LT1993IUD-4 [Linear]

900MHz Low Distortion, Low Noise Differential Amplifi er/ADC Driver (AV = 4V/V); 900MHz的低失真,低噪声差分功率放大器ER / ADC驱动器(AV = 4V / V)
LT1993IUD-4
型号: LT1993IUD-4
厂家: Linear    Linear
描述:

900MHz Low Distortion, Low Noise Differential Amplifi er/ADC Driver (AV = 4V/V)
900MHz的低失真,低噪声差分功率放大器ER / ADC驱动器(AV = 4V / V)

驱动器 放大器 功率放大器
文件: 总16页 (文件大小:713K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1993-4  
900MHz Low Distortion, Low  
Noise Differential Amplifier/  
ADC Driver (AV = 4V/V)  
U
DESCRIPTIO  
FEATURES  
The LT®1993-4 is a low distortion, low noise Differential  
Amplifier/ADC driver for use in applications from DC to  
900MHz. The LT1993-4 has been designed for ease of  
use, with minimal support circuitry required. Exception-  
ally low input-referred noise and low distortion products  
(with either single-ended or differential inputs) make the  
LT1993-4 an excellent solution for driving high speed 12-  
bit and 14-bit ADCs. In addition to the normal unfiltered  
outputs (+OUT and –OUT), the LT1993-4 has a built-in  
175MHz differential lowpass filter and an additional pair  
of filtered outputs (+OUTFILTERED, –OUTFILTERED) to  
reduce external filtering components when driving high  
speedADCs.Theoutputcommonmodevoltageiseasilyset  
900MHz –3dB Bandwidth  
Fixed Gain of 4V/V (12dB)  
Low Distortion:  
40dBm OIP3, –73dBc HD3 (70MHz 2V  
)
)
P-P  
P-P  
51dBm OIP3, –94dBc HD3 (10MHz 2V  
Low Noise: 14.5dB NF, e = 2.35nV/√Hz (70MHz)  
n
Differential Inputs and Outputs  
Additional Filtered Outputs  
Adjustable Output Common Mode Voltage  
DC- or AC-Coupled Operation  
Minimal Support Circuitry Required  
Small 0.75mm Tall 16-Lead 3 × 3 QFN Package  
U
via the V  
pin, eliminating either an output transformer  
or AC-coupling capacitors in many applications.  
APPLICATIO S  
OCM  
Differential ADC Driver for:  
The LT1993-4 is designed to meet the demanding require-  
ments of communications transceiver applications. It can  
be used as a differential ADC driver, a general-purpose  
differential gain block, or in any other application requir-  
ing differential drive. The LT1993-4 can be used in data  
acquisition systems required to function at frequencies  
down to DC.  
Imaging  
Communications  
Differential Driver/Receiver  
Single Ended to Differential Conversion  
Differential to Single Ended Conversion  
Level Shifting  
IF Sampling Receivers  
SAW Filter Interfacing/Buffering  
The LT1993-4 operates on a 5V supply and consumes  
100mA. It comes in a compact 16-lead 3 × 3 QFN package  
and operates over a –40°C to 85°C temperature range.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
4-Tone WCDMA Waveform,  
LT1993-4 Driving LTC2255  
14-Bit ADC at 92.16Msps  
ADC Driver with Single-Ended to Differential Conversion  
0
32768 POINT FFT  
–10  
TONE CENTER FREQUENCIES  
1:1  
Z-RATIO  
0.1µF  
–20  
–30  
AT 62.5MHz, 67.5MHz,  
72.5MHz, 77.5MHz  
70MHz  
IF IN  
–INB  
–INA  
12.2Ω  
–OUT  
–40  
AIN–  
LTC2255  
–OUTFILTERED  
–50  
100Ω  
0.1µF  
82nH 52.3pF  
LT1993-4  
–60  
ADC  
+OUTFILTERED  
–70  
+INB  
AIN+  
+OUT  
OCM  
MA/COM  
ETC1-1-13  
–80  
12.2Ω  
+INA  
V
LTC2255 125Msps  
14-BIT ADC SAMPLING  
AT 92.16Msps  
–90  
ENABLE  
–100  
–110  
–120  
2.2V  
12dB GAIN  
19934 TA01  
0
10 15 20 25 30 35 40 45  
FREQUENCY (MHz)  
5
LT19934 TA02  
19934fa  
1
LT1993-4  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Total Supply Voltage (V /V /V  
EEA EEB EEC  
Input Current (+INA, –INA, +INB, –INB,  
to  
CCA CCB CCC  
/V /V ) ...................................................5.5V  
V
16 15 14 13  
V
1
2
3
4
12  
V
EEC  
CCC  
V
, ENABLE)................................................ 10mA  
OCM  
V
11 ENABLE  
OCM  
17  
Output Current (Continuous) (Note 6)  
V
V
V
10  
9
CCA  
CCB  
EEB  
+OUT, OUT (DC) .......................................... 100mA  
(AC) .......................................... 100mA  
V
EEA  
5
6
7
8
+OUTFILTERED, –OUTFILTERED (DC)............. 15mA  
(AC) ............. 45mA  
Output Short Circuit Duration (Note 2) ............ Indefinite  
Operating Temperature Range (Note 3) ... –40°C to 85°C  
Specified Temperature Range (Note 4) .... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
Junction Temperature ........................................... 125°C  
Lead Temperature Range (Soldering 10 sec) ........ 300°C  
UD PACKAGE  
16-LEAD (3mm × 3mm) PLASTIC QFN  
= 125°C, θ = 68°C/W, θ = 4.2°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD IS V (PIN 17)  
EE  
MUST BE SOLDERED TO THE PCB  
UD PART MARKING*  
ORDER PART NUMBER  
LT1993CUD-4  
LT1993IUD-4  
LBNS  
LBNS  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grade is identified by a label on the shipping container.  
DC ELECTRICAL CHARACTERISTICS  
The  
CCA  
denotes the specifications which apply over the full operating  
= V = 5V, V = V = V = 0V, ENABLE = 0.8V, +INA  
temperature range, otherwise specifications are at T = 25°C. V  
= V  
A
CCB  
CCC  
EEA  
EEB  
EEC  
shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
= 2.2V, Input common mode voltage = 2.2V, no R  
unless otherwise noted.  
OCM  
CONDITIONS  
Input/Output Characteristics (+INA, +INB, –INA, –INB, +OUT, OUT, +OUTFILTERED, –OUTFILTERED)  
LOAD  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
GDIFF  
Gain  
Differential (+OUT, OUT), V  
=
0.4V Differential  
Single-Ended +OUT, OUT, +OUTFILTERED,  
–OUTFILTERED. V 1.2V Differential  
Single-Ended +OUT, OUT, +OUTFILTERED,  
–OUTFILTERED. V 1.2V Differential  
11.6  
11.9  
0.25  
12.4  
dB  
IN  
V
V
V
0.35  
0.5  
V
V
SWINGMIN  
SWINGMAX  
SWINGDIFF  
OUT  
=
IN  
3.6  
3.5  
3.75  
7
V
V
=
IN  
Output Voltage Swing  
Differential (+OUT, OUT), V  
Differential  
=
1.2V  
6.5  
6
V
V
IN  
P-P  
P-P  
P-P  
I
Output Current Drive  
Input Offset Voltage  
(Note 5)  
40  
45  
1
mA  
V
–6.5  
–10  
6.5  
10  
mV  
mV  
OS  
TCV  
Input Offset Voltage Drift  
Input Voltage Range, MIN  
Input Voltage Range, MAX  
Differential Input Resistance  
Differential Input Capacitance  
T
MIN  
to T  
MAX  
2.5  
µV/°C  
V
OS  
VRMIN  
VRMAX  
I
I
Single-Ended  
Single-Ended  
0.5  
4.3  
77  
V
Ω
R
100  
1
122  
INDIFF  
INDIFF  
C
pF  
19934fa  
2
LT1993-4  
DC ELECTRICAL CHARACTERISTICS  
The  
CCA  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V  
= V  
= V  
= 5V, V = V = V = 0V, ENABLE = 0.8V, +INA  
CCC EEA EEB EEC  
A
CCB  
shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
= 2.2V, Input common mode voltage = 2.2V, no R  
unless otherwise noted.  
OCM  
LOAD  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
70  
MAX  
UNITS  
dB  
CMRR  
Common Mode Rejection Ratio  
Output Resistance  
Input Common Mode 0.5V to 4.3V  
45  
Ω
R
0.3  
0.8  
OUTDIFF  
OUTDIFF  
C
Output Capacitance  
pF  
Common Mode Voltage Control (V  
Pin)  
OCM  
GCM  
Common Mode Gain  
Differential (+OUT, OUT), V  
Differential (+OUT, OUT), V  
= 1.2V to 3.6V  
= 1.4V to 3.4V  
0.9  
0.9  
1
1.1  
1.1  
V/V  
V/V  
OCM  
OCM  
V
V
V
Output Common Mode Voltage  
Adjustment Range, MIN  
Measured Single-Ended at +OUT and –OUT  
1.2  
1.4  
V
V
OCMMIN  
OCMMAX  
OSCM  
Output Common Mode Voltage  
Adjustment Range, MAX  
Measured Single-Ended at +OUT and –OUT  
3.6  
3.4  
V
V
Output Common Mode Offset  
Voltage  
Measured from V  
to Average of +OUT and –OUT  
–30  
2
30  
15  
mV  
OCM  
I
V
V
V
Input Bias Current  
Input Resistance  
Input Capacitance  
5
3
1
µA  
MΩ  
pF  
BIASCM  
OCM  
OCM  
OCM  
R
0.8  
INCM  
INCM  
C
ENABLE Pin  
V
V
ENABLE Input Low Voltage  
ENABLE Input High Voltage  
ENABLE Input Low Current  
ENABLE Input High Current  
0.8  
V
V
IL  
2
IH  
I
I
ENABLE = 0.8V  
ENABLE = 2V  
0.5  
3
µA  
µA  
IL  
IH  
1
Power Supply  
V
Operating Range  
4
5
5.5  
112  
500  
V
mA  
µA  
S
I
I
Supply Current  
ENABLE = 0.8V  
ENABLE = 2V  
4V to 5.5V  
88  
100  
250  
90  
S
Supply Current (Disabled)  
Power Supply Rejection Ratio  
SDISABLED  
PSRR  
55  
dB  
AC ELECTRICAL CHARACTERISTICS  
T = 25°C, V  
= V  
= V  
= 5V, V = V = V = 0V,  
A
CCA  
CCB  
CCC EEA EEB EEC  
ENABLE = 0.8V, +INA shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
unless otherwise noted.  
= 2.2V, Input common mode voltage = 2.2V, no R  
LOAD  
OCM  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Characteristics  
–3dBBW  
0.1dBBW  
0.5dBBW  
SR  
–3dB Bandwidth  
200mV Differential (+OUT, OUT)  
500  
900  
50  
MHz  
MHz  
MHz  
V/µs  
ns  
P-P  
Bandwidth for 0.1dB Flatness  
Bandwidth for 0.5dB Flatness  
Slew Rate  
200mV Differential (+OUT, OUT)  
P-P  
200mV Differential (+OUT, OUT)  
100  
1100  
4
P-P  
3.2V Differential (+OUT, OUT)  
P-P  
t
1% Settling Time  
1% Settling for a 1V Differential Step  
s1%  
P-P  
(+OUT, OUT)  
t
t
Turn-On Time  
Turn-Off Time  
40  
ns  
ns  
ON  
250  
OFF  
19934fa  
3
LT1993-4  
AC ELECTRICAL CHARACTERISTICS  
T = 25°C, V  
= V  
= V  
= 5V, V = V = V = 0V,  
CCC EEA EEB EEC  
A
CCA  
CCB  
ENABLE = 0.8V, +INA shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
unless otherwise noted.  
= 2.2V, Input common mode voltage = 2.2V, no R  
OCM  
LOAD  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Common Mode Voltage Control (V  
Pin)  
OCM  
–3dBBW  
SRCM  
Common Mode Small-Signal –3dB  
Bandwidth  
Common Mode Slew Rate  
0.1V at V , Measured Single-Ended at +OUT  
OCM  
300  
500  
MHz  
V/µs  
CM  
P-P  
and –OUT  
1.2V to 3.6V Step at V  
OCM  
Noise/Harmonic Performance Input/output Characteristics  
1kHz Signal  
Second/Third Harmonic Distortion  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–100  
–100  
–100  
–91  
dBc  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
3.2V Differential (+OUTFILTERED,  
P-P  
–OUTFILTERED)  
3.2V Differential (+OUT, OUT)  
–91  
–91  
dBc  
dBc  
dBc  
P-P  
3.2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
Third-Order IMD  
2V Differential Composite (+OUTFILTERED,  
–102  
P-P  
–OUTFILTERED), f1 = 0.95kHz, f2 = 1.05kHz  
2V Differential Composite (+OUT, OUT),  
L
–102  
–93  
54  
dBc  
dBc  
P-P  
R = 100Ω, f1 = 0.95kHz, f2 = 1.05kHz  
3.2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 0.95kHz, f2 = 1.05kHz  
OIP3  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 0.95kHz, f2 = 1.05kHz  
dBm  
1k  
e
n1k  
Input Referred Noise Voltage Density  
1dB Compression Point  
2.15  
22.7  
nV/√Hz  
dBm  
10MHz Signal  
Second/Third Harmonic Distortion  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–94  
–94  
–86  
–85  
dBc  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
3.2V Differential (+OUTFILTERED,  
P-P  
–OUTFILTERED)  
3.2V Differential (+OUT, OUT)  
–85  
–77  
–96  
dBc  
dBc  
dBc  
P-P  
3.2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
Third-Order IMD  
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 9.5MHz, f2 = 10.5MHz  
2V Differential Composite (+OUT, OUT),  
L
–96  
–87  
51  
dBc  
dBc  
P-P  
R = 100Ω, f1 = 9.5MHz, f2 = 10.5MHz  
3.2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 9.5MHz, f2 = 10.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 9.5MHz, f2 = 10.5MHz  
dBm  
10M  
Noise Figure  
Measured Using DC800A Demo Board  
13.7  
2.15  
22.6  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n10M  
50MHz Signal  
Second/Third Harmonic Distortion  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–80  
–78  
–75  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential (+OUT, OUT), R = 100Ω  
dBc  
P-P  
L
19934fa  
4
LT1993-4  
AC ELECTRICAL CHARACTERISTICS  
T = 25°C, V  
= V  
= V  
= 5V, V = V = V = 0V,  
A
CCA  
CCB  
CCC EEA EEB EEC  
ENABLE = 0.8V, +INA shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
unless otherwise noted.  
= 2.2V, Input common mode voltage = 2.2V, no R  
OCM  
LOAD  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
3.2V Differential (+OUTFILTERED,  
–71  
dBc  
P-P  
–OUTFILTERED)  
3.2V Differential (+OUT, OUT)  
–69  
–66  
–81  
dBc  
dBc  
dBc  
P-P  
3.2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
Third-Order IMD  
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 49.5MHz, f2 = 50.5MHz  
2V Differential Composite (+OUT, OUT),  
L
–80  
–72  
43  
dBc  
dBc  
P-P  
R = 100Ω, f1 = 49.5MHz, f2 = 50.5MHz  
3.2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 49.5MHz, f2 = 50.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 49.5MHz, f2 = 50.5MHz  
dBm  
50M  
Noise Figure  
Measured Using DC800A Demo Board  
14.1  
2.25  
19.7  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n50M  
70MHz Signal  
Second/Third Harmonic Distortion  
Third-Order IMD  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–73  
–71  
–70  
–74  
dBc  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 69.5MHz, f2 = 70.5MHz  
2V Differential Composite (+OUT, OUT),  
L
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 69.5MHz, f2 = 70.5MHz  
–71  
40  
dBc  
P-P  
R = 100Ω, f1 = 69.5MHz, f2 = 70.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
dBm  
70M  
Noise Figure  
Measured Using DC800A Demo Board  
14.5  
2.35  
18.5  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n70M  
100MHz Signal  
Second/Third Harmonic Distortion  
Third-Order IMD  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–61  
–63  
–62  
–61  
dBc  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential (+OUT, OUT), R = 100Ω  
P-P  
L
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 99.5MHz, f2 = 100.5MHz  
2V Differential Composite (+OUT, OUT),  
L
–63  
dBc  
P-P  
R = 100Ω, f1 = 99.5MHz, f2 = 100.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 99.5MHz, f2 = 100.5MHz  
Measured Using DC800A Demo Board  
33.5  
dBm  
100M  
Noise Figure  
15.1  
2.55  
17.8  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n100M  
Note 1: Absolute Maximum Ratings are those values beyond which the life of a  
device may be impaired.  
Note 2: As long as output current and junction temperature are kept below the  
Absolute Maximum Ratings, no damage to the part will occur.  
Note 4: The LT1993C-4 is guaranteed to meet specified performance from 0°C to  
70°C. It is designed, characterized and expected to meet specified performance  
from –40°C and 85°C but is not tested or QA sampled at these temperatures. The  
LT1993I-4 is guaranteed to meet specified performance from –40°C to 85°C.  
Note 5: This parameter is pulse tested.  
Note 3: The LT1993C-4 is guaranteed functional over the operating temperature  
range of –40°C to 85°C.  
Note 6: This parameter is guaranteed to meet specified performance through design  
and characterization. It has not been tested.  
19934fa  
5
LT1993-4  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Frequency Response  
LOAD  
Frequency Response vs C  
LOAD  
Frequency Response  
LOAD  
LOAD  
R
= 400Ω  
R
= 400Ω  
R
= 100Ω  
27  
24  
21  
18  
15  
12  
9
18  
15  
12  
9
18  
15  
12  
9
V
= 50mV  
IN  
P-P  
UNFILTERED OUTPUTS  
UNFILTERED  
OUTPUTS  
UNFILTERED  
OUTPUTS  
10pF  
5pF  
FILTERED  
OUTPUTS  
FILTERED  
OUTPUTS  
1.8pF  
6
6
0pF  
3
3
V
= 50mV  
P-P  
V
= 50mV  
IN  
IN  
P-P  
0
0
UNFILTERED: R  
FILTERED: R  
= 400  
UNFILTERED: R  
FILTERED: R  
= 100Ω  
LOAD  
LOAD  
LOAD  
= 50Ω  
= 350Ω  
LOAD  
6
–3  
–6  
–3  
–6  
(EXTERNAL) + 50(INTERNAL  
FILTERED OUTPUTS)  
(EXTERNAL) + 50(INTERNAL  
FILTERED OUTPUTS)  
3
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
FREQUENCY (MHz)  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19934 G02  
19934 G01  
19934 G03  
Third Order Intermodulation  
Distortion vs Frequency  
Third Order Intermodulation  
Distortion vs Frequency  
Third Order Intermodulation  
Distortion vs Frequency  
Differential Input, No R  
Differential Input, R  
= 400Ω  
Differential Input, R  
= 100Ω  
LOAD  
LOAD  
LOAD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
2 TONES, 2V COMPOSITE  
P-P  
2 TONES, 2V COMPOSITE  
P-P  
2 TONES, 2V COMPOSITE  
P-P  
1MHz TONE SPACING  
1MHz TONE SPACING  
1MHz TONE SPACING  
FILTERED  
OUTPUTS  
FILTERED  
OUTPUTS  
FILTERED  
OUTPUTS  
UNFILTERED  
OUTPUTS  
UNFILTERED  
UNFILTERED  
OUTPUTS  
OUTPUTS  
0
40  
60  
80  
100 120 140  
0
40  
60  
80  
100 120 140  
0
40  
60  
80  
100 120 140  
20  
20  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19934 G05  
19934 G06  
19934 G04  
Output Third Order Intercept vs  
Frequency, Differential Input  
Output Third Order Intercept vs  
Frequency, Differential Input  
LOAD  
Output Third Order Intercept vs  
Frequency, Differential Input  
LOAD  
No R  
R
= 400Ω  
R
= 100Ω  
LOAD  
60  
60  
60  
2 TONES, 2V COMPOSITE  
P-P  
1MHz TONE SPACING  
2 TONES, 2V COMPOSITE  
P-P  
1MHz TONE SPACING  
2 TONES, 2V COMPOSITE  
P-P  
1MHz TONE SPACING  
55  
50  
55  
50  
55  
50  
45  
40  
35  
30  
25  
45  
40  
35  
30  
25  
45  
40  
35  
30  
25  
UNFILTERED  
UNFILTERED  
OUTPUTS  
OUTPUTS  
UNFILTERED  
OUTPUTS  
FILTERED  
OUTPUTS  
FILTERED  
OUTPUTS  
FILTERED  
OUTPUTS  
20  
20  
20  
20  
40  
80 100 120 140  
20  
40  
80 100 120 140  
0
60  
0
60  
20  
40  
80 100 120 140  
0
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19334 G09  
19334 G08  
19334 G07  
19934fa  
6
LT1993-4  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Distortion (Unfiltered) vs  
Distortion vs Output Amplitude  
70MHz Differential Input  
No R  
Distortion (Filtered) vs Frequency  
Frequency, Differential Input,  
Differential Input, No R  
No R  
LOAD  
LOAD  
LOAD  
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
FILTERED OUTPUTS  
UNFILTERED OUTPUTS  
V
= 2V  
V
= 2V  
P-P  
OUT  
P-P  
OUT  
HD3 UNFILTERED  
OUTPUTS  
HD3  
HD2  
HD3  
HD2  
–50  
–60  
–50  
–60  
HD3 FILTERED  
OUTPUTS  
–70  
–80  
–70  
–80  
HD2 UNFILTERED  
OUTPUTS  
–90  
–90  
HD2 FILTERED  
OUTPUTS  
–100  
–110  
–100  
–110  
1
10  
100  
1000  
1
10  
100  
1000  
–1  
1
5
7
9
11  
3
FREQUENCY (MHz)  
FREQUENCY (MHz)  
OUTPUT AMPLITUDE (dBm)  
19934 G10  
19934 G11  
19934 G12  
Output 1dB Compression vs  
Frequency  
Input Referred Noise Voltage vs  
Frequency  
Noise Figure vs Frequency  
30  
25  
20  
15  
10  
5
6
25  
20  
15  
10  
5
UNFILTERED OUTPUTS  
V
= 5V  
CC  
R
= 400Ω  
LOAD  
MEASURED USING  
DC800A DEMO BOARD  
5
4
3
2
1
0
R
= 100Ω  
LOAD  
0
–5  
–10  
0
1
10  
100  
1000  
1000  
10  
100  
1000  
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19934 G13  
19934 G15  
Differential Input Impedance vs  
Frequency  
Differential Output Impedance vs  
Frequency  
Reverse Isolation vs Frequency  
–40  
–50  
100  
10  
1
150  
125  
100  
75  
UNFILTERED OUTPUTS  
UNFILTERED OUTPUTS  
IMPEDANCE MAGNITUDE  
–60  
50  
25  
–70  
–80  
0
–25  
IMPEDANCE PHASE  
–90  
–50  
–100  
–110  
–75  
0.1  
–100  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
19934fa  
7
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19934 G16  
LT1993-4  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Reflection Coefficient vs  
Frequency  
Output Reflection Coefficient vs  
Frequency  
PSRR, CMRR vs Frequency  
0
–5  
0
–5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
UNFILTERED OUTPUTS  
MEASURED USING DC800A DEMO BOARD  
MEASURED USING DC800A DEMO BOARD  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
CMRR  
PSRR  
10  
100  
1000  
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
19934 G21  
19934 G19  
19934 G20  
Small-Signal Transient Response  
Large-Signal Transient Response  
Overdrive Recovery Time  
2.28  
2.26  
2.24  
2.22  
2.20  
2.18  
2.16  
2.14  
2.12  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
LOAD  
= 100PER OUTPUT  
R
LOAD  
= 100PER OUTPUT  
+OUT  
R
= 100Ω  
LOAD  
PER OUTPUT  
–OUT  
75 100  
0
25 50  
125 150 175 200 225 250  
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
TIME (ns)  
TIME (ns)  
TIME (ns)  
19934 G22  
19934 G23  
Distortion vs Output Common  
Mode Voltage, LT1993-4 Driving  
LTC2249 14-Bit ADC  
Turn-On Time  
Turn-Off Time  
–64  
–66  
–68  
–70  
–72  
–74  
–76  
4
3
4
3
FILTERED OUTPUTS, NO R  
LOAD  
+OUT  
+OUT  
V
= 70MHz 2V  
OUT  
P-P  
2
2
–OUT  
–OUT  
1
1
0
0
R
= 100PER OUTPUT  
LOAD  
HD3  
HD2  
4
4
ENABLE  
2
2
ENABLE  
0
0
R
= 100PER OUTPUT  
LOAD  
–2  
–2  
250  
TIME (ns)  
250  
TIME (ns)  
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
0
125  
375  
500  
625  
0
125  
375  
500  
625  
OUTPUT COMMON MODE VOLTAGE (V)  
19934 G25  
19934fa  
8
LT1993-4  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
30MHz 8192 Point FFT, LT1993-4  
Driving LTC2249 14-Bit ADC  
50MHz 8192 Point FFT, LT1993-4  
Driving LTC2249 14-Bit ADC  
70MHz 8192 Point FFT, LT1993-4  
Driving LTC2249 14-Bit ADC  
0
–10  
0
–10  
0
–10  
8192 POINT FFT  
8192 POINT FFT  
8192 POINT FFT  
f
= 30MHz, –1dBFS  
f
= 50MHz, –1dBFS  
f
= 70MHz, –1dBFS  
IN  
IN  
IN  
–20  
–20  
–20  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
0
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
0
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
5
5
5
19934 G28  
19934 G29  
19934 G30  
70MHz 2-Tone 32768 Point FFT  
LT1993-4 Driving LTC2249  
14-Bit ADC  
2-Tone WCDMA Waveform  
LT1993-4 Driving LTC2255  
14-Bit ADC at 92.16Msps  
4-Tone WCDMA Waveform  
LT1993-4 Driving LTC2255  
14-Bit ADC at 92.16Msps  
0
–10  
0
–10  
0
–10  
32768 POINT FFT  
32768 POINT FFT  
TONE CENTER FREQUENCIES  
AT 67.5MHz, 72.5MHz  
32768 POINT FFT  
TONE CENTER FREQUENCIES  
AT 62.5MHz, 67.5MHz, 72.5MHz, 77.5MHz  
TONE 1 AT 69.5MHz, –7dBFS  
TONE 2 AT 70.5MHz, –7dBFS  
FILTERED OUTPUTS  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
0
10 15 20 25 30 35 40 45  
FREQUENCY (MHz)  
0
10 15 20 25 30 35 40 45  
FREQUENCY (MHz)  
5
5
5
19934 G31  
19934 G32  
19934 G33  
U
U
U
PI FU CTIO S  
V
(Pin 2): This pin sets the output common mode  
V
, V , V (Pins 4, 9, 12): Negative Power Supply  
EEA EEB EEC  
OCM  
voltage. Without additional biasing, both inputs bias to  
(Normally Tied to Ground). All three pins must be tied to  
the same voltage. Split supplies are possible as long as  
this voltage as well. This input is high impedance.  
the voltage between V and V is 5V. If these pins are  
CC  
EE  
V
, V , V  
(Pins 3, 10, 1): Positive Power Supply  
CCA CCB CCC  
nottiedtoground, bypasseachpinwith1000pFand0.1µF  
(Normally Tied to 5V). All three pins must be tied to the  
same voltage. Bypass each pin with 1000pF and 0.1µF  
capacitors as close to the package as possible. Split  
capacitors as close to the package as possible.  
+OUT, OUT (Pins 5, 8): Outputs (Unfiltered). These  
pins are high bandwidth, low-impedance outputs. The DC  
output voltage at these pins is set to the voltage applied  
supplies are possible as long as the voltage between V  
and V is 5V.  
CC  
EE  
at V  
.
OCM  
19934fa  
9
LT1993-4  
U
U
U
PI FU CTIO S  
+OUTFILTERED, –OUTFILTERED (Pins 6, 7): Filtered  
Outputs. These pins add a series 25Ω resistor from the  
unfiltered outputs and three 12pF capacitors. Each output  
–INA, –INB (Pins 14, 13): Negative Inputs. These pins are  
normally tied together. These inputs may be DC- or AC-  
coupled. If the inputs are AC-coupled, they will self-bias  
has 12pF to V , plus an additional 12pF between each pin  
to the voltage applied to the V  
pin.  
EE  
OCM  
(See the Block Diagram). This filter has a –3dB bandwidth  
of 175MHz.  
+INA, +INB (Pins 16, 15): Positive Inputs. These pins are  
normally tied together. These inputs may be DC- or AC-  
coupled. If the inputs are AC-coupled, they will self-bias  
ENABLE (Pin 11): This pin is a TTL logic input referenced  
to the V pin. If low, the LT1993-4 is enabled and draws  
to the voltage applied to the V  
pin.  
EEC  
OCM  
typically 100mA of supply current. If high, the LT1993-4  
Exposed Pad (Pin 17): Tie the pad to V (Pin 12). If split  
EEC  
is disabled and draws typically 250µA.  
supplies are used, DO NOT tie the pad to ground.  
W
BLOCK DIAGRA  
200Ω  
V
EEA  
V
CCA  
–INA  
–INB  
12pF  
100Ω  
100Ω  
14  
13  
+
+OUT  
5
6
A
+OUTFILTERED  
25Ω  
V
EEA  
V
200Ω  
CCC  
V
OCM  
2
+
C
12pF  
V
EEC  
200Ω  
100Ω  
25Ω  
–OUTFILTERED  
–OUT  
V
CCB  
+INA  
+INB  
7
8
16  
15  
+
B
100Ω  
12pF  
V
EEB  
V
EEB  
200Ω  
BIAS  
11  
19934 BD  
3
10  
1
4
9
12  
V
V
V
ENABLE  
V
V
V
EEC  
CCA  
CCB  
CCC  
EEA  
EEB  
19934fa  
10  
LT1993-4  
U
W U U  
APPLICATIO S I FOR ATIO  
Circuit Description  
Input Impedance and Matching Networks  
The LT1993-4 is a low noise, low distortion differential  
amplifier/ADC driver with:  
Because of the internal feedback network, calculation of  
the LT1993-4’s input impedance is not straightforward  
from examination of the block diagram. Furthermore, the  
inputimpedancewhendrivendifferentiallyisdifferentthan  
when driven single-ended. When driven differentially, the  
LT1993-4’s input impedance is 100Ω (differential); when  
driven single-ended, the input impedance is 75Ω.  
• DC to 900MHz –3dB bandwidth  
• Fixed gain of 4V/V (12dB) independent of R  
• 100Ω differential input impedance  
• Low output impedance  
LOAD  
For single-ended 50Ω applications, a 150Ω shunt match-  
ing resistor to ground will result in the proper input  
termination (Figure 1). For differential inputs there are  
several termination options. If the input source is 50Ω  
differential, then input matching can be accomplished by  
either a 100Ω shunt resistor across the inputs (Figure 3),  
or a 49.9Ω shunt resistor on each of the inputs to ground  
(Figure 2).  
• Built-in, user adjustable output filtering  
• Requires minimal support circuitry  
Referringtotheblockdiagram,theLT1993-4usesaclosed-  
loop topology which incorporates 3 internal amplifiers.  
Two of the amplifiers (A and B) are identical and drive the  
differential outputs. The third amplifier (C) is used to set  
the output common mode voltage. Gain and input imped-  
ance are set by the 100Ω/200Ω resistors in the internal  
feedback network. Output impedance is low, determined  
by the inherent output impedance of amplifiers A and B,  
and further reduced by internal feedback.  
13  
–INB  
–INA  
8
–OUT  
LT1993-4  
+OUT  
14  
15  
16  
IF IN  
+INB  
+INA  
5
The LT1993-4 also includes built-in single-pole output  
filtering. The user has the choice of using the unfiltered  
outputs, the filtered outputs (175MHz –3dB lowpass), or  
modifying the filtered outputs to alter frequency response  
by adding additional components. Many lowpass and  
bandpass filters are easily implemented with just one or  
two additional components.  
19934 F01  
Figure 1. Input Termination for Single-Ended 50Ω  
Input Impedance  
13  
–INB  
IF IN  
IF IN  
8
5
14  
–OUT  
LT1993-4  
+OUT  
–INA  
The LT1993-4 has been designed to minimize the need  
for external support components such as transformers or  
AC-coupling capacitors. As an ADC driver, the LT1993-4  
requires no external components except for power-supply  
bypass capacitors. This allows DC-coupled operation for  
applications that have frequency ranges including DC.  
At the outputs, the common mode voltage is set via the  
15  
16  
+INB  
+INA  
+
19934 F02  
Figure 2. Input Termination for Differential 50Ω Input Impedance  
V
OCM  
pin,allowingtheLT1993-4todriveADCsdirectly.No  
13  
–INB  
outputAC-couplingcapacitorsortransformersareneeded.  
At the inputs, signals can be differential or single-ended  
with virtually no difference in performance. Furthermore,  
DC levels at the inputs can be set independently of the  
outputcommonmodevoltage.Theseinputcharacteristics  
often eliminate the need for an input transformer and/or  
AC-coupling capacitors.  
IF IN  
8
5
14  
–OUT  
LT1993-4  
+OUT  
–INA  
15  
16  
+INB  
+INA  
+
IF IN  
19934 F03  
Figure 3. Alternate Input Termination for Differential  
50Ω Input Impedance  
19934fa  
11  
LT1993-4  
U
W U U  
APPLICATIO S I FOR ATIO  
Single-Ended to Differential Operation  
10TO 25Ω  
10TO 25Ω  
8
5
–OUT  
LT1993-4  
+OUT  
The LT1993-4’s performance with single-ended inputs is  
comparable to its performance with differential inputs.  
This excellent single-ended performance is largely due  
to the internal topology of the LT1993-4. Referring to  
the block diagram, if the +INA and +INB pins are driven  
with a single-ended signal (while –INA and –INB are tied  
to AC ground), then the +OUT and –OUT pins are driven  
differentially without any voltage swing needed from  
amplifier C. Single-ended to differential conversion using  
more conventional topologies suffers from performance  
limitations due to the common mode amplifier.  
ADC  
19934 F04  
Figure 4. Adding Small Series R at LT1993-4 Output  
Filtered Applications  
(Using the +OUTFILTERED and –OUTFILTERED Pins)  
Filtering at the output of the LT1993-4 is often desired to  
provide either anti-aliasing or improved signal to noise  
ratio. To simplify this filtering, the LT1993-4 includes an  
additional pair of differential outputs (+OUTFILTERED and  
–OUTFILTERED) which incorporate an internal lowpass  
filter network with a –3dB bandwidth of 175MHz (Figure  
5). These pins each have an output impedance of 25Ω. In-  
Driving ADCs  
The LT1993-4 has been specifically designed to interface  
directly with high speed Analog to Digital Converters  
(ADCs). In general, these ADCs have differential inputs,  
with an input impedance of 1k or higher. In addition, there  
isgenerallysomeformoflowpassorbandpasslteringjust  
prior to the ADC to limit input noise at the ADC, thereby  
improving system signal to noise ratio. Both the unfiltered  
and filtered outputs of the LT1993-4 can easily drive the  
high impedance inputs of these differential ADCs. If the  
filtered outputs are used, then cutoff frequency and the  
type of filter can be tailored for the specific application if  
needed.  
ternalcapacitancesare12pFtoV oneachlteredoutput,  
EE  
plus an additional 12pF capacitor connected differentially  
between the two filtered outputs. This resistor/capaci-  
tor combination creates filtered outputs that look like a  
series 25Ω resistor with a 36pF capacitor shunting each  
filtered output to AC ground, giving a –3dB bandwidth of  
175MHz.  
LT1993-4  
8
–OUT  
V
EE  
12pF  
25  
25  
7
6
–OUTFILTERED  
+OUTFILTERED  
Wideband Applications  
(Using the +OUT and –OUT Pins)  
FILTERED OUTPUT  
(175MHz)  
12pF  
In applications where the full bandwidth of the LT1993-4  
is desired, the unfiltered output pins (+OUT and –OUT)  
should be used. They have a low output impedance;  
therefore, gain is unaffected by output load. Capacitance  
in excess of 5pF placed directly on the unfiltered outputs  
results in additional peaking and reduced performance.  
When driving an ADC directly, a small series resistance  
is recommended between the LT1993-4’s outputs and  
the ADC inputs (Figure 4). This resistance helps eliminate  
any resonances associated with bond wire inductances of  
either the ADC inputs or the LT1993-4’s outputs. A value  
between 10Ω and 25Ω gives excellent results.  
12pF  
V
EE  
5
+OUT  
19934 F05  
Figure 5. LT1993-4 Internal Filter Topology –3dB BW ≈175MHz  
The filter cutoff frequency is easily modified with just a  
fewexternalcomponents.Toincreasethecutofffrequency,  
simplyadd2equalvalueresistors, onebetween+OUTand  
+OUTFILTEREDandtheotherbetweenOUTandOUTFIL-  
TERED (Figure 6). These resistors are in parallel with the  
internal 25Ω resistor, lowering the overall resistance and  
increasinglterbandwidth. Todoublethelterbandwidth,  
for example, add two external 25Ω resistors to lower  
the series resistance to 12.5Ω. The 36pF of capacitance  
remains unchanged, so filter bandwidth doubles.  
19934fa  
12  
LT1993-4  
U
W U U  
APPLICATIO S I FOR ATIO  
LT1993-4  
LT1993-4  
8
8
7
–OUT  
–OUT  
V
EE  
V
EE  
12pF  
12pF  
25  
25  
25Ω  
25Ω  
–OUTFILTERED  
39nH  
7
6
–OUTFILTERED  
+OUTFILTERED  
FILTERED OUTPUT  
(350MHz)  
12pF  
FILTERED OUTPUT  
(71MHz BANDPASS,  
–3dB @ 55MHz/87MHz)  
12pF  
120pF  
12pF  
+OUTFILTERED  
6
5
V
EE  
12pF  
5
+OUT  
19934 F06  
V
EE  
+OUT  
19934 F08  
Figure 6. LT1993-4 Internal Filter Topology Modified for  
2x Filter Bandwidth (2 External Resistors)  
Figure 8. LT1993-4 Output Filter Topology Modified for Bandpass  
Filtering (1 External Inductor, 1 External Capacitor)  
To decrease filter bandwidth, add two external capaci-  
tors, one from +OUTFILTERED to ground, and the other  
from –OUTFILTERED to ground. A single differential  
capacitor connected between +OUTFILTERED and –OUT-  
FILTERED can also be used, but since it is being driven  
differentially it will appear at each filtered output as a  
single-ended capacitance of twice the value. To halve the  
filter bandwidth, for example, two 36pF capacitors could  
be added (one from each filtered output to ground). Al-  
ternatively one 18pF capacitor could be added between  
the filtered outputs, again halving the filter bandwidth.  
Combinations of capacitors could be used as well; a three  
capacitor solution of 12pF from each filtered output to  
ground plus a 12pF capacitor between the filtered outputs  
would also halve the filter bandwidth (Figure 7).  
Output Common Mode Adjustment  
TheLT1993-4’soutputcommonmodevoltageissetbythe  
V
pin. It is a high-impedance input, capable of setting  
OCM  
the output common mode voltage anywhere in a range  
from 1.1V to 3.6V. Bandwidth of the V pin is typically  
OCM  
300MHz, so for applications where the V  
pin is tied to  
OCM  
a DC bias voltage, a 0.1µF capacitor at this pin is recom-  
mended. For best distortion performance, the voltage at  
the V  
pin should be between 1.8V and 2.6V.  
OCM  
WheninterfacingwithmostADCs,thereisgenerallyaV  
OCM  
output pin that is at about half of the supply voltage of the  
ADC. For 5V ADCs such as the LTC17XX family, this V  
OCM  
output pin should be connected directly (with the addition  
ofa0.1µFcapacitor)totheinputV pinoftheLT1993-4.  
OCM  
LT1993-4  
8
–OUT  
For 3V ADCs such as the LTC22XX families, the LT1993-  
V
EE  
4 will function properly using the 1.65V from the ADC’s  
12pF  
25  
25  
12pF  
7
–OUTFILTERED  
V
reference pin, but improved Spurious Free Dynamic  
CM  
FILTERED OUTPUT  
(87.5MHz)  
Range(SFDR)anddistortionperformancecanbeachieved  
12pF  
12pF  
by level-shifting the LTC22XX’s V reference voltage up  
CM  
+OUTFILTERED  
6
5
12pF  
to at least 1.8V. This can be accomplished as shown in  
12pF  
Figure9byusingaresistordividerbetweentheLTC22XX’s  
V
EE  
+OUT  
19934 F07  
V
V
outputpinandV andthenbypassingtheLT1993-4’s  
CM  
OCM  
CC  
pinwitha0.1µFcapacitor. Foracommonmodevolt-  
Figure 7. LT1993-4 Internal Filter Topology Modified for  
1/2x Filter Bandwidth (3 External Capacitors)  
ageabove1.9V, ACcouplingcapacitorsarerecommended  
between the LT1993-4 and the LTC22XX ADC because of  
the input voltage range constraints of the ADC.  
Bandpass filtering is also easily implemented with just a  
few external components. An additional 120pF and 39nH,  
each added differentially between +OUTFILTERED and  
–OUTFILTERED creates a bandpass filter with a 71MHz  
center frequency, –3dB points of 55MHz and 87MHz, and  
1.6dB of insertion loss (Figure 8).  
19934fa  
13  
LT1993-4  
U
W U U  
APPLICATIO S I FOR ATIO  
3V  
input bias current is determined by the voltage difference  
betweentheinputcommonmodevoltageandtheV pin  
11k  
OCM  
1.9V  
(which sets the output common mode voltage). At both  
the positive and negative inputs, any voltage difference is  
imposed across 100Ω, generating an input bias current.  
4.02k  
31 1.5V  
2
13  
14  
–INB  
–INA  
V
V
CM  
OCM  
6
7
1
2
+
+OUTFILTERED  
LT1993-4  
AIN  
AIN  
For example, if the inputs are tied to 2.5V with the V  
OCM  
LTC22xx  
–OUTFILTERED  
pin at 2.2V, then a total input bias current of 3mA will flow  
into the LT1993-4’s +INA and +INB pins. Furthermore, an  
additional input bias current totaling 3mA will flow into  
the –INA and –INB inputs.  
15  
16  
+INB  
+INA  
IF IN  
19934 F09  
Figure 9. Level Shifting 3V ADC V Voltage for  
CM  
Improved SFDR  
Application (Demo) Boards  
Large Output Voltage Swings  
TheDC800ADemoBoardhasbeencreatedforstand-alone  
evaluation of the LT1993-4 with either single-ended or  
differential input and output signals. As shown, it accepts  
a single-ended input and produces a single-ended output  
so that the LT1993-4 can be evaluated using standard  
laboratory test equipment. For more information on this  
Demo Board, please refer to the Demo Board section of  
this datasheet.  
The LT1993-4 has been designed to provide the 3.2VP-P  
output swing needed by the LTC1748 family of 14-bit  
low-noise ADCs. This additional output swing improves  
system SNR by up to 4dB. Typical performance curves  
and AC specifications have been included for these  
applications.  
Input Bias Voltage and Bias Current  
There are also additional demo boards available that  
combine the LT1993-4 with a variety of different Linear  
Technology ADCs. Please contact the factory for more  
information on these demo boards.  
The input pins of the LT1993-4 are internally biased to  
the voltage applied to the V  
pin. No external biasing  
OCM  
resistors are needed, even for AC-coupled operation. The  
U
PACKAGE DESCRIPTIO  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 × 45° CHAMFER  
R = 0.115  
TYP  
0.75 0.05  
3.00 0.10  
(4 SIDES)  
15 16  
0.70 0.05  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 0.10  
1
2
1.45 0.10  
(4-SIDES)  
3.50 0.05  
2.10 0.05  
1.45 0.05  
(4 SIDES)  
PACKAGE  
OUTLINE  
(UD16) QFN 0904  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
19934fa  
14  
LT1993-4  
U
TYPICAL APPLICATIO  
19934fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT1993-4  
U
TYPICAL APPLICATIO  
Demo Circuit DC800A Schematic  
(AC Test Circuit)  
R18  
0
R17  
0
V
CC  
V
CC  
GND  
V
CC  
1
SW1  
3
2
1
2
1
TP1  
ENABLE  
C17  
1000pF  
C18  
0.01  
R16  
0
F
2
1
1
2
R2  
R4  
50  
C11  
[1]  
R14  
0
12  
11  
10  
9
C4  
0.1  
C2  
0.1  
0
R6  
R10  
24.9  
R12  
75  
F
F
V
ENABLE  
V
V
EEC  
CCB EEB  
–OUT  
0
13  
14  
15  
16  
8
–INB  
–INA  
+INB  
+INA  
1
2
1
2
J1  
–IN  
R8  
[1]  
J4  
–OUT  
T1  
T2  
C21  
0.1  
7
6
5
1:1 Z-RATIO  
4:1 Z-RATIO  
F
5
4
1
3
–OUTFILTERED  
+OUTFILTERED  
+OUT  
3
1
4
5
2
1
2
2
L1  
[1]  
C8  
[1]  
R15  
[1]  
R7  
[1]  
0dB  
LT1993-4  
+10.8dB  
+6dB  
1
2
MA/COM  
ETC1-1-13  
MINI-  
0dB  
0dB  
J2  
+IN  
C11  
0.1  
C3  
0.1  
J5  
+OUT  
CIRCUITS  
TCM 4-19  
R5  
0
R11  
75  
R9  
24.9  
F
F
1
2
1
2
V
V
OCM  
V
V
CCC  
CCA  
EEA  
1
2
2
R1  
[1]  
R13  
[1]  
C16  
[1]  
C22  
0.1  
R3  
50  
1
2
3
4
F
V
V
CC  
CC  
1
2
1
2
1
2
1
2
1
C10  
C9  
1000pF  
C12  
1000pF  
C13  
0.01  
V
CC  
0.01  
F
F
R19  
14k  
J3  
V
OCM  
2
1
C7  
0.01  
R20  
11k  
F
C5  
0.1  
F
J6  
TEST IN  
T3  
T4  
J7  
1:4  
4:1  
TEST OUT  
4
5
5
1
3
3
2
C19 0.1  
F
C20 0.1 F  
1
2
R22  
2
C6  
0.1  
R21  
[1]  
F
[1]  
1
2
1
2
4
1
MINI-  
MINI-  
CIRCUITS  
TCM 4-19  
CIRCUITS  
TCM 4-19  
1
2
TP2  
CC  
V
CC  
V
NOTES: UNLESS OTHERWISE SPECIFIED,  
[1] DO NOT STUFF.  
1
1
2
2
1
C14  
4.7  
C15  
F
1
F
1
TP3  
GND  
19934 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1993-2  
800MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
Ultralow Distortion IF Amplifier/ADC Driver  
Av = 2V/V, NF = 12.3dB, OIP3 = 38dBm at 70MHz  
Av = 10V/V, NF = 12.7dB, OIP3 = 40dBm at 70MHz  
LT1993-10  
LT5514  
Digitally Controlled Gain Output IP3 47dBm at 100MHz  
LT6600-2.5  
LT6600-5  
Very Low Noise Differential Amplifier and 2.5MHz Lowpass Filter 86dB S/N with 3V Supply, SO-8 Package  
Very Low Noise Differential Amplifier and 5MHz Lowpass Filter  
Very Low Noise Differential Amplifier and 10MHz Lowpass Filter  
Very Low Noise Differential Amplifier and 20MHz Lowpass Filter  
82dB S/N with 3V Supply, SO-8 Package  
82dB S/N with 3V Supply, SO-8 Package  
76dB S/N with 3V Supply, SO-8 Package  
LT6600-10  
LT6600-20  
19934fa  
LT/LT 1005 REV A • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LT1993IUD-4#PBF

LT1993-4 - 900MHz Low Distortion, Low Noise Differential Amplifier/ADC Driver (AV = 4V/V); Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT1993IUD-4#TRPBF

LT1993-4 - 900MHz Low Distortion, Low Noise Differential Amplifier/ADC Driver (AV = 4V/V); Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT1994

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF
Linear

LT1994CDD

Low Noise, Low Distortion Fully Differential Input/Output Amplifi er/Driver
Linear

LT1994CDD#PBF

LT1994 - Low Noise, Low Distortion Fully Differential Input/Output Amplifier/Driver; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1994CDD#TR

LT1994 - Low Noise, Low Distortion Fully Differential Input/Output Amplifier/Driver; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1994CDD#TRPBF

LT1994 - Low Noise, Low Distortion Fully Differential Input/Output Amplifier/Driver; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1994CMS8

Low Noise, Low Distortion Fully Differential Input/Output Amplifi er/Driver
Linear

LT1994CMS8#TRPBF

LT1994 - Low Noise, Low Distortion Fully Differential Input/Output Amplifier/Driver; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1994IDD

Low Noise, Low Distortion Fully Differential Input/Output Amplifi er/Driver
Linear

LT1994IDD#PBF

LT1994 - Low Noise, Low Distortion Fully Differential Input/Output Amplifier/Driver; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT1994IDD#TR

LT1994 - Low Noise, Low Distortion Fully Differential Input/Output Amplifier/Driver; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear