LT1962EMS8-1.8 [Linear]

300mA, Low Noise, Micropower LDO Regulators; 300mA,低噪声,微功率LDO稳压器
LT1962EMS8-1.8
型号: LT1962EMS8-1.8
厂家: Linear    Linear
描述:

300mA, Low Noise, Micropower LDO Regulators
300mA,低噪声,微功率LDO稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总16页 (文件大小:292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1962 Series  
300mA, Low Noise,  
Micropower  
LDO Regulators  
U
FEATURES  
DESCRIPTIO  
The LT®1962 series are micropower, low noise, low  
dropout regulators. The devices are capable of supplying  
300mAofoutputcurrentwithadropoutvoltageof270mV.  
Designed for use in battery-powered systems, the low  
30µA quiescent current makes them an ideal choice.  
Quiescent current is well controlled; it does not rise in  
dropout as it does with many other regulators.  
Low Noise: 20µVRMS (10Hz to 100kHz)  
Output Current: 300mA  
Low Quiescent Current: 30µA  
Wide Input Voltage Range: 1.8V to 20V  
Low Dropout Voltage: 270mV  
Very Low Shutdown Current: < 1µA  
No Protection Diodes Needed  
Fixed Output Voltages: 1.5V, 1.8V, 2.5V, 3V, 3.3V, 5V  
Adjustable Output from 1.22V to 20V  
Stable with 3.3µF Output Capacitor  
Stable with Aluminum, Tantalum or  
Ceramic Capacitors  
A key feature of the LT1962 regulators is low output noise.  
With the addition of an external 0.01µF bypass capacitor,  
output noise drops to 20µVRMS over a 10Hz to 100kHz  
bandwidth. The LT1962 regulators are stable with output  
capacitors as low as 3.3µF. Small ceramic capacitors can  
be used without the series resistance required by other  
regulators.  
Reverse Battery Protection  
No Reverse Current  
Overcurrent and Overtemperature Protected  
8-Lead MSOP Package  
Internal protection circuitry includes reverse battery pro-  
tection, current limiting, thermal limiting and reverse cur-  
rent protection. The parts come in fixed output voltages of  
1.5V, 1.8V, 2.5V, 3V, 3.3V and 5V, and as an adjustable  
device with a 1.22V reference voltage. The LT1962 regu-  
lators are available in the 8-lead MSOP package.  
U
APPLICATIO S  
Cellular Phones  
Battery-Powered Systems  
Noise-Sensitive Instrumentation Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Dropout Voltage  
400  
3.3V Low Noise Regulator  
350  
300  
250  
200  
150  
100  
50  
3.3V AT 300mA  
20µV NOISE  
IN  
OUT  
V
IN  
RMS  
+
3.7V TO  
20V  
1µF  
SENSE  
10µF  
LT1962-3.3  
0.01µF  
SHDN  
GND  
BYP  
1962 TA01  
0
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
1962 TA02  
1
LT1962 Series  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
IN Pin Voltage........................................................ ±20V  
OUT Pin Voltage .................................................... ±20V  
Input to Output Differential Voltage (Note 2) ......... ±20V  
SENSE Pin Voltage ............................................... ±20V  
ADJ Pin Voltage ...................................................... ±7V  
BYP Pin Voltage.................................................... ±0.6V  
SHDN Pin Voltage................................................. ±20V  
Output Short-Circuit Duration......................... Indefinite  
Operating Junction Temperature Range  
TOP VIEW  
LT1962EMS8  
LT1962EMS8-1.5  
LT1962EMS8-1.8  
LT1962EMS8-2.5  
LT1962EMS8-3  
LT1962EMS8-3.3  
LT1962EMS8-5  
OUT  
SENSE/ADJ*  
BYP  
1
2
3
4
8 IN  
7 NC  
6 NC  
5 SHDN  
GND  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
*PIN 2: SENSE FOR LT1962-1.5/LT1962-1.8/  
LT1962-2.5/LT1962-3/LT1962-3.3/LT1962-5.  
ADJ FOR LT1962  
TJMAX = 150°C, θJA = 125°C/ W  
MS8 PART MARKING  
(Note 3) ............................................ 40°C to 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
SEE THE APPLICATIONS  
INFORMATION SECTION  
FOR ADDITIONAL  
INFORMATION ON  
THERMAL RESISTANCE  
LTML LTPQ  
LTSZ LTPS  
LTTA LTPR  
LTPT  
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
(LT1962)  
MIN  
TYP  
MAX  
UNITS  
Minimum Operating Voltage  
I
= 300mA (Notes 4, 12)  
1.8  
2.3  
V
LOAD  
Regulated Output Voltage  
(Notes 4, 5)  
LT1962-1.5  
V
= 2V, I  
= 1mA  
1.485  
1.462  
1.500  
1.500  
1.515  
1.538  
V
V
IN  
LOAD  
2.5V < V < 20V, 1mA < I  
< 300mA  
< 300mA  
< 300mA  
IN  
LOAD  
LOAD  
LOAD  
LT1962-1.8  
LT1962-2.5  
LT1962-3  
LT1962-3.3  
LT1962-5  
LT1962  
V
= 2.3V, I  
= 1mA  
1.782  
1.755  
1.800  
1.800  
1.818  
1.845  
V
V
IN  
LOAD  
2.8V < V < 20V, 1mA < I  
IN  
V
= 3V, I  
= 1mA  
2.475  
2.435  
2.500  
2.500  
2.525  
2.565  
V
V
IN  
LOAD  
3.5V < V < 20V, 1mA < I  
IN  
V
= 3.5V, I  
IN  
= 1mA  
2.970  
2.925  
3.000  
3.000  
3.030  
3.075  
V
V
IN  
LOAD  
4V < V < 20V, 1mA < I  
< 300mA  
LOAD  
V
= 3.8V, I  
= 1mA  
3.267  
3.220  
3.300  
3.300  
3.333  
3.380  
V
V
IN  
LOAD  
4.3V < V < 20V, 1mA < I  
< 300mA  
IN  
LOAD  
V
= 5.5V, I  
IN  
= 1mA  
4.950  
4.875  
5.000  
5.000  
5.050  
5.125  
V
V
IN  
LOAD  
6V < V < 20V, 1mA < I  
< 300mA  
LOAD  
ADJ Pin Voltage  
(Notes 4, 5)  
V
= 2V, I  
= 1mA  
1.208  
1.190  
1.220  
1.220  
1.232  
1.250  
V
V
IN  
LOAD  
2.3V < V < 20V, 1mA < I  
< 300mA  
IN  
LOAD  
Line Regulation  
Load Regulation  
2
LT1962-1.5  
LT1962-1.8  
LT1962-2.5  
LT1962-3  
LT1962-3.3  
LT1962-5  
V = 2V to 20V, I  
= 1mA  
= 1mA  
LOAD  
1
1
1
1
1
1
1
5
5
5
5
5
5
5
mV  
mV  
mV  
mV  
mV  
mV  
mV  
IN  
LOAD  
V = 2.3V to 20V, I  
IN  
V = 3V to 20V, I  
= 1mA  
IN  
LOAD  
V = 3.5V to 20V, I  
= 1mA  
= 1mA  
= 1mA  
IN  
LOAD  
LOAD  
LOAD  
V = 3.8V to 20V, I  
IN  
V = 5.5V to 20V, I  
IN  
LT1962 (Note 4) V = 2V to 20V, I  
= 1mA  
IN  
LOAD  
LT1962-1.5  
LT1962-1.8  
V
V
= 2.5V, I  
= 2.5V, I  
= 1mA to 300mA  
= 1mA to 300mA  
3
8
15  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 2.8V, I  
= 2.8V, I  
= 1mA to 300mA  
= 1mA to 300mA  
4
9
18  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
LT1962 Series  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Load Regulation  
LT1962-2.5  
V
V
= 3.5V, I  
= 3.5V, I  
= 1mA to 300mA  
= 1mA to 300mA  
5
12  
25  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
LT1962-3  
V
V
= 4V, I  
= 4V, I  
= 1mA to 300mA  
= 1mA to 300mA  
7
15  
30  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
LT1962-3.3  
LT1962-5  
V
V
= 4.3V, I  
= 4.3V, I  
= 1mA to 300mA  
= 1mA to 300mA  
7
17  
33  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 6V, I  
= 6V, I  
= 1mA to 300mA  
= 1mA to 300mA  
12  
25  
50  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
LT1962 (Note 4)  
V
V
= 2.3V, I  
= 2.3V, I  
= 1mA to 300mA  
= 1mA to 300mA  
2
6
12  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
Dropout Voltage  
I
I
= 10mA  
= 10mA  
0.10  
0.15  
0.18  
0.27  
0.15  
0.21  
V
V
LOAD  
LOAD  
V
= V  
IN  
OUT(NOMINAL)  
(Notes 6, 7, 12)  
I
I
= 50mA  
= 50mA  
0.20  
0.28  
V
V
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
0.24  
0.33  
V
V
LOAD  
LOAD  
I
I
= 300mA  
= 300mA  
0.33  
0.43  
V
V
LOAD  
LOAD  
GND Pin Current  
I
I
I
I
I
= 0mA  
= 1mA  
= 50mA  
= 100mA  
= 300mA  
30  
65  
1.1  
2
75  
120  
1.6  
3
µA  
µA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
IN  
OUT(NOMINAL)  
(Notes 6, 8)  
8
12  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10µF, C  
= 0.01µF, I  
= 300mA, BW = 10Hz to 100kHz  
20  
30  
µV  
RMS  
OUT  
BYP  
LOAD  
(Notes 4, 9)  
100  
2
nA  
V
V
= Off to On  
= On to Off  
0.8  
0.65  
V
V
OUT  
OUT  
0.25  
SHDN Pin Current  
(Note 10)  
V
V
= 0V  
= 20V  
0.01  
1
0.5  
5
µA  
µA  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Ripple Rejection  
V
V
= 6V, V  
= 0V  
SHDN  
0.1  
65  
1
µA  
IN  
– V  
= 1.5V (Avg), V  
= 0.5V , f = 120Hz,  
P-P RIPPLE  
55  
dB  
IN  
OUT  
RIPPLE  
I
= 300mA  
LOAD  
Current Limit  
V
V
= 7V, V  
= V  
= 0V  
700  
mA  
mA  
IN  
IN  
OUT  
OUT(NOMINAL)  
+ 1V, V  
= 0.1V  
320  
OUT  
Input Reverse Leakage Current  
V
= 20V, V  
= 0V  
OUT  
1
mA  
IN  
Reverse Output Current  
(Note 11)  
LT1962-1.5  
LT1962-1.8  
LT1962-2.5  
LT1962-3  
LT1962-3.3  
LT1962-5  
V
V
V
V
V
V
V
= 1.5V, V < 1.5V  
10  
10  
10  
10  
10  
10  
5
20  
20  
20  
20  
20  
20  
10  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
= 1.8V, V < 1.8V  
IN  
= 2.5V, V < 2.5V  
IN  
= 3V, V < 3V  
IN  
= 3.3V, V < 3.3V  
IN  
= 5V, V < 5V  
IN  
LT1962 (Note 4)  
= 1.22V, V < 1.22V  
IN  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: The LT1962 regulators are tested and specified under pulse load  
conditions such that T T . The LT1962 is 100% tested at T = 25°C.  
J
A
A
Performance at 40°C and 125°C is assured by design, characterization  
and correlation with statistical process controls.  
Note 4: The LT1962 (adjustable version) is tested and specified for these  
conditions with the ADJ pin connected to the OUT pin.  
Note 2: Absolute maximum input to output differential voltage cannot be  
achieved with all combinations of rated IN pin and OUT pin voltages. With  
the IN pin at 20V, the OUT pin may not be pulled below 0V. The total  
measured voltage from in to out can not exceed ±20V.  
3
LT1962 Series  
ELECTRICAL CHARACTERISTICS  
tested while operating in its dropout region. This is the worst-case GND  
pin current. The GND pin current will decrease slightly at higher input  
voltages.  
Note 9: ADJ pin bias current flows into the ADJ pin.  
Note 10: SHDN pin current flows into the SHDN pin. This current is  
Note 5: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply for  
all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
included in the specification for GND pin current.  
Note 6: To satisfy requirements for minimum input voltage, the LT1962  
(adjustable version) is tested and specified for these conditions with an  
external resistor divider (two 250k resistors) for an output voltage of  
2.44V. The external resistor divider will add a 5µA DC load on the output.  
Note 7: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
Note 11: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 12: For the LT1962, LT1962-1.5 and LT1962-1.8 dropout voltage will  
be limited by the minimum input voltage specification under some output  
voltage/load conditions. See the curve of Minimum Input Voltage in the  
Typical Performance Characteristics. For other fixed voltage versions of  
the LT1962, the minimum input voltage is limited by the dropout voltage.  
output voltage will be equal to: V – V  
.
IN  
DROPOUT  
Note 8: GND pin current is tested with V = V  
or V = 2.3V  
IN  
IN  
OUT(NOMINAL)  
(whichever is greater) and a current source load. This means the device is  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
= TEST POINTS  
T
125°C  
J
I
= 300mA  
T
= 125°C  
= 25°C  
L
J
T
25°C  
J
I
= 100mA  
L
200  
150  
T
J
I
= 50mA  
L
I
= 10mA  
L
100  
50  
0
I
L
= 1mA  
0
0
50  
100  
200  
0
50  
150  
200  
250  
300  
25  
0
50  
75 100 125  
0
250  
300  
50  
25  
150  
100  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
1962 G01  
1962 G02  
1962 G03  
LT1962-1.8 Output Voltage  
Quiescent Current  
LT1962-1.5 Output Voltage  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1.532  
1.524  
1.516  
1.508  
1.500  
1.492  
1.484  
1.476  
1.468  
1.836  
1.827  
1.818  
1.809  
1.800  
1.791  
1.782  
1.773  
1.764  
I
L
= 1mA  
I = 1mA  
L
V
V
= 6V  
IN  
SHDN  
L
= V  
L
IN  
R
=
, I = 0 (LT1962-1.5/-1.8  
/2.5/-3/-3.3/-5)  
= 250k, I = 5µA (LT1962)  
R
L
L
0
–50  
0
25  
50  
75 100 125  
50  
75  
50  
75  
–25  
–50 –25  
0
25  
100 125  
–50 –25  
0
25  
100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1962 G04  
1962 G05  
1962 G06  
4
LT1962 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT1962-2.5 Output Voltage  
LT1962-3.3 Output Voltage  
LT1962-3 Output Voltage  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
3.060  
3.045  
3.030  
3.015  
3.000  
2.985  
2.970  
2.955  
2.940  
3.360  
3.345  
3.330  
3.315  
3.300  
3.285  
3.270  
3.255  
3.240  
I
= 1mA  
I
= 1mA  
I = 1mA  
L
L
L
25  
0
50  
75 100 125  
50 25  
0
25  
50  
75 100 125  
25  
50  
0
25  
50  
75 100 125  
50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1962 G07  
1962 G08  
1962 G09  
LT1962-5 Output Voltage  
LT1962 ADJ Pin Voltage  
LT1962-1.5 Quiescent Current  
5.100  
5.075  
5.050  
5.025  
5.000  
4.975  
4.950  
4.925  
4.900  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
= 1mA  
I = 1mA  
L
T
= 25°C  
L
J
L
R
=
V
= 0V  
8
SHDN  
7
V
= V  
5
SHDN  
4
IN  
25  
0
50  
75 100 125  
25  
0
50  
75 100 125  
50  
25  
50  
25  
0
1
2
3
6
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
1962 G10  
1962 G11  
1962 G12  
LT1962-1.8 Quiescent Current  
LT1962-2.5 Quiescent Current  
LT1962-3 Quiescent Current  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25°C  
T
J
L
= 25°C  
T
= 25°C  
J
L
J
R
=
R
=
R
=  
L
V
= 0V  
8
V
= 0V  
8
V
= 0V  
8
SHDN  
7
SHDN  
7
SHDN  
7
V
= V  
5
V
= V  
5
V
= V  
5
SHDN  
4
IN  
SHDN  
4
IN  
SHDN  
4
IN  
0
1
2
3
6
9
10  
0
1
2
3
6
9
10  
0
1
2
3
6
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1962 G14  
1962 G15  
1962 G13  
5
LT1962 Series  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
LT1962-3.3 Quiescent Current  
LT1962-5 Quiescent Current  
LT1962 Quiescent Current  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
40  
35  
30  
25  
20  
15  
10  
5
T
= 25°C  
=
T
= 25°C  
T = 25°C  
J
R = 250k  
L
J
L
J
L
R
R
=
V
= V  
IN  
SHDN  
V
= 0V  
9
V
= 0V  
8
SHDN  
SHDN  
7
V
= V  
V
= V  
SHDN  
IN  
SHDN  
6
IN  
V
= 0V  
SHDN  
8
0
0
1
2
3
4
5
6
9
10  
0
1
2
3
4
5
7
8
10  
0
2
4
6
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1962 G16  
1962 G17  
1962 G18  
LT1962-1.5 GND Pin Current  
LT1962-1.8 GND Pin Current  
LT1962-2.5 GND Pin Current  
1500  
1250  
1500  
1250  
1500  
1250  
T = 25°C  
T = 25°C  
T = 25°C  
J
J
IN  
*FOR V  
J
IN  
*FOR V  
V
= V  
V
= V  
V
= V  
SHDN  
OUT  
SHDN  
= 1.8V  
IN  
*FOR V  
SHDN  
OUT  
= 1.5V  
= 2.5V  
OUT  
R
L
= 30Ω  
L
R
L
= 36Ω  
L
R
L
= 50Ω  
I
= 50mA*  
L
1000  
750  
1000  
750  
1000  
750  
I
= 50mA*  
I
= 50mA*  
R
L
= 250Ω  
L
500  
250  
0
500  
250  
0
500  
250  
0
I
= 10mA*  
R
L
= 150Ω  
R
L
= 1.5k  
R
L
= 180Ω  
R
L
= 1.8k  
R = 2.5k  
L
I = 1mA*  
L
L
L
L
L
I
= 10mA*  
I
= 1mA*  
I
= 10mA*  
I
= 1mA*  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1962 G19  
1962 G20  
1962 G21  
LT1962-3 GND Pin Current  
LT1962-3.3 GND Pin Current  
LT1962-5 GND Pin Current  
1500  
1250  
1500  
1250  
1500  
1250  
T = 25°C  
T = 25°C  
T = 25°C  
J
J
IN  
*FOR V  
J
IN  
*FOR V  
V
= V  
V
= V  
V
= V  
SHDN  
= 3V  
SHDN  
IN  
SHDN  
= 5V  
= 3.3V  
*FOR V  
OUT  
OUT  
OUT  
R
L
= 66Ω  
L
R
L
= 60Ω  
L
R
L
= 100Ω  
1000  
750  
1000  
750  
1000  
750  
L
I
= 50mA*  
I
= 50mA*  
I
= 50mA*  
R
L
= 330Ω  
= 10mA*  
R = 500Ω  
L
I = 10mA*  
L
L
I
R
L
= 300Ω  
= 10mA*  
L
500  
250  
0
500  
250  
0
500  
250  
0
I
R
I
= 3k  
R
I
= 3.3k  
R = 5k  
L
I = 1mA*  
L
L
L
L
L
= 1mA*  
= 1mA*  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1962 G22  
1962 G23  
1962 G24  
6
LT1962 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT1962 GND Pin Current  
LT1962-1.5 GND Pin Current  
LT1962-1.8 GND Pin Current  
1500  
1250  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
T = 25°C  
T = 25°C  
T = 25°C  
J
J
IN  
*FOR V  
J
IN  
V
= V  
V
= V  
V
= V  
SHDN  
= 1.22V  
SHDN  
IN SHDN  
*FOR V = 1.5V  
*FOR V  
= 1.8V  
OUT  
OUT  
OUT  
R
= 6Ω  
L
R
L
= 24.4Ω  
R = 5Ω  
L
I = 300mA*  
L
L
I
= 300mA*  
L
I
= 50mA*  
1000  
750  
R
= 9Ω  
L
R
L
= 7.5Ω  
I
= 200mA*  
L
L
I
= 200mA*  
R
L
= 15Ω  
500  
250  
0
L
R
L
= 18Ω  
L
R
L
= 1.22k  
R
L
= 122Ω  
I
= 100mA*  
L
L
I
= 100mA*  
I
= 1mA*  
I
= 10mA*  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1962 G25  
1962 G26  
1962 G27  
LT1962-2.5 GND Pin Current  
LT1962-3 GND Pin Current  
LT1962-3.3 GND Pin Current  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
T
= 25°C  
T = 25°C  
T = 25°C  
J
J
J
V
V
= V  
= V  
V
= V  
IN  
SHDN  
IN  
*FOR V  
SHDN  
= 3V  
IN SHDN  
*FOR V  
= 2.5V  
*FOR V  
= 3.3V  
OUT  
OUT  
OUT  
R
L
= 10Ω  
L
R
L
= 11Ω  
I
= 300mA*  
R
L
= 8.33Ω  
L
L
I
= 300mA*  
I
= 300mA*  
R
L
= 16.5Ω  
R
L
= 15Ω  
= 200mA*  
R
L
= 12.5Ω  
L
L
L
I
= 200mA*  
I
I
= 200mA*  
R
L
= 25Ω  
= 100mA*  
L
R = 33Ω  
L
I = 100mA*  
L
R
L
= 30Ω  
= 100mA*  
L
I
I
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1962 G28  
1962 G29  
1962 G30  
LT1962-5 GND Pin Current  
LT1962 GND Pin Current  
GND Pin Current vs ILOAD  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
8
7
6
5
T
= 25°C  
T = 25°C  
J
V
IN  
= V  
+ 1V  
J
OUT(NOMINAL)  
V
= V  
V = V  
IN  
SHDN  
IN SHDN  
*FOR V  
= 5V  
*FOR V = 1.22V  
OUT  
OUT  
R
L
= 16.7Ω  
L
R
L
= 4.07Ω  
L
I
= 300mA*  
I
= 300mA*  
R
L
= 25Ω  
L
4
3
I
= 200mA*  
R
L
= 6.1Ω  
L
I
= 200mA*  
R
L
= 50Ω  
L
I
= 100mA*  
2
1
0
R
L
= 12.2Ω  
L
I
= 100mA*  
50  
100  
200  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
250  
300  
150  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
1962 G31  
1962 G32  
1962 G33  
7
LT1962 Series  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
SHDN Pin Threshold (On-to-Off)  
SHDN Pin Threshold (Off-to-On)  
SHDN Pin Input Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.2  
I
= 1mA  
L
1.0  
I
= 300mA  
L
0.8  
0.6  
0.4  
0.2  
I
= 1mA  
L
0
–50  
0
25  
50  
75 100 125  
–25  
50  
TEMPERATURE (°C)  
125  
10  
–50  
0
25  
75 100  
0
3
5
6
7
8
9
–25  
1
2
4
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1962 G34  
1962 G35  
1962 G36  
SHDN Pin Input Current  
ADJ Pin Bias Current  
Current Limit  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.6  
35  
30  
V
OUT  
= 0V  
V
= 20V  
SHDN  
1.4  
1.2  
25  
20  
15  
10  
5
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
25  
0
50  
75 100 125  
50  
TEMPERATURE (°C)  
100 125  
0
2
3
4
5
7
50  
25  
–50 –25  
0
25  
75  
6
1
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1962 G37  
1962 G38  
1962 G39  
Current Limit  
Reverse Output Current  
Reverse Output Current  
100  
90  
80  
70  
60  
50  
1.2  
1.0  
0.8  
0.6  
30  
25  
20  
15  
T = 25°C  
IN  
V
V
= 7V  
V
V
V
V
V
V
V
V
= 0V  
LT1962  
J
V
IN  
OUT  
IN  
= 0V  
= 0V  
= 1.22V (LT1962)  
= 1.5V (LT1962-1.5)  
= 1.8V (LT1962-1.8)  
= 2.5V (LT1962-2.5)  
= 3V (LT1962-3)  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
CURRENT FLOWS  
INTO OUTPUT PIN  
V
OUT  
= V  
ADJ  
(LT1962)  
LT1962-1.5  
= 3.3V (LT1962-3.3)  
= 5V (LT1962-5)  
LT1962-1.8  
LT1962-2.5  
LT1962-1.5/-1.8/-2.5/-3/-3.3/-5  
40  
30  
LT1962-3  
LT1962-3.3  
0.4  
0.2  
0
10  
5
20  
10  
0
LT1962-5  
LT1962  
0
50  
TEMPERATURE (°C)  
100 125  
2
3
6
–50 –25  
0
25  
75  
0
1
4
5
7
8
9
10  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
OUTPUT VOLTAGE (V)  
1962 G40  
1962 F07  
1962 G42  
8
LT1962 Series  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Ripple Rejection  
Input Ripple Rejection  
Ripple Rejection  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
68  
I
= 300mA  
C
= 0.01µF  
L
BYP  
V
= V  
+ 1V  
IN  
OUT(NOMINAL)  
66  
64  
+ 50mV  
C
RIPPLE  
RMS  
= 0  
C
= 1000pF  
BYP  
BYP  
C
= 10µF  
62  
60  
58  
56  
54  
OUT  
C
= 100pF  
BYP  
C
= 3.3µF  
OUT  
I
= 300mA  
= V  
L
IN  
V
+ 1V  
OUT(NOMINAL)  
I
= 300mA  
L
V
+ 50mV  
C
RIPPLE  
= V  
+ 1V  
RMS  
IN  
OUT(NOMINAL)  
= 10µF  
+ 0.5V RIPPLE AT f = 120Hz  
OUT  
P-P  
52  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
25  
0
50  
75 100 125  
50  
25  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1962 G43  
1962 G44  
1962 G45  
LT1962 Minimum Input Voltage  
Load Regulation  
Output Noise Spectral Density  
10  
1
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
5
0
I
C
C
= 300mA  
V
OUT  
= 1.22V  
L
= 10µF  
OUT  
BYP  
LT1962-1.8  
LT1962  
= 0  
LT1962-1.5  
LT1962-3  
LT1962-3.3  
I
L
= 300mA  
LT1962-5  
–5  
–10  
I
L
= 1mA  
LT1962-3.3  
LT1962-3  
LT1962-2.5  
LT1962  
LT1962-2.5  
LT1962-5  
0.1  
0.01  
–15  
–20  
–25  
LT1962-1.8  
LT1962-1.5  
V
= V  
+ 1V  
IN  
L
OUT(NOMINAL)  
I = 1mA TO 300mA  
–50  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75  
100 125  
–25  
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1962 G48  
1962 G46  
1962 G47  
RMS Output Noise  
vs Bypass Capacitor  
RMS Output Noise  
vs Load Current (10Hz to 100kHz)  
Output Noise Spectral Density  
10  
1
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
I
= 300mA  
OUT  
C
OUT  
= 10µF  
I
= 300mA  
OUT  
L
L
C
= 10µF  
C
BYP  
C
BYP  
= 0µF  
C
= 10µF  
= 0.01µF  
f = 10Hz to 100kHz  
LT1962-5  
LT1962-5  
LT1962  
C
= 1000pF  
BYP  
LT1962-5  
LT1962-3  
LT1962-3.3  
LT1962-2.5  
LT1962-1.8  
LT1962-1.5  
C
= 100pF  
BYP  
60  
60  
C
= 0.01µF  
LT1962  
BYP  
0.1  
0.01  
40  
40  
LT1962  
LT1962-5  
20  
20  
LT1962  
100  
0
0
0.01  
0.1  
1
10  
1000  
10  
100  
1k  
10k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
LOAD CURRENT (mA)  
C
BYP  
(pF)  
1962 G51  
1962 G49  
1962 G50  
9
LT1962 Series  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
LT1962-5 10Hz to 100kHz  
Output Noise (CBYP = 100pF)  
LT1962-5 10Hz to 100kHz  
Output Noise (CBYP = 1000pF)  
LT1962-5 10Hz to 100kHz  
Output Noise (CBYP = 0)  
VOUT  
100µV/DIV  
VOUT  
100µV/DIV  
VOUT  
100µV/DIV  
COUT = 10µF  
IL = 300mA  
1ms/DIV  
1962 G53  
COUT = 10µF  
IL = 300mA  
1ms/DIV  
1962 G54  
COUT = 10µF  
IL = 300mA  
1ms/DIV  
1962 G52  
LT1962-5 Transient Response  
LT1962-5 Transient Response  
LT1962-5 10Hz to 100kHz  
Output Noise (CBYP = 0.01µF)  
V
C
C
C
= 6V  
V
C
C
C
= 6V  
IN  
IN  
IN  
IN  
0.4  
0.10  
= 10µF  
= 10µF  
= 10µF  
= 10µF  
OUT  
BYP  
OUT  
BYP  
0.2  
0
0.05  
0
= 0  
= 0.01µF  
–0.2  
–0.4  
–0.05  
–0.10  
VOUT  
100µV/DIV  
300  
200  
100  
0
300  
200  
100  
0
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
50 100 150 200 250 300 350 400 450 500  
C
OUT = 10µF  
1ms/DIV  
1962 G55  
IL = 300mA  
TIME (ms)  
TIME (µs)  
1962 G56  
1962 G57  
U
U
U
PI FU CTIO S  
OUT (Pin 1): Output. The output supplies power to the  
load. A minimum output capacitor of 3.3µF is required to  
prevent oscillations. Larger output capacitors will be  
required for applications with large transient loads to limit  
peak voltage transients. See the Applications Information  
section for more information on output capacitance and  
reverse output characteristics.  
arecausedbytheresistance(RP)ofPCtracesbetweenthe  
regulator and the load. These may be eliminated by con-  
necting the SENSE pin to the output at the load as shown  
in Figure 1 (Kelvin Sense Connection). Note that the  
voltage drop across the external PC traces will add to the  
dropout voltage of the regulator. The SENSE pin bias  
current is 10µA at the nominal rated output voltage. The  
SENSEpincanbepulledbelowground(asinadualsupply  
system where the regulator load is returned to a negative  
supply) and still allow the device to start and operate.  
SENSE (Pin 2): Sense. For fixed voltage versions of the  
LT1962(LT1962-1.5/LT1962-1.8/LT1962-2.5/LT1962-3/  
LT1962-3.3/LT1962-5), the SENSE pin is the input to the  
error amplifier. Optimum regulation will be obtained at the  
point where the SENSE pin is connected to the OUT pin of  
the regulator. In critical applications, small voltage drops  
ADJ (Pin 2): Adjust. For the adjustable LT1962, this is the  
input to the error amplifier. This pin is internally clamped  
to ±7V. It has a bias current of 30nA which flows into the  
10  
LT1962 Series  
U
U
U
PI FU CTIO S  
R
P
8
1
SHDN pin can be driven either by 5V logic or open-  
collector logic with a pull-up resistor. The pull-up resistor  
is required to supply the pull-up current of the open-  
collector gate, normally several microamperes, and the  
SHDN pin current, typically 1µA. If unused, the SHDN pin  
must be connected to VIN. The device will not function if  
the SHDN pin is not connected.  
IN  
OUT  
LT1962  
5
2
+
+
SHDN SENSE  
LOAD  
V
IN  
GND  
4
R
P
1962 F01  
NC (Pins 6, 7): No Connect. These pins are not internally  
connected. For improved power handling capabilities,  
these pins can be connected to the PC board.  
Figure 1. Kelvin Sense Connection  
pin.TheADJpinvoltageis1.22Vreferencedtogroundand  
the output voltage range is 1.22V to 20V.  
IN (Pin 8): Input. Power is supplied to the device through  
the IN pin. A bypass capacitor is required on this pin if the  
device is more than six inches away from the main input  
filter capacitor. In general, the output impedance of a  
battery rises with frequency, so it is advisable to include a  
bypass capacitor in battery-powered circuits. A bypass  
capacitor in the range of 1µF to 10µF is sufficient. The  
LT1962 regulators are designed to withstand reverse  
voltages on the IN pin with respect to ground and the OUT  
pin. In the case of a reverse input, which can happen if a  
battery is plugged in backwards, the device will act as if  
there is a diode in series with its input. There will be no  
reverse current flow into the regulator and no reverse  
voltage will appear at the load. The device will protect both  
itself and the load.  
BYP (Pin 3): Bypass. The BYP pin is used to bypass the  
reference of the LT1962 to achieve low noise performance  
from the regulator. The BYP pin is clamped internally to  
±0.6V (one VBE). A small capacitor from the output to this  
pin will bypass the reference to lower the output voltage  
noise. A maximum value of 0.01µF can be used for  
reducing output voltage noise to a typical 20µVRMS over a  
10Hz to 100kHz bandwidth. If not used, this pin must be  
left unconnected.  
GND (Pin 4): Ground.  
SHDN (Pin 5): Shutdown. The SHDN pin is used to put the  
LT1962 regulators into a low power shutdown state. The  
output will be off when the SHDN pin is pulled low. The  
W U U  
U
APPLICATIO S I FOR ATIO  
TheLT1962seriesare300mAlowdropoutregulatorswith  
micropowerquiescentcurrentandshutdown.Thedevices  
are capable of supplying 300mA at a dropout voltage of  
300mV. Output voltage noise can be lowered to 20µVRMS  
over a 10Hz to 100kHz bandwidth with the addition of a  
0.01µFreferencebypasscapacitor. Additionally, therefer-  
ence bypass capacitor will improve transient response of  
the regulator, lowering the settling time for transient load  
conditions. The low operating quiescent current (30µA)  
drops to less than 1µA in shutdown. In addition to the low  
quiescentcurrent, theLT1962regulatorsincorporatesev-  
eral protection features which make them ideal for use in  
battery-powered systems. The devices are protected  
against both reverse input and reverse output voltages. In  
battery backup applications where the output can be held  
up by a backup battery when the input is pulled to ground,  
the LT1962-X acts like it has a diode in series with its  
output and prevents reverse current flow. Additionally, in  
dual supply applications where the regulator load is re-  
turnedtoanegativesupply,theoutputcanbepulledbelow  
groundbyasmuchas20Vandstillallowthedevicetostart  
and operate.  
Adjustable Operation  
The adjustable version of the LT1962 has an output  
voltage range of 1.22V to 20V. The output voltage is set by  
theratiooftwoexternalresistorsasshowninFigure2.The  
device servos the output to maintain the ADJ pin voltage  
at 1.22V referenced to ground. The current in R1 is then  
equalto1.22V/R1andthecurrentinR2isthecurrentinR1  
11  
LT1962 Series  
APPLICATIO S I FOR ATIO  
W U U  
U
(see LT1962-5 Transient Response in the Typical Perfor-  
mance Characteristics). However, regulator start-up time  
is inversely proportional to the size of the bypass capaci-  
tor, slowing to 15ms with a 0.01µF bypass capacitor and  
10µF output capacitor.  
IN  
OUT  
V
OUT  
+
V
LT1962  
R2  
IN  
ADJ  
R1  
GND  
1962 F02  
Output Capacitance and Transient Response  
R2  
R1  
VOUT = 1.22V 1+  
ADJ = 1.22V  
ADJ = 30nA AT 25°C  
OUTPUT RANGE = 1.22V TO 20V  
+ I  
R2  
(
ADJ)(  
)
The LT1962 regulators are designed to be stable with a  
wide range of output capacitors. The ESR of the output  
capacitor affects stability, most notably with small capaci-  
tors. A minimum output capacitor of 3.3µF with an ESR of  
3or less is recommended to prevent oscillations. The  
LT1962-X is a micropower device and output transient  
response will be a function of output capacitance. Larger  
values of output capacitance decrease the peak deviations  
and provide improved transient response for larger load  
current changes. Bypass capacitors, used to decouple  
individual components powered by the LT1962, will in-  
crease the effective output capacitor value. With larger  
capacitors used to bypass the reference (for low noise  
operation),largervaluesofoutputcapacitanceareneeded.  
For 100pF of bypass capacitance, 4.7µF of output capaci-  
tor is recommended. With a 1000pF bypass capacitor or  
larger, a 6.8µF output capacitor is recommended.  
V
I
Figure 2. Adjustable Operation  
plus the ADJ pin bias current. The ADJ pin bias current,  
30nA at 25°C, flows through R2 into the ADJ pin. The  
output voltage can be calculated using the formula in  
Figure 2. The value of R1 should be no greater than 250k  
to minimize errors in the output voltage caused by the ADJ  
pinbiascurrent.Notethatinshutdowntheoutputisturned  
off and the divider current will be zero.  
The adjustable device is tested and specified with the ADJ  
pin tied to the OUT pin for an output voltage of 1.22V.  
Specifications for output voltages greater than 1.22V will  
be proportional to the ratio of the desired output voltage to  
1.22V: VOUT/1.22V. For example, load regulation for an  
output current change of 1mA to 300mA is 2mV typical  
at VOUT = 1.22V. At VOUT = 12V, load regulation is:  
TheshadedregionofFigure3definestherangeoverwhich  
the LT1962 regulators are stable. The minimum ESR  
needed is defined by the amount of bypass capacitance  
used, while the maximum ESR is 3.  
(12V/1.22V)(–2mV) = 19.7mV  
Bypass Capacitance and Low Noise Performance  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
The LT1962 regulators may be used with the addition of a  
bypass capacitor from VOUT to the BYP pin to lower output  
voltage noise. A good quality low leakage capacitor is  
recommended. This capacitor will bypass the reference of  
the regulator, providing a low frequency noise pole. The  
noise pole provided by this bypass capacitor will lower the  
output voltage noise to as low as 20µVRMS with the  
addition of a 0.01µF bypass capacitor. Using a bypass  
capacitor has the added benefit of improving transient  
response. With no bypass capacitor and a 10µF output  
capacitor, a 10mA to 300mA load step will settle to within  
1% of its final value in less than 100µs. With the addition  
of a 0.01µF bypass capacitor, the output will settle to  
within 1% for a 10mA to 300mA load step in less than  
10µs, with total output voltage deviation of less than 2%  
4.0  
3.5  
3.0  
STABLE REGION  
2.5  
2.0  
C
= 0  
BYP  
1.5  
1.0  
0.5  
0
C
= 100pF  
BYP  
C
BYP  
= 330pF  
C
BYP  
1000pF  
1
3
6
9 10  
8
2
4
5
7
OUTPUT CAPACITANCE (µF)  
1962 F03  
Figure 3. Stability  
12  
LT1962 Series  
W U U  
APPLICATIO S I FOR ATIO  
U
temperature and applied voltage. The most common  
dielectrics used are Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitance in  
a small package, but exhibit strong voltage and tempera-  
ture coefficients as shown in Figures 4 and 5. When used  
with a 5V regulator, a 10µF Y5V capacitor can exhibit an  
effective value as low as 1µF to 2µF over the operating  
temperature range. The X5R and X7R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X7R type has better stability  
across temperature, while the X5R is less expensive and  
is available in higher values.  
phone works. For a ceramic capacitor the stress can be  
induced by vibrations in the system or thermal transients.  
The resulting voltages produced can cause appreciable  
amounts of noise, especially when a ceramic capacitor is  
used for noise bypassing. A ceramic capacitor produced  
Figure 6’s trace in response to light tapping from a pencil.  
Similar vibration induced behavior can masquerade as  
increased output voltage noise.  
LT1962-5  
COUT = 10µF  
CBYP = 0.01µf  
I
LOAD = 100mA  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or micro-  
VOUT  
500µV/DIV  
100ms/DIV  
1962 F06  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
Figure 6. Noise Resulting from Tapping on a Ceramic Capacitor  
X5R  
–20  
Thermal Considerations  
–40  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components:  
–60  
Y5V  
–80  
–100  
0
8
12 14  
2
4
6
10  
16  
1. Output current multiplied by the input/output voltage  
differential: (IOUT)(VIN – VOUT), and  
DC BIAS VOLTAGE (V)  
1962 F04  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
2. GND pin current multiplied by the input voltage:  
(IGND)(VIN).  
40  
20  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics.Powerdissipationwillbeequaltothesumofthetwo  
components listed above.  
X5R  
0
–20  
–40  
The LT1962 series regulators have internal thermal limit-  
ing designed to protect the device during overload condi-  
tions. For continuous normal conditions, the maximum  
junction temperature rating of 125°C must not be  
exceeded. It is important to give careful consideration to  
allsourcesofthermalresistancefromjunctiontoambient.  
Additional heat sources mounted nearby must also be  
considered.  
Y5V  
–60  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
1962 F05  
Figure 5. Ceramic Capacitor Temperature Characteristics  
13  
LT1962 Series  
W U U  
U
APPLICATIO S I FOR ATIO  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
TJMAX = 50°C + 35.3°C = 85.3°C  
Protection Features  
The LT1962 regulators incorporate several protection  
featureswhichmakethemidealforuseinbattery-powered  
circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
limiting and thermal limiting, the devices are protected  
against reverse input voltages, reverse output voltages  
and reverse voltages from output to input.  
The following table lists thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 1/16" FR-4 board with one ounce  
copper.  
Table 1. Measured Thermal Resistance  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE* BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
2500mm2  
1000mm2  
225mm2  
100mm2  
50mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
110°C/W  
115°C/W  
120°C/W  
130°C/W  
140°C/W  
The input of the device will withstand reverse voltages of  
20V.Currentflowintothedevicewillbelimitedtolessthan  
1mA (typically less than 100µA) and no negative voltage  
will appear at the output. The device will protect both itself  
and the load. This provides protection against batteries  
which can be plugged in backward.  
*Device is mounted on topside.  
Calculating Junction Temperature  
The output of the LT1962 can be pulled below ground  
withoutdamagingthedevice.Iftheinputisleftopencircuit  
or grounded, the output can be pulled below ground by  
20V. For fixed voltage versions, the output will act like a  
large resistor, typically 500k or higher, limiting current  
flow to less than 40µA. For adjustable versions, the output  
will act like an open circuit; no current will flow out of the  
pin. If the input is powered by a voltage source, the output  
will source the short-circuit current of the device and will  
protect itself by thermal limiting. In this case, grounding  
the SHDN pin will turn off the device and stop the output  
from sourcing the short-circuit current.  
Example: Given an output voltage of 3.3V, an input voltage  
range of 4V to 6V, an output current range of 0mA to  
100mA and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
The power dissipated by the device will be equal to:  
IOUT(MAX)(VIN(MAX) – VOUT) + IGND(VIN(MAX)  
where,  
)
IOUT(MAX) = 100mA  
VIN(MAX) = 6V  
IGND at (IOUT = 100mA, VIN = 6V) = 2mA  
So,  
The ADJ pin of the adjustable device can be pulled above  
or below ground by as much as 7V without damaging the  
device. Iftheinputisleftopencircuitorgrounded, theADJ  
pin will act like an open circuit when pulled below ground  
and like a large resistor (typically 100k) in series with a  
diode when pulled above ground.  
P = 100mA(6V – 3.3V) + 2mA(6V) = 0.28W  
The thermal resistance will be in the range of 110°C/W to  
140°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
In situations where the ADJ pin is connected to a resistor  
divider that would pull the ADJ pin above its 7V clamp  
voltage if the output is pulled high, the ADJ pin input  
current must be limited to less than 5mA. For example, a  
resistor divider is used to provide a regulated 1.5V output  
0.28W(125°C/W) = 35.3°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
14  
LT1962 Series  
W U U  
APPLICATIO S I FOR ATIO  
U
fromthe1.22Vreferencewhentheoutputisforcedto20V.  
The top resistor of the resistor divider must be chosen to  
limitthecurrentintotheADJpintolessthan5mAwhenthe  
ADJpinisat7V. The13VdifferencebetweenOUTandADJ  
pin divided by the 5mA maximum current into the ADJ pin  
yields a minimum top resistor value of 2.6k.  
orasecondregulatorcircuit.ThestateoftheSHDNpinwill  
have no effect on the reverse output current when the  
output is pulled above the input.  
100  
T
= 25°C  
IN  
LT1962  
J
V
90  
80  
70  
60  
50  
= 0V  
CURRENT FLOWS  
INTO OUTPUT PIN  
V
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulledtosomeintermediatevoltageorisleftopen  
circuit. Current flow back into the output will follow the  
curve shown in Figure 7.  
= V  
(LT1962)  
OUT  
ADJ  
LT1962-1.5  
LT1962-1.8  
LT1962-2.5  
40  
30  
LT1962-3  
LT1962-3.3  
20  
10  
0
LT1962-5  
When the IN pin of the LT1962 is forced below the OUT pin  
or the OUT pin is pulled above the IN pin, input current will  
typicallydroptolessthan2µA. Thiscanhappeniftheinput  
of the device is connected to a discharged (low voltage)  
battery and the output is held up by either a backup battery  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
1962 F07  
Figure 7. Reverse Output Current  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.193 ± 0.006  
(4.90 ± 0.15)  
1
2
3
4
0.043  
(1.10)  
MAX  
0.034  
(0.86)  
REF  
0.007  
(0.18)  
0° – 6° TYP  
SEATING  
PLANE  
0.009 – 0.015  
(0.22 – 0.38)  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.005 ± 0.002  
(0.13 ± 0.05)  
0.0256  
(0.65)  
BSC  
MSOP (MS8) 1100  
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1962 Series  
U
TYPICAL APPLICATIO S  
Adjustable Current Source  
Paralleling of Regulators for Higher Output Current  
R1  
0.1  
R5  
0.1  
3.3V  
IN  
OUT  
FB  
300mA  
IN  
OUT  
LT1962-2.5  
SHDN FB  
GND  
+
+
+
V
C1  
10µF  
C1  
10µF  
C2  
10µF  
IN  
>2.7V  
V
> 3.7V  
R1*  
1k  
LOAD  
IN  
C4  
0.01µF  
LT1962-3.3  
SHDN  
BYP  
R2  
40.2k  
R6  
2.2k  
R7  
100k  
LT1004-1.2  
GND  
R2  
0.1Ω  
R3  
2k  
R4  
2.2k  
IN  
OUT  
C5  
C3  
0.33µF  
LT1962  
0.01µF R6  
2k  
BYP  
ADJ  
*ADJUST R1 FOR 0mA TO 300mA  
CONSTANT CURRENT  
1/2 LT1490  
1962 TA04  
SHDN  
SHDN  
+
GND  
R7  
C2  
1µF  
1.21k  
R3  
2.2k  
R4  
2.2k  
8
3
2
R5  
10k  
+
1
1/2 LT1490  
4
1962 TA03  
C3  
0.01µF  
RELATED PARTS  
PART NUMBER  
LT1120  
LT1121  
LT1129  
LT1175  
LT1521  
LT1529  
LTC1627  
LT1761  
LT1762  
LT1763  
LT1764  
LT1772  
LT1963  
DESCRIPTION  
125mA Low Dropout Regulator with 20µA I  
COMMENTS  
Includes 2.5V Reference and Comparator  
Q
150mA Micropower Low Dropout Regulator  
700mA Micropower Low Dropout Regulator  
500mA Negative Low Dropout Micropower Regulator  
30µA I , SOT-223 Package  
Q
50µA Quiescent Current  
45µA I , 0.26V Dropout Voltage, SOT-223 Package  
Q
300mA Low Dropout Micropower Regulator with Shutdown  
3A Low Dropout Regulator with 50µA I  
15µA I , Reverse Battery Protection  
Q
500mV Dropout Voltage  
Burst ModeTM Operation, Monolithic, 100% Duty Cycle  
Q
High Efficiency Synchronous Step-Down Switching Regulator  
100mA, Low Noise, Low Dropout Micropower Regulator in SOT-23  
150mA, Low Noise, LDO Micropower Regulator  
20µA Quiescent Current, 20µV  
25µA Quiescent Current, 20µV  
30µA Quiescent Current, 20µV  
Noise  
Noise  
Noise  
Noise  
RMS  
RMS  
RMS  
500mA, Low Noise, LDO Micropower Regulator  
3A, Fast Transient Response Low Dropout Regulator  
Constant Frequency Current Mode Step-Down DC/DC Controller  
1.5A, Fast Transient Response Low Dropout Regulator  
340mV Dropout Voltage, 40µV  
RMS  
Up to 94% Efficiency, SOT-23 Package, 100% Duty Cycle  
SO-8, SOT-223 Packages  
Burst Mode is a trademark of Linear Technology Corporation.  
sn1962 1962fas LT/TP 0101 2K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 2000  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1962EMS8-1.8#PBF

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1962EMS8-1.8#TR

暂无描述
Linear

LT1962EMS8-1.8#TRPBF

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1962EMS8-2.5

300mA, Low Noise, Micropower LDO Regulators
Linear

LT1962EMS8-2.5#TR

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LT1962EMS8-3

300mA, Low Noise, Micropower LDO Regulators
Linear

LT1962EMS8-3#PBF

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1962EMS8-3.3

300mA, Low Noise, Micropower LDO Regulators
Linear

LT1962EMS8-3.3#PBF

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1962EMS8-3.3#TR

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1962EMS8-3.3#TRPBF

LT1962 - 300mA, Low Noise, Micropower LDO Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear