LT1993CUD-2#TRPBF [Linear]

LT1993-2 - 800MHz Low Distortion, Low Noise Differential Amplifier ADC Driver (Av = 2V/V); Package: QFN; Pins: 16; Temperature Range: 0°C to 70°C;
LT1993CUD-2#TRPBF
型号: LT1993CUD-2#TRPBF
厂家: Linear    Linear
描述:

LT1993-2 - 800MHz Low Distortion, Low Noise Differential Amplifier ADC Driver (Av = 2V/V); Package: QFN; Pins: 16; Temperature Range: 0°C to 70°C

驱动器 放大器 功率放大器
文件: 总20页 (文件大小:663K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1993-2  
800MHz Low Distortion, Low  
Noise Differential Amplifier/  
ADC Driver (A = 2V/V)  
V
U
DESCRIPTIO  
FEATURES  
800MHz –3dB Bandwidth  
The LT®1993-2 is a low distortion, low noise Differential  
Amplifier/ADC driver for use in applications from DC to  
800MHz. The LT1993-2 has been designed for ease of  
use, with minimal support circuitry required. Exception-  
ally low input-referred noise and low distortion products  
(with either single-ended or differential inputs) make the  
LT1993-2 an excellent solution for driving high speed 12-  
bit and 14-bit ADCs. In addition to the normal unfiltered  
outputs (+OUT and –OUT), the LT1993-2 has a built-in  
175MHz differential low pass filter and an additional pair  
of filtered outputs (+OUTFILTERED, –OUTFILTERED) to  
reduce external filtering components when driving high  
speedADCs.Theoutputcommonmodevoltageiseasilyset  
Fixed Gain of 2V/V (6dB)  
Low Distortion:  
38dBm OIP3, –70dBc HD3 (70MHz, 2V  
51dBm OIP3, –94dBc HD3 (10MHz, 2V  
)
)
P-P  
P-P  
Low Noise: 12.3dB NF, e = 3.8nV/√Hz (70MHz)  
n
Differential Inputs and Outputs  
Additional Filtered Outputs  
Adjustable Output Common Mode Voltage  
DC- or AC-Coupled Operation  
Minimal Support Circuitry Required  
Small 0.75mm Tall 16-Lead 3 × 3 QFN Package  
U
via the V  
pin, eliminating either an output transformer  
OCM  
APPLICATIO S  
or AC-coupling capacitors in many applications.  
Differential ADC Driver for:  
The LT1993-2 is designed to meet the demanding require-  
ments of communications transceiver applications. It can  
be used as a differential ADC driver, a general-purpose  
differential gain block, or in any other application requir-  
ing differential drive. The LT1993-2 can be used in data  
acquisition systems required to function at frequencies  
down to DC.  
Imaging  
Communications  
Differential Driver/Receiver  
Single Ended to Differential Conversion  
Differential to Single Ended Conversion  
Level Shifting  
IF Sampling Receivers  
SAW Filter Interfacing/Buffering  
The LT1993-2 operates on a 5V supply and consumes  
100mA. It comes in a compact 16-lead 3 × 3 QFN package  
and operates over a –40°C to 85°C temperature range.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
4-Tone WCDMA Waveform,  
LT1993-2 Driving LTC2255 14-Bit  
ADC at 92.16Msps  
4-Channel WCDMA Receive Channel  
0
32768 POINT FFT  
–10  
–20  
TONE CENTER FREQUENCIES  
AT 62.5MHz, 67.5MHz,  
72.5MHz, 77.5MHz  
1:4  
Z-RATIO  
0.1µF  
70MHz  
IF IN  
–INB  
–INA  
12.2Ω  
–30  
–OUT  
AIN–  
LTC2255  
–40  
–OUTFILTERED  
–50  
82nH 52.3pF  
LT1993-2  
0.1µF  
ADC  
–60  
+OUTFILTERED  
+INB  
AIN+  
–70  
+OUT  
OCM  
MINI-CIRCUITS  
TCM4-19  
12.2Ω  
+INA  
V
–80  
LTC2255 125Msps  
14-BIT ADC SAMPLING  
AT 92.16Msps  
ENABLE  
–90  
–100  
–110  
–120  
2.2V  
19932 TA01a  
0
5
10 15 20 25 30 35 40 45  
FREQUENCY (MHz)  
19932 TA01b  
19932fa  
1
LT1993-2  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Total Supply Voltage (V /V /V  
EEA EEB EEC  
Input Current (+INA, –INA, +INB, –INB,  
to  
CCA CCB CCC  
/V /V ) ...................................................5.5V  
V
16 15 14 13  
V
1
2
3
4
12  
V
EEC  
CCC  
V
OCM  
11 ENABLE  
V
, ENABLE)................................................ 10mA  
OCM  
17  
V
V
V
10  
9
CCA  
CCB  
EEB  
Output Current (Continuous) (Note 6)  
V
EEA  
+OUT, OUT (DC) .......................................... 100mA  
(AC) .......................................... 100mA  
5
6
7
8
+OUTFILTERED, –OUTFILTERED (DC)............. 15mA  
(AC) ............. 45mA  
Output Short Circuit Duration (Note 2) ............ Indefinite  
Operating Temperature Range (Note 3) ... –40°C to 85°C  
Specified Temperature Range (Note 4) .... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
Junction Temperature ........................................... 125°C  
Lead Temperature Range (Soldering 10 sec) ........ 300°C  
UD PACKAGE  
16-LEAD (3mm × 3mm) PLASTIC QFN  
T
= 125°C, θ = 68°C/W, θ = 4.2°C/W  
JMAX  
JA  
JC  
EXPOSED PAD IS V (PIN 17) MUST BE SOLDERED TO THE PCB  
EE  
ORDER PART NUMBER  
UD PART MARKING*  
LBJG  
LT1993CUD-2  
LT1993IUD-2  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grade is identified by a label on the shipping container.  
DC ELECTRICAL CHARACTERISTICS  
The  
CCA  
denotes the specifications which apply over the full operating  
= V = 5V, V = V = V = 0V, ENABLE = 0.8V, +INA  
temperature range, otherwise specifications are at T = 25°C. V  
= V  
A
CCB  
CCC  
EEA  
EEB  
EEC  
shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
= 2.2V, Input common mode voltage = 2.2V, no R  
unless otherwise noted.  
OCM  
CONDITIONS  
Input/Output Characteristics (+INA, +INB, –INA, –INB, +OUT, OUT, +OUTFILTERED, –OUTFILTERED)  
LOAD  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
GDIFF  
Gain  
Differential (+OUT, OUT), V  
=
0.8V Differential  
5.8  
6.08  
0.25  
6.3  
dB  
IN  
V
V
V
Single-Ended +OUT, OUT, +OUTFILTERED,  
0.35  
0.5  
V
V
SWINGMIN  
SWINGMAX  
SWINGDIFF  
OUT  
–OUTFILTERED. V 2.2V Differential  
=
IN  
Single-Ended +OUT, OUT, +OUTFILTERED,  
–OUTFILTERED. V 2.2V Differential  
3.6  
3.5  
3.75  
7
V
V
=
IN  
Output Voltage Swing  
Differential (+OUT, OUT), V  
Differential  
=
2.2V  
6.5  
6
V
V
IN  
P-P  
P-P  
I
Output Current Drive  
Input Offset Voltage  
(Note 5)  
40  
45  
1
mA  
V
OS  
–6.5  
–10  
6.5  
10  
mV  
mV  
TCV  
Input Offset Voltage Drift  
T
to T  
MAX  
2.5  
µV/°C  
V
OS  
VRMIN  
VRMAX  
MIN  
I
I
Input Voltage Range, MIN  
Input Voltage Range, MAX  
Differential Input Resistance  
Differential Input Capacitance  
Common Mode Rejection Ratio  
Single-Ended  
Single-Ended  
–0.1  
240  
5.1  
V
Ω
R
INDIFF  
170  
200  
1
C
INDIFF  
pF  
CMRR  
Input Common Mode –0.1V to 5.1V  
45  
70  
dB  
19932fa  
2
LT1993-2  
DC ELECTRICAL CHARACTERISTICS  
The  
CCA  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V  
= V  
= V  
= 5V, V = V = V = 0V, ENABLE = 0.8V, +INA  
CCC EEA EEB EEC  
A
CCB  
shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
= 2.2V, Input common mode voltage = 2.2V, no R  
unless otherwise noted.  
OCM  
LOAD  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.3  
0.8  
MAX  
UNITS  
Ω
R
Output Resistance  
Output Capacitance  
OUTDIFF  
OUTDIFF  
C
pF  
Common Mode Voltage Control (V  
Pin)  
OCM  
GCM  
Common Mode Gain  
Differential (+OUT, OUT), V  
Differential (+OUT, OUT), V  
= 1.1V to 3.6V  
= 1.3V to 3.4V  
0.9  
0.9  
1
1.1  
1.1  
V/V  
V/V  
OCM  
OCM  
V
V
V
Output Common Mode Voltage  
Adjustment Range, MIN  
Measured Single-Ended at +OUT and –OUT  
1.1  
1.3  
V
V
OCMMIN  
Output Common Mode Voltage  
Adjustment Range, MAX  
Measured Single-Ended at +OUT and –OUT  
3.6  
3.4  
V
V
OCMMAX  
Output Common Mode Offset Voltage  
Measured from V  
to Average of +OUT and –OUT  
–30  
4
5
3
1
30  
15  
mV  
µA  
OSCM  
OCM  
I
V
V
V
Input Bias Current  
Input Resistance  
Input Capacitance  
BIASCM  
OCM  
OCM  
OCM  
R
0.8  
MΩ  
pF  
INCM  
C
INCM  
ENABLE Pin  
V
ENABLE Input Low Voltage  
ENABLE Input High Voltage  
ENABLE Input Low Current  
ENABLE Input High Current  
0.8  
V
V
IL  
V
2
IH  
I
IL  
I
IH  
ENABLE = 0.8V  
ENABLE = 2V  
0.5  
3
µA  
µA  
1
Power Supply  
V
Operating Range  
4
5
5.5  
112  
500  
V
mA  
µA  
S
I
I
Supply Current  
ENABLE = 0.8V  
ENABLE = 2V  
4V to 5.5V  
88  
100  
250  
90  
S
Supply Current (Disabled)  
Power Supply Rejection Ratio  
SDISABLED  
PSRR  
55  
dB  
AC ELECTRICAL CHARACTERISTICS  
T = 25°C, V  
= V  
= V  
= 5V, V = V = V = 0V,  
A
CCA  
CCB  
CCC EEA EEB EEC  
ENABLE = 0.8V, +INA shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
unless otherwise noted.  
= 2.2V, Input common mode voltage = 2.2V, no R  
LOAD  
OCM  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Characteristics  
–3dBBW  
0.1dBBW  
0.5dBBW  
SR  
–3dB Bandwidth  
200mV Differential (+OUT, OUT)  
500  
800  
50  
MHz  
MHz  
MHz  
V/µs  
ns  
P-P  
Bandwidth for 0.1dB Flatness  
Bandwidth for 0.5dB Flatness  
Slew Rate  
200mV Differential (+OUT, OUT)  
P-P  
200mV Differential (+OUT, OUT)  
100  
1100  
4
P-P  
3.2V Differential (+OUT, OUT)  
P-P  
t
1% Settling Time  
1% Settling for a 1V Differential Step  
s1%  
P-P  
(+OUT, OUT)  
t
t
Turn-On Time  
Turn-Off Time  
40  
ns  
ns  
ON  
250  
OFF  
Common Mode Voltage Control (V  
Pin)  
OCM  
–3dBBW  
Common Mode Small-Signal –3dB  
Bandwidth  
0.1V at V , Measured Single-Ended at +OUT  
OCM  
300  
500  
MHz  
CM  
P-P  
and –OUT  
SR  
CM  
Common Mode Slew Rate  
1.3V to 3.4V Step at V  
V/µs  
OCM  
19932fa  
3
LT1993-2  
AC ELECTRICAL CHARACTERISTICS  
T = 25°C, V  
= V  
= V  
= 5V, V = V = V = 0V,  
CCC EEA EEB EEC  
A
CCA  
CCB  
ENABLE = 0.8V, +INA shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
unless otherwise noted.  
= 2.2V, Input common mode voltage = 2.2V, no R  
OCM  
LOAD  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Noise/Harmonic Performance Input/output Characteristics  
1kHz Signal  
Second/Third Harmonic Distortion  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–100  
–100  
–100  
–91  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
3.2V Differential (+OUTFILTERED, –OUTFILTERED)  
P-P  
3.2V Differential (+OUT, OUT)  
–91  
P-P  
3.2V Differential (+OUT, OUT), R = 100Ω  
–91  
P-P  
L
Third-Order IMD  
2V Differential Composite (+OUTFILTERED,  
–102  
P-P  
–OUTFILTERED), f1 = 0.95kHz, f2 = 1.05kHz  
2V Differential Composite (+OUT, OUT),  
L
–102  
–93  
54  
dBc  
dBc  
P-P  
R = 100Ω, f1 = 0.95kHz, f2 = 1.05kHz  
3.2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 0.95kHz, f2 = 1.05kHz  
OIP3  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 0.95kHz, f2 = 1.05kHz  
dBm  
1k  
e
n1k  
Input Referred Noise Voltage Density  
1dB Compression Point  
3.5  
nV/√Hz  
dBm  
R = 100Ω  
L
22.7  
10MHz Signal  
Second/Third Harmonic Distortion  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–94  
–94  
–86  
–85  
–85  
–77  
–96  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
3.2V Differential (+OUTFILTERED, –OUTFILTERED)  
P-P  
3.2V Differential (+OUT, OUT)  
P-P  
3.2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
Third-Order IMD  
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 9.5MHz, f2 = 10.5MHz  
2V Differential Composite (+OUT, OUT),  
L
–96  
–87  
51  
dBc  
dBc  
P-P  
R = 100Ω, f1 = 9.5MHz, f2 = 10.5MHz  
3.2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 9.5MHz, f2 = 10.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 9.5MHz, f2 = 10.5MHz  
dBm  
10M  
Noise Figure  
Measured Using DC800A Demo Board  
11.3  
3.5  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n10M  
R = 100Ω  
L
22.6  
50MHz Signal  
Second/Third Harmonic Distortion  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–77  
–77  
–74  
–68  
–65  
dBc  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
3.2V Differential (+OUTFILTERED, –OUTFILTERED)  
P-P  
3.2V Differential (+OUT, OUT)  
dBc  
P-P  
19932fa  
4
LT1993-2  
AC ELECTRICAL CHARACTERISTICS  
T = 25°C, V  
= V  
= V  
= 5V, V = V = V = 0V,  
A
CCA  
CCB  
CCC EEA EEB EEC  
ENABLE = 0.8V, +INA shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
unless otherwise noted.  
= 2.2V, Input common mode voltage = 2.2V, no R  
OCM  
LOAD  
SYMBOL  
PARAMETER  
CONDITIONS  
3.2V Differential (+OUT, OUT), R = 100Ω  
MIN  
TYP  
–65  
–84  
MAX  
UNITS  
dBc  
dBc  
P-P  
L
Third-Order IMD  
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 49.5MHz, f2 = 50.5MHz  
2V Differential Composite (+OUT, OUT),  
L
–88  
–75  
45  
dBc  
dBc  
P-P  
R = 100Ω, f1 = 49.5MHz, f2 = 50.5MHz  
3.2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 49.5MHz, f2 = 50.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 49.5MHz, f2 = 50.5MHz  
dBm  
50M  
Noise Figure  
Measured Using DC800A Demo Board  
11.8  
3.65  
19.7  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n50M  
R = 100Ω  
L
70MHz Signal  
Second/Third Harmonic Distortion  
Third-Order IMD  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–70  
–61  
–61  
–70  
dBc  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 69.5MHz, f2 = 70.5MHz  
2V Differential Composite (+OUT, OUT),  
L
–72  
38  
dBc  
P-P  
R = 100Ω, f1 = 69.5MHz, f2 = 70.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 69.5MHz, f2 = 70.5MHz  
dBm  
70M  
Noise Figure  
Measured Using DC800A Demo Board  
12.3  
3.8  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n70M  
R = 100Ω  
L
18.5  
100MHz Signal  
Second/Third Harmonic Distortion  
Third-Order IMD  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–56  
–54  
–51  
–58  
dBc  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 99.5MHz, f2 = 100.5MHz  
2V Differential Composite (+OUT, OUT),  
L
–59  
32  
dBc  
P-P  
R = 100Ω, f1 = 99.5MHz, f2 = 100.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 99.5MHz, f2 = 100.5MHz  
dBm  
100M  
Noise Figure  
Measured Using DC800A Demo Board  
12.8  
4.1  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n100M  
R = 100Ω  
L
17.8  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: As long as output current and junction temperature are kept below  
the Absolute Maximum Ratings, no damage to the part will occur.  
0°C to 70°C. It is designed, characterized and expected to meet specified  
performance from –40°C and 85°C but is not tested or QA sampled  
at these temperatures. The LT1993I-2 is guaranteed to meet specified  
performance from –40°C to 85°C.  
Note 5: This parameter is pulse tested.  
Note 3: The LT1993C-2 is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 4: The LT1993C-2 is guaranteed to meet specified performance from  
Note 6: This parameter is guaranteed to meet specified performance  
through design and characterization. It has not been tested.  
19932fa  
5
LT1993-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Frequency Response  
= 400Ω  
Frequency Response vs C  
LOAD  
,
Frequency Response  
R = 100Ω  
LOAD  
LOAD  
R
LOAD  
R
= 400Ω  
12  
9
21  
18  
15  
12  
9
12  
9
V
= 100mV  
P-P  
IN  
UNFILTERED OUTPUTS  
UNFILTERED OUTPUTS  
FILTERED OUTPUTS  
UNFILTERED OUTPUTS  
FILTERED OUTPUTS  
6
6
3
3
0
0
–3  
–6  
–9  
–12  
6
–3  
–6  
–9  
–12  
V
= 100mV  
V
= 100mV  
IN P-P  
IN  
P-P  
LOAD  
=
UNFILTERED: R  
FILTERED: R  
= 400  
UNFILTERED: R  
FILTERED: R  
= 100Ω  
LOAD  
=
3
0pF  
2pF  
5pF  
10pF  
LOAD  
LOAD  
350(EXTERNAL) +  
50(EXTERNAL) +  
0
50(INTERNAL, FILTERED  
50(INTERNAL, FILTERED  
OUTPUTS)  
OUTPUTS)  
–3  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19932 G01  
19932 G03  
19932 G02  
Third Order Intermodulation  
Distortion vs Frequency  
Third Order Intermodulation  
Distortion vs Frequency  
Third Order Intermodulation  
Distortion vs Frequency  
Differential Input, No R  
Differential Input, R  
= 400Ω  
Differential Input, R  
= 100Ω  
LOAD  
LOAD  
LOAD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
2 TONES, 2V COMPOSITE  
P-P  
2 TONES, 2V COMPOSITE  
P-P  
2 TONES, 2V COMPOSITE  
P-P  
1MHz TONE SPACING  
1MHz TONE SPACING  
1MHz TONE SPACING  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
UNFILTERED OUTPUTS  
UNFILTERED OUTPUTS  
UNFILTERED OUTPUTS  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19932 G06  
19932 G04  
19932 G05  
Output Third Order Intercept vs  
Frequency, Differential Input,  
Output Third Order Intercept vs  
Frequency, Differential Input,  
LOAD  
Output Third Order Intercept vs  
Frequency, Differential Input,  
LOAD  
No R  
R
= 400Ω  
R
= 100Ω  
LOAD  
60  
55  
50  
45  
40  
35  
30  
25  
20  
60  
55  
50  
45  
40  
35  
30  
25  
20  
60  
55  
50  
45  
40  
35  
30  
25  
20  
2 TONES, 2V COMPOSITE  
P-P  
2 TONES, 2V COMPOSITE  
P-P  
2 TONES, 2V COMPOSITE  
P-P  
1MHz TONE SPACING  
1MHz TONE SPACING  
1MHz TONE SPACING  
UNFILTERED OUTPUTS  
UNFILTERED OUTPUTS  
UNFILTERED OUTPUTS  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19932 G09  
19932 G07  
19932 G08  
19932fa  
6
LT1993-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Distortion (Filtered) vs Frequency  
Distortion (Filtered) vs Frequency  
Distortion (Filtered) vs Frequency  
Differential Input, R  
= 400Ω  
Differential Input, R  
= 100Ω  
Differential Input, No R  
LOAD  
LOAD  
LOAD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
V
= 2V  
V
= 2V  
P-P  
OUT  
V
= 2V  
P-P  
P-P  
OUT  
OUT  
HD3  
HD2  
HD3  
HD2  
HD3  
HD2  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19932 G11  
19932 G12  
19932 G10  
Distortion (Unfiltered) vs  
Frequency, Differential Input,  
No R  
Distortion (Unfiltered) vs  
Frequency, Differential Input,  
= 400Ω  
Distortion (Unfiltered) vs  
Frequency, Differential Input,  
R = 100Ω  
R
LOAD  
LOAD  
UNFILTERED OUTPUTS  
LOAD  
UNFILTERED OUTPUTS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
UNFILTERED OUTPUTS  
V
= 2V  
V
= 2V  
V
= 2V  
P-P  
OUT  
P-P  
P-P  
OUT  
OUT  
HD3  
HD2  
HD3  
HD2  
HD3  
HD2  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19932 G13  
19932 G14  
19932 G15  
Distortion vs Output Amplitude  
70MHz Differential Input,  
Distortion vs Output Amplitude  
70MHz Differential Input,  
LOAD  
Distortion vs Output Amplitude  
70MHz Differential Input,  
LOAD  
No R  
R
= 400Ω  
R
= 100Ω  
LOAD  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
HD3 UNFILTERED OUTPUTS  
HD3 FILTERED OUTPUTS  
HD3 UNFILTERED OUTPUTS  
HD2 UNFILTERED OUTPUTS  
HD3 UNFILTERED OUTPUTS  
HD2 UNFILTERED OUTPUTS  
HD2 FILTERED OUTPUTS  
HD3 FILTERED OUTPUTS  
–85 HD2 UNFILTERED OUTPUTS  
HD2 FILTERED OUTPUTS  
HD3 FILTERED OUTPUTS  
–90  
HD2 FILTERED OUTPUTS  
11  
–95  
–100  
–1  
1
3
5
7
9
11  
–1  
1
3
5
7
9
11  
–1  
1
3
5
7
9
OUTPUT AMPLITUDE (dBm)  
OUTPUT AMPLITUDE (dBm)  
OUTPUT AMPLITUDE (dBm)  
19932 G16  
19932 G17  
19932 G18  
19932fa  
7
LT1993-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Distortion (Filtered) vs Frequency  
Distortion (Filtered) vs Frequency  
Distortion (Filtered) vs Frequency  
Single-Ended Input, No R  
Single-Ended Input, R  
= 400Ω  
Single-Ended Input, R  
= 100Ω  
LOAD  
LOAD  
LOAD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
V
= 2V  
V
= 2V  
V
= 2V  
P-P  
OUT  
P-P  
P-P  
OUT  
OUT  
HD3  
HD2  
HD3  
HD2  
HD3  
HD2  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19932 G19  
19932 G20  
19932 G21  
Distortion (Unfiltered) vs  
Frequency, Single-Ended Input,  
No R  
Distortion (Unfiltered) vs  
Frequency, Single-Ended Input,  
= 400Ω  
Distortion (Unfiltered) vs  
Frequency, Single-Ended Input,  
R = 100Ω  
R
LOAD  
LOAD  
UNFILTERED OUTPUTS  
LOAD  
UNFILTERED OUTPUTS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
UNFILTERED OUTPUTS  
V
= 2V  
V
= 2V  
V
= 2V  
P-P  
OUT  
P-P  
P-P  
OUT  
OUT  
HD3  
HD2  
HD3  
HD2  
HD3  
HD2  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19932 G22  
19932 G23  
19932 G24  
Distortion vs Output Amplitude  
70MHz Single-Ended Input,  
Distortion vs Output Amplitude  
70MHz Single-Ended Input,  
LOAD  
Distortion vs Output Amplitude  
70MHz Single-Ended Input,  
LOAD  
No R  
R
= 400Ω  
R
= 100Ω  
LOAD  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–50  
–55  
HD3 UNFILTERED OUTPUTS  
HD3 UNFILTERED OUTPUTS  
HD3 UNFILTERED OUTPUTS  
–60 HD3 FILTERED OUTPUTS  
HD3 FILTERED OUTPUTS  
HD3 FILTERED OUTPUTS  
–65  
–70  
–75  
–80  
HD2 UNFILTERED OUTPUTS  
HD2 FILTERED OUTPUTS  
–85  
–90  
HD2 UNFILTERED OUTPUTS  
HD2 UNFILTERED OUTPUTS  
HD2 FILTERED OUTPUTS  
HD2 FILTERED OUTPUTS  
–95  
–100  
–1  
1
3
5
7
9
11  
–1  
1
3
5
7
9
11  
–1  
1
3
5
7
9
11  
OUTPUT AMPLITUDE (dBm)  
OUTPUT AMPLITUDE (dBm)  
OUTPUT AMPLITUDE (dBm)  
19932 G25  
19932 G26  
19932 G27  
19932fa  
8
LT1993-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output 1dB Compression  
vs Frequency  
Input Referred Noise Voltage vs  
Frequency  
Noise Figure vs Frequency  
25  
20  
15  
10  
5
12  
10  
8
30  
25  
20  
15  
10  
5
UNFILTERED OUTPUTS  
R
= 400Ω  
LOAD  
R
= 100Ω  
LOAD  
6
4
0
2
–5  
–10  
V
= 5V  
CC  
MEASURED USING DC800A DEMO BOARD  
0
0
10  
100  
1000  
1000  
1000  
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19932 G28  
19932 G29  
19932 G30  
Differential Input Impedance vs  
Frequency  
Differential Output Impedance vs  
Frequency  
Isolation vs Frequency  
100  
10  
1
–40  
–50  
300  
250  
200  
150  
100  
50  
UNFILTERED OUTPUTS  
UNFILTERED OUTPUTS  
–60  
IMPEDANCE MAGNITUDE  
IMPEDANCE PHASE  
–70  
–80  
–90  
0
–100  
–110  
–50  
–100  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
10000  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19932 G32  
19932 G33  
19932 G31  
Input Reflection Coefficient vs  
Frequency  
Output Reflection Coefficient vs  
Frequency  
PSRR, CMRR vs Frequency  
0
–5  
0
–5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MEASURED USING DC800A DEMO BOARD  
MEASURED USING DC800A DEMO BOARD  
UNFILTERED OUTPUTS  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
CMRR  
PSRR  
10  
100  
1000  
10  
100  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19932 G36  
19932 G34  
19932 G35  
19932fa  
9
LT1993-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Small-Signal Transient Response  
Large-Signal Transient Response  
Overdrive Recovery Time  
2.28  
2.26  
2.24  
2.22  
2.20  
2.18  
2.16  
2.14  
2.12  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= 100PER OUTPUT  
R
= 100PER OUTPUT  
LOAD  
LOAD  
+OUT  
R
= 100Ω  
LOAD  
PER OUTPUT  
–OUT  
15 20  
15 20  
75 100  
25 50  
0
5
10  
25 30 35 40 45 50  
0
5
10  
25 30 35 40 45 50  
0
125 150 175 200 225 250  
TIME (ns)  
TIME (ns)  
TIME (ns)  
19932 G37  
19932 G38  
19932 G39  
Distortion vs Output Common  
Mode Voltage LT1993-2 Driving  
LTC2249 14-Bit ADC  
Turn-On Time  
Turn-Off Time  
–64  
–66  
–68  
–70  
–72  
–74  
–76  
4
3
4
3
FILTERED OUTPUTS, NO R  
LOAD  
+OUT  
–OUT  
+OUT  
V
= 70MHz 2V  
OUT  
P-P  
2
2
–OUT  
1
1
0
0
R
= 100PER OUTPUT  
LOAD  
HD3  
HD2  
4
4
ENABLE  
R
2
2
ENABLE  
0
0
= 100PER OUTPUT  
LOAD  
–2  
–2  
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
0
250  
TIME (ns)  
500  
625  
125  
375  
250  
TIME (ns)  
0
125  
375  
500  
625  
OUTPUT COMMON MODE VOLTAGE (V)  
19932 G40  
19932 G41  
19932 G42  
19932fa  
10  
LT1993-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
30MHz 8192 Point FFT, LT1993-2  
Driving LTC2249 14-Bit ADC  
50MHz 8192 Point FFT, LT1993-2  
Driving LTC2249 14-Bit ADC  
70MHz 8192 Point FFT, LT1993-2  
Driving LTC2249 14-Bit ADC  
0
–10  
0
–10  
0
–10  
8192 POINT FFT  
8192 POINT FFT  
8192 POINT FFT  
f
= 30MHz, –1dBFS  
f
= 50MHz, –1dBFS  
f
= 70MHz, –1dBFS  
IN  
IN  
IN  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
25 30  
10 15 20  
FREQUENCY (MHz)  
25 30  
10 15 20  
FREQUENCY (MHz)  
25 30  
10 15 20  
FREQUENCY (MHz)  
0
5
35 40  
0
5
35 40  
0
5
35 40  
19932 G46  
19932 G47  
19932 G48  
70MHz 2-Tone 32768 Point FFT,  
LT1993-2 Driving LTC2249  
14-Bit ADC  
2-Tone WCDMA Waveform,  
4-Tone WCDMA Waveform,  
LT1993-2 Driving LTC2255 14-Bit  
ADC at 92.16Msps  
LT1993-2 Driving LTC2255 14-Bit  
ADC at 92.16Msps  
0
–10  
0
–10  
0
–10  
32768 POINT FFT  
TONE CENTER FREQUENCIES  
AT 67.5MHz, 72.5MHz  
32768 POINT FFT  
32768 POINT FFT  
TONE CENTER FREQUENCIES  
AT 62.5MHz, 67.5MHz,  
72.5MHz, 77.5MHz  
TONE 1 AT 69.5MHz, –7dBFS  
TONE 2 AT 70.5MHz, –7dBFS  
FILTERED OUTPUTS  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
5
10 15 20 25 30 35 40 45  
0
5
10 15 20 25 30 35 40 45  
25 30  
10 15 20  
FREQUENCY (MHz)  
0
5
35 40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19932 G50  
19932 G51  
19932 G49  
19932fa  
11  
LT1993-2  
U
U
U
PI FU CTIO S  
V
(Pin 2): This pin sets the output common mode  
+OUTFILTERED, –OUTFILTERED (Pins 6, 7): Filtered  
Outputs. These pins add a series 25Ω resistor from the  
unfiltered outputs and three 12pF capacitors. Each output  
OCM  
voltage. Without additional biasing, both inputs bias to  
this voltage as well. This input is high impedance.  
has 12pF to V , plus an additional 12pF between each pin  
EE  
V
, V , V  
(Pins 3, 10, 1): Positive Power Supply  
CCA CCB CCC  
(See the Block Diagram). This filter has a –3dB bandwidth  
of 175MHz.  
(Normally Tied to 5V). All three pins must be tied to the  
same voltage. Bypass each pin with 1000pF and 0.1µF  
capacitors as close to the package as possible. Split  
ENABLE (Pin 11): This pin is a TTL logic input referenced  
supplies are possible as long as the voltage between V  
and V is 5V.  
to the V pin. If low, the LT1993-2 is enabled and draws  
CC  
EEC  
typically 100mA of supply current. If high, the LT1993-2  
EE  
is disabled and draws typically 250µA.  
V
, V , V (Pins 4, 9, 12): Negative Power Supply  
EEA EEB EEC  
(Normally Tied to Ground). All three pins must be tied to  
+INA, +INB (Pins 15, 16): Positive Inputs. These pins are  
normally tied together. These inputs may be DC- or AC-  
coupled. If the inputs are AC-coupled, they will self-bias  
the same voltage. Split supplies are possible as long as  
the voltage between V and V is 5V. If these pins are  
CC  
EE  
nottiedtoground, bypasseachpinwith1000pFand0.1µF  
to the voltage applied to the V  
pin.  
OCM  
capacitors as close to the package as possible.  
–INA, –INB (Pins 14, 13): Negative Inputs. These pins are  
normally tied together. These inputs may be DC- or AC-  
coupled. If the inputs are AC-coupled, they will self-bias  
+OUT, OUT (Pins 5, 8): Outputs (Unfiltered). These  
pins are high bandwidth, low-impedance outputs. The DC  
output voltage at these pins is set to the voltage applied  
to the voltage applied to the V  
pin.  
OCM  
at V  
.
OCM  
Exposed Pad (Pin 17): Tie the pad to V (Pin 12). If split  
EEC  
supplies are used, DO NOT tie the pad to ground.  
19932fa  
12  
LT1993-2  
W
BLOCK DIAGRA  
200Ω  
V
EEA  
V
CCA  
–INA  
14  
12pF  
200Ω  
200Ω  
+
+OUT  
5
6
A
–INB  
13  
+OUTFILTERED  
25Ω  
V
EEA  
V
200Ω  
CCC  
V
OCM  
2
+
C
12pF  
V
EEC  
200Ω  
200Ω  
25Ω  
–OUTFILTERED  
–OUT  
V
CCB  
+INA  
16  
7
8
+
B
+INB  
15  
200Ω  
12pF  
V
EEB  
V
EEB  
200Ω  
BIAS  
11  
19932 BD  
3
10  
1
4
9
12  
V
V
V
ENABLE  
V
V
V
EEC  
CCA  
CCB  
CCC  
EEA  
EEB  
19932fa  
13  
LT1993-2  
U
W U U  
APPLICATIO S I FOR ATIO  
Circuit Description  
Input Impedance and Matching Networks  
The LT1993-2 is a low-noise, low-distortion differential  
amplifier/ADC driver with:  
Because of the internal feedback network, calculation of  
the LT1993-2’s input impedance is not straightforward  
from examination of the block diagram. Furthermore, the  
inputimpedancewhendrivendifferentiallyisdifferentthan  
when driven single-ended. When driven differentially, the  
LT1993-2’s input impedance is 200Ω (differential); when  
driven single-ended, the input impedance is 133Ω.  
• DC to 800MHz –3dB bandwidth  
• Fixed gain of 2V/V (6dB) independent of R  
LOAD  
• 200Ω differential input impedance  
• Low output impedance  
For single-ended 50Ω applications, an 80.6Ω shunt  
matching resistor to ground will result in the proper input  
termination (Figure 1). For differential inputs there are  
several termination options. If the input source is 50Ω  
differential, then input matching can be accomplished by  
either a 67Ω shunt resistor across the inputs (Figure 3),  
or a 33Ω shunt resistor on each of the inputs to ground  
(Figure2).IfadditionalACgainisdesired,a1:4impedance  
ratiotransformer(liketheMini-CircuitsTCM4-19)canalso  
be used to better match impedances and to provide an ad-  
ditional 6dB of gain (Figure 4). With a 1:4 impedance ratio  
transformer, idealmatchingimpedanceatthetransformer  
output is 200Ω, so no termination resistors are required  
to match the LT1993-2’s 200Ω input impedance.  
• Built-in, user adjustable output filtering  
• Requires minimal support circuitry  
Referringtotheblockdiagram,theLT1993-2usesaclosed-  
loop topology which incorporates 3 internal amplifiers.  
Two of the amplifiers (A and B) are identical and drive  
the differential outputs. The third amplifier (C) is used  
to set the output common mode voltage. Gain and input  
impedance are set by the 200Ω resistors in the internal  
feedback network. Output impedance is low, determined  
by the inherent output impedance of amplifiers A and B,  
and further reduced by internal feedback.  
The LT1993-2 also includes built-in single-pole output  
filtering. The user has the choice of using the unfiltered  
outputs, the filtered outputs (175MHz –3dB lowpass), or  
modifying the filtered outputs to alter frequency response  
by adding additional components. Many lowpass and  
bandpass filters are easily implemented with just one or  
two additional components.  
13  
–INB  
–INA  
8
5
–OUT  
LT1993-2  
+OUT  
14  
0.1µF  
15  
16  
IF IN  
+INB  
+INA  
The LT1993-2 has been designed to minimize the need  
for external support components such as transformers or  
AC-coupling capacitors. As an ADC driver, the LT1993-2  
requires no external components except for power-supply  
bypass capacitors. This allows DC-coupled operation for  
applications that have frequency ranges including DC.  
At the outputs, the common mode voltage is set via the  
80.6Ω  
SINGLE-ENDED  
Z
= 50Ω  
IN  
19932 F01  
Figure 1. Input Termination for Single-Ended 50Ω  
Input Impedance  
13  
–INB  
V
OCM  
pin,allowingtheLT1993-2todriveADCsdirectly.No  
IF IN  
8
5
14  
–OUT  
LT1993-2  
+OUT  
–INA  
outputAC-couplingcapacitorsortransformersareneeded.  
At the inputs, signals can be differential or single-ended  
with virtually no difference in performance. Furthermore,  
DC levels at the inputs can be set independently of the  
outputcommonmodevoltage.Theseinputcharacteristics  
often eliminate the need for an input transformer and/or  
AC-coupling capacitors.  
33Ω  
33Ω  
Z
= 50Ω  
IN  
DIFFERENTIAL  
15  
16  
+INB  
+INA  
+
IF IN  
19932 F02  
Figure 2. Input Termination for Differential 50Ω Input Impedance  
19932fa  
14  
LT1993-2  
U
W U U  
APPLICATIO S I FOR ATIO  
high impedance inputs of these differential ADCs. If the  
filtered outputs are used, then cutoff frequency and the  
type of filter can be tailored for the specific application if  
needed.  
13  
–INB  
IF IN  
8
14  
–OUT  
LT1993-2  
+OUT  
–INA  
Z
= 50Ω  
DIFFERENTIAL  
IN  
67Ω  
15  
16  
+INB  
+INA  
Wideband Applications  
(Using the +OUT and –OUT Pins)  
+
IF IN  
5
19932 F02  
In applications where the full bandwidth of the LT1993-2  
is desired, the unfiltered output pins (+OUT and –OUT)  
should be used. They have a low output impedance;  
therefore, gain is unaffected by output load. Capacitance  
in excess of 5pF placed directly on the unfiltered outputs  
results in additional peaking and reduced performance.  
When driving an ADC directly, a small series resistance  
is recommended between the LT1993-2’s outputs and  
the ADC inputs (Figure 5). This resistance helps eliminate  
any resonances associated with bond wire inductances of  
either the ADC inputs or the LT1993-2’s outputs. A value  
between 10Ω and 25Ω gives excellent results.  
Figure 3. Alternate Input Termination for Differential  
50Ω Input Impedance  
13  
–INB  
–INA  
8
5
–OUT  
LT1993-2  
+OUT  
14  
0.1µF  
Z
= 50Ω  
DIFFERENTIAL  
IN  
15  
16  
+INB  
+INA  
1:4 TRANSFORMER  
(MINI-CIRCUITS TCM4-19)  
19932 F04  
Figure 4. Input Termination for Differential 50Ω Input Impedance  
with 6dB Additional Gain  
Single-Ended to Differential Operation  
10TO 25Ω  
8
–OUT  
The LT1993-2’s performance with single-ended inputs is  
comparable to its performance with differential inputs.  
This excellent single-ended performance is largely due  
to the internal topology of the LT1993-2. Referring to  
the block diagram, if the +INA and +INB pins are driven  
with a single-ended signal (while –INA and –INB are tied  
to AC ground), then the +OUT and –OUT pins are driven  
differentially without any voltage swing needed from  
amplifier C. Single-ended to differential conversion using  
more conventional topologies suffers from performance  
limitations due to the common mode amplifier.  
LT1993-2  
+OUT  
ADC  
10TO 25Ω  
5
19932 F05  
Figure 5. Adding Small Series R at LT1993-2 Output  
Filtered Applications  
(Using the +OUTFILTERED and –OUTFILTERED Pins)  
Filtering at the output of the LT1993-2 is often desired to  
provide either anti-aliasing or improved signal to noise  
ratio. To simplify this filtering, the LT1993-2 includes an  
additional pair of differential outputs (+OUTFILTERED  
and –OUTFILTERED) which incorporate an internal low-  
pass filter network with a –3dB bandwidth of 175MHz  
(Figure 6). These pins each have an output impedance  
Driving ADCs  
The LT1993-2 has been specifically designed to interface  
directly with high speed Analog to Digital Converters  
(ADCs). In general, these ADCs have differential inputs,  
with an input impedance of 1k or higher. In addition, there  
isgenerallysomeformoflowpassorbandpasslteringjust  
prior to the ADC to limit input noise at the ADC, thereby  
improving system signal to noise ratio. Both the unfiltered  
and filtered outputs of the LT1993-2 can easily drive the  
of 25Ω. Internal capacitances are 12pF to V on each  
EE  
filtered output, plus an additional 12pF capacitor con-  
nected differentially between the two filtered outputs. This  
resistor/capacitor combination creates filtered outputs  
19932fa  
15  
LT1993-2  
U
W U U  
APPLICATIO S I FOR ATIO  
that look like a series 25Ω resistor with a 36pF capacitor  
shunting each filtered output to AC ground, giving a –3dB  
bandwidth of 175MHz.  
it will appear at each filtered output as a single-ended  
capacitance of twice the value. To halve the filter band-  
width, for example, two 36pF capacitors could be added  
(one from each filtered output to ground). Alternatively  
one 18pF capacitor could be added between the filtered  
outputs, again halving the filter bandwidth. Combinations  
of capacitors could be used as well; a three capacitor  
solution of 12pF from each filtered output to ground plus  
a 12pF capacitor between the filtered outputs would also  
halve the filter bandwidth (Figure 8).  
LT1993-2  
8
–OUT  
V
EE  
12pF  
12pF  
25Ω  
25Ω  
7
6
–OUTFILTERED  
+OUTFILTERED  
FILTERED OUTPUT  
(175MHz)  
12pF  
LT1993-2  
V
EE  
8
–OUT  
5
V
+OUT  
EE  
19932 F06  
12pF  
25Ω  
25Ω  
Figure 6. LT1993-2 Internal Filter Topology –3dB BW ≈175MHz  
12pF  
7
–OUTFILTERED  
FILTERED OUTPUT  
(87.5MHz)  
12pF  
12pF  
The filter cutoff frequency is easily modified with just a  
fewexternalcomponents.Toincreasethecutofffrequency,  
simplyadd2equalvalueresistors, onebetween+OUTand  
+OUTFILTEREDandtheotherbetweenOUTandOUTFIL-  
TERED (Figure 7). These resistors are in parallel with the  
internal 25Ω resistor, lowering the overall resistance and  
increasinglterbandwidth.Todoublethelterbandwidth,  
for example, add two external 25Ω resistors to lower  
the series resistance to 12.5Ω. The 36pF of capacitance  
remains unchanged, so filter bandwidth doubles.  
+OUTFILTERED  
6
5
12pF  
12pF  
V
EE  
+OUT  
19932 F08  
Figure 8. LT1993-2 Internal Filter Topology Modified for  
1/2x Filter Bandwidth (3 External Capacitors)  
Bandpass filtering is also easily implemented with just a  
few external components. An additional 120pF and 39nH,  
each added differentially between +OUTFILTERED and  
–OUTFILTERED creates a bandpass filter with a 71MHz  
center frequency, –3dB points of 55MHz and 87MHz, and  
1.6dB of insertion loss (Figure 9).  
LT1993-2  
8
–OUT  
25Ω  
V
EE  
12pF  
12pF  
25Ω  
25Ω  
7
6
–OUTFILTERED  
FILTERED OUTPUT  
(350MHz)  
LT1993-2  
12pF  
8
–OUT  
V
EE  
+OUTFILTERED  
12pF  
25Ω  
25Ω  
25Ω  
7
–OUTFILTERED  
39nH  
V
EE  
5
+OUT  
FILTERED OUTPUT  
(71MHz BANDPASS,  
–3dB @ 55MHz/87MHz)  
19932 F07  
12pF  
120pF  
Figure 7. LT1993-2 Internal Filter Topology Modified for  
2x Filter Bandwidth (2 External Resistors)  
+OUTFILTERED  
6
5
12pF  
To decrease filter bandwidth, add two external capacitors,  
one from +OUTFILTERED to ground, and the other from  
–OUTFILTERED to ground. A single differential capacitor  
connected between +OUTFILTERED and –OUTFILTERED  
can also be used, but since it is being driven differentially  
V
EE  
+OUT  
19932 F09  
Figure 9. LT1993-2 Output Filter Topology Modified for Bandpass  
Filtering (1 External Inductor, 1 External Capacitor)  
19932fa  
16  
LT1993-2  
U
W U U  
APPLICATIO S I FOR ATIO  
Output Common Mode Adjustment  
ADCs because of the input voltage range constraints of  
the ADC.  
TheLT1993-2’soutputcommonmodevoltageissetbythe  
V
pin. It is a high-impedance input, capable of setting  
OCM  
Large Output Voltage Swings  
the output common mode voltage anywhere in a range  
from 1.1V to 3.6V. Bandwidth of the V pin is typically  
The LT1993-2 has been designed to provide the 3.2V  
P-P  
OCM  
output swing needed by the LTC1748 family of 14-bit  
low-noise ADCs. This additional output swing improves  
system SNR by up to 4dB. Typical performance curves  
and AC specifications have been included for these ap-  
plications.  
300MHz, so for applications where the V  
pin is tied to  
OCM  
a DC bias voltage, a 0.1µF capacitor at this pin is recom-  
mended. For best distortion performance, the voltage at  
the V  
pin should be between 1.8V and 2.6V.  
OCM  
When interfacing with most ADCs, there is generally a  
output pin that is at about half of the supply voltage  
V
OCM  
Input Bias Voltage and Bias Current  
of the ADC. For 5V ADCs such as the LTC17XX family, this  
output pin should be connected directly (with the  
The input pins of the LT1993-2 are internally biased to  
V
OCM  
the voltage applied to the V  
pin. No external biasing  
OCM  
addition of a 0.1µF capacitor) to the input V  
pin of the  
OCM  
resistors are needed, even for AC-coupled operation. The  
input bias current is determined by the voltage difference  
LT1993-2. For 3V ADCs such as the LTC22XX families,  
the LT1993-2 will function properly using the 1.65V from  
betweentheinputcommonmodevoltageandtheV  
pin  
OCM  
the ADC’s V reference pin, but improved Spurious Free  
CM  
(which sets the output common mode voltage). At both  
the positive and negative inputs, any voltage difference is  
imposed across 200Ω, generating an input bias current.  
Dynamic Range (SFDR) and distortion performance can  
beachievedbylevel-shiftingtheLTC22XX’sV reference  
CM  
voltage up to at least 1.8V. This can be accomplished as  
For example, if the inputs are tied to 2.5V with the V  
OCM  
shown in Figure 10 by using a resistor divider between  
pin at 2.2V, then a total input bias current of 1.5mA will  
flowintotheLT1993-2’s+INAand+INBpins.Furthermore,  
an additional input bias current totaling 1.5mA will flow  
into the –INA and –INB inputs.  
the LTC22XX’s V output pin and V and then bypass-  
CM  
CC  
ing the LT1993-2’s V  
pin with a 0.1µF capacitor. For a  
OCM  
commonmodevoltageabove1.9V,ACcouplingcapacitors  
are recommended between the LT1993-2 and LTC22XX  
Application (Demo) Boards  
3V  
11k  
TheDC800ADemoBoardhasbeencreatedforstand-alone  
evaluation of the LT1993-2 with either single-ended or  
differential input and output signals. As shown, it accepts  
a single-ended input and produces a single-ended output  
so that the LT1993-2 can be evaluated using standard  
laboratory test equipment. For more information on this  
Demo Board, please refer to the Demo Board section of  
this data sheet.  
1.9V  
0.1µF  
4.02k  
2
13  
14  
31 1.5V  
–INB  
–INA  
V
V
OCM  
CM  
10Ω  
10Ω  
6
7
1
2
+
+OUTFILTERED  
LT1993-2  
AIN  
AIN  
0.1µF  
LTC22xx  
–OUTFILTERED  
15  
16  
+INB  
+INA  
IF IN  
There are also additional demo boards available that  
combine the LT1993-2 with a variety of different Linear  
Technology ADCs. Please contact the factory for more  
information on these demo boards.  
80.6Ω  
19932 F10  
Figure 10. Level Shifting 3V ADC V Voltage for  
Improved SFDR  
CM  
19932fa  
17  
LT1993-2  
U
TYPICAL APPLICATIO  
19932fa  
18  
LT1993-2  
U
PACKAGE DESCRIPTIO  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
0.70 0.05  
3.50 0.05  
2.10 0.05  
1.45 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 × 45° CHAMFER  
R = 0.115  
TYP  
0.75 0.05  
3.00 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 0.10  
1
2
1.45 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
19932fa  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT1993-2  
U
TYPICAL APPLICATIO  
Demo Circuit DC800A Schematic  
(AC Test Circuit)  
R18  
0  
R17  
0Ω  
V
CC  
V
CC  
GND  
V
CC  
2
1
2
1
1
SW1  
3
TP1  
ENABLE  
C17  
1000pF  
C18  
0.01µF  
R16  
0Ω  
2
1
1
2
R2  
R4  
[1]  
R14  
C11  
[1]  
12  
11  
10  
9
C2  
0.1µF  
C4  
0Ω  
0Ω  
R6  
R10  
R12  
0.1µF  
V
ENABLE  
V
V
EEC  
CCB EEB  
–OUT  
0Ω  
24.9Ω  
75Ω  
13  
14  
15  
16  
8
–INB  
1
2
1
2
J1  
–IN  
R8  
[1]  
J4  
–OUT  
T1  
T2  
C21  
0.1µF  
7
6
5
1:4 Z-RATIO  
1:4 Z-RATIO  
5
4
1
3
–INA  
+INB  
+INA  
–OUTFILTERED  
+OUTFILTERED  
+OUT  
3
1
4
5
2
1
2
2
L1  
[1]  
C8  
[1]  
R15  
[1]  
R7  
[1]  
+6dB  
LT1993-2  
+10.8dB  
+6dB  
1
2
MINI-  
MINI-  
0dB  
0dB  
J2  
+IN  
J5  
+OUT  
C1  
0.1µF  
C3  
0.1µF  
CIRCUITS  
TCM 4-19  
CIRCUITS  
TCM 4-19  
R9  
24.9Ω  
R11  
75Ω  
R5  
0Ω  
1
2
1
2
V
CCC  
V
OCM  
V
V
CCA  
EEA  
1
2
2
R1  
1Ω  
R3  
[1]  
R13  
[1]  
C16  
[1]  
C22  
0.1µF  
1
2
3
4
V
CC  
V
CC  
1
2
1
2
1
2
1
2
1
C10  
0.01µF  
C9  
1000pF  
C12  
1000pF  
C13  
0.01µF  
V
CC  
R19  
14k  
J3  
V
OCM  
2
1
C7  
0.01µF  
R20  
11k  
C5  
0.1µF  
J6  
TEST IN  
T3  
T4  
J7  
1:4  
4:1  
TEST OUT  
4
5
5
1
3
3
2
1
2
R22  
C19, 0.1µF  
C20, 0.1µF  
2
R21  
[1]  
C6  
[1]  
0.1µF  
1
2
1
2
MINI-  
CIRCUITS  
TCM 4-19  
MINI-  
CIRCUITS  
TCM 4-19  
4
1
1
2
TP2  
CC  
V
CC  
V
NOTES: UNLESS OTHERWISE SPECIFIED,  
[1] DO NOT STUFF.  
1
1
2
2
1
C14  
4.7µF  
C15  
1µF  
1
TP3  
GND  
19932 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
A = 4V/V, NF = 14.5dB, OIP3 = 40dBm at 70MHz  
LT1993-4  
900MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
V
LT1993-10  
LT5514  
A = 10V/V, NF = 12.7dB, OIP3 = 40dBm at 70MHz  
V
Ultralow Distortion IF Amplifier/ADC Driver Digitally Controlled Gain Output IP3 47dBm at 100MHz  
LT6600-2.5  
Very Low Noise Differential Amplifier and  
2.5MHz Lowpass Filter  
86dB S/N with 3V Supply, SO-8 Package  
82dB S/N with 3V Supply, SO-8 Package  
82dB S/N with 3V Supply, SO-8 Package  
76dB S/N with 3V Supply, SO-8 Package  
LT6600-5  
LT6600-10  
LT6600-20  
Very Low Noise Differential Amplifier and  
5MHz Lowpass Filter  
Very Low Noise Differential Amplifier and  
10MHz Lowpass Filter  
Very Low Noise Differential Amplifier and  
20MHz Lowpass Filter  
19932fa  
LT/LT 1005 REV A • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY