LT1970IFE#TRPBF [Linear]

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C;
LT1970IFE#TRPBF
型号: LT1970IFE#TRPBF
厂家: Linear    Linear
描述:

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C

放大器 光电二极管
文件: 总26页 (文件大小:382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1970  
500mA Power Op Amp with  
Adjustable Precision Current Limit  
FeaTures  
DescripTion  
The LT®1970 is a 500mA power op amp with precise  
externally controlled current limiting. Separate control  
voltages program the sourcing and sinking current limit  
sense thresholds with 2% accuracy. Output current may  
be boosted by adding external power transistors.  
n
500mA Minimum Output Current  
n
Independent Adjustment of Source and  
Sink Current Limits  
n
n
n
n
2% Current Limit Accuracy  
Operates with Single or Split Supplies  
Shutdown/Enable Control Input  
Open Collector Status Flags:  
The circuit operates with single or split power supplies  
from 5V to 36V total supply voltage. In normal operation,  
the input stage supplies and the output stage supplies are  
Sink Current Limit  
Source Current Limit  
+
connected (V to V and V to V ). To reduce power  
CC  
EE  
Thermal Shutdown  
+
dissipation it is possible to power the output stage (V ,  
V ) from independent, lower voltage rails. The amplifier is  
n
n
n
n
n
n
Fail Safe Current Limit and Thermal Shutdown  
1.6V/µs Slew Rate  
3.6MHz Gain Bandwidth Product  
Fast Current Limit Response: 2MHz Bandwidth  
Specified Temperature Range: –40°C to 85°C  
Available in a 20-Lead TSSOP Package  
unity-gain stable with a 3.6MHz gain bandwidth product  
and slews at 1.6V/µs. The current limit circuits operate  
witha2MHzresponsebetweentheVC orVC control  
inputs and the amplifier output.  
SRC  
SNK  
Open collector status flags signal current limit circuit  
activation, as well as thermal shutdown of the amplifier.  
An enable logic input puts the amplifier into a low power,  
high impedance output state when pulled low. Thermal  
shutdown and a 800mA fixed current limit protect the  
chip under fault conditions.  
applicaTions  
n
Automatic Test Equipment  
n
Laboratory Power Supplies  
n
Motor Drivers  
Thermoelectric Cooler Driver  
n
The LT1970 is packaged in a 20-lead TSSOP package with  
a thermally conductive copper bottom plate to facilitate  
heat sinking.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
AV = 2 Amplifier with Adjustable 500mA Full-Scale  
Current Limit and Fault Indication  
Current Limited Sinewave Into 10Ω Load  
V
LIMIT  
0V TO 5V  
15V  
15V  
3k  
4V  
2V  
V
LIMIT  
10 • R  
I
=
OUT(LIMIT)  
V
CC  
CS  
+
V
EN  
VC  
0V  
V
LOAD  
SRC  
VC  
V
IN  
+IN  
SNK  
–2V  
R
CS  
ISNK  
1Ω  
I
ISRC  
OUT  
1/4W  
TSD  
LT1970  
OUT  
+
SENSE  
SENSE  
V
LOAD  
VC  
VC  
CS  
= 4V  
= 2V  
1970 TA02  
R1  
10k  
20µs/DIV  
SRC  
SNK  
–IN  
COMMON  
V
EE  
R
= 1Ω  
R2  
10k  
–15V  
1970 TA01  
1970fe  
1
For more information www.linear.com/LT1970  
LT1970  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
Supply Voltage (V to V )..................................... 36V  
CC  
EE  
+
V
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
EE  
EE  
+
Positive High Current Supply (V )................... V to V  
CC  
V
+
21  
Negative High Current Supply(V ) ....................V to V  
Amplifier Output (OUT)..................................... V to V  
EE  
OUT  
3
TSD  
+
+
SENSE  
4
ISNK  
Current Sense Pins  
FILTER  
5
ISRC  
+
+
+
(SENSE , SENSE , FILTER)........................... V to V  
SENSE  
6
ENABLE  
COMMON  
Logic Outputs (ISRC, ISNK, TSD)....... COMMON to V  
CC  
V
7
CC  
Input Voltage (–IN, +IN)............ V – 0.3V to V + 36V  
EE  
EE  
–IN  
+IN  
8
VC  
SRC  
Input Current......................................................... 10mA  
9
VC  
SNK  
Current Control Inputs  
V
EE  
10  
V
EE  
(VC , VC )..............COMMON to COMMON + 7V  
SRC  
SNK  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
Enable Logic Input .............................. COMMON to V  
CC  
T
JMAX  
= 150°C, θ = 40°C/W (NOTE 8)  
JA  
EXPOSED PAD (PIN 21) IS CONNECTED TO V  
COMMON....................................................... V to V  
EE  
CC  
EE  
Output Short-Circuit Duration ......................... Indefinite  
Operating Temperature Range (Note 2)....–40°C to 85°C  
Specified Temperature Range (Note 3) .... –40°C to 85°C  
Maximum Junction Temperature.......................... 150°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
orDer inForMaTion  
LEAD FREE FINISH  
LT1970CFE#PBF  
LT1970IFE#PBF  
TAPE AND REEL  
LT1970CFE#TRPBF  
LT1970IFE#TRPBF  
PART MARKING*  
LT1970CFE  
PACKAGE DESCRIPTION  
20-Lead Plastic TSSOP  
20-Lead Plastic TSSOP  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT1970IFE  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. See Test Circuit for standard test conditions.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Op Amp Characteristics  
V
Input Offset Voltage  
200  
600  
1000  
1300  
µV  
µV  
µV  
OS  
l
l
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
l
l
l
Input Offset Voltage Drift (Note 4)  
Input Offset Current  
–10  
–100  
–600  
–4  
10  
µV/°C  
nA  
I
I
V
V
= 0V  
= 0V  
100  
OS  
CM  
Input Bias Current  
–160  
3
nA  
B
CM  
Input Noise Voltage  
0.1Hz to 10Hz  
1kHz  
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
15  
3
nV/√Hz  
n
i
1kHz  
pA/√Hz  
n
1970fe  
2
For more information www.linear.com/LT1970  
LT1970  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. See Test Circuit for standard test conditions.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R
Input Resistance  
Common Mode  
Differential Mode  
500  
100  
kΩ  
kΩ  
IN  
C
V
Input Capacitance  
Pin 8 and Pin 9 to Ground  
6
pF  
IN  
Input Voltage Range  
Typical  
Guaranteed by CMRR Test  
–14.5  
–12.0  
13.6  
12.0  
V
V
CM  
l
l
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
–12V < V < 12V  
92  
105  
dB  
CM  
+
l
l
l
l
V
V
V
V
= V = –5V, V = V = 3V to 30V  
90  
110  
90  
100  
130  
100  
130  
dB  
dB  
dB  
dB  
EE  
EE  
EE  
EE  
CC  
+
= V = –5V, V = 30V, V = 2.5V to 30V  
CC  
+
= V = –3V to 30V, V = V = 5V  
CC  
+
110  
= –30V, V = 2.5V to –30V, V = V = 5V  
CC  
A
Large-Signal Voltage Gain  
R = 1k, –12.5V < V < 12.5V  
OUT  
100  
75  
150  
120  
45  
V/mV  
V/mV  
VOL  
L
l
l
l
l
R = 100Ω, –12.5V < V  
< 12.5V  
80  
40  
V/mV  
V/mV  
L
OUT  
+
R = 10Ω, –5V < V  
< 5V, V = V = 8V  
20  
5
V/mV  
V/mV  
L
OUT  
V
V
Output Sat Voltage Low  
Output Sat Voltage High  
Output Short-Circuit Current  
V
OL  
= V  
– V  
OUT  
OL  
+
R = 100, V = V = 15V, V = V = 15V  
1.9  
0.8  
2.5  
2.3  
V
V
L
CC  
EE  
+
R = 10, V = V = 15V, V = V = 5V  
L
CC  
EE  
+
V
OH  
= V – V  
OUT  
OH  
+
l
R = 100, V = V = 15V, V = V = 15V  
1.7  
1.0  
V
V
L
CC  
EE  
+
R = 10, V = V = 15V, V = V = 5V  
L
CC  
EE  
I
Output Low, R  
= 0Ω  
= 0Ω  
500  
–1000  
800  
–800  
1200  
–500  
mA  
mA  
SC  
SENSE  
SENSE  
Output High, R  
SR  
Slew Rate  
–10V < V  
< 10V, R = 1k  
0.7  
11  
1.6  
V/µs  
kHz  
MHz  
µs  
OUT  
L
FPBW  
GBW  
Full Power Bandwidth  
Gain Bandwidth Product  
Settling Time  
V
= 10V  
(Note 5)  
PEAK  
OUT  
f = 10kHz  
0.01%, V  
3.6  
8
t
= 0V to 10V, A = 1, R = 1k  
S
OUT  
V
L
Current Sense Characteristics  
V
Minimum Current Sense Voltage  
VC  
= VC  
= 0V  
0.1  
0.1  
4
7
mV  
mV  
SENSE(MIN)  
SRC  
SNK  
l
l
l
10  
V
V
V
Current Sense Voltage 4% of Full Scale  
Current Sense Voltage 10% of Full Scale  
VC  
SRC  
VC  
SRC  
SRC  
= VC  
= VC  
= VC  
= 0.2V  
= 0.5V  
= 5V  
15  
45  
20  
50  
25  
55  
mV  
mV  
SENSE(4%)  
SENSE(10%)  
SENSE(FS)  
SNK  
SNK  
SNK  
Current Sense Voltage 100% of Full Scale VC  
490  
480  
500  
500  
510  
520  
mV  
mV  
l
l
l
l
I
I
I
I
Current Limit Control Input Bias Current  
VC , VC Pins  
SRC SNK  
–1  
–0.2  
0.1  
500  
500  
µA  
nA  
nA  
BI  
+
SENSE Input Current  
0V < (VC , VC ) < 5V  
–500  
–500  
SENSE  
FILTER  
SENSE  
SRC  
SNK  
FILTER Input Current  
0V < (VC , VC ) < 5V  
SRC SNK  
+
l
l
l
l
SENSE Input Current  
VC = VC  
= 0V  
–500  
200  
–300  
–25  
500  
300  
–200  
25  
nA  
nA  
nA  
nA  
SRC  
SRC  
SNK  
= 5V, VC  
VC  
= 0V  
250  
–250  
SNK  
SNK  
VC = 0V, VC  
= 5V  
SRC  
VC  
= VC  
= 5V  
SRC  
SRC  
SRC  
SNK  
SNK  
SNK  
Current Sense Change with Output Voltage VC  
= VC  
= 5V, 12.5V < V  
< 12.5V  
0.1  
%
OUT  
+
Current Sense Change with Supply Voltage VC  
= VC  
= 5V, 6V < (V , V ) < 18V  
0.05  
0.01  
0.05  
0.01  
%
%
%
%
CC  
+
2.5V < V < 18V, V = 18V  
CC  
–18V < (V , V ) < –2.5V  
EE  
–18V < V < –2.5V, V = 18V  
EE  
1970fe  
3
For more information www.linear.com/LT1970  
LT1970  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. See Test Circuit for standard test conditions.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2
MAX  
UNITS  
MHz  
Current Sense Bandwidth  
Resistance FILTER to SENSE  
l
R
750  
1000  
1250  
CSF  
Logic I/O Characteristics  
l
l
Logic Output Leakage ISRC, ISNK, TSD  
Logic Low Output Level  
V = 15V  
1
µA  
V
I = 5mA (Note 6)  
0.2  
25  
0.4  
Logic Output Current Limit  
Enable Logic Threshold  
mA  
V
l
l
l
l
l
V
0.8  
–1  
1.9  
2.5  
1
ENABLE  
ENABLE  
SUPPLY  
CC  
I
I
I
I
t
t
Enable Pin Bias Current  
µA  
mA  
mA  
mA  
µs  
+
Total Supply Current  
V
CC  
V
CC  
V
CC  
, V and V , V Connected  
7
3
13  
7
EE  
+
V
Supply Current  
, V and V , V Separate  
EE  
CC  
+
Supply Current Disabled  
Turn-On Delay  
, V and V , V Connected, V ≤ 0.8V  
ENABLE  
0.6  
10  
10  
1.5  
CC(STBY)  
ON  
EE  
(Note 7)  
(Note 7)  
Turn-Off Delay  
µs  
OFF  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device reli-  
ability and lifetime.  
Note 2: The LT1970C is guaranteed functional over the operating tempera-  
ture range of 40°C and 85°C.  
Note 4: This parameter is not 100% tested.  
Note 5: Full power bandwidth is calculated from slew rate measurements:  
FPBW = SR/(2 • π • V )  
P
Note 6: The logic low output level of pin TSD is guaranteed by correlating  
the output level of pin ISRC and pin ISNK over temperature.  
Note 7: Turn-on and turn-off delay are measured from V  
crossing  
ENABLE  
Note 3: The LT1970C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1970C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LT1970I is guaranteed to meet speci-  
fied performance from –40°C to 85°C.  
1.6V to the OUT pin at 90% of normal output voltage.  
Note 8: Thermal resistance varies depending upon the amount of PC board  
metal attached to the device. If the maximum dissipation of the package is  
exceeded, the device will go into thermal shutdown and be protected.  
Typical perForMance characTerisTics  
Total Supply Current  
vs Supply Voltage  
Warm-Up Drift VIO vs Time  
Input Bias Current vs VCM  
14  
12  
10  
8
6
4
–100  
–120  
–140  
–160  
–180  
–200  
–220  
–240  
–260  
V
= 15V  
S
+
I
+ I  
V
125°C  
25°C  
CC  
–I  
BIAS  
–55°C  
–55°C  
2
0
+I  
BIAS  
I
+ I  
V
EE  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
0V  
25°C  
TIME (100ms/DIV)  
1970 G01  
125°C  
0
2
4
6
8
10 12 14 16 18  
–15 –12 –9 –6 –3  
0
3
6
9
12 15  
SUPPLY VOLTAGE ( Vꢀ  
COMMON MODE INPUT VOLTAGE (V)  
1970 G03  
1970 G02  
1970fe  
4
For more information www.linear.com/LT1970  
LT1970  
Typical perForMance characTerisTics  
Open-Loop Gain and Phase  
Supply Current vs Supply Voltage  
vs Frequency  
Phase Margin vs Supply Voltage  
70  
60  
50  
40  
100  
90  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
+
A
= –1  
V
F
I
V
R = R = 1k  
G
I
T
A
= 25°C  
V
80  
V
= V /2  
GAIN  
PHASE  
OUT  
S
70  
I
VCC  
30  
20  
60  
50  
I
VEE  
10  
0
40  
30  
20  
10  
0
–10  
–20  
–30  
T
= 25°C  
CC  
A
+
V
= V = –V = –V  
EE  
0
100  
1k  
10k 100k  
1M  
10M 100M  
0
4
8
12 16 20 24  
28 32  
TOTAL SUPPLY VOLTAGE (V)  
36  
2
4
6
8
10 12  
SUPPLY VOLTAGE ( Vꢀ  
20  
14 16 18  
FREQUENCY (Hz)  
1970 G05  
1870 G04  
1970 G06  
Gain Bandwidth vs Supply Voltage  
Gain vs Frequency  
Gain vs Frequency with CLOAD  
10  
0
10  
0
5
V
A
=
= 1  
1ꢀV  
A
= 1  
A
= 100  
S
V
V
V
30nF  
10nF  
4
3
1nF  
V
= 1ꢀV  
S
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
V
=
ꢀV  
S
0nF  
2
1
0
10k  
100k  
1M  
10M  
0
4
8
12 16 20 24 28 32 36  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL SUPPLY VOLTAGE (V)  
1970 G09  
1970 G08  
1970 G07  
Output Impedance  
Disabled Output Impedance  
Slew Rate vs Supply Voltage  
600k  
100k  
1.8  
100  
10  
V
V
=
1ꢀV  
= 0.8V  
V
= 1ꢀV  
S
S
ENABLE  
1.7  
1.6  
FALLING  
RISING  
A
= 100  
V
10k  
1k  
1.5  
1.4  
1.3  
1.2  
1.1  
1
A
= 10  
V
0.1  
A
= 1  
V
100  
10  
1
0.01  
0.001  
A
= –1  
V
F
R = R = 1k  
G
T
A
= 25°C  
1.0  
6
8
12  
14  
16  
18  
4
10  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE ( Vꢀ  
1970 G10  
1970 G11  
1970 G12  
1970fe  
5
For more information www.linear.com/LT1970  
LT1970  
Typical perForMance characTerisTics  
Slew Rate vs Temperature  
Large-Signal Response, AV = 1  
Large-Signal Response, AV = 1  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 15V  
S
FALLING  
10V  
10V  
RISING  
0V  
0V  
–10V  
–10V  
R
= 1k  
1970 G14  
20µs/DIV  
L
R
L
L
= 1k  
20µs/DIV  
1970 G15  
C
= 1000pF  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
1970 G13  
Small-Signal Response, AV = 1  
Small-Signal Response, AV = 1  
Output Overdriven  
V
OUT  
0V  
0V  
5V/DIV  
V
IN  
5V/DIV  
R
= 1k  
1970 G16  
500ns/DIV  
R
C
= 1k  
= 1000pF  
1970 G17  
2µs/DIV  
V
S
A
V
=
= 1  
5V  
1970 G18  
L
200µs/DIV  
L
L
Undistorted Output Swing  
vs Frequency  
Full Range Current Sense  
Transfer Curve  
% Overshoot vs CLOAD  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
500  
400  
300  
200  
100  
0
V
= 15V  
S
SOURCING  
CURRENT  
A
= 1  
V
A
= –1  
V
–100  
–200  
–300  
–400  
–500  
SINKING  
CURRENT  
V
A
=
15V  
S
V
= –5  
1% THD  
0
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
0
1
2
3
4
5
FREQUENCY (Hz)  
C
(pF)  
V
= V  
(V)  
LOAD  
CSNK  
CSRC  
1970 G20  
1970 G19  
1970 G21  
1970fe  
6
For more information www.linear.com/LT1970  
LT1970  
Typical perForMance characTerisTics  
Low Level Current Sense  
Transfer Curve  
Logic Output Level  
Maximum Output Current  
vs Sink Current (Output Low)  
vs Temperature  
1.0  
0.9  
0.8  
0.7  
25  
20  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
+
+
V
V
= 15V  
= –15V  
V
V
= 15V  
= –15V  
15  
SOURCING  
CURRENT  
10  
SOURCE  
SINK  
0.6  
0.5  
5
25°C  
0
125°C  
0.4  
0.3  
0.2  
0.1  
0
–5  
SINKING  
CURRENT  
–10  
–15  
–20  
–25  
–55°C  
0.001  
0.01  
0.1  
1
10  
100  
25 50 75 100 125 150 175 200 225 250  
–75 –50 –25  
0
25 50  
75 100 125  
0
SINK CURRENT (mA)  
V
= V  
(mV)  
CSRC  
TEMPERATURE (°C)  
CSNK  
1970 G23  
1970 G22  
1970 G24  
Output Stage Quiescent Current  
vs Supply Voltage  
Safe Operating Area  
10  
8
1200  
1000  
800  
600  
400  
200  
0
I
AT 10% DUTY CYCLE  
OUT  
+
125°C  
I
V
6
25°C  
4
–55°C  
2
0
I
V
–55°C  
–2  
–4  
–6  
–8  
–10  
25°C  
125°C  
25 30  
10 15 20  
SUPPLY VOLTAGE (V)  
0
5
35 40  
0
2
4
6
8
10 12 14 16 18  
SUPPLY VOLTAGE ( Vꢀ  
1970 G26  
1970 G25  
Control Stage Quiescent Current  
vs Supply Voltage  
Supply Current vs Supply Voltage  
in Shutdown  
5
4
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 0V  
I
ENABLE  
CC  
85°C  
125°C  
25°C  
–55°C  
3
25°C  
2
–55°C  
1
0
I
EE  
–1  
–2  
–3  
–4  
–5  
–55°C  
25°C  
125°C  
8
10  
0
2
4
6
12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
SUPPLY VOLTAGE ( Vꢀ  
SUPPLY VOLTAGE (V)  
1970 G27  
1970 G28  
1970fe  
7
For more information www.linear.com/LT1970  
LT1970  
pin FuncTions  
V
(Pins 1, 10, 11, 20, Package Base): Minus Supply  
FILTER (Pin 5): Current Sense Filter Pin. This pin is  
EE  
Voltage. V connects to the substrate of the integrated  
normally not used and should be left open or shorted to  
EE  
circuitdie,andthereforemustalwaysbethemostnegative  
the SENSE pin. The FILTER pin can be used to adapt the  
voltage applied to the part. Decouple V to ground with  
response time of the current sense amplifiers with a 1nF  
EE  
a low ESR capacitor. V may be a negative voltage or it  
to 100nF capacitor connected to the SENSE input. An  
EE  
may equal ground potential. Any or all of the V pins may  
internal 1k resistor sets the filter time constant.  
EE  
be used. Unused V pins must remain open.  
EE  
SENSE (Pin 6): Negative Current Sense Pin. This pin is  
V (Pin 2): Output Stage Negative Supply. V may equal  
normally connected to the load end of the external sense  
resistor.Sourcingcurrentlimitoperationisactivatedwhen  
V
or may be smaller in magnitude. Only output stage  
EE  
current flows out of V , all other current flows out of V .  
the voltage V  
(V  
+ – V  
–) equals 1/10 of  
EE  
SENSE SENSE  
the programming control voltage at VC  
SENSE  
V maybeusedtodrivethebase/gateofanexternalpower  
(Pin 13). Sink-  
SRC  
devicetoboosttheamplifier’soutputcurrenttolevelsabove  
the rated 500mA of the on-chip output devices. Unless  
ing current limit operation is activated when the voltage  
equals –1/10 of the programming control voltage  
V
SENSE  
at VC  
used to drive boost transistors, V should be decoupled  
(Pin 12).  
SNK  
to ground with a low ESR capacitor.  
V
(Pin 7): Positive Supply Voltage. All circuitry except  
CC  
OUT (Pin 3): Amplifier Output. The OUT pin provides the  
force function as part of a Kelvin sensed load connection.  
OUTisnormallyconnecteddirectlytoanexternalloadcur-  
the output transistors draw power from V . Total sup-  
CC  
ply voltage from V to V must be between 3.5V and  
CC  
EE  
+
36V. V must always be greater than or equal to V . V  
CC  
CC  
+
rentsenseresistorandtheSENSE pin.Amplifierfeedback  
should always be decoupled to ground with a low ESR  
is directly connected to the load and the other end of the  
current sense resistor. The load connection is also wired  
capacitor.  
–IN (Pin 8): Inverting Input of Amplifier. –IN may be any  
directly to the SENSE pin to monitor the load current.  
voltage from V – 0.3V to V + 36V. IN and +IN remain  
EE  
EE  
The OUT pin is current limited to 800mA typical. This  
current limit protects the output transistor in the event  
that connections to the external sense resistor are  
opened or shorted which disables the precision current  
limit function.  
high impedance at all times to prevent current flow into  
the inputs when current limit mode is active. Care must  
be taken to insure that –IN or +IN can never go to a volt-  
age below V – 0.3V even during transient conditions or  
EE  
damage to the circuit may result. A Schottky diode from  
V
to –IN can provide clamping if other elements in the  
+
EE  
SENSE (Pin 4): Positive Current Sense Pin. This lead is  
circuit can allow –IN to go below V .  
EE  
normallyconnectedtothedrivenendoftheexternalsense  
resistor.Sourcingcurrentlimitoperationisactivatedwhen  
+IN(Pin9):NoninvertingInputofAmplifier.+INmaybeany  
the voltage V  
(V  
+ – V  
–) equals 1/10 of  
SRC  
voltage from V – 0.3V to V + 36V. IN and +IN remain  
SENSE SENSE  
the programming control voltage at VC  
SENSE  
EE EE  
(Pin 13). Sink-  
high impedance at all times to prevent current flow into  
the inputs when current limit mode is active. Care must  
be taken to insure that –IN or +IN can never go to a volt-  
ing current limit operation is activated when the voltage  
V
equals –1/10 of the programming control voltage  
SNK  
SENSE  
at VC  
(Pin 12).  
age below V – 0.3V even during transient conditions or  
EE  
damage to the circuit may result. A Schottky diode from  
V
to +IN can provide clamping if other elements in the  
EE  
circuit can allow +IN to go below V .  
EE  
1970fe  
8
For more information www.linear.com/LT1970  
LT1970  
pin FuncTions  
VC  
(Pin 12): Sink Current Limit Control Voltage In-  
current limit is not active. ISRC, ISNK and TSD may be  
wired “OR” together if desired. ISRC may be left open if  
this function is not monitored.  
SNK  
put. The current sink limit amplifier will activate when  
+
the sense voltage between SENSE and SENSE equals  
–1.0 • V  
and V  
and V  
at VC  
/10. VC  
may be set between V  
VCSNK  
COMMON  
SENSE  
SNK COMMON  
+ 6V. The transfer function between VC  
ISNK (Pin 17): Sinking Current Limit Digital Output Flag.  
ISNK is an open collector digital output. ISNK pulls low  
whenever the sinking current limit amplifier assumes  
control of the output. This pin can sink up to 10mA of  
current. The current limit flag is off when the source  
current limit is not active. ISRC, ISNK and TSD may be  
wired “OR” together if desired. ISNK may be left open if  
this function is not monitored.  
SNK  
is linear except for very small input voltages  
< 60mV. V  
limits at a minimum set point of  
SNK  
SENSE  
4mV typical to insure that the sink and source limit ampli-  
fiers do not try to operate simultaneously. To force zero  
output current, the ENABLE pin can be taken low.  
VC  
(Pin 13): Source Current Limit Control Voltage  
SRC  
Input.Thecurrentsourcelimitamplifierwillactivatewhen  
TSD (Pin 18): Thermal Shutdown Digital Output Flag. TSD  
isanopencollectordigitaloutput. TSDpullslowwhenever  
theinternalthermalshutdowncircuitactivates, typicallyat  
a die temperature of 160°C. This pin can sink up to 10mA  
of output current. The TSD flag is off when the die tem-  
perature is within normal operating temperatures. ISRC,  
ISNK and TSD may be wired “OR” together if desired. TSD  
may be left open if this function is not monitored. Thermal  
shutdown activation should prompt the user to evaluate  
electrical loading or thermal environmental conditions.  
the sense voltage between SENSE+ and SENSEequals  
V
V
/10. VC  
may be set between V and  
COMMON  
VCSRC  
COMMON  
and V  
SRC  
+ 6V. The transfer function between VC  
SRC  
is linear except for very small input voltages  
SENSE  
at VC  
< 60m  
V
. V  
limits at a minimum set point  
SRC  
SENSE  
of 4mV typical to insure that the sink and source limit  
amplifiers do not try to operate simultaneously. To force  
zero output current, the ENABLE pin can be taken low.  
COMMON (Pin 14): Control and ENABLE inputs and flag  
outputsarereferencedtotheCOMMONpin.COMMONmay  
+
+
V (Pin 19): Output Stage Positive Supply. V may equal  
be at any potential between VEE and VCC – 3V. In typical  
V
CC  
or may be smaller in magnitude. Only output stage  
applications, COMMON is connected to ground.  
+
current flows through V , all other current flows into V .  
CC  
+
ENABLE (Pin 15): ENABLE Digital Input Control. When  
taken low this TTL-level digital input turns off the ampli-  
fier output and drops supply current to less than 1mA.  
Use the ENABLE pin to force zero output current. Setting  
V may be used to drive the base/gate of an external power  
devicetoboosttheamplifier’soutputcurrenttolevelsabove  
the rated 500mA of the on-chip output devices. Unless  
+
used to drive boost transistors, V should be decoupled  
VC  
= VC  
= 0V allows I  
OUT  
= 4mV/R to flow  
to ground with a low ESR capacitor.  
SNK  
in or out of V  
SRC  
OUT  
SENSE  
.
Package Base: The exposed backside of the package is  
ISRC (Pin 16): Sourcing Current Limit Digital Output Flag.  
ISRC is an open collector digital output. ISRC pulls low  
whenever the sourcing current limit amplifier assumes  
control of the output. This pin can sink up to 10mA of  
current. The current limit flag is off when the source  
electrically connected to the V pins on the IC die. The  
EE  
package base should be soldered to a heat spreading pad  
on the PC board that is electrically connected to V .  
EE  
1970fe  
9
For more information www.linear.com/LT1970  
LT1970  
block DiagraM anD TesT circuiT  
R
V
FB  
CC  
7
1k  
+
V
15V  
19  
+IN  
9
8
+
Q1  
Q2  
OUT  
+
V
IN  
1×  
GM1  
3
–IN  
R
G
1k  
10k  
10k  
10k  
ISNK  
ISRC  
TSD  
17  
16  
18  
+
D1  
D2  
R
1Ω  
CS  
+
I
V
V
SINK  
SNK  
SRC  
+
SENSE  
FILTER  
15V  
4
5
6
ENABLE  
+
ENABLE  
15  
12  
SENSE  
VC  
SNK  
5V  
VC  
SNK  
+
R
FIL  
R
LOAD  
1k  
1k  
VC  
SRC  
V
I
SRC  
VC  
13  
14  
SRC  
2
V
COMMON  
EE  
–15V  
1, 10, 11, 20  
1970TC  
applicaTions inForMaTion  
The LT1970 power op amp with precision controllable  
current limit is a flexible voltage and current source  
module. The drawing on the front page of this data sheet  
is representative of the basic application of the circuit,  
however many alternate uses are possible with proper  
understanding of the sub circuit capabilities.  
between –IN and +IN. No current will flow at the inputs  
when differential input voltage is present. This feature is  
important when the precision current sense amplifiers  
“I  
” and “I ” become active.  
SINK  
SRC  
Current Limit Amplifiers  
AmplifierstagesI andI areveryhightranscon-  
SINK  
SRC  
CIRCUIT DESCRIPTION  
ductance amplifier stages with independently controlled  
offset voltages. These amplifiers monitor the voltage be-  
+
Main Operational Amplifier  
tweeninputpinsSENSE andSENSE whichusuallysense  
the voltage across a small external current sense resistor.  
The transconductance amplifiers outputs connect to the  
same high impedance node as the main input stage GM1  
Sub circuit block GM1, the 1X unity-gain current buffer  
and output transistors Q1 and Q2 form a standard opera-  
tionalamplifier. Thisamplifierhas 500mAcurrentoutput  
capability and a 3.6MHz gain bandwidth product. Most  
applications of the LT1970 will use this op amp in the main  
signalpath. Allconventionalopampcircuitconfigurations  
are supported. Inverting, noninverting, filter, summation  
or nonlinear circuits may be implemented in a conven-  
tional manner. The output stage includes current limiting  
at 800mA to protect against fault conditions. The input  
stage has high differential breakdown of 36V minimum  
+
amplifier. Small voltage differences between SENSE and  
SENSE ,smallerthantheusersetVC /10andVC /10  
SNK  
SRC  
inmagnitude,causethecurrentlimitamplifierstodecouple  
fromthesignalpath.Thisisfunctionallyindicatedbydiodes  
D1 and D2 in the Block Diagram. When the voltage V  
SENSE  
increasesinmagnitudesufficienttoequalorovercomeone  
oftheoffsetvoltagesVC /10orVC /10, theappropri-  
SNK  
SRC  
ate current limit amplifier becomes active and because of  
1970fe  
10  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
itsveryhightransconductance,takescontrolfromtheinput  
stage, GM1. The output current is regulated to a value of  
The transfer function from V to the associated V is  
C OS  
linear from about 0.1V to 5V in, or 10mV to 500mV at  
thecurrentlimitamplifierinputs. Anintentionalnonlinear-  
ity is built into the transfer functions at low levels. This  
nonlinearity insures that both the sink and source limit  
amplifiers cannot become active simultaneously. Simul-  
taneous activation of the limit amplifiers could result in  
uncontrolledoutputs.AsshownintheTypicalPerformance  
Characteristics curves, the control inputs have a “hockey  
stick” shape, to keep the minimum limit threshold at 4mV  
for each limit amplifier.  
I
= V  
/R  
= (VC  
or VC )/(10 • R  
).  
OUT  
SENSE SENSE  
SRC  
SNK  
SENSE  
The time required for the current limit amplifiers to take  
control of the output is typically 4µs.  
Linearoperationofthecurrentlimitsenseamplifieroccurs  
+
with the inputs SENSE and SENSE ranging between V  
CC  
– 1.5V and V + 1.5  
V
. Most applications will connect pins  
EE  
+
SENSE and OUT together, with the load on the opposite  
side of the external sense resistor and pin SENSE . Feed-  
back to the inverting input of GM1 should be connected  
from SENSE to IN. Ground side sensing of load current  
Figure 1 illustrates an interesting use of the current  
sense input pins. Here the current limit control ampli-  
fiers are used to produce a symmetrically limited output  
voltage swing. Instead of monitoring the output current,  
the output voltage is divided down by a factor of 20 and  
may be employed by connecting the load between pins  
+
OUT and SENSE . Pin SENSE would be connected to  
ground in this instance. Load current would be regulated  
in exactly the same way as the conventional connection.  
However, voltage mode accuracy would be degraded in  
+
applied to the SENSE input, with the SENSE input  
+
this case due to the voltage across R  
.
grounded. When the threshold voltage between SENSE  
SENSE  
and SENSE (V  
/10) is reached, the current limit  
+
CLAMP  
Creative applications are possible where pins SENSE and  
stage takes control of the output and clamps it a level of  
±2 • V . With control inputs V and V tied  
SENSE monitor a parameter other than load current. The  
CLAMP  
CSRC  
CSNK  
operating principle that at most one of the current limit  
stages may be active at one time, and that when active,  
the current limit stages take control of the output from  
GM1, can be used for many different signals.  
together, a single polarity input voltage sets the same +  
and – output limit voltage for symmetrical limiting. In this  
circuit the output will current limit at the built-in fail-safe  
level of typically 800mA.  
Current Limit Threshold Control Buffers  
12V  
80mV  
Input pins VC  
and VC  
are used to set the response  
SRC  
SNK  
TO  
V
CLꢀMꢁ  
R3  
3k  
10V  
thresholds of current limit amplifiers “I  
” and “I ”.  
SINK  
SRC  
OV TO 5V  
–80mV  
TO  
–10V  
Each of these inputs may be independently driven by a  
voltage of 0V to 5V above the COMMON reference pin.  
The 0V to 5V input voltage is attenuated by a factor of 10  
and applied as an offset to the appropriate current limit  
amplifier. AC signals may be applied to these pins. The AC  
CLꢀMꢁ  
VC  
SRC  
VC  
REꢀCHED  
SNK  
OUTꢁUT CLꢀMꢁS  
EN  
ꢀT 2× V  
CLꢀMꢁ  
+IN  
V
V
IN  
CC  
+
V
ISRC  
ISNK  
TSD  
OUT  
LT1970  
bandwidth from a V pin to the output is typically 2MHz.  
+
C
SENSE  
R1  
21.5k  
For proper operation of the LT1970, these control inputs  
SENSE  
FILTER  
R
L
cannot be left floating.  
V
–IN  
V
R2  
1.13k  
EE  
COMMON  
For low V supply applications it is important to keep  
CC  
the maximum input control voltages, VC  
and VC  
,
SRC  
SNK  
–12V  
at least 2.5V below the V potential. This ensures linear  
CC  
R
R
F
G
1970 F01  
controlofthecurrentlimitthreshold.Reducingthecurrent  
limit sense resistor value allows high output current from  
a smaller control voltage which may be necessary if the  
Figure 1. Symmetrical Output Voltage Limiting  
V
CC  
supply is only 5V.  
1970fe  
11  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
ENABLE Control  
activationoftheassociatedcurrentlimitamplifier.TheTSD  
outputindicatesexcessivedietemperaturehascausedthe  
circuittoenterthermalshutdown.Thethreedigitaloutputs  
may be wire “OR’d” together, monitored individually or left  
open. These outputs do not affect circuit operation, but  
provide an indication of the present operational status of  
the chip.  
The ENABLE input pin puts the LT1970 into a low sup-  
ply current, high impedance output state. The ENABLE  
pin responds to TTL threshold levels with respect to the  
COMMON pin. Pulling the ENABLE pin low is the best  
way to force zero current at the output. Setting VC  
=
SNK  
VC  
= 0V allows the output current to remain as high  
SRC  
as 4mV/R  
.
Forslowvaryingoutputsignals,theassertionofalowlevel  
at the current limit output flags occurs when the current  
limit threshold is reached. For fast moving signals where  
the LT1970 output is moving at the slew limit, typically  
1.6V/µs, the flag assertion can be somewhat premature  
at typically 75% of the actual current limit value.  
SENSE  
In applications such as circuit testers (ATE), it may be  
preferable to apply a predetermined test voltage with a  
preset current limit to a test node simultaneously. The  
ENABLE pin can be used to provide this gating action as  
shown in Figure 2. While the LT1970 is disabled, the load  
is essentially floating and the input voltage and current  
limit control voltages can be set to produce the load test  
levels. Enabling the LT1970 then drives the load. The  
LT1970 enables and disables in just a few microseconds.  
The actual enable and disable times at the load are a  
function of the load reactance.  
The operating status flags are designed to drive LEDs to  
provide a visual indication of current limit and thermal  
conditions. As such, the transition edges to and from  
the active low state are not particularly sharp and may  
exhibitsomeuncertainty.Addingsomepositivefeedback  
to the current limit control inputs helps to sharpen these  
transitions.  
Operating Status Flags  
WiththevaluesshowninFigure3, thecurrentlimitthresh-  
old is reduced by approximately 0.5% when either current  
limit status flag goes low. With sharp logic transitions, the  
status outputs can be used in a system control loop to  
The LT1970 has three digital output indicators; TSD, ISRC  
andISNK.Theseoutputsareopencollectordriversreferred  
to the COMMON pin. The outputs have 36V capabilities  
and can sink in excess of 10mA. ISRC and ISNK indicate  
ENABLE  
5V  
V
OUT  
DISABLE  
0V  
1V/DIV  
0V  
5V  
12V  
EN  
10V/DIV  
VC  
SRC  
VC  
0V  
SNK  
V
IN  
= 0.5V  
V
= –0.5V  
IN  
EN  
+IN  
V
IN  
V
CC  
5µs/DIV  
+
V
ISRC  
ISNK  
R
S
1Ω  
TSD  
OUT  
LT1970  
+
SENSE  
R
L
SENSE  
FILTER  
V
10Ω  
–IN  
V
EE  
COMMON  
R
R
F
10k  
–12V  
G
10k  
1970 F02  
Figure 2. Using the ENABLE pin  
1970fe  
12  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
take protective measures when a current limit condition  
is detected automatically.  
initially sets a high value of current limit (500mA). The  
circuit operates normally until the signal is large enough  
to enter current limit. When either current limit flag goes  
low, the current limit control voltage is reduced by a fac-  
tor of 10. This then forces a low level of output current  
(50mA) until the signal is reduced in magnitude. When  
the load current drops below the lower level, the current  
limit is then restored to the higher value. This action is  
similar to a self resettable fuse that trips at dangerously  
high current levels and resets only when conditions are  
safe to do so.  
The current limit status flag can also be used to produce  
a dramatic change in the current limit value of the ampli-  
fier. Figure 4 illustrates a “snap-back” current limiting  
characteristic. In this circuit, a simple resistor network  
R1  
100Ω  
R3  
20k  
CURRENT  
LIMIT  
CONTROL  
VOLTAGE  
(0.1V TO 5V)  
I
FLAG  
SOURCE  
R2  
100Ω  
R4  
20k  
I FLAG  
SINK  
12V  
WHEN CURRENT LIMIT  
VC  
IS FLAGGED, I  
SRC  
VC  
LIMIT  
THERMAL MANAGEMENT  
TRESHOLD IS REDUCED  
BY 0.5%  
SNK  
EN  
+IN  
V
V
IN  
CC  
+
V
Minimizing Power Dissipation  
ISRC  
ISNK  
R
S
1Ω  
The LT1970 can operate with up to 36V total supply volt-  
age with output currents up to 500mA. The amount of  
power dissipated in the chip could approach 18W under  
worst-case conditions. This amount of power will cause  
die temperature to rise until the circuit enters thermal  
shutdown. While the thermal shutdown feature prevents  
damage to the circuit, normal operation is impaired.  
Thermal design of the LT1970 operating environment is  
essential to getting maximum utility from the circuit.  
TSD  
OUT  
LT1970  
+
SENSE  
SENSE  
R
L
FILTER  
V
–IN  
V
EE  
COMMON  
–12V  
R
G
R
F
1970 F03  
Figure 3. Adding Positive Feedback to Sharpen the Transition  
Edges of the Current Limit Status Flags  
The first concern for thermal management is minimizing  
the heat which must be dissipated. The separate power  
+
12V  
pins V and V can be a great aid in minimizing on-chip  
+
power. The output pin can swing to within 1.0V of V or  
R1  
54.9k  
R2  
39.2k  
R3  
2.55k  
V even under maximum output current conditions. Using  
+
separate power supplies, or voltage regulators, to set V  
VC  
SRC  
VC  
SNK  
500mA  
EN  
I
MAX  
+IN  
V
V
IN  
CC  
+
V
ISRC  
ISNK  
50mA  
0
I
LOW  
R
S
I
OUT  
1Ω  
TSD  
OUT  
LT1970  
+
SENSE  
–500mA  
SENSE  
FILTER  
V
R
L
V
• R2  
CC  
–IN  
V
I
I
EE  
MAX  
LOW  
(R1 + R2) • 10 • R  
S
COMMON  
V
• (R2||R3)  
CC  
[R1 + (R2||R3)] • 10 • R  
S
R
R
G
–12V  
F
10k  
10k  
1970 F04  
Figure 4. “Snap-Back” Current Limiting  
1970fe  
13  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
and V to their minimum values for the required output  
not very effective. Expanding the area on various layers  
significantly reduces the overall thermal resistance. The  
addition of vias (small 13 mil holes which fill during PCB  
plating) connecting all layers of metal also helps reduce  
the operating temperature of the LT1970. These are also  
shown in Figure 5.  
swing will minimize power dissipation. The supplies V  
CC  
and V may also be reduced to a minimal value, but these  
EE  
supply pins do not carry high currents, and the power  
saving is much less. V and V must be greater than  
CC  
EE  
the maximum output swing by 1.5V or more.  
+
WhenV andV areprovidedseparatelyfromV andV ,  
It is important to note that the metal planes used for heat  
CC  
EE  
+
care must be taken to insure that V and V are always less  
than or equal to the main supplies in magnitude. Protec-  
tion Schottky diodes may be required to insure this in all  
cases, including power on/off transients.  
sinking are connecting electrically to V . These planes  
EE  
must be isolated from any other power planes used in  
the PCB design.  
Anothereffectivewaytocontrolthepoweramplifieroperat-  
ing temperature is to use airflow over the board. Airflow  
can significantly reduce the total thermal resistance as  
also shown in Figure 5.  
+
Operation with reduced V and V supplies does not affect  
any performance parameters except maximum output  
swing.AllDCaccuracyandACperformancespecifications  
guaranteed with V = V and V = V are still valid with  
the reduced output signal swing range.  
+
CC  
EE  
DRIVING REACTIVE LOADS  
Capacitive Loads  
Heat Sinking  
The power dissipated in the LT1970 die must have a path  
to the environment. With 100°C/W thermal resistance in  
free air with no heat sink, the package power dissipation  
is limited to only 1W. The 20-pin TSSOP package with  
exposed copper underside is an efficient heat conductor  
if it is effectively mounted on a PC board. Thermal resis-  
tances as low as 40°C/W can be obtained by soldering the  
bottom of the package to a large copper pattern on the PC  
board. For operation at 85°C, this allows up to 1.625W of  
power to be dissipated on the LT1970. At 25°C operation,  
up to 3.125W of power dissipation can be achieved. The  
PC board heat spreading copper area must be connected  
The LT1970 is much more tolerant of capacitive loading  
than most operational amplifiers. In a worst-case con-  
figuration as a voltage follower, the circuit is stable for  
capacitiveloadslessthan2.5nF.Highergainconfigurations  
improve the C  
handling. If very large capacitive loads  
LOAD  
are to be driven, a resistive decoupling of the amplifier  
fromthecapacitiveloadiseffectiveinmaintainingstability  
and reducing peaking. The current sense resistor, usually  
connected between the output pin and the load can serve  
as a part of the decoupling resistance.  
Inductive Loads  
to V .  
EE  
Load inductance is usually not a problem at the outputs  
of operational amplifiers, but the LT1970 can be used as a  
highoutputimpedancecurrentsource.Thisconditionmay  
be the main operating mode, or when the circuit enters  
a protective current limit mode. Just as load capacitance  
degrades the phase margin of normal op amps, load  
inductance causes a peaking in the loop response of the  
feedbackcontrolledcurrentsource.Theinductiveloadmay  
be caused by long lead lengths at the amplifier output. If  
the amplifier will be driving inductive loads or long lead  
lengths (greater than 4 inches) a 500pF capacitor from the  
Figure5showsexamplesofPCBmetalbeingusedforheat  
spreading.Theseareprovidedasareferenceforwhatmight  
be expected when using different combinations of metal  
area on different layers of a PCB. These examples are with  
a 4-layer board using 1oz copper on each layer. The most  
effective layers for spreading heat are those closest to the  
LT1970junction. Solderingtheexposedthermalpadofthe  
TSSOPpackagetotheboardproducesathermalresistance  
from junction-to-case of approximately 3°C/W.  
As a minimum, the area directly beneath the package on  
all PCB layers can be used for heat spreading. However,  
limiting the area to that of the metal heat sinking pad is  
SENSE pin to the ground plane will cancel the inductive  
load and ensure stability.  
1970fe  
14  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
STILL AIR θ  
PACKAGE  
TOP LAYER  
2ND LAYER  
3RD LAYER  
BOTTOM LAYER  
JA  
TSSOP  
100°C/W  
TSSOP  
50°C/W  
TSSOP  
45°C/W  
1970 F05a  
Typical Reduction in θ with  
JA  
Laminar Airflow Over the Device  
0
–10  
–20  
–30  
–40  
–50  
–60  
% REDUCTION RELATIVE  
TO θ IN STILL AIR  
JA  
0
100 200 300 400 500 600 700 800 900 1000  
AIRFLOW (LINEAR FEET PER MINUTE, lfpm)  
1970 F05b  
Figure 5. Examples of PCB Metal Used for Heat Dissipation. Driver Package Mounted on Top  
Layer. Heat Sink Pad Soldered to Top Layer Metal. Metal Areas Drawn to Scale of Package Size  
1970fe  
15  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
Figure 6 shows the LT1970 driving an inductive load with  
a controlled amount of current. This load is shown as  
a generic magnetic transducer, which could be used to  
create and modulate a magnetic field. Driving the current  
limit control inputs directly forces a current through the  
load that could range up to 2MHz in modulation. Biasing  
the input stage to the midpoint of the modulation signal  
allows symmetrical bidirectional current flow through  
the load. Clamp diodes are added to protect the LT1970  
output from large inductive flyback potentials caused by  
rapid di/dt changes.  
Figure 7 shows the connection of these back-to-back  
+
clamp diodes between the FILTER pin and the SENSE pin.  
With this connection, the internal 1k resistor between the  
SENSE pinandtheFILTERpinlimitsthediodecurrent.The  
BAV99diodesaresmallSOT-23packagedgeneralpurpose  
silicon diodes. The maximum current limit sense voltage  
is now the diode voltage drop, determined by the voltage  
across the sense resistor and the 1k internal resistor. As  
the diode begins to conduct current, with a voltage drop  
of around 300mV, an error in the expected current limit  
level at the high end of the control becomes apparent, as  
Abrupt Load Short Protection  
R
SENSE  
MAIN  
AMPLIFIER  
OUT  
3
An abrupt short-circuit connection, often referred to as  
screwdriver or crowbar short, to ground or other supply  
potentials is the worst-case load condition for the LT1970.  
The current limit sense amplifier normally operates with  
an input voltage differential equal to the voltage across the  
sense resistor, which is only 500mV maximum in a typical  
application. During an abrupt load short to ground, the  
load end of the sense resistor is immediately connected to  
ground while the amplifier output remains at the normal  
outputvoltage. Thiscanimposealargedifferentialvoltage  
to the sense amplifier inputs for a brief period. If this delta  
V can be greater than 2V, it is beneficial to add clamps  
between the current limit sense amplifier inputs. These  
clampsensureasmoothtransitionfromthemainamplifier  
control to the current limit amplifier control under all load  
short conditions that may arise.  
LOAD  
CURRENT  
LIMIT SENSE  
AMPLIFIER  
3
+
SENSE  
BAV99  
+
4
5
1
2
FILTER  
100Ω*  
1nF TO 10nF  
1k  
SENSE  
6
+
SENSE  
*OPTIONAL—SEE TEXT  
2N3904  
2N3904  
FILTER  
1970 F07  
HIGHER CLAMP VOLTAGE  
ALTERNATIVE  
Figure 7. Adding Protection for Abrupt Load Shorts  
5V  
V
IN  
12V  
0V  
VC  
SRC  
VC  
SNK  
D1  
EN  
1N4001  
+IN  
V
CC  
+
V
ISRC  
ISNK  
R
1Ω  
S
500ꢀm  
TSD  
OUT  
LT1970  
12V  
+
SENSE  
MmGNETIC  
TRmNSDUCER  
R1  
95.3K  
SENSE  
FILTER  
V
2.5V  
–IN  
V
EE  
LT1634-2.5  
D2  
1N4001  
COMMON  
1970 F06  
C1  
500pF  
–12V  
Figure 6. Current Modulation of a Magnetic Transducer  
1970fe  
16  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
V
is less than the voltage across R . Adding an  
SENSE  
the current limit amplifier to go to the incorrect current  
limit direction and hang up. Adding a small filter capaci-  
DIODE  
optionalexternal100Ωresistorinparallelwiththeinternal  
1k resistor forces the diode voltage closer to the sensed  
current limit voltage and reduces the current limit error.  
tor between the SENSE and FILTER pins, 1nF to 10nF is  
fairly typical, which charges through the clamp diodes  
forces the correct current limit polarity at the instant of the  
load short. This holds the amplifier in current limit until  
the capacitor discharges through the internal 1k resistor,  
eliminating transient induced behavior and creating a  
smooth transition into current limit.  
Alternatively, the base-emitter junctions of back-to-back  
2N3904NPNtransistorscanprovidethisclampingaction.  
These diodes begin to conduct at a higher voltage level  
nearer to 600mV. With a 500mV maximum current limit  
threshold very little error will be noticed. Comparisons  
of typical current limit error with three ways of adding  
clamping protection are shown in Figure 8. Scaling the  
currentsenseresistorandthecurrentlimitcontrolvoltage  
down so that a 0V to 300mV current limit sense voltage  
range also prevents these accuracy errors caused by the  
abrupt-short clamping diodes.  
Supply Bypassing  
The LT1970 can supply large currents from the power  
supplies to a load at frequencies up to 4MHz. Power sup-  
ply impedance must be kept low enough to deliver these  
currents without causing supply rails to droop. Low ESR  
capacitors,suchas0.1µFor1µFceramics, locatedcloseto  
the pins are essential in all applications. When large, high  
speedtransientcurrentsarepresentadditionalcapacitance  
may be needed near the chip. Check supply rails with a  
scope and if signal related ripple is seen on the supply rail,  
increase the decoupling capacitor as needed.  
Also shown in Figure 7 is a small filtering capacitor. This  
too provides an extra measure of control under abrupt  
load shorting conditions. A fast short-circuit makes ap-  
parent all parasitic interconnect lead inductances between  
the LT1970 and the load. These distributed parasitic ele-  
ments can cause significant transient voltage spikes in  
the short time after the application or removal of a short  
circuit. These uncontrolled voltage transients could actu-  
ally couple back to the current limit amplifier and cause  
polarity reversal from sourcing current limit to sinking or  
vice versa. This can act as positive feedback and cause  
To ensure proper start-up biasing of the LT1970, it is rec-  
ommended that the rate of change of the supply voltages  
at turn-on be limited to be no faster than 6V/µs.  
Application Circuit Ideas  
The digitally controlled analog pin driver is shown in  
Figure 9. All of the control signals are provided by an  
LTC®1664 quad, 10-bit DAC by way of a 3-wire serial  
interface. The LT1970 is configured as a simple differ-  
ence amplifier with a gain of 3. This gain is required to  
produce 15V from the 0V to 5V outputs from DACs C  
and D. To provide voltage headroom, the supplies for the  
LT1970 are set to the maximum value of 18V. As 18V  
is the absolute maximum rating of supply voltage for the  
LT1970, caremustbetakentonotallowthesupplyvoltage  
to increase. DACs A and B separately control the sinking  
and sourcing current limit to the load over the range of  
4mA to 500mA. An optional ON/OFF control for the pin  
driver using the ENABLE input is shown. If always enabled  
25  
20  
BA±99 w 1kΩ  
15  
10  
BA±99 w 100Ω  
5
0
2N3904 w 1kΩ  
–5  
–10  
50  
200  
300 350 400 450 500  
±± SENSE (m±)  
100 150  
250  
CL  
1970 F08  
Figure 8. Current Limit Accuracy with Different Clamps  
the ENABLE pin should be tied to V .  
CC  
1970fe  
17  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
OPTIONAL TEST PIN  
ON/OFF CONTROL  
APPLY LOAD  
DRIVE  
5V  
Hi-Z  
0V  
5V  
CODE C – CODE D  
V
= 15V  
≈ 15V  
OUT  
(
)
1024  
V
CLR  
V
CC  
REF  
0.5 • CODE B  
I
=
≈ –4mA TO –500mA  
≈ 4mA TO 500mA  
SOURCE(MAX)  
1024 • R  
S
DAC A  
0.5 • CODE A  
I
=
SINK(MAX)  
1024 • R  
S
18V  
+
3-WIRE  
DAC B  
DAC C  
R5  
R6  
3k  
10µF  
0.1µF  
SERIAL  
3k  
INTERFACE  
CS/LD  
SCK  
DI  
DECODER  
VC  
SRC  
VC  
R1  
SNK  
3.4k  
EN  
+IN  
V
CC  
+
V
R2  
10.2k  
ISRC  
ISNK  
R
S
1Ω  
FORCE  
TSD  
OUT  
LT1970  
+
SENSE  
TEST PIN  
LOAD  
SENSE  
FILTER  
V
R3  
3.4k  
DAC D  
–IN  
V
EE  
COMMON  
SENSE  
10µF  
0.1µF  
+
–18V  
R4  
10.2k  
LTC1664  
QUAD 10-BIT DAC  
1970 F09  
Figure 9. Digitally Controlled Analog Pin Driver  
In some applications it may be necessary to know what  
the current into the load is at any time. Figure 10 shows an  
LT1787 high side current sense amplifier monitoring the  
The LT1970 is just as easy to use as a standard operational  
amplifier. Basic amplification of a precision reference  
voltage creates a very simple bench DC power supply as  
shown in Figure 11. The built-in power stage produces an  
adjustable 0V to 25V at 4mA to 100mA of output current.  
Voltage and current adjustments are derived from the  
LT1634-5 5V reference. The output current capability is  
500mA, but this supply is restricted to 100mA for power  
dissipation reasons. The worst-case output voltage for  
maximum power dissipated in the LT1970 output stage  
occurs if the output is shorted to ground or set to a voltage  
near zero. Limiting the output current to 100mA sets the  
maximum power dissipation to 3W. To allow the output to  
current through sense resistor R . The LT1787 is biased  
S
from the V supply to accommodate the common mode  
EE  
input range of 10V. The sense resistor is scaled down  
to provide a 100mV maximum differential signal to the  
current sense amplifier to preserve linearity. The LT1880  
amplifier provides gain and level shifting to produce a 0V  
to 5V output signal (2.5V DC 5mV/mA) with up to 1kHz  
full-scale bandwidth. An A/D converter could then digi-  
tize this instantaneous current reading to provide digital  
feedback from the circuit.  
1970fe  
18  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
V
CC  
0V TO 1V  
12V  
VC  
SRC  
VC  
SNK  
EN  
+IN  
V
CC  
+
V
ISRC  
ISNK  
R
S
0.2Ω  
TSD  
OUT  
LT1970  
+
SENSE  
SENSE  
R
LOAD  
FILTER  
V
–IN  
V
EE  
COMMON  
R4  
LT1787  
255k  
+
V
V
V
S
–12V  
S
BIAS  
R
G
R
F
–12V  
12V  
LT1880  
–12V  
R1  
60.4k  
20k  
+
V
OUT  
EE  
R2  
10k  
2.5V  
5ꢀVꢁꢀA  
1kHz FULL CURRENT  
BANDWIDTH  
R3  
20k  
–12V  
0V TO 5V  
AꢁD  
1970 F10  
OPTIONAL DIGITAL FEEDBACK  
Figure 10. Sensing Output Current  
30V DC  
R2 40k  
R1  
2.1k  
CURRENT LIMIT  
ADJUST  
R5  
5.49k  
R3  
10k  
R4 10k  
LOAD  
FAULT  
OUTPUT  
VOLTAGE  
ADJUST  
VC  
SRC  
VC  
SNK  
EN  
+IN  
V
CC  
+
V
ISRC  
ISNK  
R
S
1Ω  
V
OUT  
0V TO 25V  
TSD  
OUT  
LT1970  
LT1634-5  
+
SENSE  
4mA TO 100mA  
C3  
10µF  
+
SENSE  
FILTER  
V
–IN  
V
EE  
GND  
COMMON  
–5V  
LTC1046  
C2  
+ 10µF  
+
R
R
G
F
2.55k  
10.2k  
C1 10µF  
1970 F11  
Figure 11. Simple Bench Power Supply  
1970fe  
19  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
R6  
18.2k  
15V  
+
+
R7  
R8  
0.1  
10µF  
3k  
3k  
+OUT  
CURRENT FAULT  
LIMIT  
THERMAL  
VC  
SRC  
VC  
R5  
13k  
SNK  
EN  
–IN  
V
CC  
+
V
ISRC  
ISNK  
R
S1  
1Ω  
+OUT  
0V TO 12V  
4mA TO 150mA  
TSD  
OUT  
LT1970  
+
SENSE  
C2  
10µF  
SENSE  
FILTER  
V
+IN  
V
EE  
COMMON  
18V  
R1  
R9  
10k  
1%  
5V  
C1  
1µF  
6.19k  
REF  
V
–15V  
OUT  
R3  
23.2k  
ADJUST  
R2  
10k  
R4  
10k  
15V  
+
LT1634-5  
OPTIONAL SYMMETRY  
ADJUST  
+
CURRENT  
R11  
10k  
1/2 LT1881  
LIMIT  
100Ω  
ADJUST  
1/2 LT1881  
–15V  
R12  
10k  
GROUND  
R13  
25.5k  
15V  
R15  
3k  
R10  
10k  
1%  
TO TSD PIN  
OF +OUT  
–OUT  
CURRENT  
LIMIT  
VC  
SRC  
VC  
R14  
10.7k  
SNK  
EN  
–IN  
V
CC  
+
V
ISRC  
ISNK  
R
S2  
1Ω  
–OUT  
TSD  
0V TO –12V  
4mA TO 150mA  
OUT  
+
LT1970  
C3  
SENSE  
+
10µF  
SENSE  
FILTER  
V
+IN  
V
EE  
1970 F12  
COMMON  
10µF  
0.1µF  
+
–15V  
Figure 12. Dual Tracking Bench Power Supply  
1970fe  
20  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
range all the way to 0V, an LTC1046 charge pump inverter  
is used to develop a –5V supply. This produces a negative  
rail for the LT1970 which has to sink only the quiescent  
current of the amplifier, typically 7mA.  
Another simple linear power amplifier circuit is shown in  
Figure 13. This uses the LT1970 as a linear driver of a DC  
motor with speed control. The ability to source and sink  
the same amount of output current provides for bidirec-  
tional rotation of the motor. Speed control is managed by  
sensing the output of a tachometer built on to the motor.  
A typical feedback signal of 3V/1000rpm is compared  
with the desired speed-set input voltage. Because the  
LT1970 is unity-gain stable, it can be configured as an  
integrator to force whatever voltage across the motor as  
necessary to match the feedback speed signal with the  
set input signal.  
Using a second LT1970, a 0V to 12V dual tracking power  
supply is shown in Figure 12. The midpoint of two 10k  
resistors connected between the + and – outputs is held  
at 0V by the LT1881 dual op amp servo feedback loop. To  
maintain 0V, both outputs must be equal and opposite in  
polarity, thus they track each other. If one output reaches  
current limit and drops in voltage, the other output fol-  
lows to maintain a symmetrical + and – voltage across a  
common load. Again, the output current limit is less than  
the full capability of the LT1970 due to thermal reasons.  
Separate current limit indicators are used on each LT1970  
because one output only sources current and the other  
only sinks current. Both devices can share the same  
thermal shutdown indicator, as the output flags can be  
ORed together.  
Additionally, the current limit of the amplifier can be ad-  
justed to control the torque and stall current of the motor.  
For reliability, a feedback scheme similar to that shown in  
Figure 4 can be used. Assuming that a stalled rotor will  
generate a current limit condition, the stall current limit  
can be significantly reduced to prevent excessive power  
dissipation in the motor windings.  
OV TO 5V  
TORQUE/STALL  
CURRENT CONTROL  
15V  
VC  
SRC  
VC  
SNK  
EN  
+IN  
V
CC  
+
V
ISRC  
ISNK  
R
S
1Ω  
TSD  
OUT  
LT1970  
+
SENSE  
SENSE  
FILTER  
12V DC  
MOTOR  
V
–IN  
V
EE  
COMMON  
GND  
15V  
C1  
1µF  
R1  
1.2k  
–15V  
TACH  
FEEDBACK  
REVERSE  
3V/1000rpm  
R4  
49.9k  
R5  
49.9k  
1970 F13  
R2  
10k  
FORWARD  
R3  
1.2k  
–15V  
Figure 13. Simple Bidirectional DC Motor Speed Controller  
1970fe  
21  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
external N- and P-channel MOSFETs to provide the ad-  
ditional current. The output stage power supply inputs,  
For motor speed control without using a tachometer, the  
circuit in Figure 14 shows an approach. Using the en-  
able feature of the LT1970, the drive to the motor can be  
removed periodically. With no drive applied, the spinning  
motor presents a back EMF voltage proportional to its  
rotational speed. The LT1782 is a tiny rail-to-rail amplifier  
with a shutdown pin. The amplifier is enabled during this  
interval to sample the back EMF voltage across the motor.  
This voltage is then buffered by one-half of an LT1638 dual  
op amp and used to provide the feedback to the LT1970  
integrator.Whenre-enabledtheLT1970willadjustthedrive  
to the motor until the speed feedback voltage, compared  
to the speed-set input voltage, settles the output to a fixed  
value. A 0V to 5V signal for the motor speed input controls  
both rotational speed and direction.  
+
V and V , are used to provide gate drive as needed. With  
higher output currents, the sense resistor R , is reduced  
CS  
in value to maintain the same easy current limit control.  
This Class B power stage is intended for DC and low  
frequency, <1kHz, applications as crossover distortion  
becomes evident at higher frequencies.  
Figure 15 shows some optional resistor dividers between  
theoutputconnectionsandthecurrentsenseinputs. They  
are required only if the load of this power stage is removed  
or at a very low current level. Large power devices with  
no load on them can saturate and pull the output voltage  
very close to the power supply rails. The current sense  
amplifiers operate properly with input voltages at least  
The other half of the LT1638 is used as a simple pulse  
oscillator to control the periodic sampling of the motor  
back EMF.  
1V away from the V and V supply rails. In boosted  
CC  
EE  
current applications, it may be necessary to attenuate the  
maximum output voltage levels by 1V before connecting  
to the sense input pins. This only slightly deceases the  
current limit thresholds.  
Figure 15 shows how easy it is to boost the output current  
of the LT1970. This 5A power stage uses complementary  
1970fe  
22  
For more information www.linear.com/LT1970  
LT1970  
applicaTions inForMaTion  
12V  
OV TO 5V  
TORQUE/STALL  
CURRENT CONTROL  
R3  
2k  
FAULT/STALL  
VC  
SRC  
FWD  
R1  
10k  
5V  
STOP  
VC  
SNK  
V
MOTOR SPEED  
CONTROL  
CC  
+IN  
+
V
R2  
20k  
ISRC  
0V  
REV  
R
S
1Ω  
ISNK  
TSD  
OUT  
LT1970  
+
SENSE  
SENSE  
12V DC  
MOTOR  
FILTER  
V
–IN  
V
EE  
EN  
COM  
C1  
4.7µF  
–12V  
R6  
49.9k  
R14  
10k  
R4  
100k  
12V  
R5  
120k  
+
R15  
12V  
1/2 LT1638  
–12V  
100Ω  
+
LT1782  
–12V  
C2  
0.01µF  
SHDN  
R7  
10k  
R8  
20k  
R13  
10k  
R12  
10k  
+
12V  
1/2 LT1638  
D1  
R9  
20k  
R10  
1N4148  
82.5k  
C3  
0.1µF  
D2  
1N4148  
R11  
9.09k  
1970 F14  
–12V  
Figure 14. Simple Bidirectional DC Motor Speed Controller Without a Tachometer  
1970fe  
23  
For more information www.linear.com/LT1970  
LT1970  
package DescripTion  
Please refer to http://www.linear.com/product/LT1970#packaging for the most recent package drawings.  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663 Rev K)  
Exposed Pad Variation CA  
6.07  
(.239)  
6.40 – 6.60*  
DETAIL A  
4.95  
(.195)  
(.252 – .260)  
4.95  
(.195)  
1.98  
(.078)  
REF  
20 1918 17 16 15 14 1312 11  
6.60 ±0.10  
4.50 ±0.10  
DETAIL A  
2.74  
0.56  
(.022)  
REF  
(.108)  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
0.45 ±0.05  
1.05 ±0.10  
DETAIL A IS THE PART OF  
THE LEAD FRAME FEATURE  
FOR REFERENCE ONLY  
NO MEASUREMENT PURPOSE  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
6.07  
(.239)  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE20 (CA) TSSOP REV K 0913  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
1970fe  
24  
For more information www.linear.com/LT1970  
LT1970  
revision hisTory (Revision history begins at Rev C)  
REV  
DATE  
07/12 Corrected Block Diagram  
Changed supply voltage, added R6 in figure 14.  
DESCRIPTION  
PAGE NUMBER  
C
10  
23  
2
D
E
09/14 Corrected Order Information table  
Corrected TSD pin description.  
9
11/15 Update Package Drawing  
24  
1970fe  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
25  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT1970  
applicaTions inForMaTion  
V
CC  
CURRENT LIMIT  
CONTROL VOLTAGE  
0V TO 5V  
15V  
R2  
100Ω  
10µF  
0.1µF  
IRF9530  
V
CC  
R1  
1k  
ENABLE  
+IN  
VC  
SRC  
VC  
SNK  
R4  
100Ω  
+
V
OUT  
LT1970  
+
SENSE  
R5  
100Ω  
SENSE  
R
0.1Ω  
5W  
CS  
COMMON  
V
*
*
–IN  
V
EE  
*
*
R
LOAD  
R
F
G
2.2k  
2.2k  
V
IN  
IRF530  
R3  
100Ω  
V
EE  
–15V  
10µF  
0.1µF  
*OPTIONAL, SEE TEXT  
1970 F15  
Figure 15. AV = 1 Amplifier with Discrete Power Devices to Boost Output Current to 5A  
relaTeD parTs  
PART NUMBER  
LT1010  
DESCRIPTION  
COMMENTS  
Fast 150mA Power Buffer  
20MHz Bandwidth, 75V/µs Slew Rate  
Shutdown Mode, Adjustable Supply Current  
LT1206  
250mA/60MHz Current Feedback Amplifier  
1.1A/35MHz Current Feedback Amplifier  
LT1210  
Stable with C = 10,000pF  
L
1970fe  
LT 1115 REV E • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT1970  
LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LT1970_1

500mA Power Op Amp with Adjustable Precision Current Limit
Linear

LT1976

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100mA Quiescent Current
Linear

LT1976B

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100μA Quiescent Current
Linear

LT1976BEFE

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100μA Quiescent Current
Linear

LT1976BIFE

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100μA Quiescent Current
Linear

LT1976BIFE#TR

LT1976/LT1976B - High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1976BIFE#TRPBF

LT1976/LT1976B - High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1976B_15

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100A Quiescent Current
Linear

LT1976EFE

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100mA Quiescent Current
Linear

LT1976EFE#PBF

LT1976/LT1976B - High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1976EFE#TR

LT1976/LT1976B - High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1976EFE#TRPBF

LT1976/LT1976B - High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear