LT1963AES8-3.3TRPBF [Linear]

1.5A, Low Noise,Fast Transient Response LDO Regulators; 1.5A ,低噪声,快速瞬态响应LDO稳压器
LT1963AES8-3.3TRPBF
型号: LT1963AES8-3.3TRPBF
厂家: Linear    Linear
描述:

1.5A, Low Noise,Fast Transient Response LDO Regulators
1.5A ,低噪声,快速瞬态响应LDO稳压器

稳压器
文件: 总28页 (文件大小:768K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1963A Series  
1.5A, Low Noise,  
Fast Transient Response  
LDO Regulators  
FEATURES  
DESCRIPTION  
TheLT®1963Aseriesarelowdropoutregulatorsoptimized  
for fast transient response. The devices are capable of  
supplying 1.5A of output current with a dropout voltage of  
340mV. Operating quiescent current is 1mA, dropping to  
<1μA in shutdown. Quiescent current is well controlled; it  
does not rise in dropout as it does with many other regula-  
tors. In addition to fast transient response, the LT1963A  
regulators have very low output noise which makes them  
ideal for sensitive RF supply applications.  
n
Optimized for Fast Transient Response  
n
Output Current: 1.5A  
n
Dropout Voltage: 340mV  
n
Low Noise: 40μV  
(10Hz to 100kHz)  
RMS  
n
n
n
n
n
n
n
n
n
n
n
n
1mA Quiescent Current  
No Protection Diodes Needed  
Controlled Quiescent Current in Dropout  
Fixed Output Voltages: 1.5V, 1.8V, 2.5V, 3.3V  
Adjustable Output from 1.21V to 20V  
<1μA Quiescent Current in Shutdown  
Stable with 10μF Output Capacitor*  
Stable with Ceramic Capacitors*  
Reverse Battery Protection  
Output voltage range is from 1.21V to 20V. The LT1963A  
regulators are stable with output capacitors as low as  
10μF.Internalprotectioncircuitryincludesreversebattery  
protection, current limiting, thermal limiting and reverse  
currentprotection.Thedevicesareavailableinxedoutput  
voltages of 1.5V, 1.8V, 2.5V, 3.3V and as an adjustable  
devicewitha1.21Vreferencevoltage.TheLT1963Aregula-  
tors are available in 5-lead TO-220, DD, 3-lead SOT-223,  
8-lead SO and 16-lead TSSOP packages.  
No Reverse Current  
Thermal Limiting  
5-Lead TO-220, DD, 3-Lead SOT-223 and  
8-Lead SO Packages  
APPLICATIONS  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Protected by U.S. Patents,  
including 6118263, 6144250.  
n
3.3V to 2.5V Logic Power Supplies  
n
*See Applications Information Section.  
Post Regulator for Switching Supplies  
TYPICAL APPLICATION  
Dropout Voltage  
400  
3.3V to 2.5V Regulator  
350  
300  
250  
200  
150  
100  
50  
2.5V  
1.5A  
IN  
OUT  
+
+
V
> 3V  
10μF*  
10μF*  
IN  
LT1963A-2.5  
SHDN SENSE  
GND  
*TANTALUM,  
CERAMIC OR  
ALUMINUM ELECTROLYTIC  
1963A TA01  
0
0.8 1.0  
0
0.2 0.4 0.6  
1.2 1.4 1.6  
OUTPUT CURRENT (A)  
1963A TA02  
1963afd  
1
LT1963A Series  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Operating Junction Temperature Range (Note 3)  
IN Pin Voltage ........................................................ ±20V  
OUT Pin Voltage......................................................±20V  
Input to Output Differential Voltage (Note 2)...........±20V  
SENSE Pin Voltage ............................................... ±20V  
ADJ Pin Voltage ...................................................... ±±V  
SHDN Pin Voltage ................................................. ±20V  
Output Short-Circuit Duration ........................ Indefinite  
LT1963AE...........................................40°C to 125°C  
LT1963AI............................................40°C to 125°C  
LT1963AMP .......................................55°C to 125°C  
Storage Temperature Range...................65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
PIN CONFIGURATION  
TOP VIEW  
GND  
NC  
1
2
3
4
5
6
±
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
NC  
FRONT VIEW  
FRONT VIEW  
OUT  
IN  
SENSE/  
ADJ*  
5
4
3
2
1
SENSE/ADJ*  
OUT  
5
4
3
2
1
OUT  
IN  
1±  
OUT  
GND  
IN  
OUT  
IN  
TAB IS  
GND  
GND  
SENSE/ADJ*  
GND  
NC  
IN  
SHDN  
GND  
SHDN  
SHDN  
GND  
TAB IS  
GND  
T PACKAGE  
5-LEAD PLASTIC TO-220  
Q PACKAGE  
5-LEAD PLASTIC DD  
FE PACKAGE  
*PIN 5 = SENSE FOR LT1963A-1.5/LT1963A-1.8/  
LT1963A-2.5/LT1963A-3.3  
*PIN 5 = SENSE FOR LT1963A-1.5/LT1963A-1.8/  
LT1963A-2.5/LT1963A-3.3  
16-LEAD PLASTIC TSSOP  
EXPOSED PAD (PIN 1±) IS GND. MUST BE  
SOLDERED TO THE PCB.  
= ADJ FOR LT1963A  
= ADJ FOR LT1963A  
*PIN 6 = SENSE FOR LT1963A-1.5/LT1963A-1.8/  
LT1963A-2.5/LT1963A-3.3  
T
JMAX  
= 150°C, θ = 50°C/ W  
T
JMAX  
= 150°C, θ = 30°C/ W  
JA  
JA  
= ADJ FOR LT1963A  
T
= 150°C, θ = 38°C/ W  
JMAX  
JA  
FRONT VIEW  
TOP VIEW  
3
2
1
OUT  
SENSE/ADJ*  
GND  
1
2
3
4
8
±
6
5
IN  
OUT  
GND  
IN  
GND  
GND  
SHDN  
TAB IS  
GND  
NC  
S8 PACKAGE  
8-LEAD PLASTIC SO  
ST PACKAGE  
3-LEAD PLASTIC SOT-223  
*PIN 2 = SENSE FOR LT1963A-1.5/LT1963A-1.8/  
LT1963A-2.5/LT1963A-3.3  
T
JMAX  
= 150°C, θ = 50°C/ W  
JA  
= ADJ FOR LT1963A  
T
JMAX  
= 150°C, θ = ±0°C/ W  
JA  
1963afd  
2
LT1963A Series  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LT1963AEQ  
LT1963AIQ  
LT1963AMPQ  
LT1963AEQ-1.5  
LT1963AEQ-1.8  
LT1963AEQ-2.5  
LT1963AEQ-3.3  
LT1963AET  
LT1963AIT  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT1963AEQ#PBF  
LT1963AEQ#TRPBF  
LT1963AIQ#TRPBF  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
16-Lead Plastic TSSOP  
16-Lead Plastic TSSOP  
16-Lead Plastic TSSOP  
16-Lead Plastic TSSOP  
16-Lead Plastic TSSOP  
16-Lead Plastic TSSOP  
3-Lead Plastic SOT-223  
3-Lead Plastic SOT-223  
3-Lead Plastic SOT-223  
3-Lead Plastic SOT-223  
8-Lead Plastic SO  
LT1963AIQ#PBF  
LT1963AMPQ#PBF  
LT1963AEQ-1.5#PBF  
LT1963AEQ-1.8#PBF  
LT1963AEQ-2.5#PBF  
LT1963AEQ-3.3#PBF  
LT1963AET#PBF  
LT1963AMPQ#TRPBF  
LT1963AEQ-1.5#TRPBF  
LT1963AEQ-1.8#TRPBF  
LT1963AEQ-2.5#TRPBF  
LT1963AEQ-3.3#TRPBF  
LT1963AET#TRPBF  
LT1963AIT#PBF  
LT1963AIT#TRPBF  
LT1963AET-1.5#PBF  
LT1963AET-1.8#PBF  
LT1963AET-2.5#PBF  
LT1963AET-3.3#PBF  
LT1963AEFE#PBF  
LT1963AIFE#PBF  
LT1963AEFE-1.5#PBF  
LT1963AEFE-1.8#PBF  
LT1963AEFE-2.5#PBF  
LT1963AEFE-3.3#PBF  
LT1963AEST-1.5#PBF  
LT1963AEST-1.8#PBF  
LT1963AEST-2.5#PBF  
LT1963AEST-3.3#PBF  
LT1963AES8#PBF  
LT1963AIS8#PBF  
LT1963AMPS8#PBF  
LT1963AES8-1.5#PBF  
LT1963AES8-1.8#PBF  
LT1963AES8-2.5#PBF  
LT1963AES8-3.3#PBF  
LEAD BASED FINISH  
LT1963AEQ  
LT1963AET-1.5#TRPBF  
LT1963AET-1.8#TRPBF  
LT1963AET-2.5#TRPBF  
LT1963AET-3.3#TRPBF  
LT1963AEFE#TRPBF  
LT1963AIFE#TRPBF  
LT1963AEFE-1.5#TRPBF  
LT1963AEFE-1.8#TRPBF  
LT1963AEFE-2.5#TRPBF  
LT1963AEFE-3.3#TRPBF  
LT1963AEST-1.5#TRPBF  
LT1963AEST-1.8#TRPBF  
LT1963AEST-2.5#TRPBF  
LT1963AEST-3.3#TRPBF  
LT1963AES8#TRPBF  
LT1963AIS8#TRPBF  
LT1963AMPS8#TRPBF  
LT1963AES8-1.5#TRPBF  
LT1963AES8-1.8#TRPBF  
LT1963AES8-2.5#TRPBF  
LT1963AES8-3.3#TRPBF  
TAPE AND REEL  
LT1963AET-1.5  
LT1963AET-1.8  
LT1963AET-2.5  
LT1963AET-3.3  
1963AEFE  
1963AIFE  
1963AEFE15  
1963AEFE18  
1963AEFE25  
1963AEFE33  
963A15  
963A18  
963A25  
963A33  
1963A  
1963A  
8-Lead Plastic SO  
963AMP  
8-Lead Plastic SO  
963A15  
8-Lead Plastic SO  
963A18  
8-Lead Plastic SO  
963A25  
8-Lead Plastic SO  
963A33  
8-Lead Plastic SO  
PART MARKING*  
LT1963AEQ  
LT1963AIQ  
LT1963AMPQ  
LT1963AEQ-1.5  
LT1963AEQ-1.8  
LT1963AEQ-2.5  
LT1963AEQ-3.3  
LT1963AET  
LT1963AIT  
PACKAGE DESCRIPTION  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
LT1963AEQ#TR  
LT1963AIQ  
LT1963AIQ#TR  
LT1963AMPQ  
LT1963AMPQ#TR  
LT1963AEQ-1.5  
LT1963AEQ-1.5#TR  
LT1963AEQ-1.8#TR  
LT1963AEQ-2.5#TR  
LT1963AEQ-3.3#TR  
LT1963AET#TR  
LT1963AEQ-1.8  
LT1963AEQ-2.5  
LT1963AEQ-3.3  
LT1963AET  
LT1963AIT  
LT1963AIT#TR  
1963afd  
3
LT1963A Series  
ORDER INFORMATION  
LEAD BASED FINISH  
LT1963AET-1.5  
LT1963AET-1.8  
LT1963AET-2.5  
LT1963AET-3.3  
LT1963AEFE  
TAPE AND REEL  
PART MARKING*  
LT1963AET-1.5  
LT1963AET-1.8  
LT1963AET-2.5  
LT1963AET-3.3  
1963AEFE  
1963AIFE  
1963AEFE15  
1963AEFE18  
1963AEFE25  
1963AEFE33  
963A15  
PACKAGE DESCRIPTION  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
16-Lead Plastic TSSOP  
16-Lead Plastic TSSOP  
16-Lead Plastic TSSOP  
16-Lead Plastic TSSOP  
16-Lead Plastic TSSOP  
16-Lead Plastic TSSOP  
3-Lead Plastic SOT-223  
3-Lead Plastic SOT-223  
3-Lead Plastic SOT-223  
3-Lead Plastic SOT-223  
8-Lead Plastic SO  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT1963AET-1.5#TR  
LT1963AET-1.8#TR  
LT1963AET-2.5#TR  
LT1963AET-3.3#TR  
LT1963AEFE#TR  
LT1963AIFE  
LT1963AIFE#TR  
LT1963AEFE-1.5  
LT1963AEFE-1.8  
LT1963AEFE-2.5  
LT1963AEFE-3.3  
LT1963AEST-1.5  
LT1963AEST-1.8  
LT1963AEST-2.5  
LT1963AEST-3.3  
LT1963AES8  
LT1963AEFE-1.5#TR  
LT1963AEFE-1.8#TR  
LT1963AEFE-2.5#TR  
LT1963AEFE-3.3#TR  
LT1963AEST-1.5#TR  
LT1963AEST-1.8#TR  
LT1963AEST-2.5#TR  
LT1963AEST-3.3#TR  
LT1963AES8#TR  
963A18  
963A25  
963A33  
1963A  
LT1963AIS8  
LT1963AIS8#TR  
1963A  
8-Lead Plastic SO  
LT1963AMPS8  
LT1963AES8-1.5  
LT1963AES8-1.8  
LT1963AES8-2.5  
LT1963AES8-3.3  
LT1963AMPS8#TR  
LT1963AES8-1.5#TR  
LT1963AES8-1.8#TR  
LT1963AES8-2.5#TR  
LT1963AES8-3.3#TR  
963AMP  
8-Lead Plastic SO  
963A15  
8-Lead Plastic SO  
963A18  
8-Lead Plastic SO  
963A25  
8-Lead Plastic SO  
963A33  
8-Lead Plastic SO  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1963afd  
4
LT1963A Series  
The l denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage (Notes 4,12)  
I
I
= 0.5A  
= 1.5A  
1.9  
2.1  
V
V
LOAD  
LOAD  
l
l
l
l
l
l
2.5  
Regulated Output Voltage (Note 5)  
LT1963A-1.5  
LT1963A-1.8  
LT1963A-2.5  
LT1963A-3.3  
LT1963A  
V
= 2.21V, I  
= 1mA  
1.4±±  
1.44±  
1.500  
1.500  
1.523  
1.545  
V
V
IN  
LOAD  
2.5V < V < 20V, 1mA < I  
< 1.5A  
< 1.5A  
< 1.5A  
< 1.5A  
< 1.5A  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
IN  
= 2.3V, I  
= 1mA  
1.±±3  
1.±3±  
1.800  
1.800  
1.82±  
1.854  
V
V
LOAD  
2.8V < V < 20V, 1mA < I  
IN  
V
IN  
= 3V, I  
= 1mA  
LOAD  
2.462  
2.412  
2.500  
2.500  
2.538  
2.5±5  
V
V
3.5V < V < 20V, 1mA < I  
IN  
V
IN  
= 3.8V, I  
= 1mA  
3.250  
3.200  
3.300  
3.300  
3.350  
3.400  
V
V
LOAD  
4.3V < V < 20V, 1mA < I  
IN  
ADJ Pin Voltage (Notes 4, 5)  
Line Regulation  
V
IN  
= 2.21V, I  
= 1mA  
1.192  
1.1±4  
1.210  
1.210  
1.228  
1.246  
V
V
LOAD  
2.5V < V < 20V, 1mA < I  
IN  
l
l
l
l
l
LT1963A-1.5  
LT1963A-1.8  
LT1963A-2.5  
LT1963A-3.3  
ΔV = 2.21V to 20V, I  
= 1mA  
LOAD  
2.0  
2.5  
3.0  
3.5  
1.5  
6
±
10  
10  
5
mV  
mV  
mV  
mV  
mV  
IN  
IN  
IN  
IN  
ΔV = 2.3V to 20V, I  
= 1mA  
LOAD  
LOAD  
ΔV = 3V to 20V, I  
= 1mA  
ΔV = 3.8V to 20V, I  
= 1mA  
= 1mA  
LOAD  
LOAD  
LT1963A (Note 4) ΔV = 2.21V to 20V, I  
IN  
Load Regulation  
LT1963A-1.5  
LT1963A-1.8  
LT1963A-2.5  
LT1963A-3.3  
LT1963A (Note 4)  
V
V
= 2.5V, ΔI  
= 2.5V, ΔI  
= 1mA to 1.5A  
= 1mA to 1.5A  
2
9
mV  
mV  
IN  
IN  
LOAD  
LOAD  
18  
V
V
= 2.8V, ΔI  
= 2.8V, ΔI  
= 1mA to 1.5A  
= 1mA to 1.5A  
2
10  
20  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 3.5V, ΔI  
= 3.5V, ΔI  
= 1mA to 1.5A  
= 1mA to 1.5A  
2.5  
3
15  
30  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 4.3V, ΔI  
= 4.3V, ΔI  
= 1mA to 1.5A  
= 1mA to 1.5A  
20  
35  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
V
V
= 2.5V, ΔI  
= 2.5V, ΔI  
= 1mA to 1.5A  
= 1mA to 1.5A  
2
8
15  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
Dropout Voltage  
= V  
I
I
= 1mA  
= 1mA  
0.02  
0.10  
0.19  
0.34  
0.06  
0.10  
V
V
LOAD  
LOAD  
V
IN  
OUT(NOMINAL)  
(Notes 6, ±, 12)  
I
I
= 100mA  
= 100mA  
0.1±  
0.22  
V
V
LOAD  
LOAD  
I
I
= 500mA  
= 500mA  
0.2±  
0.35  
V
V
LOAD  
LOAD  
I
I
= 1.5A  
= 1.5A  
0.45  
0.55  
V
V
LOAD  
LOAD  
GND Pin Current  
I
I
I
I
I
= 0mA  
1.0  
1.1  
3.8  
15  
1.5  
1.6  
5.5  
25  
mA  
mA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
+ 1V  
OUT(NOMINAL)  
= 1mA  
IN  
(Notes 6, 8)  
= 100mA  
= 500mA  
= 1.5A  
80  
120  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, I  
= 1.5A, BW = 10Hz to 100kHz  
40  
3
μV  
RMS  
OUT  
LOAD  
(Notes 4, 9)  
10  
2
μA  
V
OUT  
V
OUT  
= Off to On  
= On to Off  
0.90  
0.±5  
V
V
0.25  
SHDN Pin Current (Note 10)  
V
SHDN  
V
SHDN  
= 0V  
= 20V  
0.01  
3
1
30  
μA  
μA  
Quiescent Current in Shutdown  
V
IN  
= 6V, V  
= 0V  
SHDN  
0.01  
1
μA  
1963afd  
5
LT1963A Series  
The l denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
– V = 1.5V (Avg), V  
MIN  
TYP  
MAX  
UNITS  
Ripple Rejection  
V
= 0.5V ,  
P-P  
55  
63  
dB  
IN  
OUT  
RIPPLE  
f
= 120Hz, I  
= 0.±5A  
LOAD  
RIPPLE  
Current Limit  
V
IN  
V
IN  
= ±V, V  
= 0V  
2
A
A
OUT  
= V  
+ 1V, ΔV  
= 0.1V  
OUT  
1.6  
OUT(NOMINAL)  
Input Reverse Leakage Current (Note 13) Q, T, S8 Packages  
ST Package  
V
IN  
V
IN  
= –20V, V  
= –20V, V  
= 0  
= 0  
1
2
mA  
mA  
OUT  
OUT  
Reverse Output Current (Note 11)  
LT1963A-1.5  
LT1963A-1.8  
LT1963A-2.5  
LT1963A-3.3  
LT1963A (Note 4)  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 1.5V, V < 1.5V  
600  
600  
600  
600  
300  
1200  
1200  
1200  
1200  
600  
μA  
μA  
μA  
μA  
μA  
IN  
= 1.8V, V < 1.8V  
IN  
= 2.5V, V < 2.5V  
IN  
= 3.3V, V < 3.3V  
IN  
= 1.21V, V < 1.21V  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Absolute maximum input to output differential voltage can not  
be achieved with all combinations of rated IN pin and OUT pin voltages.  
With the IN pin at 20V, the OUT pin may not be pulled below 0V. The total  
measured voltage from IN to OUT can not exceed ±20V.  
Note 6: To satisfy requirements for minimum input voltage, the LT1963A  
(adjustable version) is tested and specified for these conditions with an  
external resistor divider (two 4.12k resistors) for an output voltage of 2.4V.  
The external resistor divider will add a 300μA DC load on the output.  
Note 7: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to: V – V  
.
IN  
DROPOUT  
Note 8: GND pin current is tested with V = V  
+ 1V and a  
IN  
OUT(NOMINAL)  
current source load. The GND pin current will decrease at higher input  
voltages.  
Note 3: The LT1963A regulators are tested and specified under pulse load  
conditions such that T ≈ T . The LT1963AE is 100% tested at T = 25°C.  
J
A
A
Note 9: ADJ pin bias current flows into the ADJ pin.  
Note 10: SHDN pin current flows into the SHDN pin.  
Note 11: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 12: For the LT1963A, LT1963A-1.5 and LT1963A-1.8 dropout voltage  
will be limited by the minimum input voltage specification under some  
output voltage/load conditions.  
Note 13: For the ST package, the input reverse leakage current increases  
due to the additional reverse leakage current for the SHDN pin, which is  
tied internally to the IN pin.  
Performance at –40°C and 125°C is assured by design, characterization and  
correlation with statistical process controls. The LT1963AI is guaranteed  
over the full –40°C to 125°C operating junction temperature range. The  
LT1963AMP is 100% tested and guaranteed over the –55°C to 125°C  
operating junction temperature range.  
Note 4: The LT1963A (adjustable version) is tested and specified for these  
conditions with the ADJ pin connected to the OUT pin.  
Note 5: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply  
for all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
1963afd  
6
LT1963A Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
= TEST POINTS  
T
J
≤ 125°C  
T = 125°C  
J
I
= 1.5A  
L
T
J
≤ 25°C  
T = 25°C  
J
I
= 0.5A  
L
I
= 100mA  
L
I
= 1mA  
L
0
0
0
1.4  
0
0.8  
1.2 1.4  
0.2 0.4 0.6 0.8 1.0 1.2  
OUTPUT CURRENT (A)  
1.6  
0.2 0.4 0.6  
1.0  
1.6  
–50  
0
25  
50  
±5 100 125  
–25  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
1963A G01  
1963A G02  
1963A G03  
Quiescent Current  
LT1963A-1.8 Output Voltage  
LT1963A-1.5 Output Voltage  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.54  
1.84  
1.83  
1.82  
1.81  
1.80  
1.±9  
1.±8  
1.±±  
1.±6  
I
L
= 1mA  
I
L
= 1mA  
1.53  
1.52  
LT1963A-1.5/1.8/-2.5/-3.3  
1.51  
1.50  
1.49  
1.48  
1.4±  
LT1963A  
V
= 6V  
IN  
L
R
= ∞, I = 0  
L
V
= V  
IN  
SHDN  
1.46  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
±5  
–25  
0
25  
50  
±5  
125  
–50  
100  
–25  
0
50  
±5 100 125  
–50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1963A G04  
1963A G05  
1963A G40  
LT1963A-2.5 Output Voltage  
LT1963A-3.3 Output Voltage  
LT1963A ADJ Pin Voltage  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
I
L
= 1mA  
I
L
= 1mA  
I = 1mA  
L
–25  
0
25  
50  
±5  
125  
–25  
0
25  
50  
±5  
125  
–25  
0
25  
50  
±5  
125  
–50  
100  
–50  
100  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1963A G06  
1963A G0±  
1963A G08  
1963afd  
7
LT1963A Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1963A-2.5 Quiescent Current  
LT1963A-1.5 Quiescent Current  
LT1963A-1.8 Quiescent Current  
14  
12  
14  
12  
10  
8
14  
12  
10  
8
T
R
V
= 25°C  
= ∞  
SHDN  
T = 25°C  
J
J
L
T = 25°C  
J
R
V
= ∞  
R
V
= ∞  
L
L
= V  
= V  
IN  
= V  
SHDN IN  
SHDN  
IN  
10  
8
6
4
2
6
6
4
4
2
2
0
0
0
5
6
±
8
9
10  
0
3
5
6
±
8
9
10  
0
3
4
5
6
±
8
9
10  
0
1
2
3
4
1
2
4
1
2
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1963A G09  
1963A G10  
1963A G41  
LT1963A Quiescent Current  
LT1963A-1.5 GND Pin Current  
LT1963A-3.3 Quiescent Current  
25  
20  
15  
14  
12  
10  
8
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
= V  
T = 25°C  
J
J
T = 25°C  
J
R
V
R
V
= ∞  
SHDN  
IN  
= 4.3k  
L
L
*FOR V  
= 1.5V  
= V  
OUT  
V
= V  
SHDN  
IN  
SHDN  
IN  
R
L
= 150, I = 10mA*  
L
6
R
L
= 5, I = 300mA*  
L
10  
5
4
R
L
= 15, I = 100mA*  
L
2
0
0
1
2
3
4
5
6
±
8
9
10  
0
3
4
5
6
±
8
9
10  
0
1
2
0
6
8
10 12 14 16 18 20  
2
4
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1963A G11  
1963A G42  
1963A G12  
LT1963A-1.8 GND Pin Current  
LT1963A-3.3 GND Pin Current  
LT1963A-2.5 GND Pin Current  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
25  
20  
15  
10  
5
T = 25°C  
J
T = 25°C  
J
T = 25°C  
J
V
= V  
V
= V  
V
SHDN  
= V  
SHDN  
IN  
SHDN  
IN  
IN  
*FOR V  
= 1.8V  
*FOR V  
= 3.3V  
*FOR V  
= 2.5V  
OUT  
OUT  
OUT  
R
= 8.33, I = 300mA*  
L
L
R
= 11, I = 300mA*  
L
L
R
L
= 6, I = 300mA*  
L
R
= 25, I = 100mA*  
L
L
R
L
= 33, I = 100mA*  
L
R
L
= 18, I = 100mA*  
L
R
2
= 180, I = 10mA*  
L
L
R
= 250, I = 10mA*  
R
3
= 330, I = 100mA*  
L L  
L
L
0
0
0
0
1
2
4
5
6
±
8
9
10  
0
1
3
4
5
6
±
8
9 10  
0
1
2
3
4
5
6
±
8
9 10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1963A G15  
1963A G13  
1963A G14  
1963afd  
8
LT1963A Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1963A GND Pin Current  
LT1963A-1.5 GND Pin Current  
LT1963A-1.8 GND Pin Current  
100  
90  
80  
±0  
60  
50  
40  
30  
20  
10  
0
10  
8
100  
90  
80  
±0  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
= V  
IN  
T
= 25°C  
= V  
J
T = 25°C  
J
J
V
V
SHDN  
V
SHDN  
= V  
SHDN  
IN  
IN  
*FOR V  
= 1.5V  
*FOR V  
= 1.8V  
OUT  
OUT  
*FOR V  
= 1.21V  
OUT  
R
L
= 4.33, I = 300mA*  
L
R
= 1.2, I = 1.5A*  
L
6
L
R
L
= 1, I = 1.5A*  
L
R
L
= 1.5, I = 1A*  
L
4
R
= 1.8, I = 1A*  
L
R
L
= 12.1, I = 100mA*  
L
L
R
= 3, I = 500mA*  
L
L
2
R
= 3.6, I = 500mA*  
L
R
L
= 121, I = 10mA*  
L
L
0
4
0
1
2
3
5
6
±
8
9
10  
0
1
2
3
4
5
6
±
8
9 10  
0
1
2
3
4
5
6
±
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1963A G1±  
1963A G16  
1963A G43  
LT1963A-2.5 GND Pin Current  
LT1963A GND Pin Current  
LT1963A-3.3 GND Pin Current  
100  
90  
80  
±0  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
±0  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
±0  
60  
50  
40  
30  
20  
10  
0
T
V
= 25°C  
= V  
T
= 25°C  
= V  
J
T
V
= 25°C  
= V  
J
J
V
SHDN  
IN  
SHDN  
IN  
SHDN  
IN  
*FOR V  
= 3.3V  
*FOR V  
= 1.21V  
OUT  
*FOR V  
= 2.5V  
OUT  
OUT  
R
= 2.2, I = 1.5A*  
L
R
L
= 1.6±, I = 1.5A*  
L
L
R
L
= 0.81, I = 1.5A*  
L
R
= 2.5, I = 1A*  
L
L
R
= 3.3, I = 1A*  
L
L
R
= 1.21, I = 1A*  
L
L
R
= 5, I = 500mA*  
L
L
R
= 6.6, I = 500mA*  
L
R
L
= 2.42, I = 500mA*  
L
L
4
0
1
2
3
4
6
±
8
9
10  
4
0
1
2
3
5
6
±
8
9
10  
5
0
1
2
3
6
±
8
9
10  
5
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1963A G18  
1963A G19  
1963A G20  
GND Pin Current vs ILOAD  
SHDN Pin Threshold (Off-to-On)  
SHDN Pin Threshold (On-to-Off)  
1.0  
0.9  
0.8  
0.±  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.±  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
90  
80  
±0  
60  
50  
40  
30  
20  
10  
0
I
= 1mA  
V
IN  
= V  
+1V  
L
OUT (NOMINAL)  
I
= 1.5A  
L
I
= 1mA  
L
–50  
0
25  
50  
±5 100 125  
–50  
0
25  
50  
±5 100 125  
–25  
–25  
0.8  
OUTPUT CURRENT (A)  
0
0.2 0.4 0.6  
1.0 1.2 1.4 1.6  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1963A G22  
1963A G23  
1963A G21  
1963afd  
9
LT1963A Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
SHDN Pin Input Current  
SHDN Pin Input Current  
ADJ Pin Bias Current  
±
6
5
4
3
2
1
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 20V  
SHDN  
50  
100 125  
–50 –25  
0
25  
±5  
8
–50  
0
25  
TEMPERATURE (°C)  
50  
±5 100 125  
0
2
4
6
10 12 14 16 18 20  
–25  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1963A G25  
1963A G24  
1963A G26  
Current Limit  
Current Limit  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= ±V  
IN  
OUT  
= 0V  
T = 25°C  
J
T = –50°C  
J
T = 125°C  
J
ΔV  
= 100mV  
OUT  
4
–50  
0
25  
50  
±5 100 125  
–25  
0
2
6
8
10 12 14 16 18 20  
TEMPERATURE (°C)  
INPUT/OUTPUT DIFFERENTIAL (V)  
1963A G28  
1963A G2±  
Reverse Output Current  
Reverse Output Current  
1.0  
0.9  
0.8  
0.±  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
V
V
V
V
= 0V  
IN  
= 1.21V (LT1963A)  
OUT  
OUT  
OUT  
OUT  
OUT  
LT1963A-1.8  
LT1963A-1.5  
= 1.5V (LT1963A-1.5)  
= 1.8V (LT1963A-1.8)  
= 2.5V (LT1963A-2.5)  
= 3.3V (LT1963A-3.3)  
LT1963A  
LT1963A-1.8/-2.5/-3.3  
LT1963A-3.3  
T
= 25°C  
IN  
J
V
LT1963A  
= 0V  
LT1963A-2.5  
CURRENT FLOWS INTO  
OUTPUT PIN  
V
V
= V  
FB  
(LT1963A)  
OUT  
OUT  
ADJ  
= V (LT1963A-1.5/1.8/-2.5/-3.3)  
4
50  
TEMPERATURE (°C)  
125  
0
1
2
3
5
6
±
8
9
10  
–50  
0
25  
±5 100  
–25  
OUTPUT VOLTAGE (V)  
1963A G29  
1963A G30  
1963afd  
10  
LT1963A Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Ripple Rejection  
Ripple Rejection  
LT1963A Minimum Input Voltage  
80  
±0  
60  
50  
40  
30  
20  
10  
0
±6  
±4  
±2  
±0  
68  
66  
64  
62  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
L
= 1.5A  
I
L
= 500mA  
I
L
= 100mA  
C
OUT  
= 100μF TANTALUM  
+10 × 1μF CERAMIC  
C
OUT  
= 10μF TANTALUM  
I
= 0.±5A  
L
I
= 0.±5A  
L
V
= V  
+1V + 0.5V  
IN  
OUT(NOMINAL) P-P  
V
= V  
+1V + 50mV  
RIPPLE  
RMS  
IN  
OUT(NOMINAL)  
RIPPLE AT f = 120Hz  
–50 –25 25  
TEMPERATURE (°C)  
10  
100  
1k  
10k  
100k  
1M  
50  
100 125  
50  
TEMPERATURE (°C)  
100 125  
0
±5  
–50  
–25  
0
25  
±5  
FREQUENCY (Hz)  
1963A G31  
1963A G32  
1963A G33  
Load Regulation  
Output Noise Spectral Density  
10  
1.0  
0.1  
C
L
= 10μF  
OUT  
I
=1.5A  
5
0
LT1963A-1.5  
LT1963A  
LT1963A-2.5  
LT1963A-1.8  
LT1963A-3.3  
–5  
LT1963A-2.5  
LT1963A-3.3  
–10  
–15  
–20  
LT1963A  
V
V
= V  
+1V  
OUT(NOMINAL)  
IN  
LT1963A-1.8  
LT1963A-1.5  
(LT1963A-1.8/-2.5/-3.3)  
= 2.±V (LT1963A/LT1963A-1.5)  
IN  
L
ΔI = 1mA TO 1.5A  
0.01  
50  
100 125  
–50 –25  
0
25  
±5  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1963A G35  
1963A G34  
RMS Output Noise vs Load  
Current (10Hz to 100kHz)  
LT1963A-3.3 10Hz to 100kHz Output Noise  
50  
C
OUT  
= 10μF  
45  
40  
35  
30  
25  
20  
15  
10  
5
LT1963A-3.3  
LT1963A-2.5  
LT1963A-1.8  
V
OUT  
100μV/DIV  
LT1963A-1.5  
LT1963A  
0
1963A G3±  
C
LOAD  
= 10μF  
= 1.5A  
0.0001 0.001  
0.01  
0.1  
1
10  
1ms/DIV  
OUT  
I
LOAD CURRENT (A)  
1963A G36  
1963afd  
11  
LT1963A Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1963A-3.3 Transient Response  
LT1963A-3.3 Transient Response  
200  
150  
100  
50  
V
C
C
= 4.3V  
IN  
IN  
= 3.3μF TANTALUM  
150  
100  
50  
= 10μF TANTALUM  
OUT  
0
0
–50  
–100  
–150  
1.5  
1.0  
0.5  
0
–50  
–100  
0.6  
0.4  
0.2  
0
V
C
C
= 4.3V  
IN  
IN  
= 33μF TANTALUM  
= 100μF TANTALUM  
OUT  
+10 × 1μF CERAMIC  
8
0
2
4
6
10 12 14 16 18 20  
250  
300 350 400 450 500  
0
50 100 150 200  
TIME (μs)  
TIME (μs)  
1963A G38  
1963A G39  
1963afd  
12  
LT1963A Series  
PIN FUNCTIONS  
OUT: Output. The output supplies power to the load.  
A minimum output capacitor of 10μF is required to  
prevent oscillations. Larger output capacitors will be  
required for applications with large transient loads to limit  
peak voltage transients. See the Applications Information  
section for more information on output capacitance and  
reverse output characteristics.  
be off when the SHDN pin is pulled low. The SHDN pin can  
be driven either by 5V logic or open-collector logic with a  
pull-up resistor. The pull-up resistor is required to supply  
the pull-up current of the open-collector gate, normally  
severalmicroamperes,andtheSHDNpincurrent,typically  
3μA. If unused, the SHDN pin must be connected to V .  
IN  
The device will be in the low power shutdown state if the  
SHDN pin is not connected.  
SENSE: Sense. For fixed voltage versions of the LT1963A  
(LT1963A-1.5/LT1963A-1.8/LT1963A-2.5/LT1963A-3.3),  
the SENSE pin is the input to the error amplifier. Optimum  
regulation will be obtained at the point where the SENSE  
pin is connected to the OUT pin of the regulator. In criti-  
cal applications, small voltage drops are caused by the  
IN: Input. Power is supplied to the device through the IN  
pin. A bypass capacitor is required on this pin if the device  
is more than six inches away from the main input filter  
capacitor. In general, the output impedance of a battery  
rises with frequency, so it is advisable to include a bypass  
capacitor in battery-powered circuits. A bypass capacitor  
in the range of 1μF to 10μF is sufficient. The LT1963A  
regulators are designed to withstand reverse voltages  
on the IN pin with respect to ground and the OUT pin. In  
the case of a reverse input, which can happen if a battery  
is plugged in backwards, the device will act as if there is  
a diode in series with its input. There will be no reverse  
current flow into the regulator and no reverse voltage  
will appear at the load. The device will protect both itself  
and the load.  
resistance (R ) of PC traces between the regulator and the  
P
load. These may be eliminated by connecting the SENSE  
pin to the output at the load as shown in Figure 1 (Kelvin  
Sense Connection). Note that the voltage drop across  
the external PC traces will add to the dropout voltage of  
the regulator. The SENSE pin bias current is 600μA at  
the nominal rated output voltage. The SENSE pin can be  
pulled below ground (as in a dual supply system where  
the regulator load is returned to a negative supply) and  
still allow the device to start and operate.  
ADJ: Adjust. For the adjustable LT1963A, this is the input  
to the error amplifier. This pin is internally clamped to ±±V.  
It has a bias current of 3μA which flows into the pin. The  
ADJ pin voltage is 1.21V referenced to ground and the  
output voltage range is 1.21V to 20V.  
IN  
OUT  
LT1963A  
R
P
+
+
SHDN SENSE  
LOAD  
V
IN  
GND  
R
P
1963A F01  
SHDN:Shutdown.TheSHDNpinisusedtoputtheLT1963A  
regulatorsintoalowpowershutdownstate.Theoutputwill  
Figure 1. Kelvin Sense Connection  
1963afd  
13  
LT1963A Series  
APPLICATIONS INFORMATION  
The LT1963A series are 1.5A low dropout regulators opti-  
mized for fast transient response. The devices are capable  
of supplying 1.5A at a dropout voltage of 350mV. The low  
operating quiescent current (1mA) drops to less than 1μA  
in shutdown. In addition to the low quiescent current, the  
LT1963Aregulatorsincorporateseveralprotectionfeatures  
whichmakethemidealforuseinbattery-poweredsystems.  
The devices are protected against both reverse input and  
reverse output voltages. In battery backup applications  
where the output can be held up by a backup battery when  
the input is pulled to ground, the LT1963A-X acts like it  
has a diode in series with its output and prevents reverse  
current flow. Additionally, in dual supply applications  
where the regulator load is returned to a negative supply,  
the output can be pulled below ground by as much as 20V  
and still allow the device to start and operate.  
IN  
OUT  
V
OUT  
+
V
IN  
R2  
R1  
LT1963A  
ADJ  
R2  
VOUT =1.21V 1+  
+ I  
(
R2  
ADJ)( )  
R1ꢄ  
GND  
V
ADJ =1.21V  
ADJ =3μA AT 25°C  
OUTPUT RANGE = 1.21V TO 20V  
I
1963A F02  
Figure 2. Adjustable Operation  
make it stable. For the LT1963A, the frequency compensa-  
tion is both internal and external—the output capacitor.  
The size of the output capacitor, the type of the output  
capacitor, and the ESR of the particular output capacitor  
all affect the stability.  
In addition to stability, the output capacitor also affects  
the high frequency transient response. The regulator  
loop has a finite band width. For high frequency transient  
loads, recovery from a transient is a combination of the  
output capacitor and the bandwidth of the regulator. The  
LT1963A was designed to be easy to use and accept a  
wide variety of output capacitors. However, the frequency  
compensationisaffectedbytheoutputcapacitorandopti-  
mumfrequencystabilitymayrequiresomeESR,especially  
with ceramic capacitors.  
Adjustable Operation  
The adjustable version of the LT1963A has an output volt-  
age range of 1.21V to 20V. The output voltage is set by  
the ratio of two external resistors as shown in Figure 2.  
The device servos the output to maintain the voltage at  
the ADJ pin at 1.21V referenced to ground. The current  
in R1 is then equal to 1.21V/R1 and the current in R2 is  
the current in R1 plus the ADJ pin bias current. The ADJ  
pin bias current, 3μA at 25°C, flows through R2 into the  
ADJ pin. The output voltage can be calculated using the  
formula in Figure 2. The value of R1 should be less than  
4.1±k to minimize errors in the output voltage caused by  
the ADJ pin bias current. Note that in shutdown the output  
is turned off and the divider current will be zero.  
Foreaseofuse,lowESRpolytantalumcapacitors(POSCAP)  
are a good choice for both the transient response and  
stability of the regulator. These capacitors have intrinsic  
ESR that improves the stability. Ceramic capacitors have  
extremely low ESR, and while they are a good choice in  
many cases, placing a small series resistance element  
will sometimes achieve optimum stability and minimize  
ringing. In all cases, a minimum of 10μF is required while  
the maximum ESR allowable is 3Ω.  
The adjustable device is tested and specified with the ADJ  
pin tied to the OUT pin for an output voltage of 1.21V.  
Specifications for output voltages greater than 1.21V will  
be proportional to the ratio of the desired output voltage  
The place where ESR is most helpful with ceramics is  
low output voltage. At low output voltages, below 2.5V,  
some ESR helps the stability when ceramic output capaci-  
tors are used. Also, some ESR allows a smaller capacitor  
value to be used. When small signal ringing occurs with  
ceramics due to insufficient ESR, adding ESR or increas-  
ing the capacitor value improves the stability and reduces  
the ringing. Table 1 gives some recommended values of  
ESR to minimize ringing caused by fast, hard current  
transitions.  
to 1.21V: V /1.21V. For example, load regulation for an  
OUT  
output current change of 1mA to 1.5A is 3mV typical at  
V
OUT  
= 1.21V. At V  
= 5V, load regulation is:  
OUT  
(5V/1.21V)(–3mV) = –12.4mV  
Output Capacitors and Stability  
The LT1963A regulator is a feedback circuit. Like any  
feedback circuit, frequency compensation is needed to  
1963afd  
14  
LT1963A Series  
APPLICATIONS INFORMATION  
Table 1. Capacitor Minimum ESR  
POSCAP capacitors are used. The output voltage is at the  
worst case value of 1.2V. Trace A, is with a 10μF ceramic  
outputcapacitorandshowssignificantringingwithapeak  
amplitude of 25mV. For Trace B, a 22μF/45mΩ POSCAP is  
added in parallel with the 10μF ceramic. The output is well  
damped and settles to within 10mV in less than 20μs.  
V
10μF  
20mΩ  
20mΩ  
15mΩ  
5mΩ  
22μF  
15mΩ  
15mΩ  
10mΩ  
5mΩ  
47μF  
10mΩ  
10mΩ  
10mΩ  
5mΩ  
100μF  
5mΩ  
5mΩ  
5mΩ  
5mΩ  
5mΩ  
0mΩ  
OUT  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
≥5V  
0mΩ  
0mΩ  
0mΩ  
For Trace C, a 100μF/35mΩ POSCAP is connected in  
parallel with the 10μF ceramic capacitor. In this case the  
peak output deviation is less than 20mV and the output  
settles in about 10μs. For improved transient response  
the value of the bulk capacitor (tantalum or aluminum  
electrolytic) should be greater than twice the value of the  
ceramic capacitor.  
0mΩ  
0mΩ  
0mΩ  
Figures3through8showtheeffectofESRonthetransient  
response of the regulator. These scope photos show the  
transientresponsefortheLT1963Aatthreedifferentoutput  
voltageswithvariouscapacitorsandvariousvaluesofESR.  
The output load conditions are the same for all traces. In  
all cases there is a DC load of 500mA. The load steps up  
to 1A at the first transition and steps back to 500mA at  
the second transition.  
Tantalum and Polytantalum Capacitors  
There is a variety of tantalum capacitor types available,  
with a wide range of ESR specifications. Older types have  
ESRspecificationsinthehundredsofmΩtoseveralOhms.  
Some newer types of polytantalum with multi-electrodes  
havemaximumESRspecificationsaslowas5mΩ. Ingen-  
eral the lower the ESR specification, the larger the size and  
the higher the price. Polytantalum capacitors have better  
surge capability than older types and generally lower ESR.  
Some types such as the Sanyo TPE and TPB series have  
ESR specifications in the 20mΩ to 50mΩ range, which  
provide near optimum transient response.  
At the worst case point of 1.2V  
with 10μF C  
OUT  
OUT  
(Figure 3), a minimum amount of ESR is required. While  
20mΩ is enough to eliminate most of the ringing, a value  
closer to 50mΩ provides a more optimum response. At  
2.5V output with 10μF C  
(Figure 4) the output rings  
OUT  
at the transitions with 0Ω ESR but still settles to within  
10mV in 20μs after the 0.5A load step. Once again a small  
value of ESR will provide a more optimum response.  
At 5V  
with 10μF C  
(Figure 5) the response is well  
OUT  
OUT  
damped with 0Ω ESR.  
Aluminum Electrolytic Capacitors  
With a C of 100μF at 0Ω ESR and an output of 1.2V  
Aluminumelectrolyticcapacitorscanalsobeusedwiththe  
LT1963A.Thesecapacitorscanalsobeusedinconjunction  
withceramiccapacitors.Thesetendtobethecheapestand  
lowestperformancetypeofcapacitors. Caremustbeused  
in selecting these capacitors as some types can have ESR  
which can easily exceed the 3Ω maximum value.  
OUT  
(Figure 6), the output rings although the amplitude is  
only 20mV . With C  
of 100μF it takes only 5mΩ to  
p-p  
OUT  
20mΩ of ESR to provide good damping at 1.2V output.  
Performanceat2.5Vand5Voutputwith100μFC shows  
similar characteristics to the 10μF case (see Figures ±-8).  
OUT  
At2.5V  
At 5V  
5mΩto20mΩcanimprovetransientresponse.  
OUT  
Ceramic Capacitors  
the response is well damped with 0Ω ESR.  
OUT  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior over  
temperature and applied voltage. The most common  
dielectrics used are Z5U, Y5V, X5R and X±R. The Z5U and  
CapacitortypeswithinherentlyhigherESRcanbecombined  
with 0mΩ ESR ceramic capacitors to achieve both good  
high frequency bypassing and fast settling time. Figure  
9 illustrates the improvement in transient response that  
can be seen when a parallel combination of ceramic and  
1963afd  
15  
LT1963A Series  
APPLICATIONS INFORMATION  
0
5
0
VOUT = 1.2V  
IOUT = 500mA WITH  
VOUT = 1.2V  
IOUT = 500mA WITH  
500mA PULSE  
500mA PULSE  
COUT = 10μF  
20  
50  
C
OUT = 100μF  
10  
20  
100  
1963A F03  
1963A F06  
20μs/DIV  
50μs/DIV  
Figure 3  
Figure 6  
0
5
0
20  
VOUT = 2.5V  
VOUT = 2.5V  
IOUT = 500mA WITH  
500mA PULSE  
COUT = 100μF  
IOUT = 500mA WITH  
500mA PULSE  
COUT = 10μF  
10  
20  
50  
100  
1963A F0±  
1963A F04  
50μs/DIV  
20μs/DIV  
Figure 4  
Figure 7  
0
5
0
20  
VOUT = 5V  
V
OUT = 5V  
IOUT = 500mA WITH  
500mA PULSE  
COUT = 100μF  
IOUT = 500mA WITH  
500mA PULSE  
COUT = 10μF  
50  
10  
20  
100  
1963A F08  
1963A F05  
20μs/DIV  
50μs/DIV  
Figure 8  
Figure 5  
A
B
C
VOUT = 1.2V  
IOUT = 500mA WITH 500mA PULSE  
COUT  
A = 10μF CERAMIC  
B = 10μF CERAMIC II 22μF/45mΩ POLY  
C = 10μF CERAMIC II 100μF/35mΩ POLY  
=
1963A F09  
50μs/DIV  
Figure 9  
1963afd  
16  
LT1963A Series  
APPLICATIONS INFORMATION  
Y5Vdielectricsaregoodforprovidinghighcapacitancesin  
asmallpackage,butexhibitstrongvoltageandtemperature  
coefficients as shown in Figures 10 and 11. When used  
with a 5V regulator, a 10μF Y5V capacitor can exhibit an  
effective value as low as 1μF to 2μF over the operating  
temperature range. The X5R and X±R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X±R type has better stability  
across temperature, while the X5R is less expensive and  
is available in higher values.  
“FREE” Resistance with PC Traces  
The resistance values shown in Table 2 can easily be made  
using a small section of PC trace in series with the output  
capacitor. The wide range of non-critical ESR makes it  
easy to use PC trace. The trace width should be sized to  
handle the RMS ripple current associated with the load.  
Theoutputcapacitoronlysourcesorsinkscurrentforafew  
microsecondsduringfastoutputcurrenttransitions.There  
is no DC current in the output capacitor. Worst case ripple  
current will occur if the output load is a high frequency  
(>100kHz) square wave with a high peak value and fast  
edges (< 1μs). Measured RMS value for this case is 0.5  
times the peak-to-peak current change. Slower edges or  
lower frequency will significantly reduce the RMS ripple  
current in the capacitor.  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltageacrossitsterminalsduetomechanicalstress,simi-  
lartothewayapiezoelectricaccelerometerormicrophone  
works. For a ceramic capacitor the stress can be induced  
by vibrations in the system or thermal transients.  
Table 2. PC Trace Resistors  
10mΩ  
20mΩ  
30mΩ  
"
"
"
0.5oz C  
1.0oz C  
2.0oz C  
Width  
0.011 (0.28mm)  
0.011 (0.28mm)  
0.011 (0.28mm)  
U
U
U
"
"
"
Length  
0.102 (2.6mm)  
0.204 (5.2mm)  
0.30± (±.8mm)  
"
"
"
Width  
Length  
0.006 (0.15mm)  
0.006 (0.15mm)  
0.006 (0.15mm)  
"
"
"
0.110 (2.8mm)  
0.220 (5.6mm)  
0.330 (8.4mm)  
"
"
"
"
Width  
Length  
0.006 (0.15mm)  
0.006 (0.15mm)  
0.006 (0.15mm)  
"
"
0.224 (5.±mm)  
0.450 (11.4mm)  
0.6±0 (1±mm)  
40  
20  
20  
0
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
X5R  
X5R  
0
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
Y5V  
Y5V  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
–100  
–50  
0
8
12 14  
50  
TEMPERATURE (°C)  
100 125  
2
4
6
10  
16  
25  
±5  
–25  
0
DC BIAS VOLTAGE (V)  
1963A F10  
1963A F11  
Figure 11. Ceramic Capacitor Temperature Characteristics  
Figure 10. Ceramic Capacitor DC Bias Characteristics  
1963afd  
17  
LT1963A Series  
APPLICATIONS INFORMATION  
This resistor should be made using one of the inner  
layers of the PC board which are well defined. The resistiv-  
ity is determined primarily by the sheet resistance of the  
copper laminate with no additional plating steps. Table  
2 gives some sizes for 0.±5A RMS current for various  
copper thicknesses. More detailed information regarding  
resistors made from PC traces can be found in Application  
Note 69, Appendix A.  
40nV/√Hz over this frequency bandwidth for the LT1963A  
(adjustableversion).Forhigheroutputvoltages(generated  
byusingaresistordivider),theoutputvoltagenoisewillbe  
gained up accordingly. This results in RMS noise over the  
10Hz to 100kHz bandwidth of 14μV  
for the LT1963A  
RMS  
increasing to 38μV  
for the LT1963A-3.3.  
RMS  
Higher values of output voltage noise may be measured  
when care is not exercised with regard to circuit layout  
and testing. Crosstalk from nearby traces can induce  
unwanted noise onto the output of the LT1963A-X.  
Powersupplyripplerejectionmustalsobeconsidered;the  
LT1963A regulators do not have unlimited power supply  
rejection and will pass a small portion of the input noise  
through to the output.  
Overload Recovery  
LikemanyICpowerregulators,theLT1963A-Xhassafeop-  
eratingareaprotection.Thesafeareaprotectiondecreases  
the current limit as input-to-output voltage increases and  
keeps the power transistor inside a safe operating region  
for all values of input-to-output voltage. The protection is  
designed to provide some output current at all values of  
input-to-output voltage up to the device breakdown.  
Thermal Considerations  
Thepowerhandlingcapabilityofthedeviceislimitedbythe  
maximum rated junction temperature (125°C). The power  
dissipated by the device is made up of two components:  
When power is first turned on, as the input voltage rises,  
the output follows the input, allowing the regulator to start  
up into very heavy loads. During the start-up, as the input  
voltage is rising, the input-to-output voltage differential  
is small, allowing the regulator to supply large output  
currents. With a high input voltage, a problem can occur  
wherein removal of an output short will not allow the  
output voltage to recover. Other regulators, such as the  
LT1085, also exhibit this phenomenon, so it is not unique  
to the LT1963A-X.  
1. Output current multiplied by the input/output voltage  
differential: (I )(V – V ), and  
OUT  
IN  
OUT  
2. GND pin current multiplied by the input voltage:  
(I )(V ).  
GND  
IN  
The GND pin current can be found using the GND Pin  
CurrentcurvesintheTypicalPerformanceCharacteristics.  
Power dissipation will be equal to the sum of the two  
components listed above.  
The problem occurs with a heavy output load when the  
inputvoltageishighandtheoutputvoltageislow.Common  
situations are immediately after the removal of a short-  
circuit or when the shutdown pin is pulled high after the  
input voltage has already been turned on. The load line for  
such a load may intersect the output current curve at two  
points.Ifthishappens,therearetwostableoutputoperating  
points for the regulator. With this double intersection, the  
input power supply may need to be cycled down to zero  
and brought up again to make the output recover.  
The LT1963A series regulators have internal thermal  
limiting designed to protect the device during overload  
conditions. For continuous normal conditions, the maxi-  
mum junction temperature rating of 125°C must not be  
exceeded. It is important to give careful consideration to  
all sources of thermal resistance from junction to ambi-  
ent. Additional heat sources mounted nearby must also  
be considered.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
Output Voltage Noise  
TheLT1963Aregulatorshavebeendesignedtoprovidelow  
output voltage noise over the 10Hz to 100kHz bandwidth  
whileoperatingatfullload.Outputvoltagenoiseistypically  
1963afd  
18  
LT1963A Series  
APPLICATIONS INFORMATION  
The following tables list thermal resistance for several The power dissipated by the device will be equal to:  
different board sizes and copper areas. All measurements  
I
(V  
– V ) + I (V  
)
OUT(MAX) IN(MAX)  
OUT  
GND IN(MAX)  
were taken in still air on 1/16" FR-4 board with one ounce  
copper.  
where,  
I
= 500mA  
= 6V  
OUT  
OUT(MAX)  
Table 3. Q Package, 5-Lead DD  
V
IN(MAX)  
COPPER AREA  
THERMAL RESISTANCE  
I
at (I  
= 500mA, V = 6V) = 10mA  
TOPSIDE* BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
GND  
IN  
2
2
2
2
2
2
2
2
So,  
2500mm  
1000mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
23°C/W  
25°C/W  
33°C/W  
P = 500mA(6V – 3.3V) + 10mA(6V) = 1.41W  
2
125mm  
Using a DD package, the thermal resistance will be in the  
range of 23°C/W to 33°C/W depending on the copper  
area. So the junction temperature rise above ambient will  
be approximately equal to:  
*Device is mounted on topside  
Table 4. S0-8 Package, 8-Lead SO  
COPPER AREA  
TOPSIDE* BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
THERMAL RESISTANCE  
1.41W(28°C/W) = 39.5°C  
2
2
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
55°C/W  
55°C/W  
63°C/W  
69°C/W  
2
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
1000mm  
2
225mm  
125mm  
2
*Device is mounted on topside  
T
= 50°C + 39.5°C = 89.5°C  
JMAX  
Table 5. SOT-223 Package, 3-Lead SOT-223  
Protection Features  
COPPER AREA  
THERMAL RESISTANCE  
The LT1963A regulators incorporate several protection  
features which make them ideal for use in battery-pow-  
ered circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
limiting and thermal limiting, the devices are protected  
against reverse input voltages, reverse output voltages  
and reverse voltages from output to input.  
TOPSIDE* BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2
2
2
2500mm  
1000mm  
2500mm  
2500mm  
2500mm  
2500mm  
42°C/W  
42°C/W  
2
2
2
2
2
2
2
2
2
2
2
225mm  
100mm  
2500mm  
2500mm  
1000mm  
2500mm  
2500mm  
1000mm  
1000mm  
50°C/W  
56°C/W  
49°C/W  
52°C/W  
2
2
2
1000mm  
1000mm  
2
0mm  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditionsattheoutputofthedevice.Fornormaloperation,  
the junction temperature should not exceed 125°C.  
*Device is mounted on topside  
T Package, 5-Lead TO-220  
Thermal Resistance (Junction-to-Case) = 4°C/W  
The input of the device will withstand reverse voltages  
of 20V. Current flow into the device will be limited to less  
than 1mA (typically less than 100μA) and no negative  
voltage will appear at the output. The device will protect  
both itself and the load. This provides protection against  
batteries that can be plugged in backward.  
Calculating Junction Temperature  
Example: Given an output voltage of 3.3V, an input volt-  
age range of 4V to 6V, an output current range of 0mA  
to 500mA and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
1963afd  
19  
LT1963A Series  
APPLICATIONS INFORMATION  
The output of the LT1963A can be pulled below ground  
withoutdamagingthedevice.Iftheinputisleftopencircuit  
or grounded, the output can be pulled below ground by  
20V. For fixed voltage versions, the output will act like a  
large resistor, typically 5k or higher, limiting current flow  
to typically less than 600μA. For adjustable versions, the  
output will act like an open circuit; no current will flow out  
of the pin. If the input is powered by a voltage source, the  
output will source the short-circuit current of the device  
and will protect itself by thermal limiting. In this case,  
grounding the SHDN pin will turn off the device and stop  
the output from sourcing the short-circuit current.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage, or is left  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 12.  
When the IN pin of the LT1963A is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input cur-  
rent will typically drop to less than 2μA. This can happen  
if the input of the device is connected to a discharged  
(low voltage) battery and the output is held up by either  
a backup battery or a second regulator circuit. The state  
of the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
The ADJ pin of the adjustable device can be pulled above  
or below ground by as much as ±V without damaging the  
device. Iftheinputisleftopencircuitorgrounded, theADJ  
pin will act like an open circuit when pulled below ground  
and like a large resistor (typically 5k) in series with a diode  
when pulled above ground.  
5.0  
LT1963A  
V
= V  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
OUT  
ADJ  
LT1963A-1.5  
= V  
V
OUT  
FB  
In situations where the ADJ pin is connected to a resistor  
dividerthatwouldpulltheADJpinaboveits±Vclampvolt-  
age if the output is pulled high, the ADJ pin input current  
must be limited to less than 5mA. For example, a resistor  
divider is used to provide a regulated 1.5V output from the  
1.21V reference when the output is forced to 20V. The top  
resistor of the resistor divider must be chosen to limit the  
current into the ADJ pin to less than 5mA when the ADJ  
pin is at ±V. The 13V difference between OUT and ADJ  
pins divided by the 5mA maximum current into the ADJ  
pin yields a minimum top resistor value of 2.6k.  
LT1963A-1.8  
= V  
V
OUT  
FB  
LT1963A-2.5  
= V  
V
OUT  
FB  
LT1963A-3.3  
= V  
V
OUT  
FB  
T
= 25°C  
IN  
J
V
= 0V  
CURRENT FLOWS  
INTO OUTPUT PIN  
0
1
2
3
4
5
6
±
8
9
10  
OUTPUT VOLTAGE (V)  
1963A F12  
Figure 12. Reverse Output Current  
1963afd  
20  
LT1963A Series  
TYPICAL APPLICATIONS  
SCR Pre-Regulator Provides Efficiency Over Line Variations  
L1  
500μH  
LT1963A-3.3  
3.3V  
1.5A  
OUT  
IN  
OUT  
L2  
1N4148  
1k  
+
+
10VAC AT  
115V  
SHDN  
GND  
FB  
10000μF  
22μF  
IN  
90-140  
VAC  
34k*  
10VAC AT  
115V  
IN  
1N4002  
“SYNC”  
1N4002  
1N4002  
12.1k*  
+V  
2.4k  
C1A  
TO ALL “+V”  
POINTS  
200k  
+
1N4148  
+
1/2  
22μF  
±50Ω  
LT1018  
0.1μF  
+V  
C1B  
+
±50Ω  
+V  
A1  
0.033μF  
1/2  
LT1018  
+
1N4148  
10k  
LT1006  
10k  
10k  
+V  
1μF  
+V  
L1 = COILTRONICS CTX500-2-52  
L2 = STANCOR P-8559  
* = 1% FILM RESISTOR  
= NTE543±  
LT1004  
1.2V  
1963A TA03  
1963afd  
21  
LT1963A Series  
TYPICAL APPLICATIONS  
Paralleling of Regulators for Higher Output Current  
R1  
0.01Ω  
LT1963A-3.3  
3.3V  
3A  
C2  
22μF  
IN  
OUT  
+
+
C1  
100μF  
V
> 3.±V  
IN  
SHDN  
GND  
FB  
R2  
0.01Ω  
LT1963A  
IN  
OUT  
R6  
6.65k  
SHDN  
SHDN  
GND  
FB  
R±  
4.12k  
R3  
2.2k  
R4  
2.2k  
R5  
1k  
3
2
8
+
1
1/2  
LT1366  
C3  
0.01μF  
4
1963A TA05  
1963afd  
22  
LT1963A Series  
PACKAGE DESCRIPTION  
Q Package  
5-Lead Plastic DD Pak  
(Reference LTC DWG # 05-08-1461)  
.060  
(1.524)  
TYP  
.390 – .415  
(9.906 – 10.541)  
.060  
(1.524)  
.165 – .180  
(4.191 – 4.572)  
.256  
(6.502)  
.045 – .055  
(1.143 – 1.397)  
15° TYP  
+.008  
.004  
–.004  
.060  
(1.524)  
.059  
(1.499)  
TYP  
.183  
(4.648)  
.330 – .370  
(8.382 – 9.398)  
+0.203  
–0.102  
0.102  
(
)
.095 – .115  
(2.413 – 2.921)  
.075  
(1.905)  
.067  
(1.702)  
BSC  
.050 ± .012  
(1.270 ± 0.305)  
.300  
(7.620)  
.013 – .023  
(0.330 – 0.584)  
+.012  
.143  
–.020  
.028 – .038  
+0.305  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
3.632  
Q(DD5) 0502  
(0.711 – 0.965)  
(
)
–0.508  
TYP  
.420  
.276  
.080  
.420  
.350  
.325  
.205  
.565  
.565  
.320  
.090  
.042  
.090  
.042  
.067  
.067  
RECOMMENDED SOLDER PAD LAYOUT  
NOTE:  
RECOMMENDED SOLDER PAD LAYOUT  
FOR THICKER SOLDER PASTE APPLICATIONS  
1. DIMENSIONS IN INCH/(MILLIMETER)  
2. DRAWING NOT TO SCALE  
1963afd  
23  
LT1963A Series  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045  
±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160  
±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030  
±
.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1963afd  
24  
LT1963A Series  
PACKAGE DESCRIPTION  
ST Package  
3-Lead Plastic SOT-223  
(Reference LTC DWG # 05-08-1630)  
.248 – .264  
(6.30 – 6.71)  
.129 MAX  
.114 – .124  
(2.90 – 3.15)  
.059 MAX  
.264 – .287  
(6.70 – 7.30)  
.248 BSC  
.130 – .146  
(3.30 – 3.71)  
.039 MAX  
.059 MAX  
.090  
BSC  
.181 MAX  
.033 – .041  
(0.84 – 1.04)  
.0905  
(2.30)  
BSC  
RECOMMENDED SOLDER PAD LAYOUT  
10° – 16°  
.010 – .014  
10°  
MAX  
.071  
(1.80)  
MAX  
(0.25 – 0.36)  
10° – 16°  
.0008 – .0040  
(0.0203 – 0.1016)  
.024 – .033  
(0.60 – 0.84)  
.012  
(0.31)  
MIN  
.181  
(4.60)  
BSC  
ST3 (SOT-233) 0502  
1963afd  
25  
LT1963A Series  
PACKAGE DESCRIPTION  
T Package  
5-Lead Plastic TO-220 (Standard)  
(Reference LTC DWG # 05-08-1421)  
.165 – .180  
(4.191 – 4.572)  
.147 – .155  
(3.734 – 3.937)  
DIA  
.390 – .415  
(9.906 – 10.541)  
.045 – .055  
(1.143 – 1.397)  
.230 – .270  
(5.842 – 6.858)  
.570 – .620  
(14.478 – 15.748)  
.620  
(15.75)  
TYP  
.460 – .500  
(11.684 – 12.700)  
.330 – .370  
(8.382 – 9.398)  
.700 – .728  
(17.78 – 18.491)  
.095 – .115  
(2.413 – 2.921)  
SEATING PLANE  
.152 – .202  
(3.861 – 5.131)  
.155 – .195*  
(3.937 – 4.953)  
.260 – .320  
(6.60 – 8.13)  
.013 – .023  
(0.330 – 0.584)  
.067  
BSC  
.135 – .165  
(3.429 – 4.191)  
.028 – .038  
(0.711 – 0.965)  
(1.70)  
* MEASURED AT THE SEATING PLANE  
T5 (TO-220) 0801  
1963afd  
26  
LT1963A Series  
PACKAGE DESCRIPTION  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 ±0.10  
2.94  
(.116)  
4.50 ±0.10  
6.40  
2.94  
SEE NOTE 4  
(.252)  
(.116)  
0.45 ±0.05  
BSC  
1.05 ±0.10  
0.65 BSC  
5
7
1
2
3
4
6
8
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
0.50 – 0.75  
0.05 – 0.15  
(.002 – .006)  
FE16 (BB) TSSOP 0204  
(.0035 – .0079)  
(.020 – .030)  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
1963afd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT1963A Series  
TYPICAL APPLICATION  
Adjustable Current Source  
R5  
0.01Ω  
LT1963A-1.8  
LOAD  
IN  
OUT  
R1  
1k  
+
C1  
10μF  
SHDN  
GND  
FB  
V
> 2.±V  
IN  
LT1004-1.2  
R4  
R6  
R8  
100k  
R2  
80.6k  
C3  
1μF  
2.2k 2.2k  
R3  
2k  
R±  
2
3
4±0Ω  
8
4
+
1
1/2  
LT1366  
C2  
3.3μF  
NOTE: ADJUST R1 FOR  
0A TO 1.5A CONSTANT CURRENT  
1963A TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : –20V to –4.3V, V  
LT11±5  
500mA, Micropower, Negative LDO  
= –3.8V, V = 0.50V, I = 45μA, I 10μA,  
OUT(MIN) DO Q SD  
IN  
DD, SOT-223, PDIP8 Packages  
LT1185  
LT1±61  
3A, Negative LDO  
V : –35V to –4.2V, V  
= –2.40V, V = 0.80V, I = 2.5mA, I <1μA,  
IN  
OUT(MIN) DO Q SD  
TO220-5 Package  
100mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 20μA, I <1μA  
IN  
OUT(MIN) DO Q SD  
ThinSOT Package  
LT1±62  
LT1±63  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 25μA, I <1μA, MS8 Package  
DO Q SD  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
V : 1.8V to 20V, V  
IN  
= 1.22V, V = 0.30V, I = 30μA, I <1μA, S8 Package  
DO Q SD  
LT1±64/  
LT1±64A  
3A, Low Noise, Fast Transient Response, V : 2.±V to 20V, V  
LDO  
= 1.21V, V = 0.34V, I = 1mA, I <1μA,  
DO Q SD  
IN  
DD, TO220 Packages  
LTC1844  
LT1962  
LT1964  
LT1965  
LT3020  
LT3023  
LT3024  
150mA, Very Low Drop-Out LDO  
V : 6.5V to 1.6V, V  
= 1.25V, V = 0.08V, I = 40μA, I < 1μA,  
DO Q SD  
IN  
OUT(MIN)  
OUT(MIN)  
ThinSOTPackage  
300mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
IN  
= 1.22V, V = 0.2±V, I = 30μA, I <1μA, MS8 Package  
DO Q SD  
200mA, Low Noise Micropower,  
Negative LDO  
V : –0.9V to –20V, V  
= –1.21V, V = 0.34V, I = 30μA, I 3μA,  
OUT(MIN) DO Q SD  
IN  
ThinSOT Package  
1.1A, Low Noise, Low Dropout Linear  
Regulator  
290mV Dropout Voltage, Low Noise: 40μVRMS, V : 1.8V to 20V, V : 1.2V to 19.5V,  
IN OUT  
stable with ceramic caps, TO-220, DDPak, MSOP and 3mm × 3mm DFN Packages  
100mA, Low Voltage V  
IN(MIN)  
V : 0.9V to 10V, V = 0.20, V = 0.15V, I = 120μA, I <3μA,  
LDO,  
IN  
OUT(MIN)  
DO  
Q
SD  
V
= 0.9V  
DFN, MS8 Packages  
Dual, 2x 100mA, Low Noise  
Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 40μA, I <1μA,  
DO Q SD  
IN  
OUT(MIN)  
DFN, MS10 Packages  
Dual, 100mA/500mA, Low Noise  
Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 60μA, I <1μA,  
DO Q SD  
IN  
OUT(MIN)  
DFN, TSSOP Packages  
LT3080/  
LT3080-1  
1.1A, Parallelable, Low Noise, Low  
Dropout Linear Regulator  
300mV Dropout Voltage (2-Supply Operation), Low Noise: 40μVRMS, V : 1.2V to 36V,  
IN  
V
: 0V to 35.±V, current-based reference with 1-Resistor V  
set; directly parallelable  
OUT  
OUT  
(no op amp required), stable with ceramic caps, TO-220, SOT-223, MSOP and 3mm × 3mm  
DFN Packages; “–1” version has integrated internal ballast resistor  
1963afd  
LT 0708 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-±41±  
28  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-050± www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY