LT1952IGN-1#TRPBF [Linear]

LT1952 - Single Switch Synchronous Forward Controller; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C;
LT1952IGN-1#TRPBF
型号: LT1952IGN-1#TRPBF
厂家: Linear    Linear
描述:

LT1952 - Single Switch Synchronous Forward Controller; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总24页 (文件大小:225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1952/LT1952-1  
Single Switch Synchronous  
Forward Controller  
FEATURES  
DESCRIPTION  
TheLT®1952/LT1952-1arecurrentmodePWMcontrollers  
optimizedtocontroltheforwardconvertertopology,using  
one primary MOSFET. The LT1952/LT1952-1 provide  
synchronous rectifier control, resulting in extremely  
high efficiency. A programmable Volt-Second clamp  
provides a safeguard for transformer reset that prevents  
saturation. This allows a single MOSFET on the primary  
side to reliably run at greater than 50% duty cycle for high  
MOSFET, transformer and rectifier utilization. The devices  
include soft-start for controlled exit from shutdown and  
undervoltage lockout. A precision 107mV current limit  
threshold, independent of duty cycle, combines with soft-  
starttoprovidehiccupshort-circuitprotection.TheLT1952  
is optimized for micropower bootstrap start-up from high  
input voltages. The LT1952-1 allows start-up from lower  
input voltages. Programmable slope compensation and  
leadingedgeblankingallowoptimizationofloopbandwidth  
with a wide range of inductors and MOSFETs. Each device  
can be programmed over a 100kHz to 500kHz frequency  
range and the part can be synchronized to an external  
clock. The error amplifier is a true op amp, allowing a wide  
range of compensation networks. The LT1952/LT1952-1  
are available in a small 16-pin SSOP package.  
n
Synchronous Rectifier Control for High Efficiency  
n
Programmable Volt-Second Clamp  
n
Output Power Levels from 25W to 500W  
n
Low Current Start-Up  
(LT1952: 460μA; V On/Off = 14.25V/8.75V)  
IN  
(LT1952-1: 400μA; V On/Off = 7.75V/6.5V)  
IN  
n
True PWM Soft-Start  
n
Low Stress Short-Circuit Protection  
n
Precision 107mV Current Limit Threshold  
n
Adjustable Delay for Synchronous Timing  
n
Accurate Shutdown Threshold with Programmable  
Hysteresis  
n
Programmable Slope Compensation  
n
Programmable Leading Edge Blanking  
n
Programmable Frequency (100kHz to 500kHz)  
n
Synchronizable to an External Clock up to 1.5 • f  
OSC  
n
n
n
n
Internal 1.23V Reference  
2.5V External Reference  
Current Mode Control  
Small 16-Pin SSOP Package  
APPLICATIONS  
n
Telecommunications Power Supplies  
n
Industrial and Distributed Power  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
Isolated and Non Isolated DC/DC Converters  
TYPICAL APPLICATION  
36V to 72V Input, 12V at 20A Semi-Regulated Bus Converter  
12V Bus Converter  
OUT vs VIN  
L1  
V
T1  
V
IN  
PA1494.242  
V
12V  
20A  
PA0905  
OUT  
SUPPLY FROM BIAS  
WINDING OF T1  
16  
14  
12  
10  
8
10μF  
47μF  
16V  
X5R  
s2  
V
V
IN  
REF  
52.3k  
100k  
Si7370  
s2  
PH4840  
s2  
COMP  
Si7450  
SS_MAXDC  
OUT  
OC  
V
IN  
340k  
LT1952/  
LT1952-1  
I
0.005Ω  
T2  
SENSE  
SD_V  
FB  
SEC  
LTC3900  
FG  
CG  
13k  
SYNC  
GND  
SOUT  
SYNC  
560Ω  
R
220pF  
OSC  
36  
48  
54  
(V)  
60  
66  
72  
42  
V
PGND BLANK DELAY  
40k 40k  
IN  
0.1μF  
0.1μF  
1952 TA01b  
178k  
1952 TA01  
19521fd  
1
LT1952/LT1952-1  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V (Note 8) ...............................................0.3V to 25V  
IN  
COMP  
FB  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SOUT  
SYNC, SS_MAXDC, SD_V , I  
, OC ....0.3V to 6V  
SEC SENSE  
V
IN  
COMP, BLANK, DELAY...............................0.3V to 3.5V  
R
OUT  
OSC  
FB ................................................................0.3V to 3V  
SYNC  
PGND  
DELAY  
OC  
R
..................................................................... 50μA  
....................................................................–10mA  
OSC  
REF  
SS_MAXDC  
V
V
REF  
Operating Junction Temperature Range  
SD_V  
SEC  
I
SENSE  
(Notes 2, 5)............................................40°C to 125°C  
Storage Temperature Range...................65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
GND  
BLANK  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
T
= 125°C, θ = 110°C/W, θ = 40°C/W  
JA JC  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1952EGN#PBF  
LT1952IGN#PBF  
LT1952EGN-1#PBF  
LT1952IGN-1#PBF  
LEAD BASED FINISH  
LT1952EGN  
TAPE AND REEL  
PART MARKING  
1952  
PACKAGE DESCRIPTION  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
PACKAGE DESCRIPTION  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
TEMPERATURE RANGE  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
TEMPERATURE RANGE  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
LT1952EGN#TRPBF  
LT1952IGN#TRPBF  
LT1952EGN-1#TRPBF  
LT1952IGN-1#TRPBF  
TAPE AND REEL  
1952I  
19521  
1952I1  
PART MARKING  
1952  
LT1952EGN#TR  
LT1952IGN  
LT1952IGN#TR  
1952I  
LT1952EGN-1  
LT1952EGN-1#TR  
LT1952IGN-1#TR  
19521  
LT1952IGN-1  
1952I1  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COMP = open, FB = 1.4V, ROSC = 178k, SYNC = 0V, SS_MAXDC = VREF, VREF  
= 0.1μF, SD_VSEC = 2V, BLANK = 121k, DELAY = 121k, ISENSE = 0V, OC = 0V, OUT = 1nF, VIN = 15V, SOUT = open, unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PWM CONTROLLER  
Operational Input Voltage  
l
I(V ) = 0μA  
V
OFF  
IN  
25  
6.5  
V
mA  
μA  
μA  
μA  
V
REF  
V
IN  
V
IN  
V
IN  
V
IN  
Quiescent Current  
I(V ) = 0μA, I = OC = Open  
REF SENSE  
5.2  
460  
400  
240  
1.32  
0
l
l
Start-up Current (LT1952)  
Start-up Current (LT1952-1)  
Shutdown Current  
FB = 0V, SS_MAXDC = 0V (Notes 4, 9)  
FB = 0V, SS_MAXDC = 0V (Notes 4, 9)  
700  
575  
350  
1.379  
SD_V  
= 0V  
SEC  
l
SD_V  
SD_V  
SD_V  
Threshold  
10V < V < 25V  
1.261  
8.3  
SEC  
IN  
Current  
Current  
SD_V  
SD_V  
= SD_V  
= SD_V  
Threshold + 100mV  
Threshold – 100mV  
μA  
SEC (ON)  
SEC (OFF)  
SEC  
SEC  
SEC  
10  
11.7  
μA  
SEC  
19521fd  
2
LT1952/LT1952-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COMP = open, FB = 1.4V, ROSC = 178k, SYNC = 0V, SS_MAXDC = VREF, VREF  
= 0.1μF, SD_VSEC = 2V, BLANK = 121k, DELAY = 121k, ISENSE = 0V, OC = 0V, OUT = 1nF, VIN = 15V, SOUT = open, unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
14.25  
8.75  
5.5  
MAX  
15.75  
9.25  
6.75  
8.13  
6.82  
UNITS  
l
l
l
l
l
l
V
V
V
V
V
V
V
(LT1952)  
(LT1952)  
V
V
V
V
V
V
IN ON  
IN OFF  
(LT1952)  
3.75  
IN HYSTERESIS  
(LT1952-1)  
7.75  
6.5  
IN ON  
(LT1952-1)  
IN OFF  
(LT1952-1)  
0.95  
1.25  
IN HYSTERESIS  
REF  
l
Output Voltage  
I(V ) = 0μA  
2.425  
2.5  
1
2.575  
10  
V
mV  
mV  
REF  
Line Regulation  
Load Regulation  
OSCILLATOR  
I(V ) = 0μA, 10V < V < 25V  
REF IN  
0μA < I(V ) < 2.5mA  
1
10  
REF  
l
Frequency: f  
R
= 178k, FB = 1V, SS_MAXDC = 1.84V  
= 365k, FB = 1V  
165  
200  
240  
kHz  
OSC  
OSC  
Minimum Programmable f  
Maximum Programmable f  
R
OSC  
R
OSC  
80  
440  
100  
500  
120  
560  
kHz  
kHz  
OSC  
OSC  
= 64.9k, COMP = 2.5V, SD_V  
= 2.64V  
SEC  
SYNC Input Resistance  
18  
kΩ  
V
SYNC Switching Threshold  
FB = 1V  
1.5  
2.2  
1.5  
SYNC Frequency/f  
FB = 1V (Note 7)  
1.25  
0.05  
OSC  
f
Line Reg  
FB = 1V, R  
SS_MAXDC = 1.84V  
= 178k; 10V < V < 25V,  
0.33  
%/V  
V
OSC  
OSC  
IN  
V
ROSC  
R
OSC  
Pin voltage  
1
ERROR AMPLIFIER  
l
FB Reference Voltage  
FB Input Bias Current  
Open Loop Voltage Gain  
Unity Gain Bandwidth  
COMP Source Current  
COMP Sink Current  
10V < V < 25V, V + 0.2V < COMP < V – 0.2  
1.201  
65  
1.226  
–75  
85  
1.250  
–200  
V
nA  
dB  
MHz  
mA  
mA  
μA  
V
IN  
OL  
OH  
FB = FB Reference Voltage  
+ 0.2V < COMP < V – 0.2  
V
OL  
OH  
(Note 6)  
3
FB = 1V, COMP = 1.6V  
COMP = 1.6V  
–4  
4
–9  
10  
COMP Current (Disabled)  
FB = V , COMP = 1.6V  
18  
2.7  
0.7  
23  
28  
REF  
COMP High Level: V  
FB = 1V, I  
= –250μA  
(COMP)  
3.2  
0.8  
0.15  
OH  
COMP Active Threshold  
FB = 1V, SOUT Duty Cycle > 0 %  
= 250μA  
V
COMP Low Level: V  
CURRENT SENSE  
I
0.4  
V
OL  
(COMP)  
I
Maximum Threshold  
COMP = 2.5V, FB = 1V  
197  
98  
220  
243  
mV  
SENSE  
I
I
Input Current (Duty Cycle = 0%)  
Input Current (Duty Cycle = 80%)  
COMP = 2.5V, FB = 1V (Note 4)  
COMP = 2.5V, FB = 1V (Note 4)  
–8  
–35  
μA  
μA  
SENSE  
SENSE  
OC Threshold  
COMP = 2.5V, FB = 1V  
(OC = 100mV)  
107  
–50  
180  
540  
1
116  
mV  
nA  
ns  
ns  
V
OC Input Current  
–100  
Default Blanking Time  
Adjustable Blanking Time  
COMP = 2.5V, FB = 1V, R  
COMP = 2.5V, FB = 1V, R  
= 40k (Note 10)  
= 120k  
BLANK  
BLANK  
V
BLANK  
19521fd  
3
LT1952/LT1952-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COMP = open, FB = 1.4V, ROSC = 178k, SYNC = 0V, SS_MAXDC = VREF, VREF  
= 0.1μF, SD_VSEC = 2V, BLANK = 121k, DELAY = 121k, ISENSE = 0V, OC = 0V, OUT = 1nF, VIN = 15V, SOUT = open, unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SOUT DRIVER  
SOUT Clamp Voltage  
SOUT Low Level  
SOUT High Level  
I
I
I
= 0μA, COMP = 2.5V, FB = 1V  
= 25mA  
10.5  
12  
13.5  
0.75  
V
V
V
(GATE)  
(GATE)  
(GATE)  
0.5  
= –25mA, V = 12V, COMP = 2.5V,  
10  
1
IN  
FB = 1V  
SOUT Active Pull-Off in Shutdown  
V
= 5V, SD_V  
= 0V, SOUT = 1V  
SEC  
mA  
IN  
SOUT to OUT (Rise) DELAY (t  
)
COMP = 2.5V, FB = 1V (Note 10)  
= 120k  
40  
120  
ns  
ns  
DELAY  
R
DELAY  
V
DELAY  
0.9  
V
OUT DRIVER  
OUT Rise Time  
OUT Fall Time  
OUT Clamp Voltage  
OUT Low Level  
FB = 1V, CL = 1nF (Notes 3, 6)  
FB = 1V, CL = 1nF (Notes 3, 6)  
50  
30  
13  
ns  
ns  
V
I
= 0μA, COMP = 2.5V, FB = 1V  
11.5  
14.5  
(GATE)  
I
I
= 20mA  
= 200mA  
0.45  
1.25  
0.75  
1.8  
V
V
(GATE)  
(GATE)  
OUT High Level  
I
= –20mA, V = 12V, COMP = 2.5V,  
9.9  
V
(GATE)  
IN  
FB = 1V  
I
= –200mA, V = 12V, COMP = 2.5V,  
9.75  
V
(GATE)  
IN  
FB = 1V  
OUT Active Pull-Off in Shutdown  
OUT Max Duty Cycle  
V
= 5V, SD_V  
= 0V, OUT = 1V  
SEC  
20  
83  
mA  
%
IN  
COMP = 2.5V, FB = 1V, R  
(f  
SD_V  
= 10k  
DELAY  
= 200kHz), V = 10V  
OSC  
IN  
= 1.4V, SS_MAXDC = V  
90  
SEC  
REF  
OUT Max Duty Cycle Clamp  
COMP = 2.5V, FB = 1V, R  
= 10k  
DELAY  
(f  
= 200kHz), V = 10V  
OSC  
IN  
SD_V  
SD_V  
= 1.32V, SS_MAXDC = 1.84V  
= 2.64V, SS_MAXDC = 1.84V  
63.5  
25  
72  
33  
80.5  
41  
%
%
SEC  
SEC  
SOFT-START  
SS_MAXDC Low Level: V  
I
= 150μA, OC = 1V  
0.2  
0.45  
0.8  
V
V
OL  
(SS_MAXDC)  
SS_MAXDC Soft-Start Reset Threshold  
SS_MAXDC Active Threshold  
Measured on SS_MAXDC  
FB = 1V, DC > 0%  
V
SS_MAXDC Input Current (Soft-Start Pull-Down: Idis) SS_MAXDC = 1V, SD_V  
= 1.4V, OC = 1V  
800  
μA  
SEC  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT1952EGN/LT1952EGN-1 are guaranteed to meet  
performance specifications from 0°C to 125°C junction temperature.  
Specifications over the –40°C to 125°C operating junction temperature  
range are assured by design, characterization and correlation with  
statistical process controls. The LT1952IGN/LT1952IGN-1 are guaranteed  
over the full –40°C to 125°C operating junction temperature range.  
Note 5: Each IC includes over-temperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when over-temperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 6: Guaranteed but not tested.  
Note 7: Maximum recommended SYNC frequency = 500kHz.  
Note 8: In applications where the V pin is supplied via an external RC  
IN  
network from a SYSTEM V > 25V, an external zener with clamp voltage  
IN  
V
< V < 25V should be connected from the V pin to ground.  
IN ON(MAX)  
Z
I
N
Note 3: Rise and Fall times are measured at 10% and 90% levels.  
Note 4: Guaranteed by correlation to static test.  
Note 9: V start-up current is measured at V = V – 0.25V and  
IN  
IN  
IN ON  
scaled by x 1.18 (to correlate to worst case V start-up current at V  
).  
IN  
IN ON  
Note 10: Timing for R = 40k derived from measurement with R = 240k.  
19521fd  
4
LT1952/LT1952-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
Switching Frequency  
vs Temperature  
VIN Shutdown Current  
vs Temperature  
FB Voltage vs Temperature  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
245  
230  
215  
200  
185  
170  
155  
500  
450  
400  
350  
300  
250  
200  
150  
100  
V
= 15V  
SEC  
IN  
SD_V  
= 0V  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1952 G01  
1952 G02  
1952 G03  
VIN Start-up Current  
vs Temperature  
SD_VSEC Turn ON Threshold  
vs Temperature  
VIN IQ vs Temperature  
600  
550  
500  
450  
400  
350  
300  
250  
200  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
1.42  
1.37  
1.32  
1.27  
1.22  
SD_V  
= 1.4V  
OC = OPEN  
SEC  
LT1952  
LT1952-1  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1952 G04  
1952 G05  
1952 G06  
SD_VSEC Pin Current  
vs Temperature  
VIN Turn ON/OFF Voltage  
vs Temperature  
COMP Active Threshold  
vs Temperature  
15  
10  
5
18  
16  
14  
12  
10  
8
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
= 0k  
ISENSE  
PIN CURRENT BEFORE  
PART TURN ON  
LT1952 V TURN ON VOLTAGE  
IN  
LT1952 V TURN OFF VOLTAGE  
IN  
0mA PIN CURRENT AFTER  
PART TURN ON  
LT1952-1 V ON  
LT1952-1 V OFF  
IN  
IN  
0
6
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1952 G07  
1952 G08  
1952 G09  
19521fd  
5
LT1952/LT1952-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
COMP Source Current  
vs Temperature  
COMP Sink Current  
vs Temperature  
(Disabled) COMP Pin Current  
vs Temperature  
12.5  
10.0  
7.5  
12.5  
10.0  
7.5  
50  
40  
30  
20  
10  
0
FB = 1V  
COMP = 1.6V  
FB = 1.4V  
COMP = 1.6V  
FB = V  
REF  
COMP = 1.6V  
CURRENT OUT OF PIN  
5.0  
5.0  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1952 G10  
1952 G11  
1952 G12  
ISENSE Maximum Threshold  
vs COMP  
ISENSE Maximum Threshold  
vs Temperature  
ISENSE Pin Current (Out of Pin)  
vs Duty Cycle  
240  
230  
220  
210  
200  
40  
30  
20  
10  
0
240  
200  
160  
120  
80  
COMP = 2.5V  
T
= 25°C  
T
= 25°C  
ISENSE  
A
A
R
= 0k  
R
= 0k  
ISENSE  
OC THRESHOLD  
40  
0
–50  
0
25  
50  
75 100 125  
–25  
0
20 30 40 50 60 70 80 90 100  
DUTY CYCLE (%)  
0
1.0  
1.5  
2.0  
2.5  
3.0  
10  
0.5  
TEMPERATURE (°C)  
COMP (V)  
1952 G14  
1952 G15  
1952 G13  
I
SENSE Maximum Threshold  
vs Duty Cycle (Programming  
Slope Compensation)  
OC (Overcurrent) Threshold  
vs Temperature  
Blank Duration vs Temperature  
225  
215  
205  
195  
185  
175  
120  
110  
100  
90  
800  
600  
400  
200  
0
PRECISION OVERCURRENT THRESHOLD  
INDEPENDENT OF DUTY CYCLE  
R
= 0W  
SLOPE  
SLOPE  
R
= 120k  
BLANK  
R
= 470W  
R
= 40k  
50  
BLANK  
25  
R
SLOPE  
= 1k  
T
= 25°C  
A
COMP = 2.5V  
80  
0
20 30 40 50 60 70 80 90 100  
DUTY CYCLE (%)  
–50  
0
25  
50  
75 100 125  
–50  
0
75 100 125  
10  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1952 G16  
1952 G17  
1952 G18  
19521fd  
6
LT1952/LT1952-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
tDELAY: SOUT Rise to OUT Rise  
vs Temperature  
tDELAY: SOUT Rise to OUT Rise  
vs RDELAY  
BLANK Duration vs RBLANK  
1000  
800  
600  
400  
200  
0
200  
150  
100  
50  
240  
160  
80  
T
= 25°C  
T = 25°C  
A
A
R
R
= 120k  
DELAY  
= 40k  
50  
DELAY  
25  
0
0
0
40 60 80 100 120 140 160  
(k)  
–50  
0
75 100 125  
0
80  
120  
R
DELAY  
160  
(k)  
200  
240  
20  
–25  
40  
R
TEMPERATURE (°C)  
BLANK  
1952 G26  
1952 G19  
1952 G27  
OUT Rise/Fall Time  
vs OUT Load Capacitance  
OUT: Max Duty Cycle CLAMP  
vs SD_VSEC  
OUT: Max Duty Cycle vs fOSC  
125  
100  
75  
50  
25  
0
100  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
A
t
r
t
f
80  
T
= 25°C  
A
T
= 25°C  
SS_MAXDC = 1.84V  
A
SS_MAXDC = 2.5V  
f
= 200kHz  
= 10k  
OSC  
SD_V  
= 1.4V  
R
SEC  
DELAY  
70  
0
1000  
2000  
3000  
4000  
5000  
100  
200  
300  
(kHz)  
400  
500  
1.32  
1.65  
1.98  
SD_V  
2.31  
2.64  
OUT LOAD CAPACITANCE (pF)  
f
(V)  
SEC  
OSC  
1952 G20  
1952 G21  
1952 G22  
OUT: Max Duty Cycle CLAMP  
vs SS_MAXDC  
SS_MAXDC Setting  
vs fOSC (for OUT DC = 72%)  
SS_MAXDC Reset and Active  
Thresholds vs Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
2.32  
2.20  
2.08  
1.96  
1.84  
1.72  
1.60  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
f
= 25°C  
T
= 25°C  
A
A
= 200kHz  
= 10k  
SD_V  
R
= 1.32V  
OSC  
SEC  
R
= 10k  
DELAY  
DELAY  
ACTIVE THRESHOLD  
SD_V  
= 1.32V  
SEC  
SD_V  
SD_V  
= 1.98V  
= 2.64V  
SEC  
SEC  
RESET THRESHOLD  
1.60  
1.84  
SS_MAXDC (V)  
2.08  
100  
200  
300  
(kHz)  
400  
500  
–50  
0
25  
50  
75 100 125  
–25  
f
TEMPERATURE (°C)  
OSC  
1952 G23  
1952 G24  
1952 G25  
19521fd  
7
LT1952/LT1952-1  
PIN FUNCTIONS  
COMP (Pin 1): Output Pin of the Error Amplifier. The error  
amplifier is an op amp, allowing various compensation  
networks to be connected between the COMP pin and  
FB pin for optimum transient response. The voltage on  
this pin corresponds to the peak current of the external  
FET. Full operating voltage range is between 0.8V and  
GND (Pin 8): Analog Ground.  
BLANK (Pin 9): A resistor to ground adjusts the extended  
blanking period of the overcurrent and current sense  
amplifier outputs during FET turn on—to prevent false  
current limit trip. Increasing the resistor value increases  
the blanking period.  
2.5V corresponding to 0mV to 220mV at the I  
pin.  
SENSE  
I
(Pin 10): The Current Sense Input for the Control  
For applications using the 100mV OC pin for overcurrent  
detection, typical operating range for the COMP pin is  
0.8V to 1.6V. For isolated applications where COMP is  
controlled by an opto-coupler, the COMP pin output drive  
SENSE  
Loop. Connect this pin to the sense resistor in the source  
of the external power MOSFET. A resistor in series with  
the I  
pin programs slope compensation.  
SENSE  
can be disabled with FB = V , reducing the COMP pin  
current to (COMP – 0.7)/40k.  
REF  
OC (Pin 11): An accurate 107mV threshold, independent  
of duty cycle, for overcurrent detection and trigger of  
soft-start. Connect this pin directly to the sense resistor  
in the source of the external power MOSFET.  
FB (Pin 2): Monitors the output voltage via an external  
resistor divider and is compared with an internal 1.23V  
reference by the error amplifier. FB connected to V  
disables error amplifier output.  
REF  
DELAY (Pin 12): A resistor to ground adjusts the delay  
period between SOUT rising edge and OUT rising edge.  
Used to maximize efficiency in forward converter applica-  
tions by adjusting the control timing of secondary side  
synchronous rectifier MOSFETs. Increasing the resistor  
value increases the delay period.  
R
(Pin 3): A resistor to ground programs the operating  
OSC  
frequency of the IC between 100kHz and 500kHz. Nominal  
voltage on the R pin is 1.0V.  
OSC  
SYNC (Pin 4): Used to Synchronize the Internal Oscillator  
to an External Signal. It is directly logic compatible and  
can be driven with any signal between 10% and 90% duty  
cycle. If unused, the pin can be left open or connected to  
ground.  
PGND (Pin 13): Power Ground.  
OUT (Pin 14): Drives the Gate of an N-channel MOSFET  
between 0V and V with a maximum limit of 13V on  
IN  
OUT pin set by an internal clamp. Active pull-off exists in  
shutdown (see electrical specification).  
SS_MAXDC (Pin 5): External resistor divider from V  
REF  
sets maximum duty cycle clamp (SS_MAXDC = 1.84V,  
V (Pin 15): Input Supply for the Part. It must be closely  
IN  
SD_V = 1.32V gives 72% duty cycle). Capacitor on  
SEC  
decoupled to ground. An internal undervoltage lockout  
SS_MAXDC pin in combination with external resistor  
threshold exists for V at approximately 14.25V on  
IN  
divider sets soft-start timing.  
and 8.75V off for the LT1952. The LT1952-1 has lower  
undervoltage lockout thresholds set at 7.75V on and  
6.5V off.  
V
(Pin6):Theoutputofaninternal2.5Vreferencewhich  
REF  
supplies control circuitry in the IC. Capable of sourcing up  
to 2.5mA drive for external use. Bypass to ground with a  
0.1μF ceramic capacitor.  
SOUT (Pin 16): Switched Output in Phase with OUT Pin.  
Provides sync signal for control of secondary side FETs  
inforwardconverterapplicationsrequiringhighlyefficient  
synchronous rectification. SOUT is actively clamped to  
12V. Active pull-off exists in shutdown (see electrical  
specification).  
SD_V  
(Pin 7): The SD_V  
pin, when pulled below  
SEC  
SEC  
its accurate 1.32V threshold, is used to turn off the IC  
and reduce current drain from V . The SD_V pin is  
IN  
SEC  
connected to system input voltage through a resistor  
divider to define undervoltage lockout (UVLO) and to  
provide a Volt-Second clamp on the OUT pin. A 10μA pin  
current hysteresis allows external programming of UVLO  
hysteresis.  
19521fd  
8
LT1952/LT1952-1  
TIMING DIAGRAM  
t : PROGRAMMABLE SYNCHRONOUS DELAY  
DELAY  
SOUT  
OUT  
SS_MAXDC  
FAULTS TRIGGERING SOFT-START  
< 8.75V  
V
IN  
OR  
SD_V  
OR  
0.8V (ACTIVE THRESHOLD)  
< 1.32V (UVLO)  
SEC  
0.45V (RESET THRESHOLD)  
0.2V  
OC > 107mV (OVERCURRENT)  
SOFT-START LATCH RESET:  
> 14.25V (> 8.75V IF LATCH SET BY OC)  
SOFT-START  
LATCH SET  
V
IN  
AND  
SD_V  
AND  
> 1.32V  
SEC  
OC < 107mV  
AND  
SS_MAXDC < 0.45V  
1952 F01  
Figure 1. Timing Diagram  
BLOCK DIAGRAM  
V
V
REF  
6
SS_MAXDC  
5
IN  
15  
START-UP  
INPUT CURRENT (ISTART)  
LT1952  
= 460μA  
ON = 14.25V  
OFF = 8.75V  
V
V
ON  
IN  
IN  
V
REF  
OFF  
I
0.45V  
+
START  
IN  
IN  
>90%  
V
SOFT-START CONTROL  
V
+
2.5V  
LT1952-1  
R
S
I
= 400μA  
ON = 7.75V  
OFF = 6.5V  
SOURCE  
2.5mA  
START  
IN  
IN  
V
Q
V
+
p50mA  
1.23V  
ADAPTIVE  
MAXIMUM  
DUTY CYCLE  
CLAMP  
16  
SOUT  
+
12V  
I
HYST  
10μA SD_V  
= 1.32V  
SEC  
> 1.32V  
0μA SD_V  
SEC  
+
(TYPICAL 200kHz)  
OSC  
ON  
DELAY  
DRIVER  
p1A  
SD_V  
7
3
S
R
Q
SEC  
14  
OUT  
1.32V  
(LINEAR)  
R
OSC  
(100 TO 500)kHz  
SLOPE COMP  
8μA 0% DC  
RAMP  
13 PGND  
35μA 80% DC  
SYNC  
4
13V  
BLANK  
(VOLTAGE)  
ERROR AMPLIFIER  
+
OVER  
CURRENT  
1.23V  
SENSE  
CURRENT  
+
+
11  
10  
OC  
0mV TO 220mV  
107mV  
I
SENSE  
2
1
8
9
12  
1952 BD  
FB  
COMP  
GND  
BLANK  
DELAY  
Figure 2. Block Diagram  
19521fd  
9
LT1952/LT1952-1  
OPERATION  
Introduction  
clamped to 12V and provides sync signal timing for  
synchronous rectification control.  
The LT1952/LT1952-1 are current mode synchronous  
PWM controllers optimized for control of the simplest  
forward converter topologyusing only one primary  
MOSFET. TheLT1952/LT1952-1areidealfor25Wto500W  
power systems where very high efficiency and reliability,  
low complexity and cost are required in a small space.  
Key features of the LT1952/LT1952-1 include an adaptive  
maximumdutycycleclampforthesingleprimaryMOSFET.  
An additional output signal is included for synchronous  
rectifier control. A precision 107mV threshold senses  
overcurrent conditions and triggers Soft-Start for low  
stress short-circuit protection and control. The key  
functions of the LT1952/LT1952-1 are shown in the Block  
Diagram in Figure 2.  
For SOUT and OUT turn on, a PWM latch is set at the start  
of each main oscillator cycle. OUT turn on is delayed from  
SOUT turn on by a time t  
(Figure 2). t  
is pro-  
DELAY  
DELAY  
grammed using a resistor from the DELAY pin to ground  
and is used to set the timing control of the secondary  
synchronous rectifiers for optimum efficiency.  
SOUT and OUT turn off at the same time each cycle by  
one of three methods:  
(1) MOSFET peak current sense at I  
pin  
SENSE  
(2) Adaptive maximum duty cycle clamp reached during  
load/line transients  
(3) Maximum duty cycle reset of the PWM latch  
Part Start-up  
During any of the following conditionslow V , low  
IN  
SD_V  
or overcurrent detection at the OC pina soft-  
In normal operation the SD_V  
pin must exceed 1.32V  
SEC  
SEC  
start event is latched and both SOUT and OUT turn off  
immediately (Figure 1).  
and the V pin must exceed 14.25V (7.75V LT1952-1) to  
IN  
allow the part to turn on. This combination of pin voltages  
allows the 2.5V V pin to become active, supplying the  
REF  
Leading Edge Blanking  
LT1952/LT1952-1 control circuitry and providing up to  
2.5mA external drive. SD_V threshold can be used for  
TopreventMOSFETswitchingnoisecausingprematureturn  
off of SOUT or OUT, programmable leading edge blanking  
exists. This means both the current sense comparator  
and overcurrent comparator outputs are ignored during  
MOSFET turn on and for an extended period after the OUT  
leading edge (Figure 6). The extended blanking period is  
programmable by adjusting a resistor from the BLANK  
pin to ground.  
SEC  
externally programming an undervoltage lockout (UVLO)  
threshold on the system input voltage. Hysteresis on  
the UVLO threshold can also be programmed since the  
SD_V pin draws 11μA just before part turn on and 0μA  
SEC  
after part turn on.  
With the LT1952/LT1952-1 turned on, the V pin can drop  
IN  
as low as 8.75V (6.5V LT1952-1) before part shutdown  
occurs. This V pin hysteresis (5.5V LT1952; 1.25V  
IN  
Adaptive Maximum Duty Cycle Clamp  
(Volt-Second Clamp)  
LT1952-1) combined with low 460μA (400μA LT1952-1)  
start-up input current allows low power start-up using  
a resistor/capacitor network from system V to supply  
For forward converter applications using the simplest  
topology of a single MOSFET on the primary, a maximum  
switchdutycycleclampwhichadaptstotransformerinput  
voltageisnecessaryforreliablecontroloftheMOSFET.This  
volt-second clamp provides a safeguard for transformer  
reset that prevents transformer saturation. Instantaneous  
load changes can cause the converter loop to demand  
maximum duty cycle. If the maximum duty cycle of the  
switch is too great, the transformer reset voltage can  
exceedthevoltageratingoftheprimary-sideMOSFETwith  
IN  
the V pin (Figure 3). The V capacitor value is chosen  
IN  
IN  
to prevent V falling below its turn off threshold before  
IN  
an auxiliary winding in the converter takes over supply  
to the V pin.  
IN  
Output Drivers  
The LT1952/LT1952-1 have two outputs, SOUT and OUT.  
The OUT pin provides a 1A peak MOSFET gate drive  
clamped to 13V. The SOUT pin has a 50mA peak drive  
19521fd  
10  
LT1952/LT1952-1  
OPERATION  
catastrophicdamage.Manyconverterssolvethisproblem  
by limiting the operational duty cycle of the MOSFET to  
50%orless—orbyusingaxed(non-adaptive)maximum  
duty cycle clamp with very large voltage rated MOSFETs.  
The LT1952/LT1952-1 provide a volt-second clamp to  
allow MOSFET duty cycles well above 50%. This gives  
greater power utilization for the MOSFET, rectifiers and  
transformer resulting in less space for a given power  
output.Inaddition,thevolt-secondclampallowsareduced  
A soft-start event is triggered whenever V is too low,  
IN  
SD_V  
is too low (UVLO), or a 107mV overcurrent  
SEC  
threshold at OC pin is exceeded. Whenever a soft-start  
event is triggered, switching at SOUT and OUT is stopped  
immediately.  
The SS_MAXDC pin is discharged and only released for  
charging when it has fallen below it’s reset threshold  
of 0.45V and all faults have been removed. Increasing  
voltage on the SS_MAXDC pin above 0.8V will increase  
switch maximum duty cycle. A capacitor to ground on  
the SS_MAXDC pin in combination with a resistor divider  
voltage rating on the MOSFET resulting in lower RDS  
ON  
for greater efficiency. The volt-second clamp defines a  
maximum duty cycle ‘guard rail’ which falls when system  
input voltage increases.  
from V , defines the soft-start timing.  
REF  
Current Mode Topology (I  
Pin)  
The LT1952/LT1952-1 SD_V  
and SS_MAXDC pins  
SENSE  
SEC  
provideacapacitorless,programmablevolt-secondclamp  
solution.Somecontrollerswithvolt-secondclampscontrol  
switchmaximumdutycyclebyusinganexternalcapacitor  
to program maximum switch ON time. Such techniques  
have a volt-second clamp inaccuracy directly related to  
the error of the external capacitor/pin capacitance and the  
error/drift of the internal oscillator. The LT1952/LT1952-  
1 use simple resistor ratios to implement a volt-second  
clamp without the need for an accurate external capacitor  
and with an order of magnitude less dependency on  
oscillator error.  
The LT1952/LT1952-1 current mode topology eases fre-  
quency compensation requirements because the output  
inductordoesnotcontributetophasedelayintheregulator  
loop. This current mode technique means that the error  
amplifier (nonisolated applications) or the optocoupler  
(isolated applications) commands current (rather than  
voltage)tobedeliveredtotheoutput.Thismakesfrequency  
compensation easier and provides faster loop response  
to output load transients.  
A resistor divider from the application’s output voltage  
generatesavoltageattheinvertingFBinputoftheLT1952/  
LT1952-1 error amplifier (or to the input of an external  
optocoupler) and is compared to an accurate reference  
(1.23V for LT1952/LT1952-1). The error amplifier output  
An increase of voltage at the SD_V  
pin causes the  
SEC  
maximum duty cycle clamp to decrease. If SD_V  
is  
SEC  
resistively divided down from transformer input voltage,  
a volt-second clamp is realised. To adjust the initial  
maximum duty cycle clamp, the SS_MAXDC pin voltage  
(COMP) defines the input threshold (I  
) of the current  
SENSE  
sense comparator. COMP voltages between 0.8V (active  
threshold) and 2.5V define a maximum I threshold  
is programmed by a resistor divider from the 2.5V V  
REF  
SENSE  
pin to ground. An increase of programmed voltage on  
SS_MAXDC pin provides an increase of switch maximum  
duty cycle clamp.  
from 0mV to 220mV. By connecting I  
to a sense  
SENSE  
resistor in series with the source of an external power  
MOSFET, the MOSFET peak current trip point (turn off)  
can be controlled by COMP level and hence by the output  
voltage. An increase in output load current causing the  
output voltage to fall, will cause COMP to rise, increasing  
Soft-Start  
The LT1952/LT1952-1 provide true PWM soft-start by  
using the SS_MAXDC pin to control soft-start timing. The  
proportionalrelationshipbetweenSS_MAXDCvoltageand  
switch maximum duty cycle clamp allows the SS_MAXDC  
pintoslowlyrampoutputvoltagebyrampingthemaximum  
switch duty cycle clamp—until switch duty cycle clamp  
seamlessly meets the natural duty cycle of the converter.  
I
threshold, increasing the current delivered to the  
SENSE  
output.Forisolatedapplications,theerroramplifierCOMP  
output can be disabled to allow the optocoupler to take  
control.SettingFB=V disablestheerroramplifierCOMP  
REF  
output, reducing pin current to (COMP – 0.7)/40k.  
19521fd  
11  
LT1952/LT1952-1  
OPERATION  
Slope Compensation  
latch. The OC pin is connected directly to the source of  
the primary side MOSFET to monitor peak current in the  
MOSFET (Figure 7). The 107mV threshold is constant  
over the entire duty cycle range of the converter because  
it is unaffected by the slope compensation added to the  
The current mode architecture requires slope compensa-  
tion to be added to the current sensing loop to prevent  
subharmonic oscillations which can occur for duty cycles  
above 50%. Unlike most current mode converters which  
have a slope compensation ramp that is fixed internally,  
placing a constraint on inductor value and operating  
frequency, the LT1952/LT1952-1 have externally adjust-  
able slope compensation. Slope compensation can be  
I
pin.  
SENSE  
Synchronizing  
A SYNC pin allows the LT1952/LT1952-1 oscillator to be  
synchronized to an external clock. The SYNC pin can be  
driven from a logic level output, requiring less than 0.8V  
for a logic level low and greater than 2.2V for a logic level  
high. Duty cycle should run between 10% and 90%. To  
avoid loss of slope compensation during synchroniza-  
programmed by inserting an external resistor (R  
)
SLOPE  
in series with the I  
pin. The LT1952/LT1952-1 have  
SENSE  
a linear slope compensation ramp which sources current  
out of the I  
pin of approximately 8μA at 0% duty  
SENSE  
cycle to 35μA at 80% duty cycle.  
tion, the free running oscillator frequency (f ) should  
OSC  
Overcurrent Detection and Soft-Start (OC Pin)  
be programmed to 80% of the external clock frequency  
(f  
). TheR  
resistorchosenfornon-synchronized  
SYNC  
SLOPE  
An added feature to the LT1952/LT1952-1 is a precise  
100mV sense threshold at the OC pin used to detect  
overcurrentconditionsintheconverterandsetasoft-start  
operation should be increased by 1.25x (= f  
/f ).  
SYNC OSC  
APPLICATIONS INFORMATION  
Shutdown and Programming Undervoltage Lockout  
The LT1952/LT1952-1 have an accurate 1.32V shutdown  
SYSTEM  
INPUT (V )  
S
R1  
R2  
SD_V  
threshold at the SD_V  
pin. This threshold can be  
SEC  
SEC  
+
OPTIONAL  
SHUTDOWN  
TRANSISTOR  
used in conjunction with a resistor divider to define the  
undervoltage lockout threshold (UVLO) of the system  
11μA  
1.32V  
input voltage (V ) to the power converter (Figure 3). A pin  
S
ON OFF  
current hysteresis (10μA before part turn on, 0μA after  
part turn on) allows UVLO hysteresis to be programmed.  
CalculationoftheON/OFFthresholdsforthesupply(SV )  
IN  
LT1952/LT1952-1  
to the power converter can be made as follows:  
1952 F03  
V
V
Threshold = 1.32[1 + (R1/R2)]  
Figure 3. Programming Undervoltage Lockout (UVLO)  
S OFF  
S ON  
Threshold = SV OFF + (10μA • R1)  
IN  
Micropower Start-Up: Selection of Start-Up Resistor  
and Capacitor for V  
A simple open drain transistor can be added to the resistor  
divider network at the SD_V pin to control the turn off  
of the LT1952/LT1952-1 (Figure 3).  
IN  
SEC  
The LT1952/LT1952-1 use turn-on voltage hysteresis at  
the V pin and low start-up current to allow micro-power  
IN  
start-up (Figure 4). The LT1952/LT1952-1 monitor V pin  
The SD_V pin must not be left open since there must  
IN  
SEC  
voltage to allow part turn on at 14.25V (7.75V LT1952-1)  
be an external source current >10μA to lift the pin past its  
and part turn off at 8.75V (6.5V LT1952-1). Low start-up  
1.32V threshold for part turn on.  
19521fd  
12  
LT1952/LT1952-1  
APPLICATIONS INFORMATION  
possibly exceeding the rating for the V pin. The zener  
current (460μA LT1952; 400μA LT1952-1) allows a large  
IN  
voltage should obey V  
< V < 25V.  
resistor to be connected between system input supply and  
IN ON(MAX)  
Z
V . Once the part is turned on, input current increases to  
IN  
Programming Oscillator Frequency  
The oscillator frequency (f ) of the LT1952/LT1952-1 is  
drivetheIC(4.5mA)andtheoutputdrivers(I  
). Alarge  
DRIVE  
enough capacitor is chosen at the V pin to prevent V  
IN  
IN  
OSC  
fallingbelowitsturnoffthresholdbeforeanauxiliarywinding  
programmed using an external resistor (R ) connected  
OSC  
in the converter takes over supply to V . This technique  
IN  
between the R  
pin and ground. Figure 5 shows typical  
resistor values. The LT1952/LT1952-1 free-  
runningoscillatorfrequencyisprogrammableintherange  
OSC  
allowsasimpleresistor/capacitorforstart-upwhichdraws  
f
vs R  
OSC  
OSC  
low power from the system supply to the converter. The  
values for R  
and C  
are given by:  
START  
START  
of 100kHz to 500kHz.  
R
= (V  
– V )/I  
IN ON(max) START(MAX)  
START(MAX)  
S(MIN)  
Q(MAX)  
Stray capacitance and potential noise pickup on the R  
OSC  
pin should be minimized by placing the R resistor as  
C
V
= (I  
+ I ) • t  
DRIVE(MAX)  
/
START  
OSC  
START(MIN)  
IN HYST(MIN)  
close as possible to the R  
pin and keeping the area of  
OSC  
the R  
node as small as possible. The ground side of  
resistorshouldbereturneddirectlytothe(analog  
OSC  
OSC  
Example: (LT1952)  
theR  
ground) GND pin. R  
can be calculated by:  
For V  
= 36V, V  
= 700μA, I  
= 5mA, V  
= 100μs,  
= 15.75V,  
OSC  
S(MIN)  
START(MAX)  
DRIVE(MAX)  
IN ON(MAX)  
I
I
= 5.5mA,  
Q(MAX)  
R
= 9.125k [(4100k/f ) – 1]  
OSC  
OSC  
= 3.75V  
IN HYST(MIN)  
and t  
500  
450  
400  
350  
300  
250  
200  
150  
START  
R
= (36 – 15.75)/700μA = 28.9k (choose 28.7k)  
START  
C
= (5.5mA + 5mA) • 100μs/3.75V = 0.28μF  
START  
(typically choose ≥ 1μF)  
Forsysteminputvoltagesexceedingtheabsolutemaximum  
rating of the LT1952/LT1952-1 V pin, an external zener  
IN  
IN  
should be connected from the V pin to ground. This  
covers the condition where V charges past V  
but  
IN  
IN ON  
thepartdoesnotturnonbecauseSD_V <1.32V. Inthis  
SEC  
100  
50 100 150 200 250 300 350 400  
condition V will continue to charge towards system V ,  
IN  
IN  
R
(kΩ)  
OSC  
SYSTEM  
1952 F05  
INPUT (V )  
S
Figure 5. Oscillator Frequency (fOSC) vs ROSC  
FROM AUXILIARY WINDING  
R
START  
V
(14.25V ON, 8.75V OFF) LT1952  
(7.75V ON, 6.5V OFF) LT1952-1  
IN  
Programming Leading Edge Blank Time  
D1*  
For PWM controllers driving external MOSFETs, noise  
can be generated at the source of the MOSFET during  
gate rise time and some time thereafter. This noise can  
1.32V  
+
potentially exceed the OC and I  
pin thresholds of the  
SENSE  
C
START  
LT1952/LT1952-1tocauseprematureturnoffofSOUTand  
OUT in addition to false trigger of soft-start. The LT1952/  
LT1952-1 provide programmable leading edge blanking  
*FOR V > 25V, ZENER D1 RECOMMENDED  
S
of the OC and I  
comparator outputs to avoid false  
SENSE  
(V  
< V < 25V)  
Z
IN ON(MAX)  
1952 F04  
current sensing during MOSFET switching.  
Figure 4. Low Power Start-Up  
19521fd  
13  
LT1952/LT1952-1  
APPLICATIONS INFORMATION  
Blankingisprovidedin2phases(Figure6):Therstphase  
automatically blanks during gate rise time. Gate rise times  
can vary depending on MOSFET type. For this reason the  
LT1952/LT1952-1 perform true ‘leading edge blanking’ by  
the MOSFET. The current limit for the converter can be  
programmed by:  
Current limit = (107mV/R )(N /N ) – (1/2)(I )  
RIPPLE  
S
P
S
where:  
R = sense resistor in source of primary MOSFET  
automatically blanking OC and I  
comparator outputs  
SENSE  
until OUT rises to within 0.5V of V or reaches its clamp  
IN  
S
level of 13V. The second phase of blanking starts after  
the leading edge of OUT has been completed. This phase  
is programmable by the user with a resistor connected  
from the BLANK pin to ground. Typical durations for this  
I
= p-p ripple current in the output inductor L1  
RIPPLE  
N = number of transformer secondary turns  
S
N = number of transformer primary turns  
P
portion of the blanking period are from 45ns at R  
BLANK  
= 10k to 540ns at R  
= 120k. Blanking duration can  
BLANK  
be approximated as:  
Programming Slope Compensation  
The LT1952/LT1952-1 use a current mode architecture  
to provide fast response to load transients and to ease  
frequency compensation requirements. Current mode  
switchingregulatorswhichoperatewithdutycyclesabove  
50%andhavecontinuousinductorcurrentmustaddslope  
compensation to their current sensing loop to prevent  
subharmonic oscillations. (For more information on slope  
compensation, see Application Note 19.) The LT1952/  
LT1952-1haveprogrammableslopecompensationtoallow  
a wide range of inductor values, to reduce susceptibility  
to PCB generated noise and to optimize loop bandwidth.  
The LT1952/LT1952-1 program slope compensation by  
Blanking (extended) = [45(R  
/10k)]ns  
BLANK  
(see graph in Typical Performance Characteristics)  
(AUTOMATIC)  
LEADING  
EDGE  
(PROGRAMMABLE)  
CURRENT  
SENSE  
DELAY  
EXTENDED  
BLANKING  
BLANKING  
OUT  
R
BLANK  
(MIN)  
= 10k  
10k < R  
b 240k  
100ns  
BLANK  
inserting a resistor R  
in series with the I  
pin  
SLOPE  
SENSE  
(Figure 7). The LT1952/LT1952-1 generate a current at  
the I pin which is linear from 0% duty cycle to the  
BLANKING  
SENSE  
maximum duty cycle of the OUT pin. A simple calculation  
0
Xns  
of I(I ) • R gives an added ramp to the voltage  
X + 45ns  
[X + 45(R  
/10k)]ns  
BLANK  
SENSE  
SLOPE  
1952 F06  
at the I  
pin for programmable slope compensation.  
SENSE  
(See both graphs ‘I  
Pin Current vs. Duty Cycle’ and  
SENSE  
Figure 6. Leading Edge Blank Timing  
‘I  
Maximum Threshold vs Duty Cycle’ in the Typical  
SENSE  
Performance Characteristics section.)  
Programming Current Limit (OC Pin)  
CURRENT SLOPE = 35μA • DC  
TheLT1952/LT1952-1useaprecise107mVsensethreshold  
at the OC pin to detect overcurrent conditions in the  
converter and set a soft-start latch. It is independent of  
dutycyclebecauseitisnotaffectedbyslopecompensation  
LT1952/  
LT1952-1  
OUT  
V
I
= V + (I  
• R  
)
SLOPE  
(ISENSE)  
SENSE  
S
SENSE  
= 8μA + 35DC μA  
V
S
DC = DUTY CYCLE  
OC  
R
SLOPE  
FOR SYNC OPERATION  
I
SENSE  
programmed at the I  
pin. The OC pin monitors the  
I
= 8μA + (k • 35DC)μA  
OSC SYNC  
SENSE  
SENSE(SYNC)  
k = f /f  
1952 F07  
R
peak current in the primary MOSFET by sensing the  
S
voltage across a sense resistor (R ) in the source of  
S
Figure 7. Programming Slope Compensation  
19521fd  
14  
LT1952/LT1952-1  
APPLICATIONS INFORMATION  
Programming Synchronous Rectifier Timing:  
SS_MAXDC pin using a resistor divider from V . An  
REF  
SOUT to OUT delay (‘t ’)  
DELAY  
increase of voltage at the SS_MAXDC pin causes the  
maximum duty cycle clamp to increase.  
The LT1952/LT1952-1 have an additional output SOUT  
which provides a 50mA peak drive clamped to 12V. In  
applications requiring synchronous rectification for high  
efficiency, the LT1952/LT1952-1 SOUT provides a sync  
signal for secondary side control of the synchronous  
rectifier MOSFETs (Figure 11). Timing delays through the  
converter can cause non-optimum control timing for the  
synchronous rectifier MOSFETs. The LT1952/LT1952-1  
To program the volt-second clamp, the following steps  
should be taken:  
(1)The maximum operational duty cycle of the converter  
should be calculated for the given application.  
(2)An initial value for the maximum duty cycle clamp  
should be calculated using the equation below with a  
first pass guess for SS_MAXDC.  
provide a programmable delay (t  
, Figure 8) between  
DELAY  
SOUT rising edge and OUT rising edge to optimize timing  
control for the synchronous rectifier MOSFETs to achieve  
Note: Since maximum operational duty cycle occurs at  
minimum system input voltage (UVLO), the voltage at the  
maximum efficiency gains. A resistor R  
connected  
DELAY  
SD_V  
pin = 1.32V.  
SEC  
from the DELAY pin to ground sets the value of t  
.
DELAY  
Max Duty Cycle Clamp (OUT pin)  
= k • 0.522(SS_MAXDC(DC)/SD_V ) –  
Typical values for t  
range from 10ns with R  
= 160k. (see graph in Typical  
=
DELAY  
10k to 160ns with R  
DELAY  
SEC  
DELAY  
(t  
• f  
)
DELAY OSC  
Performance Characteristics)  
where,  
SS_MAXDC(DC) = V (R /(R + R )  
t
DELAY  
REF  
B
T
B
LT1952/  
LT1952-1  
SOUT  
OUT  
SD_V  
= 1.32V at minimum system input voltage  
SEC  
DELAY  
t
= programmed delay between SOUT and OUT  
DELAY  
1952 F08  
R
DELAY  
–7  
k = 1.11 – 5.5e • (f  
)
OSC  
(3)Themaximumdutycycleclampcalculatedin(2)should  
be programmed to be 10% greater than the maximum  
operational duty cycle calculated in (1). Simple adjust-  
mentofmaximumdutycyclecanbeachievedbyadjusting  
SS_MAXDC.  
Figure 8. Programming SOUT to OUT Delay: tDELAY  
Programming Maximum Duty Cycle Clamp  
For forward converter applications using the simplest  
topology of a single MOSFET on the primary, a maximum  
switch duty cycle clamp which adapts to transformer  
input voltage is necessary for reliable control of the  
MOSFET. Thisvolt-secondclampprovidesasafeguardfor  
transformerresetthatpreventstransformersaturation.The  
SYSTEM  
INPUT VOLTAGE  
LT1952/  
LT1952-1  
R1  
ADAPTIVE  
SD_V  
DUTY CYCLE  
SEC  
CLAMP INPUT  
LT1952/LT1952-1SD_V andSS_MAXDCpinsprovidea  
SEC  
SS_MAXDC  
R2  
R *  
T
capacitor-less,programmablevolt-secondclampsolution  
V
REF  
using simple resistor ratios (Figure 9).  
1952 F09  
R
B
An increase of voltage at the SD_V  
pin causes the  
MAX DUTY CYCLE  
SEC  
CLAMP ADJUST INPUT  
maximumdutycycleclamptodecrease.DerivingSD_V  
SEC  
*MINIMUM ALLOWABLE R IS 10k TO  
T
GUARANTEE SOFT-START PULL-OFF  
from a resistor divider connected to system input voltage  
creates the volt-second clamp. The maximum duty cycle  
clamp can be adjusted by programming voltage on the  
Figure 9. Programming Maximum Duty Cycle Clamp  
19521fd  
15  
LT1952/LT1952-1  
APPLICATIONS INFORMATION  
Example calculation for (2)  
maximum switch duty cycle clamp, determine soft-start  
timing (Figure 11).  
For R = 35.7k, R = 100k, V = 2.5V,  
T
B
REF  
R
= 40k, f  
= 200kHz and SD_V  
= 1.32V,  
= 40ns  
A soft-start event is triggered for the following faults:  
DELAY  
OSC  
SEC  
this gives SS_MAXDC(DC) = 1.84V, t  
and k = 1  
DELAY  
(1) V < 8.75V, or  
IN  
(2) SD_V  
< 1.32V (UVLO), or  
SEC  
Maximum Duty Cycle Clamp  
= 1 • 0.522(1.84/1.32) – (40ns • 200kHz)  
= 0.728 – 0.008 = 0.72 (Duty Cycle Clamp = 72%)  
(3) OC > 107mV (overcurrent condition)  
When a soft-start event is triggered, switching at SOUT  
and OUT is stopped immediately. A soft-start latch is set  
andSS_MAXDCpinisdischarged.TheSS_MAXDCpincan  
only recharge when the soft-start latch has been reset.  
Note 1: To achieve the same maximum duty cycle clamp at  
100kHz as calculated for 200kHz, the SS_MAXDC voltage  
should be reprogrammed by:  
Note: A soft-start event caused by (1) or (2) above, also  
SS_MAXDC(DC) (100kHz)  
= SS_MAXDC(DC) (200kHz) • k (200kHz)/k (100kHz)  
= 1.84 • 1.0/1.055 = 1.74V (k = 1.055 for 100kHz)  
causes V to be disabled and to fall to ground.  
REF  
Soft-start latch reset requires all of the following:  
Note 2 : To achieve the same maximum duty cycle clamp  
while synchronizing to an external clock at the SYNC pin,  
the SS_MAXDC voltage should be re-programmed as:  
SS_MAXDCC  
SSOOFFTT--SSTTAARRTT  
EEVVEENNTT TTRRIIGGGGEERREEDD  
0..88VV ((AACCTTIIVVEE TTHHRREESSHHOOLLDD))  
00..4455VV ((RREESSEETT TTHHRREESSHHOOLLDD))  
SS_MAXDC (DC) (fsync)  
= SS_MAXDC (DC) (200kHz) • [(fosc/fsync) +  
0.09(fosc/200kHz)0.6]  
TIMINGG ((AA)):: SSOOFFTT SSTTAARRTTFFAAUULLTTRREEMMOOVVEEDD  
BBEEFFOORREE SSSS__MMAAXXDDCC FFAALLLLSS TTOO 00..4455VV  
SS_MAXDCC  
For SS_MAXDC (DC) (200kHz) = 1.84V for 72%  
duty cycle  
00..88VV ((AACCTTIIVVEE TTHHRREESSHHOOLLDD))  
SS_MAXDC (DC) (fsync = 250kHz) for 72%  
duty cycle  
0..4455VV ((RREESSEETT TTHHRREESSHHOOLLDD))  
0.2V  
= 1.84 • [(200kHz/250kHz) + 0.09(1)0.6]  
= 1.638V  
TIMING (B): SOFTT-
-
SSTTAARRTTFFAAUULLTTRREEMMOOVVEEDD  
AFFTTEERR SSSS__MMAAXXDDCC FFAALLLLSS PPAASSTT00..4455VV  
1952 F10  
Figure 10. Soft-Start Timing  
Programming Soft-Start Timing  
SS_MAXDC(DC)  
The LT1952/LT1952-1 have built-in soft-start capability to  
provide low stress controlled start-up from a list of fault  
conditions that can occur in the application (see Figure 1  
and Figure 10). The LT1952/LT1952-1 provide true PWM  
soft-startbyusingtheSS_MAXDCpintocontrolsoft-start  
timing.TheproportionalrelationshipbetweenSS_MAXDC  
voltage and switch maximum duty cycle clamp allows  
the SS_MAXDC pin to slowly ramp output voltage by  
ramping the maximum switch duty cycle clamp—until  
switchdutycycleclampseamlesslymeetsthenaturalduty  
LT1952/  
LT1952/  
LT1952-1  
LT1952-1  
R
CHARGE  
SS_MAXDC  
SS_MAXDC  
R
T
V
REF  
C
SS  
C
R
B
SS  
1952 F11  
SS_MAXDC CHARGING MODEL  
SS_MAXDC(DC) = V [R /(R + R )]  
REF  
B
T
B
R
= [R • R /(R + R )]  
T B T B  
CHARGE  
cycle of the converter. A capacitor C on the SS_MAXDC  
SS  
Figure 11. Programming Soft-Start Timing  
pin and the resistor divider from V  
used to program  
REF  
19521fd  
16  
LT1952/LT1952-1  
APPLICATIONS INFORMATION  
(A) V > 14.25* (7.75V LT1952-1), and  
Example:  
For an overcurrent fault (OC > 100mV), V = 2.5V,  
IN  
(B) SD_V  
> 1.32V, and  
SEC  
REF  
R = 35.7k, R = 100k, C = 0.1μF and assume  
T
B
SS  
(C) OC < 107mV, and  
V
I
= 0.45V,  
SS(MIN)  
DIS  
–4  
(D) SS_MAXDC < 0.45V (SS_MAXDC reset threshold)  
~ 8e + (2.5 – 0.45)[(1/2 • 100k) – (1/35.7k)]  
–4  
–4  
–4  
= 8e + (2.05)(–0.23e ) = 7.5e  
*V >8.75V(6.5VLT1952-1)isokforlatchresetifthelatch  
IN  
was only set by overcurrent condition in (3) above.  
SS_MAXDC(DC) = 1.84V  
–4  
SS_MAXDC (t  
= 1.85e–4 s  
) = (1e – 7/7.5e ) • (1.84 – 0.45)  
FALL  
SS_MAXDC Discharge Timing  
It can be seen in Figure 10 that two types of discharge  
can occur for the SS_MAXDC pin. In timing (A) the fault  
that caused the soft-start event has been removed before  
SS_MAXDC falls to 0.45V. This means the soft-start  
latch will be reset when SS_MAXDC falls to 0.45V and  
SS_MAXDCwillbegincharging.Intiming(B),thefaultthat  
caused the soft-start event is not removed until some time  
after SS_MAXDC has fallen past 0.45V. The SS_MAXDC  
pin continues to discharge to 0.2V and remains low until  
all faults are removed.  
IftheOCfaultisnotremovedbefore185μsthenSS_MAXDC  
will continue to fall past 0.45V towards a new V  
.
SS(MIN)  
The typical V for SS_MAXDC at 150μA is 0.2V.  
OL  
SS_MAXDC Charge Timing  
When all faults are removed and the SS_MAXDC pin  
has fallen to its reset threshold of 0.45V or lower, the  
SS_MAXDC pin will be released and allowed to charge.  
SS_MAXDC will rise until it settles at its programmed DC  
voltage—setting the maximum switch duty cycle clamp.  
The calculation of charging time for the SS_MAXDC pin  
between any two voltage levels can be approximated as  
an RC charging waveform using the model shown in  
Figure 11.  
The time for SS_MAXDC to fall to a given voltage can be  
approximated as:  
SS_MAXDC (t  
) =  
FALL  
(C /I ) • [SS_MAXDC(DC) – V  
]
SS DIS  
SS(MIN)  
where:  
TheabilitytopredictSS_MAXDCrisetimebetweenanytwo  
voltages allows prediction of several key timing periods:  
I
= net discharge current on C  
DIS  
SS  
C
= capacitor value at SS_MAXDC pin  
(1)No Switching Period  
SS  
(time from SS_MAXDC(DC) to V  
+ time from  
SS(MIN)  
SS_MAXDC(DC) = programmed DC voltage  
= minimum SS_MAXDC voltage before  
V
to V  
)
SS(MIN)  
SS(ACTIVE)  
V
SS(MIN)  
recharge  
(2)Converter Output Rise Time  
(time from V to V  
; V is the  
SS(REG) SS(REG)  
SS(ACTIVE)  
–4  
I
~ 8e + (V – V  
)[(1/2R ) – (1/R )]  
SS(MIN) B T  
DIS  
REF  
level of SS_MAXDC where maximum duty cycle  
clamp equals the natural duty cycle of the switch)  
For faults arising from (1) and (2),  
= 100mV.  
V
REF  
(3)Time For Maximum Duty Cycle Clamp within X% of  
Target Value  
For a fault arising from (3),  
= 2.5V.  
V
REF  
The time for SS_MAXDC to charge to a given voltage V  
is found by re-arranging:  
SS  
SS_MAXDC(DC) = V [R /(R + R )]  
REF  
B
T
B
V
= SS_MAXDC reset threshold = 0.45V  
SS(MIN)  
(if fault removed before t  
)
FALL  
19521fd  
17  
LT1952/LT1952-1  
APPLICATIONS INFORMATION  
(–t/RC)  
V (t) = SS_MAXDC(DC) (1 – e  
)
Step 3:  
t(V = 0.8V) is calculated from:  
SS  
to give:  
t = RC • (–1) • ln(1 – V /SS_MAXDC(DC))  
SS  
t = R  
• CSS • (–1) • ln(1 – V /SS_MAXDC(DC))  
SS  
CHARGE  
SS  
–7  
= 2.63e4 • 1e • (–1) • ln(1 – 0.8/1.84)  
where:  
–3  
= 2.63e–3 • (–1) • ln(0.565) = 1.5e  
s
V
= SS_MAXDC voltage at time t  
SS  
From Step 1 and Step 2:  
SS_MAXDC(DC) = programmed DC voltage setting  
maximum duty cycle clamp =  
–3  
–4  
t
= (1.5 – 0.73)e s = 7.7e  
s
CHARGE  
V
(R /(R + R )  
The total time of no switching for the converter due to a  
soft-start event:  
REF  
B
T
B
R = R  
(Figure 11) = R • R /(R + R )  
T B T B  
CHARGE  
–4  
–4  
–4  
= t  
+ t  
= 1.85e + 7.7e = 9.55e  
s
DISCHARGE  
CHARGE  
C = C (Figure 11)  
SS  
Example (2) Converter Output Rise Time  
Example (1) No Switching Period  
The rise time for the converter output to reach regulation  
can be closely approximated as the time between the start  
Theperiodofnoswitchingfortheconverter,whenasoft-start  
event has occurred, depends on how far SS_MAXDC can  
fall before recharging occurs and how long a fault exists. It  
will be assumed that a fault triggering soft-start is removed  
before SS_MAXDC can reach its reset threshold (0.45V).  
ofswitching(SS_MAXDC=V  
)andthetimewhere  
SS(ACTIVE)  
converter duty cycle is in regulation (DC(REG)) and no  
longercontrolledbySS_MAXDC(SS_MAXDC=V  
Converter output rise time can be expressed as:  
).  
SS(REG)  
No Switching Period = t  
+ t  
CHARGE  
DISCHARGE  
Output Rise Time = t(V  
) – t(V  
SS(REG)  
)
SS(ACTIVE)  
t
= discharge time from SS_MAXDC(DC) to  
DISCHARGE  
0.45V  
Step 1: Determine converter duty cycle DC(REG) for  
output in regulation.  
t
= charge time from 0.45V to V  
SS(ACTIVE)  
CHARGE  
ThenaturaldutycycleDC(REG)oftheconverterdependson  
severalfactors.ForthisexampleitisassumedthatDC(REG)  
= 60% for system input voltage near the undervoltage  
t
t
was already calculated earlier as 185μs.  
DISCHARGE  
is calculated by assuming the following:  
CHARGE  
lockout threshold (UVLO). This gives SD_V  
= 1.32V.  
SEC  
V
V
= 2.5V, R = 35.7k, R = 100k, C = 0.1μF and  
SS(MIN)  
REF  
T
B
SS  
Also assume that the maximum duty cycle clamp  
programmedforthisconditionis72%forSS_MAXDC(DC)  
= 0.45V.  
t
= t(V = 0.8V) – t(V = 0.45V)  
SS SS  
CHARGE  
= 1.84V, f  
= 200kHz and R  
= 40k.  
OSC  
DELAY  
Step 1:  
SS_MAXDC(DC) = 2.5[100k/(35.7k + 100k)] = 1.84V  
= (35.7k • 100k/135.7k) = 26.3k  
Step 2: Calculate V  
SS(REG)  
TocalculatethelevelofSS_MAXDC(V  
)thatnolonger  
SS(REG)  
R
CHARGE  
clamps the natural duty cycle of the converter, the equation  
formaximumdutycycleclampmustbeused(seeprevious  
section ‘Programming Maximum Duty Cycle Clamp’).  
Step 2:  
t(V = 0.45V) is calculated from,  
SS  
The point where the maximum duty cycle clamp meets  
DC(REG) during soft-start is given by:  
t = R  
• C • (–1) • ln(1 – V /SS_MAXDC(DC))  
SS  
CHARGE  
SS  
–7  
4
= 2.63e • 1e • (–1) • ln(1 – 0.45/1.84)  
–3  
–4  
DC(REG) = Max Duty Cycle clamp  
= 2.63e • (–1) • ln(0.755) = 7.3e  
s
0.6 = k • 0.522(SS_MAXDC(DC)/SD_V ) –  
SEC  
(t  
• f  
)
DELAY OSC  
19521fd  
18  
LT1952/LT1952-1  
APPLICATIONS INFORMATION  
–4  
–7  
For SD_V = 1.32V, fOSC = 200kHz and R  
= 40k  
t(1.803) = 2.63e • 1e • (–1) • ln(1 – 1.803/1.84)  
SEC  
DELAY  
–3  
–2  
= 2.63e • (–1) • ln(0.02) = 1.03e  
s
This gives k = 1 and t  
= 40ns.  
DELAY  
HencethetimeforSS_MAXDCtochargefromitsminimum  
reset threshold of 0.45V to within 2% of its target value  
is given by:  
Re-arranging the above equation to solve for SS_MAXDC  
= V  
SS(REG)  
= [0.6 + (t  
• f )(SD_V )]/(k • 0.522)  
DELAY OSC SEC  
t(1.803) – t(0.45) =  
= [0.6 + (40ns • 200kHz)(1.32V)]/(1 • 0.522)  
= (0.608)(1.32)/0.522 = 1.537V  
–2  
–4  
–3  
1.03e – 7.3e = 9.57e  
Step 3: Calculate t(V  
) – t(V  
)
SS(ACTIVE)  
Forward Converter Applications  
SS(REG)  
RecallthetimeforSS_MAXDCtochargetoagivenvoltage  
is given by:  
The following section covers applications where the  
LT1952/LT1952-1 are used in conjunction with other LTC  
parts to provide highly efficient power converters using  
the single switch forward converter topology.  
V
SS  
t = R  
• C • (–1) • ln(1 – V /SS_MAXDC(DC))  
SS SS  
CHARGE  
(Figure 11 gives the model for SS_MAXDC charging)  
For R = 35.7k, R = 100k, R = 26.3k  
95% Efficient, 5V, Synchronous Forward Converter  
T
B
CHARGE  
ThecircuitinFigure14isbasedontheLT1952-1toprovide  
the simplest forward power converter circuit—using only  
one primary MOSFET. The SOUT pin of the LT1952-1  
provides a synchronous control signal for the LTC1698  
located on the secondary. The LTC1698 drives secondary  
side synchronous rectifier MOSFETs to achieve high  
efficiency. The LTC1698 also serves as an error amplifier  
and optocoupler driver.  
For C = 0.1μF, this gives t(V  
)
SS  
SS(ACTIVE)  
4
–7  
= t(V  
) = 2.63e • 1e • (–1) • ln(1 – 0.8/1.84)  
SS(0.8V)  
–3  
–3  
= 2.63e • (–1) • ln(0.565) = 1.5e  
s
t(V  
) = t(V  
) = 26.3k • 0.1μF • –1 •  
SS(1.537V)  
SS(REG)  
–3  
ln(1 – 1.66/1.84) = 2.63e • (–1) • ln(0.146)  
–3  
= 5e  
s
The rise time for the converter output  
Efficiency and transient response are shown in Figures 12  
and 13. Peak efficiencies of 95% and ultra-fast transient  
response are superior to presently available power  
modules. Integrated soft-start, overcurrent detection and  
short-circuit hiccup mode provide low stress, reliable  
protection. In addition, the circuit in Figure 14 is an all-  
ceramic capacitor solution providing low output ripple  
voltage and improved reliability. The LT1952-based  
convertercanbeusedtoreplacepowermoduleconverters  
at a much lower cost. The LT1952 solution benefits from  
thermalconductionofthesystemboardresultinginhigher  
efficienciesandlowerriseincomponenttemperatures.The  
7mm height allows dense packaging and the circuit can  
easily be adjusted to provide an output voltage from 1.23V  
to 26V. Higher currents are achievable by simple scaling  
of power components. The LT1952-1-based solution in  
Figure 14 is a powerful topology for replacement of a wide  
range of power modules.  
–3  
= t(V  
= 3.5e  
) – t(V  
) = (5 – 1.5)e  
SS(ACTIVE)  
s
SS(REG)  
–3  
s
Example (3) Time For Maximum Duty Cycle Clamp to  
Reach Within X% of Target Value  
A maximum duty cycle clamp of 72% was calculated  
previously in the section ‘Programming Maximum  
Duty Cycle Clamp’. The programmed value used for  
SS_MAXDC(DC) was 1.84V.  
ThetimeforSS_MAXDCtochargefromitsminimumvalue  
V
to within X% of SS_MAXDC(DC) is given by:  
SS(MIN)  
t(SS_MAXDC charge time within X% of target)  
= t[(1 – (X/100) • SS_MAXDC(DC)] – t(V  
)
SS(MIN)  
For X = 2 and V  
= 0.45V, t(0.98 • 1.84) –  
SS(MIN)  
t(0.45) = t(1.803) – t(0.45)  
From previous calculations, t(0.45) = 7.3e – 4 s.  
Using previous values for R , R , and C ,  
T
B
SS  
19521fd  
19  
LT1952/LT1952-1  
APPLICATIONS INFORMATION  
98  
96  
94  
92  
90  
I
OUT  
(5A/DIV)  
0A  
V
OUT  
(200mV/DIV)  
88  
86  
V
V
= 48V  
IN  
= 5V  
OUT  
OSC  
f
= 300kHz  
1952 F13  
20μs/DIV  
0
5
10  
15  
20  
25  
LOAD CURRENT (A)  
Figure 13. Output Voltage Transient Response  
(6A to 12A Load Step at 6A/μs)  
1952 F12  
Figure 12. LT1952-Based Synchronous Forward Converter  
Efficiency vs Load Current (For Circuit in Figure 14)  
+V  
IN  
36V TO 72V  
C
IN  
2.2μF  
100V  
X5R  
L1  
T1  
PA0491  
PA1393.152  
+V  
5V  
0UT  
20A  
475k  
C
7
01  
16  
5
SOUT  
22k  
SOUT  
SD_V  
SEC  
100μF  
Q2  
Q3  
14  
11  
10  
13  
8
X5R  
2s  
Q1  
PH3830  
PH3830  
SS_MAXDC  
OUT  
OC  
100k  
6
2
V
I
SENSE  
REF  
1k  
LT1952-1  
0.015Ω  
FB  
PGND  
GND  
18.2k  
0.1μF  
0.1μF  
7V  
BIAS  
15  
3
4
LTC1698  
10V  
BIAS  
1
2
3
4
5
6
16  
15  
14  
13  
12  
11  
R
V
OSC  
IN  
V
FG  
DD  
115k  
1μF  
X5R  
SYNC  
CG  
SYNC  
9.53k  
SYNC  
BLANK DELAY  
12  
33k  
1
PGND  
GND  
OPTO  
V
COMP  
AUX  
0.1μF  
T2  
R13  
270Ω  
I
COMP  
SYNC  
560Ω  
SOUT  
9
+I  
–I  
SNS  
SNS  
1μF  
40k  
4.75k  
220pF  
C9, 6.8nF  
V
COMP  
R14  
1.2k  
HCPL-M453  
10V  
8
9
BIAS  
V
OVP  
FB  
6
1
+V  
0UT  
Q1: PHM15NQ20 PHILIPS  
2
3
5
4
R15  
38.3k  
R16  
12.4k  
0.1μF  
1952 F14  
Figure 14. 36V to 72V Input to 5V at 20A Synchronous Forward Converter  
19521fd  
20  
LT1952/LT1952-1  
APPLICATIONS INFORMATION  
48V to Isolated 12V, 20A (No Opto-Coupler)  
‘Bus Converter’  
achieves a high 94% at 20A (Figure 15). The solution is  
only slightly larger than 1/4 “brick” size and uses only  
ceramic capacitors for high reliability.  
The wide programmable range and accuracy of the  
LT1952/LT1952-1 Volt-Second clamp makes the LT1952/  
LT1952-1 an ideal choice for ‘Bus Converter’ applications  
where the Volt-Second clamp provides line regulation for  
the converter output. The 48V to 12V 20A ‘Bus Converter’  
application in Figure16 shows a semi-regulated isolated  
output without the need for an optocoupler, optocoupler  
driver,referenceorfeedbacknetwork.SomeBusConverter’  
solutions run with a fixed 50% duty cycle resulting in an  
output variation of 2-to-1 for applications with a 72V to  
36V input range. The LT1952/LT1952-1 use an accurate  
wide programmable range Volt-Second clamp to initially  
program and then control power supply output voltage  
to typically 10% for the same 36V to 72V input range.  
Efficiency for the LT1952 based bus converter in Figure 16  
96.0  
95.5  
95.0  
94.5  
94.0  
93.5  
V
V
= 48V  
IN  
OUT  
= 12V  
93.0  
4
6
8
10 12 14 16 18 20  
LOAD CURRENT (A)  
1952 F15  
Figure 15. LT1952-Based Synchronous ‘Bus Converter’  
Efficiency vs Load Current (For Circuit in Figure 16)  
T1  
V
U1  
PA0815.002  
2.4μH  
10k  
47k  
82k  
• •  
V
V
OUT  
IN  
36V TO 72V  
12V, 20A  
BAS516  
0.1μF  
BCX55  
12V  
C
OUT  
33μF, 16V  
X5R, TDK  
3x  
Si7370  
2x  
PH4840  
2x  
18V  
2.2μF, 100V  
2x  
LTC3900  
5
6
3
1
FG  
CG  
+
PH21NQ15  
2x  
370k  
7
10k  
10k  
GND  
CS  
13.2k  
27k  
14  
15  
8
V
1μF  
U1  
SD_V  
OUT  
SEC  
4
8
2
7
115k  
V
CS  
3
9
5
CC  
R
V
IN  
OSC  
BAT760  
SYNC TIMER  
8V  
BIAS  
BLANK  
GND  
1μF  
C
T
13  
12  
11  
10  
16  
R
T
0.47μF  
0.1μF  
SS_MAXDC  
PGND  
1nF  
15k  
59k  
10k  
39k  
9mΩ  
LT1952 DELAY  
OC  
1nF  
8V  
BIAS  
6
1
2
V
REF  
470Ω  
560W  
220pF  
COMP  
FB  
I
SENSE  
SOUT  
L1: PA1494.242 PULSE ENGINEERING  
T1: PULSE ENGINEERING  
T2: COILCRAFT  
• •  
T2  
Q4470-B  
1952 F16  
Figure 16. 36V to 72V Input to 12V at 20A No ‘Optocoupler’ Synchronous ‘Bus Converter’  
19521fd  
21  
LT1952/LT1952-1  
APPLICATIONS INFORMATION  
36V to 72V Input, 3.3V 40A Converter  
This allows a significant reduction in power component  
sizing using the LT1952-based converter.  
AnLT1952-basedsynchronousforwardconverterprovides  
theidealsolutionforpowersuppliesrequiringhighefficiency  
atlowoutputvoltagesandhighloadcurrents.The3.3V40A  
solution in Figure 18 achieves peak efficiencies of 92.5%  
(Figure 17) by minimizing power loss due to rectification  
at the output. Synchronous rectifier control output SOUT,  
with programmable delay, optimizes timing control for a  
secondarysidesynchronousMOSFETcontroller(LTC3900)  
which results in high efficiency synchronous rectification.  
TheLT1952/LT1952-1useaprecisioncurrentlimitthreshold  
at the OC pin combined with a soft-start hiccup mode to  
provide low stress output short-circuit protection. The  
94  
93  
92  
91  
90  
89  
88  
V
V
= 48V  
IN  
87  
86  
= 3.3V  
OUT  
OSC  
f
= 300kHz  
0
10  
20  
30  
40  
50  
OUTPUT CURRENT (A)  
maximumoutputcurrentwillvaryonly10%overthefullV  
IN  
1952 F17  
range. During short-circuit the average power dissipation  
of the circuit will be lower than 15% of maximum rated  
power thanks to a soft-start controlled hiccup mode.  
Figure 17. LT1952-Based Synchronous Forward Converter  
Efficiency vs Load Current (For Circuit in Figure 18)  
V
U1  
PA0912.002  
L1  
47k  
82k  
• •  
+V  
IN  
36V TO 72V  
V
OUT  
3.3V, 40A  
BAS516  
0.1μF  
BCX55  
12V  
C
OUT  
Q2  
PH3230  
2x  
Q3  
PH3230  
2x  
100μF  
3x  
18V  
10k  
2.2mF  
LTC3900  
5
6
3
1
FG  
CG  
+
370k  
7
10k  
10k  
GND  
CS  
13.2k  
27k  
14  
15  
8
V
1mF  
U1  
Si7846  
SD_V  
OUT  
SEC  
4
8
2
7
115k  
V
CS  
3
9
5
CC  
R
OSC  
V
IN  
BAT760  
SYNC TIMER  
8V  
BIAS  
BLANK LT1952  
SS_MAXDC  
GND  
PGND  
DELAY  
OC  
1μF  
1nF  
13  
12  
11  
10  
16  
15k  
0.22μF  
0.1μF  
59k  
10k  
33k  
39k  
10mΩ  
1nF  
8V  
BIAS  
6
1
2
V
= 2.5V  
R
470Ω  
560Ω  
220pF  
COMP  
I
SENSE  
SOUT  
249k  
80.6k  
• •  
FB = 1.23V  
T2  
Q4470-B  
2.2nF  
8V  
BIAS  
22k  
18k  
2.2k  
V
U1  
– 4  
5
2
10k  
1
L1: PA0713, PULSE ENGINEERING  
10k  
1μF  
3
+
ALL CAPACITORS X7R, CERAMIC, TDK  
T2: COILCRAFT  
LT1797  
270Ω  
PS2801  
0.1μF  
8
4
LT1009  
1952 F18  
Figure 18. 36V to 72V, 3.3V at 40A Synchronous Forward Converter  
19521fd  
22  
LT1952/LT1952-1  
APPLICATIONS INFORMATION  
Bus Converter: Optimum Output Voltage Tolerance  
(b)Select switch duty cycle for the Bus Converter for a  
givenoutputvoltageatV  
andcalculateSS_MAXDC  
S(MIN)  
The Bus Converter applications shown on page 1 and in  
Figure 16, provide semi-regulated isolated outputs without  
theneedforanoptocoupler,optocouplerdriver,referenceor  
feedbacknetwork.TheLT1952/LT1952-1Volt-Secondclamp  
adjusts switch duty cycle inversely proportional to input  
voltagetoprovideanoutputvoltagethatisregulatedagainst  
input line variations. Some bus converters use a switch duty  
cycle limit which causes output voltage variation of typically  
33% over a 2:1 input voltage range. The LT1952/LT1952-1  
typically provide a 10% output variation for the same input  
variation.Typicaloutputtoleranceisfurtherimprovedforthe  
LT1952 by inserting a resistor from the system input voltage  
to the SS_MAXDC pin (Rx in Figure 19).  
voltage(SS1)(SeeApplicationsInformationProgram-  
ming Maximum Duty Cycle Clamp”)  
(c)Calculate R  
= [SS1/(2.5 – SS1)] • R  
T(1)  
B(1)  
(2)Calculate Rx:  
Rx = ([V  
– V  
]/[SS1 • (X – 1)]) • R  
S(MIN) THEV(1)  
S(MAX)  
R
= R  
S(MAX)  
• R /(R  
+ R ), X = ideal duty  
B(1) T(1)  
THEV(1)  
cycle (V  
B(1)  
T(1)  
)/actual duty cycle (V  
)
S(MAX)  
(3)The addition of Rx causes an increase in the original  
programmed SS_MAXDC voltage SS1. A new value for  
R
shouldbecalculatedtoprovidealowerSS_MAXDC  
B(1)  
voltage (SS2) to correct for this offset:  
TheLT1952/LT1952-1electricalspecificationsfortheOUT  
Max Duty Cycle Clamp show typical switch duty cycle to  
move from 72% to 33% for a 2x change of input voltage  
(SS_MAXDC pin=1.84V).Sinceoutputvoltageregulation  
(a)SS2 = SS1 – [(V – SS1) • R  
/Rx]  
THEV(1)  
S(MIN)  
(b)R  
= [SS2/(2.5 – SS2)] • R  
T(1)  
B(2)  
(4)The thevinin resistance R  
used to calculate Rx  
THEV(1)  
follows V • Duty Cycle, a switch duty cycle change of  
IN  
should be re-established for R and R :  
T
B
72% to 36% (for a 2x input voltage change) provides  
minimal output voltage variation for the LT1952/LT1952-1  
bus converter. To achieve this, an SS_MAXDC pin voltage  
increase of 1.09x (36/33) would be required at high input  
line. A resistor Rx inserted between the SS_MAXDC pin  
andsysteminputvoltage(Figure19)increasesSS_MAXDC  
voltage as input voltage increases, minimizing output  
voltage variation over a 2:1 input voltage change.  
(a) R (final value) = R  
• (R  
/R  
)
B
B(2)  
T(1)  
THEV(1) THEV(2)  
(b) R (final value) = R  
• (R  
/R  
)
T
THEV(1) THEV(2)  
where R  
= R  
• R /(R  
+ R  
)
THEV(2)  
B(2)  
T(1)  
B(2)  
T(1)  
Example:  
For a Bus Converter running from 36V to 72V input,  
= 36V, V = 72V.  
V
S(MIN)  
S(MAX)  
choose R  
= 10k, SS_MAXDC = SS1 = 1.84V (for 72%  
S(MIN  
The following steps determine values for Rx, R and R :  
T(1)  
T
B
duty cycle at V  
) = 36V)  
(1)Program switch duty cycle at minimum system input  
voltage (V  
R
R
= [1.84V/(2.5V – 1.84V)] • 10k = 28k  
= [28k • 10k/(28k + 10k)] = 7.4k  
)
B(1)  
S(MIN)  
(a)R  
= 10k (minimum allowed to still guarantee soft-  
THEV(1)  
T(1)  
start pull-down)  
SS_MAXDC correction = 36%/33% = 1.09  
SYSTEM  
INPUT VOLTAGE  
Rx = [(72V – 36V)/(1.84 • 0.09)] • 7.4k = 1.6M  
SS2 = 1.84 – [(36V – 1.84) • 7.4k/1.6M] = 1.682V  
LT1952/  
R1  
R2  
Rx  
LT1952-1  
VOLT-SECOND  
CLAMP INPUT  
SD_V  
SEC  
R
B(2)  
= [1.682/(2.5 – 1.682)] • 10k = 20.6k  
SS_MAXDC  
R
T
R
= [20.6k • 10k/(20.6k + 10k)] = 6.7k  
V
THEV(2)  
REF  
VOLT-SECOND  
CLAMP ADJUST INPUT  
1952 F19  
R
B
R
/R  
= 7.4k/6.7k = 1.104  
THEV(1) THEV(2)  
R (final value) = 20.6k • 1.104 = 22.7k (choose 22.6k)  
B
Figure 19. Optimal Programming of Maximum Duty  
Cycle Clamp for Bus Converter Applications (Adding Rx)  
R (final value) = 10k • 1.104 = 11k  
T
19521fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT1952/LT1952-1  
PACKAGE DESCRIPTION  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641 Rev B)  
.189 – .196*  
(4.801 – 4.978)  
.045 p.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 p.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 p .004  
(0.38 p 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
RELATED PARTS  
PART NUMBER  
LT1681/LT3781  
LT1698  
DESCRIPTION  
COMMENTS  
High Efficiency 2-Switch Forward Control  
Synchronous Forward Controllers  
Secondary Synchronous Rectifier Controller  
Use for Isolated Power Supplies, Contains Voltage Margining, Optocoupler  
Driver, Synchronization Circuit with the Primary Side, Error Amplifier  
LT1725  
LT1950  
General Purpose Isolated Flyback Controller  
Single Switch Forward Controller  
Drives External Power MOSFET, Senses Output Voltage Directly from  
Primary Side Switching—No Optoisolator Required, 16-pin SSOP  
3V ≤ V ≤ 25V, 25W to 500W, Adaptive Max Duty Cycle Clamp, Programmable  
IN  
Slope Compensation, Low 100mV Sense Threshold, 16-Pin SSOP  
LTC3722-1/LTC3722-2 Dual Mode Phase Modulated Full-Bridge Controllers ZVS Full-Bridge Controllers  
LTC3723-1/LTC3723-2 Synchronous Push-Pull PWM Controllers  
High Efficiency Push-Pull PWM  
LTC3803  
LTC3806  
LTC3900  
SOT-23 Flyback Controller  
Adjustable Slope Compensation, Internal Soft-Start, 200kHz  
Excellent Cross Regulation, High Efficiency, Multiple Outputs  
Synchronous Flyback Controller  
Synchronous Rectifier Driver for  
Forward Converters  
Use for Isolated Power Supplies, 4.5V ≤ V ≤ 11V, N-channel  
IN  
Synchronous MOSFET Driver, Programmable Timeout, Reverse Inductor  
Current Sense, 16-pin SSOP  
19521fd  
LT 1108 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY