAXDC = 1.84V  
V
R
OSC  
Pin voltage  
1
V
ROSC  
1952f  
2
LT1952  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COMP = open, FB = 1.4V, ROSC = 178k, SYNC = 0V, SS_MAXDC = VREF  
,
VREF = 0.1µF, SD_VSEC = 2V, BLANK = 40k, DELAY = 40k, ISENSE = 0V, OC = 0V, OUT = 1nF, VIN = 15V, SOUT = open, unless otherwise  
specified.  
PARAMETER  
CONDITIONS  
MIN  
1.201  
65  
TYP  
MAX  
UNITS  
ERROR AMPLIFIER  
FB Reference Voltage  
FB Input Bias Current  
Open Loop Voltage Gain  
Unity Gain Bandwidth  
COMP Source Current  
COMP Sink Current  
COMP Current (Disabled)  
10V < V < 25V, V + 0.2V < COMP < V – 0.2  
1.226  
–75  
85  
1.250  
–200  
V
nA  
dB  
MHz  
mA  
mA  
µA  
V
IN  
OL  
OH  
FB = FB Reference Voltage  
+ 0.2V < COMP < V – 0.2  
V
OL  
OH  
(Note 6)  
3
FB = 1V, COMP = 1.6V  
COMP = 1.6V  
–4  
4
–9  
10  
FB = V , COMP = 1.6V  
18  
2.7  
0.7  
23  
28  
REF  
COMP High Level: V  
FB = 1V, I  
= –250µA  
3.2  
1.0  
0.15  
OH  
(COMP)  
COMP Active Threshold  
FB = 1V, SOUT Duty Cycle > 0 %  
= 250µA  
V
COMP Low Level: V  
I
0.4  
V
OL  
(COMP)  
CURRENT SENSE  
I
Maximum Threshold  
COMP = 2.5V, FB = 1V  
197  
98  
220  
243  
mV  
SENSE  
I
I
Input Current (Duty Cycle = 0%)  
Input Current (Duty Cycle = 80%)  
COMP = 2.5V, FB = 1V (Note 4)  
COMP = 2.5V, FB = 1V (Note 4)  
–8  
–35  
µA  
µA  
SENSE  
SENSE  
OC Threshold  
107  
–50  
180  
540  
1
116  
mV  
nA  
ns  
ns  
V
OC Input Current  
(OC = 100mV)  
–100  
Default Blanking Time  
Adjustable Blanking Time  
COMP = 2.5V, FB = 1V (Note 10)  
COMP = 2.5V, FB = 1V, R  
= 120k  
BLANK  
V
BLANK  
SOUT DRIVER  
SOUT Clamp Voltage  
SOUT Low Level  
SOUT High Level  
I
I
I
= 0µA, COMP = 2.5V, FB = 1V  
10.5  
12  
13.5  
0.75  
V
V
V
(GATE)  
(GATE)  
(GATE)  
= 25mA  
0.5  
= –25mA, V = 12V, COMP = 2.5V,  
10  
1
IN  
FB = 1V  
SOUT Active Pull-Off in Shutdown  
V
= 5V, SD_V  
= 0V, SOUT = 1V  
SEC  
mA  
IN  
SOUT to OUT (Rise) DELAY (t  
)
COMP = 2.5V, FB = 1V (Note 10)  
= 120k  
40  
120  
ns  
ns  
DELAY  
R
DELAY  
V
0.9  
V
DELAY  
OUT DRIVER  
OUT Rise Time  
OUT Fall Time  
OUT Clamp Voltage  
OUT Low Level  
FB = 1V, CL = 1nF (Notes 3, 6)  
FB = 1V, CL = 1nF (Notes 3, 6)  
50  
30  
13  
ns  
ns  
V
I
= 0µA, COMP = 2.5V, FB = 1V  
11.5  
14.5  
(GATE)  
I
I
= 20mA  
= 200mA  
0.45  
1.25  
0.75  
1.8  
V
V
(GATE)  
(GATE)  
OUT High Level  
I
= –20mA, V = 12V, COMP = 2.5V,  
9.9  
V
(GATE)  
IN  
FB = 1V  
= –200mA, V = 12V, COMP = 2.5V,  
I
9.75  
V
(GATE)  
IN  
FB = 1V  
OUT Active Pull-Off in Shutdown  
V
= 5V, SD_V  
= 0V, OUT = 1V  
SEC  
20  
mA  
1952f  
3
IN  
LT1952  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COMP = open, FB = 1.4V, ROSC = 178k, SYNC = 0V, SS_MAXDC = VREF  
,
VREF = 0.1µF, SD_VSEC = 2V, BLANK = 40k, DELAY = 40k, ISENSE = 0V, OC = 0V, OUT = 1nF, VIN = 15V, SOUT = open, unless otherwise  
specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUT Max Duty Cycle  
COMP = 2.5V, FB = 1V, R  
= 10k  
DELAY  
(f  
OSC  
= 200kHz)  
SD_V  
= 1.4V, SS_MAXDC = V  
83  
90  
%
SEC  
REF  
OUT Max Duty Cycle Clamp  
COMP = 2.5V, FB = 1V, R  
= 10k  
DELAY  
(f  
OSC  
= 200kHz)  
SD_V  
SD_V  
= 1.32V, SS_MAXDC = 1.84V  
= 2.64V, SS_MAXDC = 1.84V  
63.5  
25  
72  
33  
80.5  
41  
%
%
SEC  
SEC  
SOFT-START  
SS_MAXDC Low Level: V  
I
= 150µA, OC = 1V  
0.2  
0.45  
0.8  
V
V
OL  
(SS_MAXDC)  
SS_MAXDC Soft-Start Reset Threshold  
SS_MAXDC Active Threshold  
Measured on SS_MAXDC  
FB = 1V, DC > 0%  
V
SS_MAXDC Input Current (Soft-Start Pulldown: Idis)  
SS_MAXDC = 1V, SD_V  
= 1.4V, OC = 1V  
800  
µA  
SEC  
temperature will exceed 125°C when over-temperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 6: Guaranteed but not tested.  
Note 7: Maximum recommended SYNC frequency = 500kHz.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The LT1952EGN is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C to  
125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT1952IGN is guaranteed over the full –40°C to 125°C operating junction  
temperature range.  
Note 8: In applications where the V pin is supplied via an external RC  
IN  
network from a SYSTEM V > 25V, an external zener with clamp voltage  
IN  
V
< V < 25V should be connected from the V pin to ground.  
IN ON(MAX)  
Z
I
N
Note 3: Rise and Fall times are measured at 10% and 90% levels.  
Note 4: Guaranteed by correlation to static test.  
Note 9: V start-up current is measured at V = V – 0.25V and  
IN  
IN  
IN ON  
scaled by x 1.18 (to correlate to worst case V start-up current at V  
).  
IN  
IN ON  
Note 5: This IC includes over-temperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
Note 10: Timing for R = 40k derived from measurement with R = 240k.  
1952f  
4
LT1952  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switching Frequency vs  
Temperature  
VIN Shutdown Current vs  
Temperature  
FB Voltage vs Temperature  
245  
230  
215  
200  
185  
170  
155  
500  
450  
400  
350  
300  
250  
200  
150  
100  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
V
= 15V  
SEC  
IN  
SD_V  
= 0V  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1952 G02  
1952 G03  
1952 G01  
VIN Start-up Current vs  
Temperature  
SD_VSEC Turn ON Threshold vs  
Temperature  
VIN IQ vs Temperature  
600  
550  
500  
450  
400  
350  
300  
250  
200  
1.42  
1.37  
1.32  
1.27  
1.22  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
SD_V  
SEC  
= 1.4V  
OC = OPEN  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
50  
TEMPERATURE (°C)  
125  
–25  
–50  
0
25  
75 100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1952 G04  
1952 G06  
1952 G05  
SD_VSEC Pin Current vs  
Temperature  
VIN Turn ON/OFF Voltage vs  
Temperature  
COMP Active Threshold vs  
Temperature  
15  
10  
5
18  
16  
14  
12  
10  
8
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
= 0k  
ISENSE  
PIN CURRENT BEFORE  
PART TURN ON  
V
TURN ON VOLTAGE  
IN  
V
TURN OFF VOLTAGE  
IN  
0µA PIN CURRENT AFTER  
PART TURN ON  
0
6
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1952 G07  
1952 G08  
1952 G09  
1952f  
5
LT1952  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
COMP Source Current vs  
Temperature  
COMP Sink Current vs  
Temperature  
(Disabled) COMP Pin Current vs  
Temperature  
12.5  
10.0  
7.5  
50  
40  
30  
20  
10  
0
12.5  
10.0  
7.5  
FB = 1.4V  
COMP = 1.6V  
FB = V  
REF  
COMP = 1.6V  
FB = 1V  
COMP = 1.6V  
CURRENT OUT OF PIN  
5.0  
5.0  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
50  
75 100 125  
–25  
–25  
–50  
0
25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1952 G11  
1952 G12  
1952 G10  
ISENSE Maximum Threshold vs  
COMP  
ISENSE Maximum Threshold vs  
Temperature  
ISENSE Pin Current (Out of Pin) vs  
Duty Cycle  
240  
230  
220  
210  
200  
40  
30  
20  
10  
0
240  
200  
160  
120  
80  
COMP = 2.5V  
T = 25°C  
A
T
= 25°C  
ISENSE  
A
R
= 0k  
R
= 0k  
ISENSE  
OC THRESHOLD  
40  
0
–50  
0
25  
50  
75 100 125  
0
20 30 40 50 60 70 80 90 100  
10  
0
1.0  
1.5  
2.0  
2.5  
3.0  
–25  
0.5  
TEMPERATURE (°C)  
DUTY CYCLE (%)  
COMP (V)  
1952 G14  
1952 G15  
1952 G13  
ISENSE Maximum Threshold vs  
Duty Cycle (Programming Slope  
Compensation)  
OC (Over-Current) Threshold vs  
Temperature  
Blank Duration vs Temperature  
225  
215  
205  
195  
185  
175  
120  
110  
100  
90  
800  
600  
400  
200  
0
PRECISION OVER-CURRENT THRESHOLD  
INDEPENDENT OF DUTY CYCLE  
R
= 0  
SLOPE  
SLOPE  
R
= 120k  
BLANK  
R
= 470Ω  
R
= 40k  
50  
BLANK  
25  
R
SLOPE  
= 1k  
T
= 25°C  
A
COMP = 2.5V  
80  
0
20 30 40 50 60 70 80 90 100  
DUTY CYCLE (%)  
–50  
0
25  
50  
75 100 125  
–50  
0
75 100 125  
10  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1952 G16  
1952 G17  
1952 G18  
1952f  
6
LT1952  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
tDELAY: SOUT Rise to OUT Rise vs  
Temperature  
tDELAY: SOUT Rise to OUT Rise vs  
RDELAY  
BLANK Duration vs RBLANK  
1000  
800  
600  
400  
200  
0
200  
160  
120  
80  
200  
150  
100  
50  
T
= 25°C  
T
= 25°C  
A
A
R
R
= 120k  
DELAY  
40  
= 40k  
50  
DELAY  
25  
0
0
0
40 60 80 100 120 140 160  
(k)  
0
40 60 80 100 120 140 160  
(k)  
20  
20  
–50  
0
75 100 125  
–25  
R
R
DELAY  
TEMPERATURE (°C)  
BLANK  
1952 G26  
1952 G27  
1952 G19  
OUT Rise/Fall Time vs OUT Load  
Capacitance  
OUT: Max Duty Cycle CLAMP vs  
SD_VSEC  
OUT: Max Duty Cycle vs fOSC  
125  
100  
75  
50  
25  
0
100  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
A
t
r
t
f
80  
T
= 25°C  
A
T
= 25°C  
SS_MAXDC = 1.84V  
A
SS_MAXDC = 2.5V  
f
= 200kHz  
= 10k  
OSC  
SD_V  
= 1.4V  
R
SEC  
DELAY  
70  
0
1000  
2000  
3000  
4000  
5000  
100  
200  
300  
(kHz)  
400  
500  
1.32  
1.65  
1.98  
SD_V  
2.31  
2.64  
OUT LOAD CAPACITANCE (pF)  
f
(V)  
OSC  
SEC  
1952 G20  
1952 G21  
1952 G22  
SS_MAXDC Setting vs fOSC  
(for OUT DC = 72%)  
OUT: Max Duty Cycle CLAMP vs  
SS_MAXDC  
SS_MAXDC Reset and Active  
Thresholds vs Temperature  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
90  
80  
70  
60  
50  
40  
30  
20  
2.32  
2.20  
2.08  
1.96  
1.84  
1.72  
1.60  
T
OSC  
R
= 25°C  
T
= 25°C  
A
A
f
= 200kHz  
= 10k  
SD_V  
R
= 1.32V  
SEC  
= 10k  
DELAY  
DELAY  
ACTIVE THRESHOLD  
SD_V  
= 1.32V  
SEC  
SD_V  
SD_V  
= 1.98V  
= 2.64V  
SEC  
RESET THRESHOLD  
SEC  
–50  
0
25  
50  
75 100 125  
1.60  
1.84  
SS_MAXDC (V)  
2.08  
100  
200  
300  
(kHz)  
400  
500  
–25  
TEMPERATURE (°C)  
f
OSC  
1952 G25  
1952 G23  
1952 G24  
1952f  
7
LT1952  
U
U
U
PI FU CTIO S  
COMP (Pin 1): Output Pin of the Error Amplifier. The error  
amplifier is an op amp, allowing various compensation  
networks to be connected between the COMP pin and FB  
pin for optimum transient response. The voltage on this  
pin corresponds to the peak current of the external FET.  
Full operating voltage range is between 0.8V and 2.5V  
corresponding to 0mV to 220mV at the ISENSE pin. For  
applications using the 100mV OC pin for over-current  
detection,typicaloperatingrangefortheCOMPpinis0.8V  
to 1.6V. For isolated applications where COMP is con-  
trolled by an opto-coupler, the COMP pin output drive can  
bedisabledwithFB=VREF, reducingtheCOMPpincurrent  
to (COMP – 0.7)/40k.  
Volt-Second clamp on the OUT pin. A 10µA pin current  
hysteresis allows external programming of UVLO  
hysteresis.  
GND (Pin 8): Analog Ground.  
BLANK (Pin 9): A resistor to ground adjusts the extended  
blanking period of the over-current and current sense  
amplifier outputs during FET turn on — to prevent false  
current limit trip. Increasing the resistor value increases  
the blanking period.  
I
SENSE (Pin 10): The Current Sense Input for the Control  
Loop. Connect this pin to the sense resistor in the source  
oftheexternalpowerMOSFET. Aresistorinserieswiththe  
ISENSE pin programs slope compensation.  
FB (Pin 2): Monitors the output voltage via an external  
resistor divider and is compared with an internal 1.23V  
reference by the error amplifier. FB connected to VREF  
disables error amplifier output.  
OC (Pin 11): An accurate 100mV threshold, independent  
of duty cycle, for over-current detection and trigger of  
soft-start. Connect this pin directly to the sense resistor in  
the source of the external power MOSFET.  
ROSC (Pin 3): A resistor to ground programs the operating  
frequency of the IC between 100kHz and 500kHz. Nominal  
voltage on the ROSC pin is 1.0V.  
DELAY (Pin 12): A resistor to ground adjusts the delay  
period between SOUT rising edge and OUT rising edge.  
Used to maximize efficiency in forward converter applica-  
tions by adjusting the control timing of secondary side  
synchronous rectifier MOSFETs. Increasing the resistor  
value increases the delay period.  
SYNC (Pin 4): Used to Synchronize the Internal Oscillator  
toanExternalSignal.Itisdirectlylogiccompatibleandcan  
be driven with any signal between 10% and 90% duty  
cycle. If unused, the pin can be left open or connected to  
ground.  
PGND (Pin 13): Power Ground.  
SS_MAXDC (Pin 5): External resistor divider from VREF  
sets maximum duty cycle clamp (SS_MAXDC = 1.84V,  
SD_VSEC = 1.32V gives 72% duty cycle). Capacitor on  
SS_MAXDC pin in combination with external resistor  
divider sets soft-start timing.  
OUT (Pin 14): Drives the Gate of an N-channel MOSFET  
between 0V and VIN. OUT is actively clamped to 13V.  
Active pull-off exists in shutdown (see electrical  
specification).  
VIN (Pin 15): Input Supply for the Part. It must be closely  
decoupled to ground. An internal undervoltage lockout  
threshold exists for VIN at approximately 14.25V on and  
8.75V off.  
VREF (Pin 6): The output of an internal 2.5V reference  
which supplies control circuitry in the IC. Capable of  
sourcing up to 2.5mA drive for external use. Bypass to  
ground with a 0.1µF ceramic capacitor.  
SOUT (Pin 16): Switched Output in Phase with OUT Pin.  
Provides sync signal for control of secondary side FETs in  
forward converter applications requiring highly efficient  
synchronous rectification. SOUT is actively clamped to  
12V. Active pull-off exists in shutdown (see electrical  
specification).  
SD_VSEC (Pin 7): The SD_VSEC pin, when pulled below its  
accurate 1.32V threshold, is used to turn off the IC and  
reduce current drain from VIN. The SD_VSEC pin is con-  
nected to system input voltage through a resistor divider  
to define undervoltage lockout (UVLO) and to provide a  
1952f  
8
LT1952  
W U  
W
TI I G DIAGRA  
t : PROGRAMMABLE SYNCHRONOUS DELAY  
DELAY  
SOUT  
OUT  
SS_MAXDC  
FAULTS TRIGGERING SOFT-START  
< 8.75V  
V
IN  
OR  
SD_V  
OR  
0.8V (ACTIVE THRESHOLD)  
< 1.32V (UVLO)  
SEC  
0.45V (RESET THRESHOLD)  
0.2V  
OC > 100mV (OVER-CURRENT)  
SOFT-START LATCH RESET:  
> 14.25V (> 8.75V IF LATCH SET BY OC)  
SOFT-START  
LATCH SET  
V
IN  
AND  
SD_V  
AND  
> 1.32V  
SEC  
OC < 100mV  
AND  
SS_MAXDC < 0.45V  
1952 F01  
Figure 1. Timing Diagram  
W
BLOCK DIAGRA  
V
V
SS_MAXDC  
5
IN  
REF  
6
15  
460µA START-UP  
INPUT CURRENT  
14.25V ON  
8.75V OFF  
V
REF  
0.45V  
+
>90%  
SOFT-START CONTROL  
+
2.5V  
R
S
SOURCE  
2.5mA  
Q
+
±50mA  
1.23V  
ADAPTIVE  
MAXIMUM  
DUTY CYCLE  
CLAMP  
16  
SOUT  
+
12V  
I
HYST  
11µA SD_V  
= 1.32V  
SEC  
> 1.32V  
0µA SD_V  
SEC  
+
(TYPICAL 200kHz)  
OSC  
ON  
DELAY  
DRIVER  
±1A  
SD_V  
R
7
3
S
R
Q
SEC  
14  
OUT  
1.32V  
(LINEAR)  
OSC  
(100 TO 500)kHz  
SLOPE COMP  
8µA 0% DC  
RAMP  
13 PGND  
35µA 80% DC  
SYNC  
4
13V  
BLANK  
(VOLTAGE)  
ERROR AMPLIFIER  
+
1.23V  
SENSE  
OVER  
CURRENT  
CURRENT  
+
+
11  
10  
OC  
0mV TO 220mV  
100mV  
I
SENSE  
2
1
8
9
12  
1952 BD  
FB  
COMP  
GND  
BLANK  
DELAY  
Figure 2. Block Diagram  
1952f  
9
LT1952  
U
OPERATIO  
Introduction  
For SOUT and OUT turn on, a PWM latch is set at the start  
of each main oscillator cycle. OUT turn on is delayed from  
SOUT turn on by a time tDELAY (Figure 2). tDELAY is  
programmed using a resistor from the DELAY pin to  
ground and is used to set the timing control of the  
secondary synchronous rectifiers for optimum efficiency.  
TheLT1952isacurrentmodesynchronousPWMcontrol-  
ler optimized for control of the simplest forward converter  
topology — using only one primary MOSFET. The LT1952  
is ideal for 25W to 500W power systems where very high  
efficiency and reliability, low complexity and cost are  
required in a small space. Key features of the LT1952  
include an adaptive maximum duty cycle clamp for the  
single primary MOSFET. An additional output signal is  
included for synchronous rectifier control. A precision  
100mV threshold senses over-current conditions and  
triggers Soft-Start for low stress short circuit protection  
and control. The key functions of the LT1952 are shown in  
the Block Diagram in Figure 2.  
SOUT and OUT turn off at the same time each cycle by one  
of three methods:  
(1) MOSFET peak current sense at ISENSE pin  
(2) Adaptive maximum duty cycle clamp reached during  
load/line transients  
(3) Maximum duty cycle reset of the PWM latch  
During any of the following conditions — low VIN, low  
SD_VSEC or over-current detection at the OC pin — a  
soft-start event is latched and both SOUT and OUT turn off  
immediately (Figure 1).  
Part Startup  
In normal operation the SD_VSEC pin must exceed 1.32V  
and the VIN pin must exceed 14.25V to allow the part to  
turn on. This combination of pin voltages allows the 2.5V  
VREF pin to become active, supplying the LT1952 control  
circuitryandprovidingupto2.5mAexternaldrive.SD_VSEC  
threshold can be used for externally programming an  
undervoltage lockout (UVLO) threshold on the system  
input voltage. Hysteresis on the UVLO threshold can also  
be programmed since the SD_VSEC pin draws 11µA just  
before part turn on and 0µA after part turn on.  
Leading Edge Blanking  
To prevent MOSFET switching noise causing premature  
turn off of SOUT or OUT, programmable leading edge  
blanking exists. This means both the current sense com-  
parator and over-current comparator outputs are ignored  
during MOSFET turn on and for an extended period after  
the OUT leading edge (Figure 6). The extended blanking  
period is programmable by adjusting a resistor from the  
BLANK pin to ground.  
With the LT1952 turned on, the VIN pin can drop as low as  
8.75V before part shutdown occurs. This VIN pin hyster-  
esis (5.5V) combined with low 460µA start-up input  
current allows low power start-up using a resistor/capaci-  
tor network from system VIN to supply the VIN pin (Figure  
3). The VIN capacitor value is chosen to prevent VIN falling  
below 8.75V before an auxiliary winding in the converter  
takes over supply to the VIN pin.  
Adaptive Maximum Duty Cycle Clamp  
(Volt-Second Clamp)  
For forward converter applications using the simplest  
topology of a single MOSFET on the primary, a maximum  
switchdutycycleclampwhichadaptstotransformerinput  
voltage is necessary for reliable control of the MOSFET.  
This volt-second clamp provides a safeguard for trans-  
former reset that prevents transformer saturation. Instan-  
taneous load changes can cause the converter loop to  
demand maximum duty cycle. If the maximum duty cycle  
oftheswitchistoogreat,thetransformerresetvoltagecan  
exceedthevoltageratingoftheprimary-sideMOSFETwith  
catastrophicdamage.Manyconverterssolvethisproblem  
Output Drivers  
TheLT1952hastwooutputs, SOUTandOUT. TheOUTpin  
provides a ±1A peak MOSFET gate drive clamped to 13V.  
TheSOUTpinhasa±50mApeakdriveclampedto12Vand  
provides sync signal timing for synchronous rectification  
control.  
1952f  
10  
LT1952  
U
OPERATIO  
by limiting the operational duty cycle of the MOSFET to  
50% or less — or by using a fixed (non-adaptive) maxi-  
mum duty cycle clamp with very large voltage rated  
MOSFETs. The LT1952 provides a volt-second clamp to  
allow MOSFET duty cycles well above 50%. This gives  
greater power utilization for the MOSFET, rectifiers and  
transformer resulting in less space for a given power  
output. In addition, the volt-second clamp allows a re-  
duced voltage rating on the MOSFET resulting in lower  
RDSON for greater efficiency. The volt-second clamp de-  
fines a maximum duty cycle ‘guard rail’ which falls when  
system input voltage increases.  
A soft-start event is triggered whenever VIN is too low,  
SD_VSEC is too low (UVLO), or a 100mV over-current  
threshold at OC pin is exceeded. Whenever a soft-start  
event is triggered, switching at SOUT and OUT is stopped  
immediately.  
The SS_MAXDC pin is discharged and only released for  
charging when it has fallen below it’s reset threshold of  
0.45V and all faults have been removed. Increasing volt-  
ageontheSS_MAXDCpinabove0.8Vwillincreaseswitch  
maximum duty cycle. A capacitor to ground on the  
SS_MAXDC pin in combination with a resistor divider  
from VREF, defines the soft-start timing.  
The LT1952 SD_VSEC and SS_MAXDC pins provide a  
capacitorless,programmablevolt-secondclampsolution.  
Some controllers with volt-second clamps control switch  
maximum duty cycle by using an external capacitor to  
programmaximumswitchONtime.Suchtechniqueshave  
a volt-second clamp inaccuracy directly related to the  
error of the external capacitor/pin capacitance and the  
error/drift of the internal oscillator. The LT1952 uses  
simple resistor ratios to implement a volt-second clamp  
without the need for an accurate external capacitor and  
with an order of magnitude less dependency on oscillator  
error.  
Current Mode Topology (ISENSE Pin)  
TheLT1952currentmodetopologyeasesfrequencycom-  
pensationrequirementsbecausetheoutputinductordoes  
not contribute to phase delay in the regulator loop. This  
current mode technique means that the error amplifier  
(nonisolated applications) or the optocoupler (isolated  
applications) commands current (rather than voltage) to  
be delivered to the output. This makes frequency compen-  
sation easier and provides faster loop response to output  
load transients.  
A resistor divider from the application’s output voltage  
generates a voltage at the inverting FB input of the LT1952  
error amplifier (or to the input of an external optocoupler)  
and is compared to an accurate reference (1.23V for  
LT1952). The error amplifier output (COMP) defines the  
input threshold (ISENSE) of the current sense comparator.  
COMP voltages between 0.8V (active threshold) and 2.5V  
define a maximum ISENSE threshold from 0mV to 220mV.  
By connecting ISENSE to a sense resistor in series with the  
source of an external power MOSFET, the MOSFET peak  
current trip point (turn off) can be controlled by COMP  
level and hence by the output voltage. An increase in  
output load current causing the output voltage to fall, will  
cause COMP to rise, increasing ISENSE threshold, increas-  
ing the current delivered to the output. For isolated appli-  
cations, the error amplifier COMP output can be disabled  
to allow the optocoupler to take control. Setting FB = VREF  
disables the error amplifier COMP output, reducing pin  
current to (COMP – 0.7)/40k.  
An increase of voltage at the SD_VSEC pin causes the  
maximum duty cycle clamp to decrease. If SD_VSEC is  
resistively divided down from transformer input voltage, a  
volt-second clamp is realised. To adjust the initial maxi-  
mum duty cycle clamp, the SS_MAXDC pin voltage is  
programmed by a resistor divider from the 2.5V VREF pin  
to ground. An increase of programmed voltage on  
SS_MAXDC pin provides an increase of switch maximum  
duty cycle clamp.  
Soft-Start  
The LT1952 provides true PWM soft-start by using the  
SS_MAXDC pin to control soft-start timing. The propor-  
tionalrelationshipbetweenSS_MAXDCvoltageandswitch  
maximum duty cycle clamp allows the SS_MAXDC pin to  
slowly ramp output voltage by ramping the maximum  
switch duty cycle clamp — until switch duty cycle clamp  
seamlessly meets the natural duty cycle of the converter.  
1952f  
11  
LT1952  
U
OPERATIO  
is connected directly to the source of the primary side  
MOSFET to monitor peak current in the MOSFET  
(Figure 7). The 100mV threshold is constant over the  
entire duty cycle range of the converter because it is  
unaffected by the slope compensation added to the  
Slope Compensation  
The current mode architecture requires slope compensa-  
tion to be added to the current sensing loop to prevent  
subharmonic oscillations which can occur for duty cycles  
above 50%. Unlike most current mode converters which  
have a slope compensation ramp that is fixed internally,  
placing a constraint on inductor value and operating  
frequency, the LT1952 has externally adjustable slope  
compensation. Slope compensation can be programmed  
byinsertinganexternalresistor(RSLOPE)inserieswiththe  
ISENSE pin. The LT1952 has a linear slope compensation  
ramp which sources current out of the ISENSE pin of  
approximately 8µA at 0% duty cycle to 35µA at 80% duty  
cycle.  
ISENSE pin.  
Synchronizing  
A SYNC pin allows the LT1952 oscillator to be synchro-  
nized to an external clock. The SYNC pin can be driven  
from a logic level output, requiring less than 0.8V for a  
logic level low and greater than 2.2V for a logic level high.  
Duty cycle should run between 10% and 90%. To avoid  
loss of slope compensation during synchronization, the  
free running oscillator frequency (fOSC) should be pro-  
grammed to 80% of the external clock frequency (fSYNC).  
The RSLOPE resistor chosen for non-synchronized opera-  
tion should be increased by 1.25x (= fSYNC/fOSC).  
Over-Current Detection and Soft-Start (OC Pin)  
An added feature to the LT1952 is a precise 100mV sense  
threshold at the OC pin used to detect over-current condi-  
tions in the converter and set a soft-start latch. The OC pin  
U
W U U  
APPLICATIO S I FOR ATIO  
SYSTEM  
Shutdown and Programming Undervoltage Lockout  
INPUT (V )  
S
The LT1952 has an accurate 1.32V shutdown threshold at  
the SD_VSEC pin. This threshold can be used in conjunc-  
tion with a resistor divider to define the undervoltage  
lockout threshold (UVLO) of the system input voltage (VS)  
to the power converter (Figure 3). A pin current hysteresis  
(11µA before part turn on, 0µA after part turn on) allows  
UVLO hysteresis to be programmed. Calculation of the  
ON/OFF thresholds for the supply (SVIN) to the power  
converter can be made as follows:  
R1  
R2  
SD_V  
SEC  
+
OPTIONAL  
SHUTDOWN  
TRANSISTOR  
11µA  
1.32V  
ON OFF  
LT1952  
1952 F03  
VS OFF Threshold = 1.32[1 + (R1/R2)]  
Figure 3. Programming Undervoltage Lockout (UVLO)  
VS ON Threshold = SVIN OFF + (11µA • R1)  
Micropower Start-Up: Selection of Start-Up Resistor  
and Capacitor for VIN  
A simple open drain transistor can be added to the resistor  
divider network at the SD_VSEC pin to control the turn off  
of the LT1952 (Figure 3).  
The LT1952 uses turn-on voltage hysteresis at the VIN pin  
and low start-up current to allow micro-power start-up  
(Figure 4). The LT1952 monitors VIN pin voltage to allow  
partturnonat14.25Vandpartturnoffat8.75V. Lowstart-  
up current (460µA) allows a large resistor to be connected  
1952f  
The SD_VSEC pin must not be left open since there must  
be an external source current >11µA to lift the pin past its  
1.32V threshold for part turn on.  
12  
LT1952  
U
W U U  
APPLICATIO S I FOR ATIO  
between system input supply and VIN. Once the part is VIN,possiblyexceedingtheratingfortheVIN pin.Thezener  
turned on, input current increases to drive the IC (4.5mA) voltage should obey VIN ON(MAX) < VZ < 25V.  
and the output drivers (IDRIVE). A large enough capacitor  
Programming Oscillator Frequency  
is chosen at the VIN pin to prevent VIN falling below 8.5V  
before an auxiliary winding in the converter takes over  
supply to VIN. This technique allows a simple resistor/  
capacitor for start-up which draws low power from the  
system supply to the converter. The values for RSTART and  
The oscillator frequency (fOSC) of the LT1952 is pro-  
grammed using an external resistor (ROSC) connected  
between the ROSC pin and ground. Figure 5 shows typical  
fOSC vs. ROSC resistor values. The LT1952 free-running  
oscillator frequency is programmable in the range of  
100kHz to 500kHz.  
C
START are given by:  
RSTART(MAX) = (VS(MIN) – VIN ON(max))/ISTART(MAX)  
Stray capacitance and potential noise pickup on the ROSC  
pin should be minimized by placing the ROSC resistor as  
close as possible to the ROSC pin and keeping the area of  
the ROSC node as small as possible. The ground side of the  
ROSC resistor should be returned directly to the (analog  
ground) GND pin. ROSC can be calculated by,  
CSTART(MIN) = (IQ(MAX) + IDRIVE(MAX)) • tSTART  
VIN HYST(MIN)  
/
Example:  
For VS(MIN) = 36V, VIN ON(MAX) = 15.75V,  
ISTART(MAX) = 700µA, IQ(MAX) = 5.5mA,  
IDRIVE(MAX) = 5mA, VIN HYST(MIN) = 3.75V  
and tSTART = 100µs,  
ROSC = 9.125k [(4100k/fOSC) – 1]  
500  
450  
400  
350  
300  
250  
200  
150  
RSTART = (36 – 15.75)/700µA = 28.9k (choose 28.7k)  
CSTART = (5.5mA + 5mA) • 100µs/3.75V = 0.28µF  
(typically choose 1µF)  
For system input voltages exceeding the absolute maxi-  
mumratingoftheLT1952VIN pin,anexternalzenershould  
be connected from the VIN pin to ground. This covers the  
conditionwhereVIN chargespastVINON (typically14.25V)  
but the part does not turn on because SD_VSEC < 1.32V. In  
this condition VIN will continue to charge towards system  
100  
50 100 150 200 250 300 350 400  
R
(k)  
OSC  
SYSTEM  
INPUT (V )  
1952 F05  
S
FROM AUXILIARY WINDING  
Figure 5. Oscillator Frequency (fOSC) vs ROSC  
R
START  
V
(14.25V ON, 8.75V OFF)  
IN  
Programming Leading Edge Blank Time  
D1*  
ForPWMcontrollersdrivingexternalMOSFETs, noisecan  
be generated at the source of the MOSFET during gate rise  
time and some time thereafter. This noise can potentially  
exceed the OC and ISENSE pin thresholds of the LT1952 to  
cause premature turn off of SOUT and OUT in addition to  
false trigger of soft-start. The LT1952 provides program-  
mable leading edge blanking of the OC and ISENSE com-  
parator outputs to avoid false current sensing during  
MOSFET switching.  
1.32V  
+
C
START  
LT1952  
*FOR V > 25V, ZENER D1 RECOMMENDED  
S
(V  
< V < 25V)  
Z
IN ON(MAX)  
1952 F04  
Figure 4. Low Power Start-Up  
1952f  
13  
LT1952  
U
W U U  
APPLICATIO S I FOR ATIO  
Blankingisprovidedin2phases(Figure6):Thefirstphase  
automatically blanks during gate rise time. Gate rise times  
can vary depending on MOSFET type. For this reason the  
LT1952 performs true ‘leading edge blanking’ by auto-  
maticallyblankingOCandISENSE comparatoroutputsuntil  
OUT rises to within 0.5V of VIN or reaches its clamp level  
of 13V. The second phase of blanking starts after the  
leading edge of OUT has been completed. This phase is  
programmable by the user with a resistor connected from  
theBLANKpintoground.Typicaldurationsforthisportion  
of the blanking period are from 45ns at RBLANK = 10k to  
540nsatRBLANK =120k.Blankingdurationcanbeapproxi-  
mated as:  
The current limit for the converter can be programmed by,  
Current limit = (100mV/RS)(NP/NS) – (1/2)(IRIPPLE  
where,  
RS = sense resistor in source of primary MOSFET  
)
IRIPPLE = p-p ripple current in the output inductor L1  
NS = number of transformer secondary turns  
NP = number of transformer primary turns  
Programming Slope Compensation  
The LT1952 uses a current mode architecture to provide  
fast response to load transients and to ease frequency  
compensationrequirements.Currentmodeswitchingregu-  
latorswhichoperatewithdutycyclesabove50%andhave  
continuous inductor current must add slope compensa-  
tion to their current sensing loop to prevent subharmonic  
oscillations. (For more information on slope compensa-  
tion, see Application Note 19.) The LT1952 has program-  
mable slope compensation to allow a wide range of  
inductor values, to reduce susceptibility to PCB generated  
noise and to optimize loop bandwidth. The LT1952 pro-  
grams slope compensation by inserting a resistor RSLOPE  
in series with the ISENSE pin (Figure 7). The LT1952  
generates a current at the ISENSE pin which is linear from  
0% duty cycle to the maximum duty cycle of the OUT pin.  
A simple calculation of I(ISENSE) • RSLOPE gives an added  
ramp to the voltage at the ISENSE pin for programmable  
slopecompensation. (SeebothgraphsISENSE PinCurrent  
vs. Duty Cycle’ and ‘ISENSE Maximum Threshold vs Duty  
Cycle’ in the Typical Performance Characteristics  
section.)  
Blanking (extended) = [45(RBLANK/10k)]ns  
(see graph in Typical Performance Characteristics)  
(AUTOMATIC)  
LEADING  
EDGE  
(PROGRAMMABLE)  
CURRENT  
SENSE  
DELAY  
EXTENDED  
BLANKING  
BLANKING  
OUT  
R
BLANK  
(MIN)  
= 10k  
10k < R  
240k  
100ns  
BLANK  
BLANKING  
0
Xns  
X + 45ns  
[X + 45(R  
/10k)]ns  
BLANK  
1952 F06  
Figure 6. Leading Edge Blank Timing  
Programming Current Limit (OC Pin)  
CURRENT SLOPE = 35µA • DC  
The LT1952 uses a precise 100mV sense threshold at the  
OC pin to detect over-current conditions in the converter  
and set a soft-start latch. It is independent of duty cycle  
because it is not affected by slope compensation pro-  
grammed at the ISENSE pin. The OC pin monitors the peak  
current in the primary MOSFET by sensing the voltage  
across a sense resistor (RS) in the source of the MOSFET.  
V
= V + (I  
• R  
)
SLOPE  
(ISENSE)  
S
SENSE  
LT1952  
OUT  
OC  
I
= 8µA + 35DC µA  
SENSE  
DC = DUTY CYCLE  
V
S
R
SLOPE  
FOR SYNC OPERATION  
I
SENSE  
I
= 8µA + (k • 35DC)µA  
OSC SYNC  
SENSE(SYNC)  
k = f /f  
1952 F07  
R
S
Figure 7. Programming Slope Compensation  
1952f  
14  
LT1952  
U
W U U  
APPLICATIO S I FOR ATIO  
Programming Synchronous Rectifier Timing:  
SOUT to OUT delay (‘tDELAY’)  
SS_MAXDC pin using a resistor divider from VREF. An  
increase of voltage at the SS_MAXDC pin causes the  
maximum duty cycle clamp to increase.  
The LT1952 has an additional output SOUT which pro-  
vides a ±50mA peak drive clamped to 12V. In applications  
requiringsynchronousrectificationforhighefficiency,the  
LT1952 SOUT provides a sync signal for secondary side  
control of the synchronous rectifier MOSFETs (Figure11).  
Timing delays through the converter can cause non-  
optimum control timing for the synchronous rectifier  
MOSFETs. The LT1952 provides a programmable delay  
(tDELAY, Figure 8) between SOUT rising edge and OUT  
risingedgetooptimizetimingcontrolforthesynchronous  
rectifierMOSFETstoachievemaximumefficiencygains. A  
resistor RDELAY connected from the DELAY pin to ground  
sets the value of tDELAY. Typical values for tDELAY range  
from10nswithRDELAY =10kto160nswithRDELAY =160k.  
(see graph in Typical Performance Characteristics)  
To program the volt-second clamp, the following steps  
should be taken:  
(1) The maximum operational duty cycle of the converter  
should be calculated for the given application.  
(2) An initial value for the maximum duty cycle clamp  
should be calculated using the equation below with a  
first pass guess for SS_MAXDC.  
Note: Since maximum operational duty cycle occurs at  
minimum system input voltage (UVLO), the voltage at the  
SD_VSEC pin = 1.32V.  
Max Duty Cycle Clamp (OUT pin)  
= k • 0.522(SS_MAXDC(DC)/SD_VSEC) –  
(tDELAY • fOSC  
)
t
where,  
DELAY  
SS_MAXDC(DC) = VREF(RB/(RT + RB)  
SOUT  
LT1952  
SD_VSEC = 1.32V at minimum system input voltage  
tDELAY = programmed delay between SOUT and OUT  
DELAY  
OUT  
1952 F08  
R
DELAY  
k = 1.11 – 5.5e–7 • (fOSC  
)
(3) The maximum duty cycle clamp calculated in (2)  
should be programmed to be 10% greater than the  
maximum operational duty cycle calculated in (1). Simple  
adjustment of maximum duty cycle can be achieved by  
adjusting SS_MAXDC.  
Figure 8. Programming SOUT to OUT Delay: tDELAY  
Programming Maximum Duty Cycle Clamp  
For forward converter applications using the simplest  
topology of a single MOSFET on the primary, a maximum  
switchdutycycleclampwhichadaptstotransformerinput  
voltage is necessary for reliable control of the MOSFET.  
This volt-second clamp provides a safeguard for trans-  
former reset that prevents transformer saturation. The  
LT1952 SD_VSEC and SS_MAXDC pins provide a capaci-  
tor-less, programmable volt-second clamp solution using  
simple resistor ratios (Figure 9).  
SYSTEM  
INPUT VOLTAGE  
R1  
R2  
LT1952  
ADAPTIVE  
DUTY CYCLE  
CLAMP INPUT  
SD_V  
SEC  
SS_MAXDC  
R *  
T
V
REF  
1952 F09  
R
B
An increase of voltage at the SD_VSEC pin causes the  
maximumdutycycleclamptodecrease.DerivingSD_VSEC  
from a resistor divider connected to system input voltage  
creates the volt-second clamp. The maximum duty cycle  
clamp can be adjusted by programming voltage on the  
MAX DUTY CYCLE  
CLAMP ADJUST INPUT  
*MINIMUM ALLOWABLE R IS 10k TO  
T
GUARANTEE SOFT-START PULL-OFF  
Figure 9. Programming Maximum Duty Cycle Clamp  
1952f  
15  
LT1952  
U
W U U  
APPLICATIO S I FOR ATIO  
Example calculation for (2)  
A capacitor CSS on the SS_MAXDC pin and the resistor  
divider from VREF used to program maximum switch duty  
cycle clamp, determine soft-start timing (Figure 11).  
For RT = 35.7k, RB = 100k, VREF = 2.5V,  
R
DELAY = 40k, fOSC = 200kHz and SD_VSEC = 1.32V,  
this gives SS_MAXDC(DC) = 1.84V, tDELAY = 40ns  
and k = 1  
A soft-start event is triggered for the following faults:  
(1) VIN < 8.75V, or  
Maximum Duty Cycle Clamp  
= 1 • 0.522(1.84/1.32) – (40ns • 200kHz)  
= 0.728 – 0.008 = 0.72 (Duty Cycle Clamp = 72%)  
(2) SD_VSEC < 1.32V (UVLO), or  
(3) OC > 100mV (over-current condition)  
When a soft-start event is triggered, switching at SOUT  
and OUT is stopped immediately. A soft-start latch is set  
and SS_MAXDC pin is discharged. The SS_MAXDC pin  
canonlyrechargewhenthesoft-startlatchhasbeenreset.  
Note 1: To achieve the same maximum duty cycle clamp  
at 100kHz as calculated for 200kHz, the SS_MAXDC  
voltage should be reprogrammed by,  
SS_MAXDC(DC) (100kHz)  
= SS_MAXDC(DC) (200kHz) • k (200kHz)/k (100kHz)  
= 1.84 • 1.0/1.055 = 1.74V (k = 1.055 for 100kHz)  
Note: A soft-start event caused by (1) or (2) above, also  
causes VREF to be disabled and to fall to ground.  
The second order effect of tDELAY should also be consid-  
ered for final adjustment of SS_MAXDC(DC).  
SS_MAXDC  
Note 2 : To achieve the same maximum duty cycle clamp  
while synchronizing to an external clock at the SYNC pin,  
the SS_MAXDC voltage should be re-programmed as,  
SOFT-START  
0.8V (ACTIVE THRESHOLD)  
0.45V (RESET THRESHOLD)  
EVENT TRIGGERED  
TIMING (A): SOFT START FAULT REMOVED  
BEFORE SS_MAXDC FALLS TO 0.45V  
SS_MAXDC (DC) (fsync)  
SS_MAXDC  
= SS_MAXDC (DC) (200kHz) • [(fosc/fsync) +  
0.09(fosc/200kHz)0.6  
]
For SS_MAXDC (DC) (200kHz) = 1.84V for 72%  
duty cycle  
0.8V (ACTIVE THRESHOLD)  
0.45V (RESET THRESHOLD)  
0.2V  
TIMING (B): SOFT-START FAULT REMOVED  
SS_MAXDC (DC) (fsync = 250kHz) for 72%  
duty cycle  
1952 F10  
AFTER SS_MAXDC FALLS PAST 0.45V  
= 1.84 • [(200kHz/250kHz) + 0.09(1)0.6]  
= 1.638V  
Figure 10. Soft-Start Timing  
SS_MAXDC(DC)  
LT1952  
LT1952  
Programming Soft-Start Timing  
R
CHARGE  
SS_MAXDC  
SS_MAXDC  
TheLT1952hasbuilt-insoft-startcapabilitytoprovidelow  
stress controlled startup from a list of fault conditions that  
can occur in the application (see Figure 1 and Figure 10).  
The LT1952 provides true PWM soft-start by using the  
SS_MAXDC pin to control soft-start timing. The propor-  
tionalrelationshipbetweenSS_MAXDCvoltageandswitch  
maximum duty cycle clamp allows the SS_MAXDC pin to  
slowly ramp output voltage by ramping the maximum  
switch duty cycle clamp — until switch duty cycle clamp  
seamlessly meets the natural duty cycle of the converter.  
R
T
V
REF  
C
SS  
C
R
B
SS  
1952 F11  
SS_MAXDC CHARGING MODEL  
SS_MAXDC(DC) = V [R /(R + R )]  
REF  
B
T
B
R
= [R • R /(R + R )]  
T B T B  
CHARGE  
Figure 11. Programming Soft-Start Timing  
1952f  
16  
LT1952  
U
W U U  
APPLICATIO S I FOR ATIO  
Soft-start latch reset requires all of the following:  
Example  
(A) VIN > 14.25*, and  
For an over-current fault (OC > 100mV), VREF = 2.5V,  
RT = 35.7k, RB = 100k, CSS = 0.1µF and assume  
(B) SD_VSEC > 1.32V, and  
V
SS(MIN) = 0.45V,  
IDIS ~ 8e–4 + (2.5 – 0.45)[(1/2 • 100k) – (1/35.7k)]  
= 8e–4 + (2.05)(–0.23e–4) = 7.5e–4  
(C) OC < 100mV, and  
(D) SS_MAXDC < 0.45V (SS_MAXDC reset threshold)  
SS_MAXDC(DC) = 1.84V  
*VIN > 8.75V is ok for latch reset if the latch was only set  
by over-current condition in (3) above  
SS_MAXDC (tFALL) = (1e – 7/7.5e–4) • (1.84 – 0.45)  
= 1.85e–4  
s
SS_MAXDC Discharge Timing  
IftheOCfaultisnotremovedbefore185µsthenSS_MAXDC  
It can be seen in Figure 10 that two types of discharge can  
occur for the SS_MAXDC pin. In timing (A) the fault that  
caused the soft-start event has been removed before  
SS_MAXDC falls to 0.45V. This means the soft-start latch  
will be reset when SS_MAXDC falls to 0.45V and  
SS_MAXDC will begin charging. In timing (B), the fault  
that caused the soft-start event is not removed until some  
time after SS_MAXDC has fallen past 0.45V. The  
SS_MAXDC pin continues to discharge to 0.2V and re-  
mains low until all faults are removed.  
will continue to fall past 0.45V towards a new VSS(MIN)  
.
The typical VOL for SS_MAXDC at 150µA is 0.2V.  
SS_MAXDC Charge Timing  
When all faults are removed and the SS_MAXDC pin has  
fallen to its reset threshold of 0.45V or lower, the  
SS_MAXDC pin will be released and allowed to charge.  
SS_MAXDC will rise until it settles at its programmed DC  
voltage — setting the maximum switch duty cycle clamp.  
The calculation of charging time for the SS_MAXDC pin  
between any two voltage levels can be approximated as an  
RC charging waveform using the model shown in  
Figure 11.  
The time for SS_MAXDC to fall to a given voltage can be  
approximated as,  
SS_MAXDC (tFALL) =  
(CSS/IDIS) • [SS_MAXDC(DC) – VSS(MIN)  
]
The ability to predict SS_MAXDC rise time between any  
two voltages allows prediction of several key timing  
periods:  
where,  
IDIS = net discharge current on CSS  
(1) No Switching Period  
CSS = capacitor value at SS_MAXDC pin  
(time from SS_MAXDC(DC) to VSS(MIN) + time from  
SS_MAXDC(DC) = programmed DC voltage  
VSS(MIN) to VSS(ACTIVE)  
)
VSS(MIN) = minimum SS_MAXDC voltage before  
recharge  
IDIS ~ 8e–4 + (VREF – VSS(MIN))[(1/2RB) – (1/RT)]  
(2) Converter Output Rise Time  
(time from VSS(ACTIVE) to VSS(REG); VSS(REG) is the  
level of SS_MAXDC where maximum duty cycle  
clamp equals the natural duty cycle of the switch)  
For faults arising from (1) and (2),  
VREF = 100mV.  
(3) Time For Maximum Duty Cycle Clamp within X% of  
Target Value  
For a fault arising from (3),  
VREF = 2.5V.  
The time for SS_MAXDC to charge to a given voltage VSS  
is found by re-arranging,  
SS_MAXDC(DC) = VREF[RB/(RT + RB)]  
VSS(t) = SS_MAXDC(DC) (1 – e(–t/RC)  
)
VSS(MIN) = SS_MAXDC reset threshold = 0.45V  
(if fault removed before tFALL  
)
1952f  
17  
LT1952  
U
W U U  
APPLICATIO S I FOR ATIO  
Step 3:  
to give,  
t(VSS = 0.8V) is calculated from,  
t = RC • (–1) • ln(1 – VSS/SS_MAXDC(DC))  
where,  
t = RCHARGE • CSS • (–1) • ln(1 – VSS/SS_MAXDC(DC))  
= 2.63e4 • 1e–7 • (–1) • ln(1 – 0.8/1.84)  
V
SS = SS_MAXDC voltage at time t  
= 2.63e–3 • (–1) • ln(0.565) = 1.5e–3  
s
SS_MAXDC(DC) = programmed DC voltage setting  
maximum duty cycle clamp =  
From Step 1 and Step 2  
tCHARGE = (1.5 – 0.73)e–3 s = 7.7e–4  
s
V
REF(RB/(RT + RB)  
The total time of no switching for the converter due to a  
soft-start event  
R = RCHARGE (Figure 11) = RT • RB/(RT + RB)  
C = CSS (Figure 11)  
= tDISCHARGE + tCHARGE = 1.85e–4 + 7.7e–4 = 9.55e–4  
s
Example (1) No Switching Period  
Example (2) Converter Output Rise Time  
The period of no switching for the converter, when a  
soft-start event has occurred, depends on how far  
SS_MAXDC can fall before recharging occurs and how  
long a fault exists. It will be assumed that a fault triggering  
soft-start is removed before SS_MAXDC can reach its  
reset threshold (0.45V).  
The rise time for the converter output to reach regulation  
can be closely approximated as the time between the start  
of switching (SS_MAXDC = VSS(ACTIVE)) and the time  
where converter duty cycle is in regulation (DC(REG)) and  
no longer controlled by SS_MAXDC (SS_MAXDC =  
VSS(REG)). Converteroutputrisetimecanbeexpressedas,  
No Switching Period = tDISCHARGE + tCHARGE  
Output Rise Time = t(VSS(REG)) – t(VSS(ACTIVE)  
)
tDISCHARGE = discharge time from SS_MAXDC(DC) to  
0.45V  
Step 1: Determine converter duty cycle DC(REG) for  
output in regulation  
tCHARGE = charge time from 0.45V to VSS(ACTIVE)  
tDISCHARGE was already calculated earlier as 185µs.  
tCHARGE is calculated by assuming the following:  
The natural duty cycle DC(REG) of the converter depends  
on several factors. For this example it is assumed that  
DC(REG) = 60% for system input voltage near the  
undervoltage lockout threshold (UVLO). This gives  
SD_VSEC = 1.32V.  
VREF = 2.5V, RT = 35.7k, RB = 100k, CSS = 0.1µF and  
VSS(MIN) = 0.45V.  
Also assume that the maximum duty cycle clamp pro-  
grammed for this condition is 72% for SS_MAXDC(DC) =  
1.84V, fOSC = 200kHz and RDELAY = 40k.  
t
CHARGE = t(VSS = 0.8V) – t(VSS = 0.45V)  
Step 1:  
SS_MAXDC(DC) = 2.5[100k/(35.7k + 100k)] = 1.84V  
CHARGE = (35.7k • 100k/135.7k) = 26.3k  
Step 2: Calculate VSS(REG)  
R
To calculate the level of SS_MAXDC (VSS(REG)) that no  
longer clamps the natural duty cycle of the converter, the  
equation for maximum duty cycle clamp must be used  
(seeprevioussectionProgrammingMaximumDutyCycle  
Clamp’).  
Step 2:  
t(VSS = 0.45V) is calculated from,  
t = RCHARGE • CSS • (–1) • ln(1 – VSS/SS_MAXDC(DC))  
= 2.63e4 • 1e–7 • (–1) • ln(1 – 0.45/1.84)  
The point where the maximum duty cycle clamp meets  
DC(REG) during soft-start is given by,  
= 2.63e–3 • (–1) • ln(0.755) = 7.3e–4  
s
DC(REG) = Max Duty Cycle clamp  
1952f  
18  
LT1952  
U
W U U  
APPLICATIO S I FOR ATIO  
From previous calculations, t(0.45) = 7.3e – 4 s.  
0.6 = k • 0.522(SS_MAXDC(DC)/SD_VSEC) –  
(tDELAY • fOSC  
)
Using previous values for RT, RB, and CSS,  
For SD_VSEC = 1.32V, fOSC = 200kHz and RDELAY = 40k  
This gives k = 1 and tDELAY = 40ns.  
t(1.803) = 2.63e–4 • 1e–7 • (–1) • ln(1 – 1.803/1.84)  
= 2.63e–3 • (–1) • ln(0.02) = 1.03e–2  
s
Hence the time for SS_MAXDC to charge from its mini-  
mum reset threshold of 0.45V to within 2% of its target  
value is given by,  
Re-arranging the above equation to solve for SS_MAXDC  
= VSS(REG)  
= [0.6 + (tDELAY • fOSC)(SD_VSEC)]/(k • 0.522)  
= [0.6 + (40ns • 200kHz)(1.32V)]/(1 • 0.522)  
= (0.608)(1.32)/0.522 = 1.537V  
t(1.803) – t(0.45) =  
1.03e–2 – 7.3e–4 = 9.57e–3  
Step 3: Calculate t(VSS(REG)) – t(VSS(ACTIVE)  
)
Forward Converter Applications  
RecallthetimeforSS_MAXDCtochargetoagivenvoltage  
VSS is given by,  
ThefollowingsectioncoversapplicationswheretheLT1952  
is used in conjunction with other LTC parts to provide  
highly efficient power converters using the single switch  
forward converter topology.  
t = RCHARGE • CSS • (–1) • ln(1 – VSS/SS_MAXDC(DC))  
(Figure 11 gives the model for SS_MAXDC charging)  
For RT = 35.7k, RB = 100k, RCHARGE = 26.3k  
95% Efficient, 5V, Synchronous Forward Converter  
The circuit in Figure 14 is based on the LT1952 to provide  
thesimplestforwardpowerconvertercircuitusingonly  
one primary MOSFET. The SOUT pin of the LT1952 pro-  
vides a synchronous control signal for the LTC1698 lo-  
cated on the secondary. The LTC1698 drives secondary  
side synchronous rectifier MOSFETs to achieve high effi-  
ciency. The LTC1698 also serves as an error amplifier and  
optocoupler driver.  
For CSS = 0.1µF, this gives t(VSS(ACTIVE)  
= t(VSS(0.8V)) = 2.63e4 • 1e–7 • (–1) • ln(1 – 0.8/1.84)  
= 2.63e–3 • (–1) • ln(0.565) = 1.5e–3  
)
s
t(VSS(REG)) = t(VSS(1.537V)) = 26.3k • 0.1µF • –1 •  
ln(1 – 1.66/1.84) = 2.63e–3 • (–1) • ln(0.146)  
= 5e–3 s  
The rise time for the converter output  
Efficiency and transient response are shown in Figures 12  
and 13. Peak efficiencies of 95% and ultra-fast transient  
response are superior to presently available power mod-  
ules. Integrated soft-start, over-current detection and  
short circuit hiccup mode provide low stress, reliable  
protection. In addition, the circuit in Figure 14 is an all-  
ceramic capacitor solution providing low output ripple  
voltage and improved reliability. The LT1952-based con-  
verter can be used to replace power module converters at  
a much lower cost. The LT1952 solution benefits from  
thermal conduction of the system board resulting in  
higher efficiencies and lower rise in component tempera-  
tures. The 7mm height allows dense packaging and the  
circuit can easily be adjusted to provide an output voltage  
from 1.23V to 26V. Higher currents are achievable by  
simple scaling of power components. The LT1952-based  
solution in Figure 14 is a powerful topology for replace-  
= t(VSS(REG)) – t(VSS(ACTIVE)) = (5 – 1.5)e–3  
= 3.5e–3  
s
s
Example (3) Time For Maximum Duty Cycle Clamp to  
Reach Within X% of Target Value  
A maximum duty cycle clamp of 72% was calculated  
previously in the section ‘Programming Maximum Duty  
Cycle Clamp’. The programmed value used for  
SS_MAXDC(DC) was 1.84V.  
The time for SS_MAXDC to charge from its minimum  
value VSS(MIN) to within X% of SS_MAXDC(DC) is given  
by,  
t(SS_MAXDC charge time within X% of target)  
= t[(1 – (X/100) • SS_MAXDC(DC)] – t(VSS(MIN)  
)
For X = 2 and VSS(MIN) = 0.45V, t(0.98 • 1.84) –  
t(0.45) = t(1.803) – t(0.45)  
ment of a wide range of power modules.  
1952f  
19  
LT1952  
U
W U U  
APPLICATIO S I FOR ATIO  
98  
96  
94  
92  
90  
I
OUT  
(5A/DIV)  
0A  
V
OUT  
(200mV/DIV)  
88  
86  
V
V
= 48V  
IN  
= 5V  
OUT  
OSC  
f
= 300kHz  
1952 F13  
0
5
10  
15  
20  
25  
20µs/DIV  
LOAD CURRENT (A)  
1952 F12  
Figure 12. LT1952-Based Synchronous Forward Converter  
Efficiency vs Load Current (For Circuit in Figure 14)  
Figure 13. Output Voltage Transient Response  
(6A to 12A Load Step at 6A/µs)  
+V  
IN  
36V TO 72V  
C
IN  
2.2µF  
100V  
X5R  
L1  
T1  
PA0491  
PA1393.152  
+V  
5V  
0UT  
20A  
40k  
475k  
C
7
01  
16  
5
SOUT  
22k  
SOUT  
SD_V  
SEC  
100µF  
Q2  
Q3  
14  
11  
10  
13  
8
X5R  
2×  
Q1  
PH3830  
PH3830  
SS_MAXDC  
OUT  
OC  
100k  
6
2
V
REF  
I
SENSE  
1k  
0.015  
FB  
PGND  
GND  
LT1952  
0.1µF  
0.1µF  
BAS516  
7V  
BIAS  
15  
3
4
LTC1698  
10V  
1
2
3
4
5
6
16  
15  
14  
13  
12  
11  
R
OSC  
V
IN  
BIAS  
18.2k  
SOUT  
V
FG  
DD  
115k  
1µF  
X5R  
SYNC  
CG  
SYNC  
9.53k  
SYNC  
BLANK DELAY  
12  
33k  
1
PGND  
GND  
OPTO  
V
COMP  
AUX  
0.1µF  
T2  
R13  
270Ω  
I
COMP  
SYNC  
9
+I  
–I  
SNS  
SNS  
1µF  
40k  
4.75k  
560Ω  
220pF  
C9, 6.8nF  
V
COMP  
R14  
1.2k  
HCPL-M453  
10V  
8
9
BIAS  
V
FB  
OVP  
6
1
+V  
0UT  
Q1: PHM15NQ20 PHILIPS  
2
3
5
4
R15  
38.3k  
R16  
12.4k  
0.1µF  
1952 F14  
Figure 14. 36V to 72V Input to 5V at 20A Synchronous Forward Converter  
1952f  
20  
LT1952  
U
W U U  
APPLICATIO S I FOR ATIO  
48V to Isolated 12V, 20A (No Opto-Coupler)  
‘Bus Converter’  
Thesolutionisonlyslightlylargerthan1/4bricksizeand  
uses only ceramic capacitors for high reliability.  
ThewideprogrammablerangeandaccuracyoftheLT1952  
Volt-Second clamp makes the LT1952 an ideal choice for  
‘BusConverterapplicationswheretheVolt-Secondclamp  
provides line regulation for the converter output. The 48V  
to 12V 20A ‘Bus Converter’ application in Figure16 shows  
a semi-regulated isolated output without the need for an  
optocoupler, optocoupler driver, reference or feedback  
network. Some ‘Bus Converter’ solutions run with a fixed  
50% duty cycle resulting in an output variation of 2-to-1  
forapplicationswitha72Vto36Vinputrange.TheLT1952  
uses an accurate wide programmable range Volt-Second  
clamp to initially program and then control power supply  
output voltage to typically ±10% for the same 36V to 72V  
input range. Efficiency for the LT1952-based bus con-  
verterinFigure16achievesahigh94%at20A(Figure15).  
12V Bus Converter Efficiency  
96.0  
95.5  
95.0  
94.5  
94.0  
93.5  
V
V
= 48V  
IN  
OUT  
= 12V  
93.0  
4
6
8
10 12 14 16 18 20  
LOAD CURRENT (A)  
1952 F15  
Figure 15. LT1952-Based Synchronous ‘Bus Converter’ Efficiency  
vs Load Current (For Circuit in Figure 16)  
T1  
V
U1  
PA0815.002  
2.4µH  
47k  
82k  
• •  
V
V
OUT  
IN  
36V TO 72V  
12V, 20A  
BAS516  
BCX55  
12V  
0.1µF  
C
OUT  
33µF, 16V  
X5R, TDK  
3x  
Si7370  
2x  
PH4840  
2x  
18V  
10k  
2.2µF, 100V  
2x  
LTC3900  
5
6
3
1
FG  
CG  
+
PH21NQ15  
2x  
370k  
7
10k  
10k  
GND  
CS  
13.2k  
27k  
14  
15  
8
V
1µF  
U1  
SD_V  
OUT  
SEC  
4
8
2
7
115k  
V
CS  
3
9
5
CC  
R
V
IN  
OSC  
BAT760  
SYNC TIMER  
8V  
BIAS  
BLANK  
GND  
1µF  
C
T
13  
12  
11  
10  
16  
R
T
0.47µF  
0.1µF  
SS_MAXDC  
PGND  
1nF  
15k  
59k  
10k  
39k  
9m  
LT1952 DELAY  
OC  
1nF  
8V  
BIAS  
6
1
2
V
REF  
470Ω  
560Ω  
220pF  
COMP  
FB  
I
SENSE  
SOUT  
L1: PA1494.242 PULSE ENGINEERING  
T1: PULSE ENGINEERING  
• •  
T2  
Q4470-B  
T2: COILCRAFT  
1952 F16  
Figure 16. 36V to 72V Input to 12V at 20A No ‘Optocoupler’ Synchronous ‘Bus Converter’  
1952f  
21  
LT1952  
U
W U U  
APPLICATIO S I FOR ATIO  
36V to 72V Input, 3.3V 40A Converter  
controlled hiccup mode. This allows a significant reduc-  
tion in power component sizing using the LT1952-based  
converter.  
An LT1952-based synchronous forward converter pro-  
vides the ideal solution for power supplies requiring high  
efficiency at low output voltages and high load currents.  
The 3.3V 40A solution in Figure 18 achieves peak efficien-  
cies of 92.5% (Figure 17) by minimizing power loss due to  
rectification at the output. Synchronous rectifier control  
output SOUT, with programmable delay, optimizes timing  
control for a secondary side synchronous MOSFET con-  
troller(LTC3900)whichresultsinhighefficiencysynchro-  
nous rectification. The LT1952 uses a precision current  
limit threshold at the OC pin combined with a soft-start  
hiccup mode to provide low stress output short circuit  
protection. The maximum output current will vary only  
10% over the full VIN range. During short circuit the  
average power dissipation of the circuit will be lower than  
15% of maximum rated power thanks to a soft-start  
94  
93  
92  
91  
90  
89  
88  
V
V
= 48V  
IN  
87  
86  
= 3.3V  
OUT  
OSC  
f
= 300kHz  
0
10  
20  
30  
40  
50  
OUTPUT CURRENT (A)  
1952 F17  
Figure 17. LT1952-Based Synchronous Forward Converter  
Efficiency vs Load Current (For Circuit in Figure 18)  
V
U1  
PA0912.002  
L1  
47k  
82k  
• •  
+V  
V
OUT  
3.3V, 40A  
IN  
36V TO 72V  
BAS516  
BCX55  
12V  
0.1µF  
C
OUT  
Q2  
PH3230  
2x  
Q3  
PH3230  
2x  
100µF  
18V  
10k  
3x  
2.2µF  
LTC3900  
5
6
3
1
FG  
CG  
+
370k  
7
10k  
10k  
GND  
CS  
13.2k  
27k  
14  
15  
8
V
1µF  
U1  
Si7846  
SD_V  
OUT  
SEC  
4
8
2
7
115k  
V
CS  
3
9
5
CC  
R
OSC  
V
IN  
BAT760  
SYNC TIMER  
8V  
BIAS  
BLANK  
GND  
1µF  
1nF  
13  
12  
11  
10  
16  
15k  
0.22µF  
0.1µF  
SS_MAXDC  
PGND  
59k  
10k  
33k  
39k  
10m  
LT1952 DELAY  
= 2.5V OC  
1nF  
8V  
BIAS  
6
1
2
V
R
470Ω  
560Ω  
220pF  
COMP  
I
SENSE  
SOUT  
249k  
80.6k  
• •  
FB = 1.23V  
T2  
Q4470-B  
2.2nF  
8V  
BIAS  
22k  
18k  
2.2k  
V
U1  
4
3
5
2
10k  
1
L1: PA0713, PULSE ENGINEERING  
10k  
+
ALL CAPACITORS X7R, CERAMIC, TDK  
T2: COILCRAFT  
LT1797  
270Ω  
PS8101  
1µF  
0.1µF  
8
4
LT1009  
1952 F18  
Figure 18. 36V to 72V, 3.3V at 40A Synchronous Forward Converter  
1952f  
22  
LT1952  
U
W U U  
APPLICATIO S I FOR ATIO  
(b) Select switch duty cycle for the Bus Converter for a  
given output voltage at VS(MIN) and calculate  
SS_MAXDC voltage (SS1) (See Applications Informa-  
tion “Programming Maximum Duty Cycle Clamp”)  
Bus Converter: Optimum Output Voltage Tolerance  
The Bus Converter applications shown on page 1 and in  
Figure 16, provide semi-regulated isolated outputs with-  
out the need for an optocoupler, optocoupler driver, refer-  
enceorfeedbacknetwork.TheLT1952Volt-Secondclamp  
adjusts switch duty cycle inversely proportional to input  
voltagetoprovideanoutputvoltagethatisregulatedagainst  
input line variations. Some bus converters use a switch  
duty cycle limit which causes output voltage variation of  
typically±33% over a 2:1 input voltage range. The LT1952  
typically provides a ±10% output variation for the same  
inputvariation.Typicaloutputtoleranceisfurtherimproved  
for the LT1952 by inserting a resistor from the system  
input voltage to the SS_MAXDC pin (Rx in Figure 19).  
(c) Calculate RB(1) = [SS1/(2.5 – SS1)] • RT(1)  
(2) Calculate Rx  
Rx = ([VS(MAX) – VS(MIN)]/[SS1 • (X – 1)]) • RTHEV(1)  
RTHEV(1) = RB(1) • RT(1)/(RB(1) + RT(1)), X = ideal duty  
cycle (VS(MAX))/actual duty cycle (VS(MAX)  
)
(3) The addition of Rx causes an increase in the original  
programmed SS_MAXDC voltage SS1. A new value  
for RB(1) should be calculated to provide a lower  
SS_MAXDC voltage (SS2) to correct for this offset.  
The LT1952 electrical specifications for the OUT Max Duty  
Cycle Clamp show typical switch duty cycle to move from  
72% to 33% for a 2x change of input voltage  
(SS_MAXDC pin=1.84V).Sinceoutputvoltageregulation  
follows VIN • Duty Cycle, a switch duty cycle change of  
72% to 36% (for a 2x input voltage change) provides  
minimal output voltage variation for the LT1952 bus con-  
verter.Toachievethis,anSS_MAXDCpinvoltageincrease  
of 1.09x (36/33) would be required at high input line. A  
resistor Rx inserted between the SS_MAXDC pin and sys-  
tem input voltage (Figure 19) increases SS_MAXDC volt-  
age as input voltage increases, minimizing output voltage  
variation over a 2:1 input voltage change.  
(a) SS2 = SS1 – [(VS(MIN) – SS1) • RTHEV(1)/Rx]  
(b) RB(2) = [SS2/(2.5 – SS2)] • RT(1)  
(4) The thevinin resistance RTHEV(1) used to calculate Rx  
should be re-established for RT and RB.  
(a) RB (final value) = RB(2) • (RTHEV(1)/RTHEV(2)  
(b) RT (final value) = RT(1) • (RTHEV(1)/RTHEV(2)  
where RTHEV(2) = RB(2) • RT(1)/(RB(2) + RT(1)  
Example:  
)
)
)
For a Bus Converter running from 36V to 72V input,  
VS(MIN) = 36V, VS(MAX) = 72V.  
The following steps determine values for Rx, RT and RB  
(1) Program switch duty cycle at minimum system input  
choose RT(1) = 10k, SS_MAXDC = SS1 = 1.84V (for 72%  
duty cycle at VS(MIN) = 36V)  
voltage (VS(MIN)  
)
RB(1) = [1.84V/(2.5V – 1.84V)] • 10k = 28k  
RTHEV(1) = [28k • 10k/(28k + 10k)] = 7.4k  
SS_MAXDC correction = 36%/33% = 1.09  
Rx = [(72V – 36V)/(1.84 • 0.09)] • 7.4k = 1.6M  
SS2 = 1.84 – [(36V – 1.84) • 7.4k/1.6M] = 1.682V  
RB(2) = [1.682/(2.5 – 1.682)] • 10k = 20.6k  
RTHEV(2) = [20.6k • 10k/(20.6k + 10k)] = 6.7k  
RTHEV(1)/RTHEV(2) = 7.4k/6.7k = 1.104  
RB (final value) = 20.6k • 1.104 = 22.7k (choose 22.6k)  
RT (final value) = 10k • 1.104 = 11k  
(a) RT(1) = 10k (minimum allowed to still guarantee soft-  
start pull-down)  
SYSTEM  
INPUT VOLTAGE  
R1  
R2  
Rx  
LT1952  
VOLT-SECOND  
CLAMP INPUT  
SD_V  
SEC  
SS_MAXDC  
R
T
V
REF  
VOLT-SECOND  
CLAMP ADJUST INPUT  
1952 F19  
R
B
Figure 19. Optimal Programming of Maximum Duty Cycle Clamp  
for Bus Converter Applications (Adding Rx)  
1952f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LT1952  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
RELATED PARTS  
PART NUMBER  
LT1681/LT3781  
LT1698  
DESCRIPTION  
COMMENTS  
Synchronous Forward Controllers  
Secondary Synchronous Rectifier Controller  
High Efficiency 2-Switch Forward Control  
Use for Isolated Power Supplies, Contains Voltage Margining, Optocoupler  
Driver, Synchronization Circuit with the Primary Side, Error Amplifier  
LT1725  
LT1950  
General Purpose Isolated Flyback Controller  
Single Switch Forward Controller  
Drives External Power MOSFET, Senses Output Voltage Directly from  
Primary Side Switching — No Optoisolator Required, 16-pin SSOP  
3V V 25V, 25W to 500W, Adaptive Max Duty Cycle Clamp, Programmable  
IN  
Slope Compensation, Low 100mV Sense Threshold, 16-Pin SSOP  
LTC3722-1/LTC3722-2 Dual Mode Phase Modulated Full-Bridge Controllers ZVS Full-Bridge Controllers  
LTC3723-1/LTC3723-2 Synchronous Push-Pull PWM Controllers  
High Efficiency Push-Pull PWM  
LTC3803  
LTC3806  
LTC3900  
SOT-23 Flyback Controller  
Adjustable Slope Compensation, Internal Soft-Start, 200kHz  
Excellent Cross Regulation, High Efficiency, Multiple Outputs  
Synchronous Flyback Controller  
Synchronous Rectifier Driver for  
Forward Converters  
Use for Isolated Power Supplies, 4.5V V 11V, N-channel  
IN  
Synchronous MOSFET Driver, Programmable Timeout, Reverse Inductor  
Current Sense, 16-pin SSOP  
1952f  
LT/TP 0804 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY