LT1965IDD-1.8-TRPBF [Linear]

1.1A, Low Noise, Low Dropout Linear Regulator; 1.1A ,低噪声,低压差线性稳压器
LT1965IDD-1.8-TRPBF
型号: LT1965IDD-1.8-TRPBF
厂家: Linear    Linear
描述:

1.1A, Low Noise, Low Dropout Linear Regulator
1.1A ,低噪声,低压差线性稳压器

稳压器
文件: 总20页 (文件大小:238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1965 Series  
1.1A, Low Noise,  
Low Dropout Linear Regulator  
FEATURES  
DESCRIPTION  
TheLT®1965seriesarelownoise, lowdropoutlinearregu-  
lators. The devices supply 1.1A of output current with a  
310mVtypicaldropoutvoltage.Operatingquiescentcurrent  
is 500μA for the adjustable version, reducing to <1μA in  
shutdown. Quiescentcurrentiswellcontrolled;itdoesnot  
rise in dropout as with many other regulators. The LT1965  
regulators have very low output noise which makes them  
ideal for sensitive RF and DSP supply applications.  
n
Output Current: 1.1A  
n
Dropout Voltage: 310mV  
n
Low Noise: 40μV  
(10Hz to 100kHz)  
RMS  
n
n
n
n
n
n
n
n
n
500μA Quiescent Current (Adjustable Version)  
Wide Input Voltage Range: 1.8V to 20V  
No Protection Diodes Needed  
Controlled Quiescent Current in Dropout  
Adjustable Output from 1.20V to 19.5V  
Fixed Output Voltages: 1.5V, 1.8V, 2.5V, 3.3V  
< 1μA Quiescent Current in Shutdown  
Stable with 10μF Output Capacitor  
Stable with Ceramic, Tantalum or Aluminum  
Electrolytic Capacitors  
Reverse Battery Protection  
No Reverse Current  
Current Limit with Foldback Protection  
Thermal Limiting  
Output voltage ranges from 1.20V to 19.5V. The LT1965  
regulators are stable with output capacitors as low as  
10μF. Internal protection circuitry includes reverse battery  
protection, currentlimitingwithfoldback, thermallimiting  
and reverse current protection. The LT1965 series are  
available in fixed output voltages of 1.5V, 1.8V, 2.5V, 3.3V,  
andasanadjustabledevicewitha1.20Vreferencevoltage.  
The package offerings include the 5-lead TO-220, 5-lead  
DD-PAK as well as the thermally enhanced 8-lead MSOP  
n
n
n
n
n
5-Lead TO-220, DD-PAK, Thermally Enhanced 8-Lead  
MSOP and 8-Lead 3mm × 3mm DFN Packages  
and low-profile (0.75mm) 8-lead 3mm × 3mm DFN.  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
APPLICATIONS  
n
Logic Power Supplies  
n
Post Regulator for Switching Supplies  
n
Low Noise Instrumentation  
TYPICAL APPLICATION  
Dropout Voltage  
3.3V to 2.5V Regulator  
400  
T
= 25°C  
J
350  
300  
250  
200  
150  
100  
50  
2.5V  
1.1A  
IN  
OUT  
LT1965-2.5  
+
> 3V  
+
V
IN  
10μF*  
10μF*  
TO 20V  
SHDN SENSE  
GND  
*CERAMIC, TANTALUM OR  
ALUMINUM ELECTROLYTIC  
1965 TA01  
0
0
0.2  
0.6  
0.8  
1
1.2  
0.4  
OUTPUT CURRENT (A)  
1965 TA01b  
1965fa  
1
LT1965 Series  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Output Short-Circuit Duration .......................... Indefinite  
Operating Junction Temperature Range (E, I Grade)  
(Notes 2, 13)......................................–40°C to 125°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
IN Pin Voltage ......................................................... 22V  
OUT Pin Voltage...................................................... 22V  
Input to Output Differential Voltage (Note 2) ......... 22V  
SENSE Pin Voltage.................................................. 22V  
ADJ Pin Voltage ........................................................ 9V  
SHDN Pin Voltage ................................................... 22V  
(Only for MSOP, TO-220, DD-PAK Packages).... 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
OUT  
OUT  
1
2
3
4
8
7
6
5
IN  
OUT  
OUT  
SENSE/ADJ*  
GND  
1
2
3
4
8 IN  
7 IN  
6 SHDN  
5 GND  
IN  
9
9
SENSE/ADJ*  
GND  
SHDN  
GND  
MS8E PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
T
JMAX  
= 125°C, θ = 60°C/W, θ = 10°C/W  
JA JC  
8-LEAD (3mm × 3mm) PLASTIC DFN  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
*PIN 3 = SENSE FOR LT1965-1.5/LT1965-1.8/LT1965-2.5/LT1965-3.3  
*PIN 3 = ADJ FOR LT1965  
T
= 125°C, θ = 65°C/W, θ = 3°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
*PIN 3 = SENSE FOR LT1965-1.5/LT1965-1.8/LT1965-2.5/LT1965-3.3  
*PIN 3 = ADJ FOR LT1965  
FRONT VIEW  
FRONT VIEW  
5
4
3
2
1
SENSE/ADJ*  
OUT  
5
4
3
2
1
SENSE/ADJ*  
OUT  
TAB IS  
GND  
TAB IS  
GND  
GND  
GND  
IN  
IN  
SHDN  
SHDN  
Q PACKAGE  
5-LEAD PLASTIC DD-PAK  
T PACKAGE  
5-LEAD PLASTIC TO-220  
T
= 125°C, θ = 50°C/W, θ = 3°C/W  
T
= 125°C, θ = 30°C/W, θ = 3°C/W  
JA JC  
JMAX  
JA  
JC  
JMAX  
*PIN 5 = SENSE FOR LT1965-1.5/LT1965-1.8/LT1965-2.5/LT1965-3.3  
*PIN 5 = ADJ FOR LT1965  
*PIN 5 = SENSE FOR LT1965-1.5/LT1965-1.8/LT1965-2.5/LT1965-3.3  
*PIN 5 = ADJ FOR LT1965  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LCXW  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT1965EDD#PBF  
LT1965EDD#TRPBF  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT1965IDD#PBF  
LT1965IDD#TRPBF  
LCXW  
LT1965EDD-1.5#PBF  
LT1965IDD-1.5#PBF  
LT1965EDD-1.8#PBF  
LT1965IDD-1.8#PBF  
LT1965EDD-2.5#PBF  
LT1965IDD-2.5#PBF  
LT1965EDD-3.3#PBF  
LT1965IDD-3.3#PBF  
LT1965EDD-1.5#TRPBF  
LT1965IDD-1.5#TRPBF  
LT1965EDD-1.8#TRPBF  
LT1965IDD-1.8#TRPBF  
LT1965EDD-2.5#TRPBF  
LT1965IDD-2.5#TRPBF  
LT1965EDD-3.3#TRPBF  
LT1965IDD-3.3#TRPBF  
LDKW  
LDKW  
LDKY  
LDKY  
LDMB  
LDMB  
LDMD  
LDMD  
1965fa  
2
LT1965 Series  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1965EMS8E#PBF  
LT1965IMS8E#PBF  
LT1965EMS8E-1.5#PBF  
LT1965IMS8E-1.5#PBF  
LT1965EMS8E-1.8#PBF  
LT1965IMS8E-1.8#PBF  
LT1965EMS8E-2.5#PBF  
LT1965IMS8E-2.5#PBF  
LT1965EMS8E-3.3#PBF  
LT1965IMS8E-3.3#PBF  
LT1965EQ#PBF  
TAPE AND REEL  
PART MARKING*  
LTCXX  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic DD-PAK  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT1965EMS8E#TRPBF  
LT1965IMS8E#TRPBF  
LTCXX  
LT1965EMS8E-1.5#TRPBF LTDKX  
LT1965IMS8E-1.5#TRPBF LTDKX  
LT1965EMS8E-1.8#TRPBF LTDKZ  
LT1965IMS8E-1.8#TRPBF LTDKZ  
LT1965EMS8E-2.5#TRPBF LTDMC  
LT1965IMS8E-2.5#TRPBF LTDMC  
LT1965EMS8E-3.3#TRPBF LTDMF  
LT1965IMS8E-3.3#TRPBF LTDMF  
LT1965EQ#TRPBF  
LT1965Q  
LT1965IQ#PBF  
LT1965IQ#TRPBF  
LT1965Q  
LT1965EQ-1.5#PBF  
LT1965IQ-1.5#PBF  
LT1965EQ-1.8#PBF  
LT1965IQ-1.8#PBF  
LT1965EQ-2.5#PBF  
LT1965IQ-2.5#PBF  
LT1965EQ-3.3#PBF  
LT1965IQ-3.3#PBF  
LT1965ET#PBF  
LT1965EQ-1.5#TRPBF  
LT1965IQ-1.5#TRPBF  
LT1965EQ-1.8#TRPBF  
LT1965IQ-1.8#TRPBF  
LT1965EQ-2.5#TRPBF  
LT1965IQ-2.5#TRPBF  
LT1965EQ-3.3#TRPBF  
LT1965IQ-3.3#TRPBF  
LT1965ET#TRPBF  
LT1965Q-1.5  
LT1965Q-1.5  
LT1965Q-1.8  
LT1965Q-1.8  
LT1965Q-2.5  
LT1965Q-2.5  
LT1965Q-3.3  
LT1965Q-3.3  
LT1965T  
LT1965IT#PBF  
LT1965IT#TRPBF  
LT1965T  
LT1965ET-1.5#PBF  
LT1965IT-1.5#PBF  
LT1965ET-1.8#PBF  
LT1965IT-1.8#PBF  
LT1965ET-2.5#PBF  
LT1965IT-2.5#PBF  
LT1965ET-3.3#PBF  
LT1965IT-3.3#PBF  
LT1965ET-1.5#TRPBF  
LT1965IT-1.5#TRPBF  
LT1965ET-1.8#TRPBF  
LT1965IT-1.8#TRPBF  
LT1965ET-2.5#TRPBF  
LT1965IT-2.5#TRPBF  
LT1965ET-3.3#TRPBF  
LT1965IT-3.3#TRPBF  
LT1965T-1.5  
LT1965T-1.5  
LT1965T-1.8  
LT1965T-1.8  
LT1965T-2.5  
LT1965T-2.5  
LT1965T-3.3  
LT1965T-3.3  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1965fa  
3
LT1965 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage (Notes 4, 12)  
I
I
= 0.5A  
= 1.1A  
1.65  
1.8  
V
V
LOAD  
LOAD  
l
l
l
l
l
l
2.3  
Regulated Output Voltage (Note 5)  
LT1965-1.5, V = 2.1V, I  
LT1965-1.5, 2.5 < V < 20V, 1mA < I  
= 1mA  
LOAD  
1.477  
1.455  
1.5  
1.5  
1.523  
1.545  
V
V
IN  
< 1.1A  
< 1.1A  
< 1.1A  
< 1.1A  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
LT1965-1.8, V = 2.3V, I  
LT1965-1.8, 2.8 < V < 20V, 1mA < I  
= 1mA  
LOAD  
1.773  
1.746  
1.8  
1.8  
1.827  
1.854  
V
V
IN  
IN  
LT1965-2.5, V = 3V, I  
LT1965-2.5, 3.5 < V < 20V, 1mA < I  
= 1mA  
2.462  
2.425  
2.5  
2.5  
2.538  
2.575  
V
V
IN  
LOAD  
IN  
LT1965-3.3, V = 3.8V, I  
LT1965-3.3, 4.3 < V < 20V, 1mA < I  
= 1mA  
LOAD  
3.25  
3.201  
3.3  
3.3  
3.35  
3.399  
V
V
IN  
IN  
ADJ Pin Voltage (Notes 4, 5)  
Line Regulation  
V
= 2.1V, I  
= 1mA  
1.182  
1.164  
1.2  
1.2  
1.218  
1.236  
V
V
IN  
LOAD  
2.3V < V < 20V, 1mA < I  
< 1.1A  
IN  
LOAD  
l
l
l
l
l
LT1965-1.5, ΔV = 2.1V to 20V, I  
= 1mA  
3.5  
4
4.5  
5.5  
3
9
10  
11.5  
16  
8
mV  
mV  
mV  
mV  
mV  
IN  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LT1965-1.8, ΔV = 2.3V to 20V, I  
= 1mA  
LT1965-2.5, ΔV = 3V to 20V, I  
= 1mA  
LT1965-3.3, ΔV = 3.8V to 20V, I  
= 1mA  
LT1965,  
ΔV = 2.1V to 20V, I  
= 1mA (Note 4)  
IN  
Load Regulation  
LT1965-1.5, V = 2.5V, ΔI  
= 1mA to 1.1A  
= 1mA to 1.1A  
5.25  
6.25  
8.75  
11.5  
4.25  
0.055  
0.12  
0.21  
0.31  
10  
20  
mV  
mV  
IN  
LOAD  
LOAD  
l
l
l
l
l
l
l
l
l
LT1965-1.5, V = 2.5V, ΔI  
IN  
LT1965-1.8, V = 2.8V, ΔI  
= 1mA to 1.1A  
= 1mA to 1.1A  
12  
24  
mV  
mV  
IN  
LOAD  
LOAD  
LT1965-1.8, V = 2.8V, ΔI  
IN  
LT1965-2.5, V = 3.5V, ΔI  
= 1mA to 1.1A  
= 1mA to 1.1A  
16.5  
33  
mV  
mV  
IN  
LOAD  
LOAD  
LT1965-2.5, V = 3.5V, ΔI  
IN  
LT1965-3.3, V = 4.3V, ΔI  
= 1mA to 1.1A  
= 1mA to 1.1A  
22  
44  
mV  
mV  
IN  
LOAD  
LOAD  
LT1965-3.3, V = 4.3V, ΔI  
IN  
LT1965,  
LT1965,  
V
V
= 2.3V, ΔI  
= 2.3V, ΔI  
= 1mA to 1.1A (Note 4)  
= 1mA to 1.1A (Note 4)  
8
16  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
Dropout Voltage  
= V  
I
I
= 1mA  
= 1mA  
0.08  
0.14  
V
V
LOAD  
LOAD  
V
IN  
OUT(NOMINAL)  
(Notes 6, 7, 12)  
I
I
= 100mA  
= 100mA  
0.175  
0.28  
V
V
LOAD  
LOAD  
I
I
= 500mA  
= 500mA  
0.25  
0.36  
V
V
LOAD  
LOAD  
I
I
= 1.1A  
= 1.1A  
0.36  
0.49  
V
V
LOAD  
LOAD  
l
l
l
l
l
GND Pin Current  
I
I
I
I
I
= 0mA  
0.5  
0.6  
2.2  
8.2  
21  
1.1  
1.5  
5.5  
20  
mA  
mA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
+ 1V  
OUT(NOMINAL)  
= 1mA  
IN  
(Notes 6, 8)  
= 100mA  
= 500mA  
= 1.1A  
40  
Output Voltage Noise  
C
OUT  
= 10μF, I  
= 1.1A, BW = 10Hz to 100kHz  
40  
μV  
RMS  
LOAD  
ADJ Pin Bias Current (Notes 4, 9)  
Shutdown Threshold  
1.3  
4.5  
2
μA  
l
l
V
V
= Off to On  
= On to Off  
0.85  
0.45  
V
V
OUT  
OUT  
0.2  
57  
SHDN Pin Current (Note 10)  
V
SHDN  
V
SHDN  
= 0V  
= 20V  
0.01  
5.5  
1
10  
μA  
μA  
Quiescent Current in Shutdown  
Ripple Rejection  
V
IN  
= 6V, V  
= 0V  
0.01  
75  
1
μA  
dB  
SHDN  
V
– V  
= 1.5V (AVG), V  
= 0.5V  
,
IN  
OUT  
RIPPLE  
P-P  
f
= 120Hz, I  
= 0.75A  
LOAD  
RIPPLE  
1965fa  
4
LT1965 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Current Limit  
V
IN  
V
IN  
= 7V, V  
= V  
= 0  
2.4  
A
A
OUT  
OUT(NOMINAL)  
l
1.2  
+ 1V, ΔV  
= -0.1V (Note 6)  
OUT  
Input Reverse Leakage Current  
Reverse Output Current (Note 11)  
V
= –20V, V  
= 0  
OUT  
1
mA  
IN  
LT1965-1.5, V  
LT1965-1.8, V  
LT1965-2.5, V  
LT1965-3.3, V  
= 1.5V, V = 0  
275  
275  
275  
275  
175  
525  
525  
525  
525  
400  
μA  
μA  
μA  
μA  
μA  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
IN  
IN  
= 1.8V, V = 0  
= 2.5V, V = 0  
= 3.3V, V = 0  
LT1965 (Note 4), V  
= 1.2V, V = 0  
IN  
OUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
2.5V. The external resistor divider adds 300μA of output DC load current.  
This external current is not factored into GND pin current.  
Note 7: Dropout voltage is the minimum input-to-output voltage  
differential needed to maintain regulation at a specified output current. In  
Note 2: Absolute maximum input to output differential voltage is not  
achievable with all combinations of rated IN pin and OUT pin voltages.  
With the IN pin at 22V, the OUT pin may not be pulled below 0V. The total  
measured voltage from IN to OUT must not exceed 22V.  
dropout, the output voltage equals: (V – V  
)
IN  
DROPOUT  
Note 8: GND pin current is tested with V = V  
+ 1V and a  
IN  
OUT(NOMINAL)  
current source load. GND pin current increases slightly in dropout. For  
the fixed output versions, an internal resistor divider will typically add  
100μA to the GND pin current. See GND pin current curves in the Typical  
Performance Characteristics section.  
Note 3: The LT1965 regulators are tested and specified under pulse load  
conditions such that T T . The LT1965E regulators are 100% tested  
J
A
at T = 25°C. Performance at –40°C and 125°C is assured by design,  
A
Note 9: ADJ pin bias current flows into the ADJ pin.  
Note 10: SHDN pin current flows into the SHDN pin.  
Note 11: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out of the GND pin.  
Note 12: For the LT1965, LT1965-1.5 and LT1965-1.8, the minimum  
input voltage specification limits the dropout voltage under some output  
voltage/load conditions.  
Note 13: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
characterization, and correlation with statistical process controls. The  
LT1965I regulators are guaranteed over the full –40°C to 125°C operating  
junction temperature range.  
Note 4: The LT1965 adjustable version is tested and specified for these  
conditions with the ADJ connected to the OUT pin.  
Note 5: Maximum junction temperature limits operating conditions. The  
regulated output voltage specification does not apply for all possible  
combinations of input voltage and output current. Limit the output current  
range if operating at the maximum input voltage. Limit the input-to-output  
voltage differential if operating at the maximum output current.  
Note 6: To satisfy minimum input voltage requirements, the LT1965  
adjustable version is tested and specified for these conditions with an  
external resistor divider (bottom 4.02k, top 4.32k) for an output voltage of  
1965fa  
5
LT1965 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
T
= 125°C  
= 25°C  
T
= 125°C  
I
I
= 1.1A  
J
J
L
= 500mA  
T
= 25°C  
L
J
T
J
I
= 100mA  
= 1mA  
L
I
L
0
0
0
0
0.2  
0.6  
0.8  
1
1.2  
0.4  
0
0.2  
0.6  
0.8  
1
1.2  
–50 –25  
0
25  
50  
75 100 125  
0.4  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
1965 G01  
1965 G02  
1965 G03  
Quiescent Current  
LT1965-1.5 Output Voltage  
LT1965-1.8 Output Voltage  
1.522  
1.517  
1.512  
1.507  
1.502  
1.497  
1.492  
1.487  
1.482  
1.477  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.827  
1.821  
1.815  
1.809  
1.803  
1.797  
1.791  
1.785  
1.779  
1.773  
I
= 1mA  
V
= 6V  
I = 1mA  
L
L
IN  
L
R
=
, I = 0  
L
V
= V  
IN  
SHDN  
LT1965-1.5/-1.8/-2.5/-3.3  
LT1965  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1965 G05  
1965 G04  
1965 G06  
LT1965-2.5 Output Voltage  
LT1965-3.3 Output Voltage  
LT1965 ADJ Pin Voltage  
2.540  
2.532  
2.524  
2.516  
2.508  
2.500  
2.492  
2.484  
2.476  
2.468  
2.460  
3.350  
3.340  
3.330  
3.320  
3.310  
3.300  
3.290  
3.280  
3.270  
3.260  
3.250  
1.218  
1.214  
1.210  
1.206  
1.202  
1.198  
1.194  
1.190  
1.186  
1.182  
I
= 1mA  
I
L
= 1mA  
I
L
= 1mA  
L
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1965 G07  
1965 G08  
1965 G09  
1965fa  
6
LT1965 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1965-1.5 Quiescent Current  
LT1965-1.8 Quiescent Current  
LT1965-2.5 Quiescent Current  
10  
8
5
4
3
2
1
0
5
4
3
2
1
0
T
= 25°C  
= ∞  
T
= 25°C  
= ∞  
T
= 25°C  
= ∞  
J
L
J
L
J
L
R
R
R
6
4
2
V
V
= V  
IN  
V
SHDN  
= 0V  
6
SHDN  
V
V
= V  
SHDN  
IN  
V
= V  
9
SHDN  
IN  
= 0V  
6
= 0V  
7
SHDN  
SHDN  
0
0
1
2
3
4
5
7
8
10  
0
1
2
3
4
5
7
8
9
10  
0
1
2
3
4
5
6
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1965 G12  
1965 G11  
1965 G10  
LT1965-1.5 GND Pin Current  
(Light Load)  
LT1965-3.3 Quiescent Current  
LT1965 Quiescent Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
8
5
4
3
2
1
0
T
= 25°C  
= 4.02k  
T
= 25°C  
L
T
= 25°C  
= V  
J
L
J
J
R
R
= ∞  
V
SHDN  
IN  
*FOR V  
= 1.5V  
OUT  
6
V
SHDN  
= V  
IN  
4
R
R
= 30Ω, I = 50mA*  
L
L
= 150Ω, I = 10mA*  
L L  
2
V
= 0V  
6
SHDN  
V
7
= V  
IN  
SHDN  
R
L
= 1.5k, I = 1mA*  
L
V
SHDN  
= 0V  
0
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
4
5
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1965 G14  
1965 G13  
1965 G15  
LT1965-1.5 GND Pin Current  
(Heavy Load)  
LT1965-1.8 GND Pin Current  
(Light Load)  
LT1965-1.8 GND Pin Current  
(Heavy Load)  
5
4
3
2
1
0
25  
20  
15  
10  
5
25  
20  
15  
10  
5
T
J
SHDN  
= 25°C  
= V  
T
= 25°C  
= V  
T
J
SHDN  
= 25°C  
= V  
J
V
V
V
IN  
SHDN  
IN  
IN  
*FOR V  
OUT  
= 1.8V  
*FOR V  
= 1.8V  
*FOR V  
OUT  
= 1.5V  
OUT  
R
= 1.363Ω, I = 1.1A*  
L
R
L
= 1.636Ω, I = 1.1A*  
L
L
R
= 3.6Ω, I = 500mA*  
L
R
= 36Ω, I = 50mA*  
L
L
L
R
= 3Ω, I = 500mA*  
L
R
= 180Ω, I = 10mA*  
L
L
L
R
= 18Ω, I = 100mA*  
L
L
R
= 1.8k, I = 1mA*  
L
L
R
= 15Ω, I = 100mA*  
L
L
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1965 G17  
1965 G18  
1965 G16  
1965fa  
7
LT1965 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1965-2.5 GND Pin Current  
(Light Load)  
LT1965-2.5 GND Pin Current  
(Heavy Load)  
LT1965-3.3 GND Pin Current  
(Light Load)  
25  
20  
15  
10  
5
12  
10  
8
12  
10  
8
T
= 25°C  
= V  
T
= 25°C  
= V  
T
= 25°C  
= V  
J
J
J
V
V
V
SHDN  
IN  
SHDN  
IN  
SHDN  
IN  
*FOR V  
= 2.5V  
*FOR V  
= 3.3V  
*FOR V  
= 2.5V  
OUT  
OUT  
OUT  
R
= 2.272Ω, I = 1.1A*  
L
L
6
6
R
= 5Ω, I = 500mA*  
L
L
R
= 330Ω, I = 10mA*  
L
4
L
4
R
= 250Ω, I = 10mA*  
L
L
R
= 3.3k, I = 1mA*  
L
R
L
= 2.5k, I = 1mA*  
L
L
R
= 66Ω, I = 50mA*  
L
R
L
= 50Ω, I = 50mA*  
2
L
2
L
R
5
= 25Ω, I = 100mA*  
L
L
0
0
0
0
1
2
3
4
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1965 G20  
1965 G21  
1965 G19  
LT1965-3.3 GND Pin Current  
(Heavy Load)  
LT1965 GND Pin Current  
(Light Load)  
LT1965 GND Pin Current  
(Heavy Load)  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
V
= 25°C  
= V  
T
V
= 25°C  
= V  
T
= 25°C  
= V  
J
J
J
V
SHDN  
IN  
SHDN  
IN  
SHDN  
IN  
*FOR V  
= 3.3V  
*FOR V  
= 1.2V  
*FOR V  
= 1.2V  
OUT  
OUT  
OUT  
R
= 24Ω, I = 50mA*  
L
L
R
L
= 3Ω, I = 1.1A*  
L
R
= 1.091Ω, I = 1.1A*  
L
L
R
R
= 120Ω, I = 10mA*  
L
L
L
R
L
= 6.6Ω, I = 500mA*  
L
R
= 2.4Ω, I = 500mA*  
L
L
= 1.2k, I = 1mA*  
L
R
L
= 33Ω, I = 100mA*  
L
R = 12Ω, I = 100mA*  
L L  
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1965 G24  
1965 G22  
1965 G23  
GND Pin Current vs ILOAD  
SHDN Pin Threshold  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25.0  
22.5  
20.0  
17.5  
15.0  
12.5  
10.0  
7.50  
5.00  
2.50  
0
V
IN  
= V  
+ 1V  
OUT(NOMINAL)  
OFF TO ON  
ON TO OFF  
–50 –25  
0
25  
50  
75 100 125  
0
0.2  
0.6  
0.8  
1.0  
1.2  
0.4  
TEMPERATURE (°C)  
LOAD CURRENT (A)  
1965 G26  
1965 G09  
1965fa  
8
LT1965 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
SHDN Pin Input Current  
SHDN Pin Input Current  
ADJ Pin Bias Current  
6
5
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 20V  
SHDN  
4
3
2
1
0
0
2
4
6
8
10 12 14 16 18 20  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
SHDN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1965 G11  
1965 G12  
1965 G13  
Current Limit vs Temperature  
Reverse Output Current  
Current Limit vs VIN – VOUT  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6
5
4
3
2
1
0
ΔV  
OUT  
= 100mV  
V
OUT  
= 7V  
= 0V  
T
= 25°C  
= 0V  
IN  
J
IN  
V
V
V
V
LT1965  
= V  
= V  
(LT1965)  
OUT  
OUT  
ADJ  
SENSE  
T = –50°C  
J
(LT1965-1.5/-1.8/-2.5/-3.3)  
CURRENT FLOWS INTO  
OUTPUT PIN  
T = 25°C  
J
T = 125°C  
J
LT1965-1.5  
LT1965-1.8  
LT1965-2.5  
LT1965-3.3  
0
2
4
6
8
10 12 14 16 18 20  
–50 –25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
8
9
INPUT/OUTPUT DIFFERENTIAL (V)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
1965 G30  
1965 G15  
1965 G32  
Ripple Rejection vs Frequency  
Reverse Output Current  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
V
V
V
V
V
V
= 0V  
IN  
= 1.2V (LT1965)  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1.5V (LT1965-1.5)  
= 1.8V (LT1965-1.8)  
= 2.5V (LT1965-2.5)  
= 3.3V (LT1965-3.3)  
LT1965-1.5/-1.8/-2.5/-3.3  
LT1965  
I
= 0.75A  
OUT  
L
C
= 10μF CERAMIC  
V
= V  
IN  
OUT(NOMINAL)  
+ 1V + 50mV  
RIPPLE  
RMS  
10  
100  
1k  
10k  
100k  
1M  
–50 –25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1965 G34  
1965 G33  
1965fa  
9
LT1965 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Ripple Rejection vs Temperature  
LT1965 Minimum Input Voltage  
Load Regulation  
100  
90  
0
–5  
2.5  
2.0  
1.5  
1.0  
0.5  
0
LT1965-1.5  
LT1965  
I
= 1.1A  
L
–10  
–15  
–20  
–25  
–30  
LT1965-1.8  
80  
I = 500mA  
L
I
= 100mA  
LT1965-2.5  
LT1965-3.3  
L
70  
60  
V
= V  
+ 1V  
OUT(NOMINAL)  
IN  
I
= 0.75A  
(LT1965-1.5/-1.8/-2.5/-3.3)  
V = 2.3V (LT1965)  
IN  
L
V
= V  
+ 1V + 0.5  
IN  
OUT(NOMINAL)  
P-P  
RIPPLE AT f = 120Hz  
–50 –25 25  
TEMPERATURE (°C)  
ΔI = 1mA TO 1.1A  
L
–50 –25  
0
25  
50  
75 100 125  
0
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1965 G35  
1965 G37  
1965 G36  
RMS Output Noise vs Load  
Current (10Hz to 100kHz)  
LT1965-1.8 10Hz to 100kHz  
Output Noise  
Output Noise Spectral Density  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.00  
0.10  
0.01  
C
I
= 10μF  
C
I
= 10μF  
OUT  
L
OUT  
L
= 1.1A  
= 1.1A  
LT1965-2.5  
LT1965-1.5  
LT1965-3.3  
LT1965-2.5  
LT1965-1.8  
V
LT1965-3.3  
OUT  
100μV/DIV  
LT1965  
10k  
LT1965-1.8  
LT1965  
1965 G40  
LT1965-1.5  
400μs/DIV  
10  
100  
1k  
100k  
0.0001 0.001  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
FREQUENCY (Hz)  
1965 G39  
1965 G38  
LT1965-2.5 SHDN Transient  
Response  
LT1965-3.3 Transient Response  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
100  
50  
V
OUT  
= 3.3V  
SHDN  
0
–50  
–100  
1.5  
V
C
C
= 4.3V  
IN  
IN  
= 10μF CERAMIC  
OUTPUT  
1.0  
0.5  
0.0  
= 10μF CERAMIC  
OUT  
0
10 20 30 40 50 60 70 80  
0
10 20 30 40 50 60 70 80 90 100  
TIME (μs)  
TIME (μs)  
1965 G42  
1965 G41  
V
C
R
= 3.3V  
IN  
OUT  
L
= 10μF CERAMIC  
= 2.5k, I = 1mA FOR V  
= 2.5V  
L
OUT  
1965fa  
10  
LT1965 Series  
PIN FUNCTIONS  
(DFN/MSOP/DD-PAK/TO-220)  
OUT (Pins 1, 2 / 1, 2 / 4 / 4): Output. This pin supplies  
power to the load. Use a minimum output capacitor of  
10μF to prevent oscillations. Large load transient applica-  
tions require larger output capacitors to limit peak volt-  
age transients. See the Applications Information section  
for more information on output capacitance and reverse  
output characteristics.  
ADJ (Pin 3 / 3 / 5 / 5): Adjust. This pin is the input to the  
error amplifier. It has a typical bias current of 1.3μA that  
flows into the pin. The ADJ pin voltage is 1.20V referenced  
to ground.  
GND (Pins 4, 5 / 4, 5 / 3 / 3): Ground. For the adjustable  
LT1965, connect the bottom of the resistor divider, setting  
output voltage, directly to GND for optimum regulation.  
SENSE (Pin 3 / 3 / 5 / 5): Sense. For fixed voltage ver-  
sionsoftheLT1965(LT1965-1.5/LT1965-1.8/LT1965-2.5/  
LT1965-3.3), the SENSE pin is the input to the error ampli-  
fier. Optimum regulation is obtained when the SENSE pin  
is connected to the OUT pin of the regulator. In critical ap-  
plications,smallvoltagedropsarecausedbytheresistance  
SHDN (Pin 6 / 6 / 1 / 1): Shutdown. Pulling the SHDN  
pin low puts the LT1965 into a low power state and turns  
the output off. Drive the SHDN pin with either logic or an  
open collector/drain with a pull-up resistor. The resistor  
supplies the pull-up current to the open collector/drain  
logic, normally several microamperes and the SHDN pin  
current, typically less than 5.5μA. If unused, connect the  
(R ) of PCB traces between the regulator and the load.  
P
These drops may be eliminated by connecting the SENSE  
pin to the output at the load as shown in Figure 1 (Kelvin  
Sense Connection). Note that the voltage drop across  
the external PCB traces will add to the dropout voltage  
of the regulator. The SENSE pin bias current is 100μA at  
the nominal rated output voltage. The SENSE pin can be  
pulled below ground (as in a dual supply system where  
the regulator load is returned to a negative supply) while  
still allowing the device to start and operate.  
SHDN pin to V . The SHDN pin cannot be driven below  
IN  
GND unless it is tied to the IN pin. If the SHDN pin is  
driven below GND while IN is powered, the output will  
turn on. SHDN pin logic cannot be referenced to a nega-  
tive supply rail.  
IN (Pins 7, 8 / 7, 8 / 2 / 2): Input. This pin supplies power  
tothedevice. TheLT1965requiresabypasscapacitoratIN  
if located more than six inches from the main input filter  
capacitor. Include a bypass capacitor in battery-powered  
circuitsasabattery’soutputimpedancegenerallyriseswith  
frequency. A bypass capacitor in the range of 1μF to 10μF  
suffices. TheLT1965’sdesignwithstandsreversevoltages  
on the IN pin with respect to ground and the OUT pin. In  
the case of a reversed input, which occurs if a battery is  
plugged in backwards, the LT1965 behaves as if a diode  
is in series with its input. No reverse current flows into  
the LT1965 and no reverse voltage appears at the load.  
The device protects itself and the load.  
IN  
OUT  
LT1965  
R
P
LOAD  
SHDN SENSE  
+
+
V
IN  
GND  
R
P
1965 F01  
Figure 1. Kelvin Sense Connection  
Exposed Pad (Pin 9 / 9, DFN and MSOP Packages Only):  
Ground. Tie this pin directly to Pins 4 and 5 and the PCB  
ground. This pin provides enhanced thermal performance  
with its connection to the PCB ground. See the Applica-  
tions Information section for thermal considerations and  
calculating junction temperature.  
1965fa  
11  
LT1965 Series  
APPLICATIONS INFORMATION  
The LT1965 series are 1.1A low dropout regulators with  
shutdown. The devices are capable of supplying 1.1A at  
a typical dropout voltage of 310mV. The low operating  
quiescentcurrent(500μAfortheadjustableversion,600μA  
for the fixed voltage versions) drops to less than 1μA in  
shutdown. In addition to the low quiescent current, the  
LT1965 regulators incorporate several protection features  
thatmakesthemidealforuseinbattery-poweredsystems.  
Thedevicesprotectthemselvesagainstbothreverseinput  
andreverseoutputvoltages.Inbatterybackupapplications,  
if a backup battery holds up the output when the input is  
pulled to ground, the LT1965 performs like it has a diode  
in series with its output, preventing reverse current flow.  
Also, in dual supply applications where the regulator load  
is returned to a negative supply, the output can be pulled  
below ground by as much as 20V. The LT1965 still starts  
and operates normally in this situation.  
The adjustable device is tested and specified with the ADJ  
pin tied to the OUT pin for an output voltage of 1.20V.  
Specifications for output voltages greater than 1.20V are  
proportional to the ratio of the desired output voltage to  
1.20V: V /1.20V. For example, load regulation for an  
OUT  
outputcurrentchangeof1mAto1.1Aistypically4.25mV  
at V  
= 1.20V. At V  
= 5V, load regulation is:  
OUT  
OUT  
5V  
1.20V  
• –4.25mV = –17.71mV  
Output Capacitance  
The LT1965’s design is stable with a wide range of out-  
put capacitors. The ESR of the output capacitor affects  
stability, most notably with small capacitors. A minimum  
output capacitor of 10μF with an ESR of 3Ω or less is  
recommended to prevent oscillations. The LT1965 is a  
low quiescent current device and output load transient  
responseisafunctionofoutputcapacitance.Largervalues  
of output capacitance decrease the peak deviations and  
provide improved transient response for larger current  
changes.  
Adjustable Operation  
TheLT1965adjustableversionhasanoutputvoltagerange  
of 1.20V to 19.5V. Figure 2 illustrates that the ratio of two  
external resistors sets the output voltage. The device ser-  
vos the output to maintain the ADJ pin voltage at 1.20V  
referenced to ground. R1’s current equals 1.20V/R1. R2’s  
current equals R1’s current plus the ADJ pin bias current.  
The ADJ pin bias current, 1.3μA at 25°C, flows through  
R2 into the ADJ pin. Use the formula in Figure 2 to calcu-  
late output voltage. Linear Technology recommends that  
R1’s value be less than 12.1k to minimize output voltage  
errors due to the ADJ pin bias current. In shutdown, the  
output turns off and the divider current is zero. For curves  
depicting ADJ Pin Voltage vs Temperature and ADJ Pin  
Bias Current vs Temperature, see the Typical Performance  
Characteristics section.  
Ceramic capacitors require extra consideration. Manufac-  
turersmakeceramiccapacitorswithavarietyofdielectrics,  
eachwithdifferentbehavioracrosstemperatureandapplied  
voltage. The most common dielectrics used are specified  
with EIA temperature characteristic codes of Z5U, Y5V,  
X5R and X7R. The Z5U and Y5V dielectrics provide high  
C-V products in a small package at low cost, but exhibit  
strong voltage and temperature coefficients as shown in  
Figures 3 and 4. When used with a 5V regulator, a 16V  
10μF Y5V capacitor can exhibit an effective value as low  
as 1μF to 2μF for the DC bias applied and over the operat-  
ing temperature range. The X5R and X7R dielectrics yield  
much more stable characteristics and are more suitable  
for use as the output capacitor. The X7R type works over  
a wider temperature range and has better temperature  
stability whereas X5R is less expensive and is available in  
highervalues.CarestillmustbeexercisedwhenusingX5R  
and X7R capacitors; the X5R and X7R codes only specify  
operating temperature range and maximum capacitance  
change over temperature. Capacitance change due to DC  
bias with X5R and X7R capacitors is better than Y5V and  
IN  
OUT  
LT1965  
V
OUT  
+
V
R2  
R1  
IN  
R2  
R1  
ADJ  
VOUT =1.20V 1+  
+IADJ R2  
GND  
VADJ =1.20V  
1965 F02  
I
ADJ =1.3µA AT 25ºC  
OUTPUT RANGE =1.20V TO 19.5V  
Figure 2. Adjustable Operation  
Z5U capacitors, but can still be significant enough to drop  
1965fa  
12  
LT1965 Series  
APPLICATIONS INFORMATION  
capacitor values below appropriate levels. Capacitor DC  
bias characteristics tend to improve as component case  
size increases, but expected capacitance at operating  
voltages should be verified.  
Overload Recovery  
Like many IC power regulators, the LT1965 has safe oper-  
ating area protection. The safe area protection decreases  
currentlimitasinput-to-outputvoltageincreasesandkeeps  
the power transistor inside a safe operating region for all  
values of input-to-output voltage. The protective design  
provides some output current at all values of input-to-  
output voltage up to the device breakdown.  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or micro-  
phone works. For a ceramic capacitor, the stress can be  
induced by vibrations in the system or thermal transients.  
The resulting voltages produced can cause appreciable  
amounts of noise. A ceramic capacitor produced the trace  
in Figure 5 in response to light tapping from a pencil.  
Similar vibration induced behavior can masquerade as  
increased output voltage noise.  
When power is first applied, as input voltage rises, the  
output follows the input, allowing the regulator to start up  
into very heavy loads. During start-up, as the input voltage  
is rising, the input-to-output voltage differential is small,  
allowing the regulator to supply large output currents.  
With a high input voltage, a problem can occur wherein  
removal of an output short will not allow the output to  
40  
20  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
0
X5R  
X5R  
0
–20  
–20  
–40  
–40  
Y5V  
–60  
–60  
Y5V  
–80  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
–100  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
1965 F03  
1965 F04  
Figure 3. Ceramic Capacitor DC Bias Characteristics  
Figure 4. Ceramic Capacitor Temperature Characteristics  
1mV/DIV  
1965 F05  
1ms/DIV  
V
C
LOAD  
= 1.3V  
= 10μF  
= 0  
OUT  
OUT  
I
Figure 5. Noise Resulting from Tapping on a Ceramic Capacitor  
1965fa  
13  
LT1965 Series  
APPLICATIONS INFORMATION  
recover. Other regulators, such as the LT1083/LT1084/  
LT1085 family, also exhibit this phenomenon, so it is not  
unique to the LT1965.  
Thermal Considerations  
The LT1965’s maximum rated junction temperature of  
125°C limits its power handling capability. Two compon-  
ents comprise the power dissipated by the device:  
The problem occurs with a heavy output load when the  
input voltage is high and the output voltage is low. Com-  
mon situations occur immediately after the removal of a  
short-circuit or if the shutdown pin is pulled high after the  
input voltage has already been turned on. The load line for  
such a load may intersect the output current curve at two  
points.Ifthishappens,therearetwostableoutputoperating  
points for the regulator. With this double intersection, the  
input power supply may need to be cycled down to zero  
and brought up again to make the output recover.  
1. Output current multiplied by the input/output voltage  
differential: I  
• (V – V ), and  
OUT  
IN OUT  
2. GND pin current multiplied by the input voltage:  
• V  
I
GND  
IN  
GND pin current is determined using the GND Pin Current  
curvesintheTypicalPerformanceCharacteristicssection.  
Power dissipation equals the sum of the two components  
listed.  
The LT1965 regulators have internal thermal limiting that  
protect the device during overload conditions. For con-  
tinuous normal conditions, do not exceed the maximum  
junction temperature rating of 125°C. Carefully consider  
all sources of thermal resistance from junction to ambi-  
ent including other heat sources mounted in proximity to  
the LT1965.  
Output Voltage Noise  
The LT1965 regulators are designed to provide low output  
voltage noise over the 10Hz to 100kHz bandwidth while  
operatingatfullload.Outputvoltagenoiseisapproximately  
80nV/√Hz over this frequency bandwidth for the LT1965  
adjustable version. For higher output voltages (generated  
by using a resistor divider), the output voltage noise gains  
up accordingly.  
The underside of the LT1965 DFN package has exposed  
2
metal (4mm ) from the lead frame to the die attachment.  
Higher values of output voltage noise may be measured  
if care is not exercised with regard to circuit layout and  
testing.Crosstalkfromnearbytracescaninduceunwanted  
noiseontotheLT1965’soutput. Powersupplyripplerejec-  
tion must also be considered; the LT1965 regulators do  
not have unlimited power supply rejection and will pass a  
small portion of the input noise through to the output.  
The underside of the LT1965 MSOP package also has  
2
exposed metal (3.7mm ). Both packages allow heat to  
directly transfer from the die junction to the printed circuit  
board metal to control maximum operating junction tem-  
perature. The dual-in-line pin arrangement allows metal  
to extend beyond the ends of the package on the topside  
(component side) of a PCB. Connect this metal to GND  
on the PCB. The multiple IN and OUT pins of the LT1965  
also assist in spreading heat to the PCB.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
1965fa  
14  
LT1965 Series  
APPLICATIONS INFORMATION  
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 1/16" FR-4 board with one ounce  
copper.  
Calculating Junction Temperature  
Example: Given an output voltage of 2.5V, an input voltage  
range of 3.3V 5%, an output current range of 0mA to  
500mA and a maximum ambient temperature of 85°C,  
what will the maximum junction temperature be?  
Table 1. Measured Thermal Resistance for DFN Package  
Copper Area  
Topside* Backside  
Thermal Resistance  
The power dissipated by the device equals:  
Board Area (Junction-to-Ambient)  
2
2
2
2
2
2
2
2500mm  
1000mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
60°C/W  
62°C/W  
65°C/W  
68°C/W  
70°C/W  
I
• (V  
– V ) + I  
• V  
OUT(MAX)  
IN(MAX)  
OUT  
GND IN(MAX)  
2
2
2
2
2
2
where:  
225mm  
100mm  
2
I
= 500mA  
= 3.465V  
OUT(MAX)  
2
50mm  
V
*Device is mounted on topside  
IN(MAX)  
I
at (I = 500mA, V = 3.465V) = 8.2mA  
OUT IN  
GND  
Table 2. Measured Thermal Resistance for MSOP Package  
Copper Area  
Topside* Backside  
Thermal Resistance  
So,  
Board Area (Junction-to-Ambient)  
P = 500mA(3.465V – 2.5V) + 8.2mA(3.465V) = 0.511W  
2
2
2
2
2
2
2
2500mm  
1000mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
55°C/W  
57°C/W  
60°C/W  
65°C/W  
68°C/W  
2
2
2
2
2
Using a DFN package, the thermal resistance will be in  
the range of 60°C/W to 70°C/W depending on the cop-  
per area. So the junction temperature rise above ambient  
approximately equals:  
2
225mm  
100mm  
2
2
50mm  
*Device is mounted on topside  
0.511W • 65°C/W = 33.22°C  
Table 3. Measured Thermal Resistance for DD-PAK Package  
The maximum junction temperature equals the maximum  
ambienttemperatureplusthemaximumjunctiontempera-  
ture rise above ambient or:  
Copper Area  
Topside* Backside  
Thermal Resistance  
Board Area (Junction-to-Ambient)  
2
2
2
2
2
2500mm  
1000mm  
125mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
25°C/W  
30°C/W  
35°C/W  
2
2
2
T
= 85°C + 33.22°C = 118.22°C  
JMAX  
2
*Device is mounted on topside  
Measured Thermal Resistance for TO-220 Package  
Thermal Resistance (Junction-to-Case) = 3°C/W  
1965fa  
15  
LT1965 Series  
APPLICATIONS INFORMATION  
Protection Features  
The LT1965 adjustable version incurs no damage if the  
ADJ pin is pulled above or below ground by 9V. If the input  
is left open circuit or grounded, the ADJ pin performs  
like an open circuit when pulled below ground and like a  
large resistor (typically 5k up to 3V on the ADJ pin and  
then 1.5k up to 9V) in series with a diode when pulled  
above ground.  
The LT1965 regulators incorporate several protection  
features that makes them ideal for use in battery-powered  
circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
limiting and thermal limiting, the devices also protect  
against reverse input voltages, reverse output voltages  
and reverse output-to-input voltages.  
In situations where the ADJ pin connects to a resistor  
dividerthatwouldpulltheADJpinaboveits9Vclampvolt-  
age if the output is pulled high, the ADJ pin input current  
must be limited to less than 5mA. For example, a resistor  
divider is used to provide a regulated 1.5V output from the  
1.20V reference when the output is forced to 20V. The top  
resistor of the resistor divider must be chosen to limit the  
current into the ADJ pin to less than 5mA when the ADJ  
pin is at 9V. The 11V difference between the OUT and ADJ  
pins divided by the 5mA maximum current into the ADJ  
pin yields a minimum top resistor value of 2.2k.  
Current limit protection and thermal overload protection  
protect the device against current overload conditions  
at its output. For normal operation, do not exceed the  
maximum rated junction temperature of 125°C.  
Theinputofthedevicewithstandsreversevoltagesof22V.  
The LT1965 limits current flow to less than 1mA (typically  
less than 300μA) and no negative voltage appears at the  
output.Thedeviceprotectsbothitselfandtheloadagainst  
batteries that are plugged in backwards.  
The LT1965 incurs no damage if its output is pulled be-  
low ground. If the input is left open circuit or grounded,  
the output can be pulled below ground by 22V. For fixed  
voltage versions, the output will act like a large resistor,  
typically 5k or higher, limiting current flow to typically  
less than 300μA. For the adjustable version, the output  
acts like an open circuit and no current flows from the  
output. However, current flows in (but is limited by) the  
resistor divider that sets the output voltage. If the input  
is powered by a voltage source, the output sources cur-  
rent equal to its current limit capability and the LT1965  
protects itself by thermal limiting. In this case, grounding  
the SHDN pin turns off the device and stops the output  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage, or is left  
open circuit. Current flow back into the output follows the  
curve shown in Figure 6.  
If the LT1965’s IN pin is forced below the OUT pin or the  
OUT pin is pulled above the IN pin, input current typically  
drops to less than 2μA. This occurs if the LT1965 input is  
connected to a discharged (low voltage) battery and either  
abackupbatteryorasecondregulatorholdsuptheoutput.  
The state of the SHDN pin has no effect on the reverse  
output current if the output is pulled above the input.  
from sourcing current.  
6
T
= 25°C  
J
V
V
V
= 0V  
= V  
IN  
OUT  
OUT  
(LT1965)  
ADJ  
5
LT1965  
= V  
SENSE  
(LT195-1.5/-1.8/-2.5/-3.3)  
CURRENT FLOWS INTO  
OUTPUT PIN  
4
3
LT1965-1.5  
LT1965-1.8  
2
1
0
LT1965-2.5  
LT1965-3.3  
0
1
2
3
4
5
6
7
8
9
OUTPUT VOLTAGE (V)  
1965 F06  
Figure 6. Reverse Output Current  
1965fa  
16  
LT1965 Series  
TYPICAL APPLICATIONS  
Paralleling of Regulators for Higher Output Current  
R1  
0.01Ω  
3.3V  
2.2A  
IN  
OUT  
LT1965-3.3  
+
+
C1  
100μF  
C2  
22μF  
V
IN  
> 3.7V  
SHDN SENSE  
GND  
R2  
0.01Ω  
IN  
OUT  
ADJ  
R6  
6.65k  
1%  
LT1965  
SHDN  
SHDN  
R7  
4.02k  
1%  
GND  
R3  
2.2k  
R4  
2.2k  
R5  
10k  
8
3
2
+
1
1/2  
LT1366  
C3  
0.01μF  
4
1965 TA03  
1965fa  
17  
LT1965 Series  
PACKAGE DESCRIPTION  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD) DFN 1203  
4
1
0.25 ± 0.05  
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.05  
0.50 BSC  
2.38 ±0.10  
(2 SIDES)  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
MS8E Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1662)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
2.06 ± 0.102  
(.081 ± .004)  
0.889 ± 0.127  
(.035 ± .005)  
2.794 ± 0.102  
(.110 ± .004)  
1
8
7 6 5  
1.83 ± 0.102  
(.072 ± .004)  
5.23  
(.206)  
MIN  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
3.20 – 3.45  
(.126 – .136)  
4.90 ± 0.152  
(.193 ± .006)  
2.083 ± 0.102  
(.082 ± .004)  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
8
1
2
3
4
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
DETAIL “A”  
0.254  
0.18  
(.007)  
(.010)  
0° – 6° TYP  
SEATING  
PLANE  
GAUGE  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
0.53 ± 0.152  
(.021 ± .006)  
MSOP (MS8E) 0603  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR  
GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL  
NOT EXCEED 0.152mm (.006") PER SIDE  
1965fa  
18  
LT1965 Series  
PACKAGE DESCRIPTION  
Q Package  
5-Lead Plastic DD Pak  
(Reference LTC DWG # 05-08-1461)  
.390 – .415  
(9.906 – 10.541)  
.060  
.256  
.165 – .180  
(4.191 – 4.572)  
(1.524)  
(6.502)  
.045 – .055  
(1.143 – 1.397)  
15° TYP  
+.008  
.004  
.060  
(1.524)  
TYP  
–.004  
.060  
.059  
(1.499)  
TYP  
.183  
(1.524)  
(4.648)  
+0.203  
–0.102  
.330 – .370  
0.102  
(
)
(8.382 – 9.398)  
.095 – .115  
(2.413 – 2.921)  
.075  
(1.905)  
.067  
(1.702)  
BSC  
.050 ± .012  
(1.270 ± 0.305)  
.300  
(7.620)  
.013 – .023  
(0.330 – 0.584)  
+.012  
.143  
–.020  
.028 – .038  
(0.711 – 0.965)  
TYP  
+0.305  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
3.632  
Q(DD5) 0502  
(
)
–0.508  
.080  
.420  
.276  
.420  
.350  
.090  
.325  
.205  
.565  
.565  
.320  
.090  
.042  
.067  
.042  
RECOMMENDED SOLDER PAD LAYOUT  
.067  
NOTE:  
1. DIMENSIONS IN INCH/  
(MILLIMETER)  
RECOMMENDED SOLDER PAD LAYOUT  
FOR THICKER SOLDER PASTE APPLICATIONS  
2. DRAWING NOT TO SCALE  
T Package  
5-Lead Plastic TO-220 (Standard)  
(Reference LTC DWG # 05-08-1420)  
.165 – .180  
(4.191 – 4.572)  
.147 – .155  
(3.734 – 3.937)  
DIA  
.390 – .415  
(9.906 – 10.541)  
.045 – .055  
(1.143 – 1.397)  
.230 – .270  
(5.842 – 6.858)  
.570 – .620  
(14.478 – 15.748)  
.620  
(15.75)  
TYP  
.460 – .500  
(11.684 – 12.700)  
.330 – .370  
(8.382 – 9.398)  
.700 – .728  
(17.78 – 18.491)  
.095 – .115  
(2.413 – 2.921)  
SEATING PLANE  
.152 – .202  
(3.861 – 5.131)  
.155 – .195*  
(3.937 – 4.953)  
.260 – .320  
(6.60 – 8.13)  
.013 – .023  
(0.330 – 0.584)  
.067  
BSC  
.135 – .165  
(3.429 – 4.191)  
.028 – .038  
(0.711 – 0.965)  
(1.70)  
* MEASURED AT THE SEATING PLANE  
T5 (TO-220) 0801  
1965fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT1965 Series  
TYPICAL APPLICATION  
Adjustable Current Source  
R5, 0.01Ω  
LT1965  
LOAD  
IN  
OUT  
R1  
1k  
+
+
C1  
10μF  
C4  
10μF  
SHDN  
GND  
ADJ  
V
IN  
> 2.7V  
LT1004-1.2  
R4  
R6  
R8  
100k  
R2  
80.6k  
C3  
1μF  
2.2k 2.2k  
R3  
2k  
R7  
470Ω  
2
8
4
1
1/2  
LT1366  
1965 TA04  
3
+
C2  
3.3μF  
NOTE: ADJUST R1 FOR  
0A TO 1.1A CONSTANT-CURRENT  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
V : 4.2V to 30V, V  
LT1129  
LT1761  
LT1762  
LT1763  
700mA, Micropower, LDO  
= 3.8V, V = 0.40V, I = 50μA, I = 16μA;  
OUT(MIN) DO Q SD  
IN  
DD, SOT-223, S8, TO220-5 and TSSOP20 Packages  
100mA, Low Noise Micropower, LDO  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V = 1.22V, V = 0.30V, I = 20μA, I = < 1μA,  
IN  
OUT(MIN)  
RMS  
DO  
Q
SD  
Low Noise < 20μV  
, Stable with 1μF Ceramic Capacitors, ThinSOT™ Package  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 25μA, I = < 1μA,  
DO Q SD  
, MS8 Package  
IN  
OUT(MIN)  
Low Noise < 20μV  
RMS  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 30μA, I = < 1μA,  
DO Q SD  
, S8 Package  
IN  
OUT(MIN)  
Low Noise < 20μV  
RMS  
LT1764/  
LT1764A  
3A, Low Noise, Fast Transient Response,  
LDO  
V : 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = < 1μA, Low Noise  
IN  
OUT(MIN) DO Q SD  
< 40μV  
, “A” Version Stable with Ceramic Capacitors, DD and TO220-5 Packages  
RMS  
LTC1844  
150mA, Very Low Drop-Out LDO  
V : 1.6V to 6.5V, V  
= 1.25V, V = 0.08V, I = 35μA, I = < 1μA,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 60μV  
, ThinSOT™ Package  
RMS  
LT1962  
300mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.27V, I = 30μA, I = < 1μA,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 20μV  
, MS8 Package  
RMS  
LT1963/  
LT1963A  
1.5A, Low Noise, Fast Transient Response, V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = < 1μA,  
IN  
OUT(MIN) DO Q SD  
LDO  
Low Noise < 40μV  
, “A” Version Stable with Ceramic Capacitors;  
RMS  
DD, TO220-5, SOT-223 and S8 Packages  
LT3020  
LT3021  
LT3023  
LT3024  
LT3027  
LT3028  
100mA, Low Voltage V , V  
= 0.9V, V : 0.9V to 10V, V  
= 0.20V, V = 0.15V, I = 120μA, I = 3μA, DFN and  
DO Q SD  
DO IN(MIN)  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
LDO  
MS8 Packages  
500mA, Low Voltage V , V  
= 0.9V, V : 0.9V to 10V, V  
= 0.20V, V = 0.16V, I = 120μA, I = 3μA, DFN and  
DO Q SD  
DO IN(MIN)  
IN  
LDO  
S8 Packages  
Dual, 2x 100mA, Low Noise Micropower,  
LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 40μA, I = < 1μA, DFN and  
DO Q SD  
IN  
MS10 Packages  
Dual, 100mA/500mA, Low Noise  
Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 60μA, I = < 1μA, DFN and  
DO Q SD  
IN  
TSSOP Packages  
Dual, 2x 100mA, Low Noise Micropower,  
LDO with Independent Inputs  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 25μA, I = < 1μA,  
DO Q SD  
, DFN and MS10 Packages  
IN  
Low Noise < 20μV  
RMS  
Dual, 100mA/500mA, Low Noise  
Micropower, LDO with Independent Inputs Low Noise < 20μV  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 30μA, I = < 1μA,  
, DFN and TSSOP Packages  
IN  
OUT(MIN) DO Q SD  
RMS  
LT3080/  
LT3080-1  
1.1A Parallelable, Low Noise, Low Dropout 300mV Dropout Voltage (2-Supply Operation), Low Noise: 40μV  
, V : 1.2V to 36V, V  
:
RMS IN  
OUT  
Linear Regulator  
0V to 35.7V, Current-Based Reference with 1-Resistor V  
Set; Directly Parallelable (No Op  
OUT  
Amp Required), Stable with Ceramic Caps, TO-220, SOT-223, MSOP and 3mm × 3mm DFN  
Packages; LT3080-1 Version Has Integrated Internal Ballast Resistor  
ThinSOT is a trademark of Linear Technology Corporation  
1965fa  
LT 0408 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY