LT2078CS8#PBF [Linear]

LT2078 - Micropower, Dual and Quad, Single Supply, Precision Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT2078CS8#PBF
型号: LT2078CS8#PBF
厂家: Linear    Linear
描述:

LT2078 - Micropower, Dual and Quad, Single Supply, Precision Op Amps; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:433K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT2078/LT2079  
Micropower, Dual and  
Quad, Single Supply,  
Precision Op Amps  
U
FEATURES  
DESCRIPTION  
The LT®2078 is a micropower dual op amp in 8-pin small  
outline, standard surface mount package, and LT2079 is  
a micropower quad op amp offered in the standard 14-pin  
surface mount package. Both devices are optimized for  
single supply operation at 5V. ±15V specifications are also  
provided.  
SO Package with Standard Pinout  
Supply Current per Amplifier: 50µA Max  
Offset Voltage: 70µV Max  
Offset Current: 250pA Max  
Voltage Noise: 0.6µVP-P, 0.1Hz to 10Hz  
Current Noise: 3pAP-P, 0.1Hz to 10Hz  
Offset Voltage Drift: 0.4µV/°C  
Micropowerperformanceofcompetingdevicesisachieved  
at the expense of seriously degrading precision, noise,  
speedandoutputdrivespecifications. Thedesigneffortof  
the LT2078/LT2079 was concentrated on reducing sup-  
ply current without sacrificing other parameters. The  
offset voltage achieved is the lowest on any dual or quad  
nonchopper stabilized op amp––micropower or other-  
wise. Offset current, voltage and current noise, slew rate  
and gain bandwidth product are all two to ten times better  
than on previous micropower op amps.  
Gain Bandwidth Product: 200kHz  
Slew Rate: 0.07V/µs  
Single Supply Operation  
Input Voltage Range Includes Ground  
Output Swings to Ground while Sinking Current  
No Pull-Down Resistors Needed  
Output Sources and Sinks 5mA Load Current  
U
APPLICATIONS  
Battery or Solar-Powered Systems  
Both the LT2078/LT2079 can be operated from a single  
supply (as low as one lithium cell or two NiCd batteries).  
The input range goes below ground. The all NPN output  
stage swings to within a few millivolts of ground while  
sinking current––no power consuming pull-down resis-  
tors are needed. For applications requiring DIP packages  
Portable Instrumentation  
Remote Sensor Amplifier  
Satellite Circuitry  
Micropower Sample-and-Hold  
Thermocouple Amplifier  
Micropower Filters  
refer to the LT1078/LT1079.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Single Battery, Micropower, Gain = 100, Instrumentation Amplifier  
Distribution of Input Offset Voltage  
800  
10.1k  
1M  
V
= 5V, 0V  
S
5000 OP AMPS  
700  
600  
500  
400  
300  
200  
100  
0
3V  
(Li-Ion)  
1M  
2
3
10.1k  
8
A
6
5
1
1/2 LT2078  
B
+
7
INVERTING  
–INPUT  
OUT  
1/2 LT2078  
+
NONINVERTING  
+INPUT  
4
LT2078/79 • TA01  
TYPICAL PERFORMANCE  
OUTPUT NOISE = 8µ5V 0.1Hz TO 10Hz  
P-P  
INPUT OFFSET VOLTAGE = 40µV  
INPUT OFFSET CURRENT = 0.2nA  
TOTAL POWER DISSIPATION = 240µW  
COMMON MODE REJECTION = 110dB (AMPLIFIER LIMITED)  
GAIN BANDWIDTH PRODUCT = 200kHz  
= 30µ0V  
OVER FULL BANDWIDTH  
RMS  
= 0.03V TO 1.8V  
INPUT RANGE  
OUTPUT RANGE = 0.03V TO 2.3V  
+
(0.3mVV – V 23mV)  
IN IN  
–80  
–40  
40  
–120  
80  
120  
0
OUTPUTS SINK CURRENT—NO PULL-DOWN RESISTORS  
INPUT OFFSET VOLTAGE (µV)  
2078/79 • TA02  
1
LT2078/LT2079  
W W  
U W  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage ...................................................... ±22V  
Differential Input Voltage ....................................... ±30V  
Input Voltage ...............Equal to Positive Supply Voltage  
............5V Below Negative Supply Voltage  
Specified Temperature Range  
Commercial ............................................. 0°C to 70°C  
Industrial ............................................ 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Output Short-Circuit Duration.......................... Indefinite  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NUMBER  
OUT D  
–IN D  
+IN D  
TOP VIEW  
A
B
D
C
LT2078ACS8  
LT2079AC  
LT2079AI  
LT2079C  
LT2079I  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
LT2078AIS8  
LT2078CS8  
LT2078IS8  
+
OUT B  
–IN B  
+IN B  
V
V
A
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
B
V
8
PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S PACKAGE  
14-LEAD PLASTIC SO  
2078A  
2078AI 2078I  
2078  
TJMAX = 150°C, θJA = 190°C/ W  
TJMAX = 150°C, θJA = 150°C/ W  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS VS = 5V, 0V, VCM = 0.1V, VO = 1.4V, TA = 25°C, unless otherwise noted.  
LT2078AC/LT2078AI  
LT2079AC/LT2079AI  
LT2078C/LT2078I  
LT2079C/LT2079I  
SYMBOL PARAMETER  
CONDITIONS (NOTE 1)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
LT2078  
LT2079  
30  
35  
70  
110  
40  
40  
120  
150  
µV  
µV  
V  
Time  
Long Term Input Offset  
Voltage Stability  
0.4  
0.5  
µV/Mo  
OS  
I
I
Input Offset Current  
Input Bias Current  
0.05  
6
0.25  
8
0.05  
6
0.35  
10  
nA  
nA  
OS  
B
e
n
Input Noise Voltage  
Input Noise Voltage Density  
0.1Hz to 10Hz (Note 2)  
0.6  
1.2  
0.6  
µV  
P-P  
f = 10Hz (Note 2)  
29  
28  
45  
37  
29  
28  
nVHz  
nVHz  
O
f = 1000Hz (Note 2)  
O
i
n
Input Noise Current  
0.1Hz to 10Hz (Note 2)  
2.3  
4.0  
2.3  
pA  
P-P  
Input Noise Current Density  
f = 10Hz (Note 2)  
O
0.06  
0.02  
0.10  
0.06  
0.02  
pAHz  
pAHz  
O
f = 1000Hz  
Input Resistance  
Differential Mode  
Common Mode  
(Note 3)  
400  
800  
6
300  
800  
6
MΩ  
GΩ  
Input Voltage Range  
3.5  
0
3.8  
0.3  
3.5  
0
3.8  
0.3  
V
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
V
= 0V to 3.5V  
95  
110  
114  
92  
98  
108  
114  
dB  
dB  
CM  
V = 2.3V to 12V  
100  
S
2
LT2078/LT2079  
ELECTRICAL CHARACTERISTICS VS = 5V, 0V, VCM = 0.1V, VO = 1.4V, TA = 25°C, unless otherwise noted.  
LT2078AC/LT2078AI  
LT2079AC/LT2079AI  
LT2078C/LT2078I  
LT2079C/LT2079I  
SYMBOL PARAMETER  
CONDITIONS (NOTE 1)  
V = 0.03V to 4V, No Load  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
A
Large-Signal Voltage Gain  
200  
150  
1000  
600  
150  
120  
1000  
600  
V/mV  
V/mV  
VOL  
O
V = 0.03V to 3.5V, R = 50k  
O
L
Maximum Output Voltage  
Swing  
Output Low, No Load  
3.5  
0.55  
95  
6
1.0  
130  
3.5  
0.55  
95  
6
1.0  
130  
mV  
mV  
mV  
Output Low, 2k to GND  
Output Low, I  
= 100µA  
SINK  
Output High, No Load  
Output High, 2k to GND  
4.2  
3.5  
4.4  
3.9  
4.2  
3.5  
4.4  
3.9  
V
V
SR  
Slew Rate  
A = 1, V = ±2.5V  
0.04  
0.07  
200  
38  
0.04  
0.07  
200  
39  
V/µs  
kHz  
µA  
V
S
GBW  
Gain Bandwidth Product  
Supply Current per Amplifier  
Channel Separation  
f 20kHz  
O
I
50  
55  
S
V = 3V, R = 10k, f 10Hz  
110  
2.2  
110  
2.2  
dB  
IN  
L
Minimum Supply Voltage  
(Note 4)  
2.3  
2.3  
V
VS = 5V, 0V, VCM = 0.1V, VO = 1.4V, 40°C TA 85°C for I grades, unless otherwise noted.  
LT2078AI/LT2079AI  
LT2078I/LT2079I  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
LT2078  
LT2079  
70  
80  
250  
280  
95  
100  
370  
400  
µV  
µV  
V  
T  
Input Offset Voltage Drift  
(Note 5)  
LT2078  
LT2079  
0.4  
0.6  
1.8  
3.0  
0.5  
0.6  
2.5  
3.5  
µV/°C  
µV/°C  
OS  
I
I
Input Offset Current  
0.07  
7
0.70  
10  
0.1  
7
1.0  
12  
nA  
nA  
dB  
dB  
OS  
Input Bias Current  
B
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= 0.05V to 3.2V  
90  
96  
106  
110  
86  
92  
104  
110  
CM  
V = 3.1V to 12V  
S
A
V = 0.05V to 4V, No Load  
V = 0.05V to 3.5V, R = 50k  
110  
80  
600  
400  
80  
60  
600  
400  
V/mV  
V/mV  
VOL  
O
O
L
Maximum Output Voltage  
Swing  
Output Low, No Load  
4.5  
125  
8
170  
4.5  
125  
8
170  
mV  
mV  
Output Low, I  
= 100µA  
SINK  
Output High, No Load  
Output High, 2k to GND  
3.9  
3.0  
4.2  
3.7  
3.9  
3.0  
4.2  
3.7  
V
V
I
Supply Current per Amplifier  
43  
60  
45  
70  
µA  
S
VS = 5V, 0V, VCM = 0.1V, VO = 1.4V, 0°C TA 70°C, unless otherwise noted (Note 6).  
LT2078AC/LT2079AC  
LT2078C/LT2079C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT2078  
LT2079  
50  
60  
150  
180  
60  
70  
240  
270  
µV  
µV  
OS  
V  
T  
Input Offset Voltage Drift  
(Note 5)  
LT2078  
LT2079  
0.4  
0.5  
1.8  
3.0  
0.5  
0.6  
2.5  
3.5  
µV/°C  
µV/°C  
OS  
I
I
Input Offset Current  
0.06  
6
0.35  
9
0.06  
6
0.50  
11  
nA  
nA  
dB  
dB  
OS  
B
Input Bias Current  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
V
= 0V to 3.4V  
92  
98  
108  
112  
88  
95  
106  
112  
CM  
V = 2.6V to 12V  
S
3
LT2078/LT2079  
VS = 5V, 0V, VCM = 0.1V, VO = 1.4V, 0°C TA 70°C, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
LT2078AC/LT2079AC  
LT2078C/LT2079C  
SYMBOL PARAMETER  
CONDITIONS  
V = 0.05V to 4V, No Load  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
A
VOL  
Large-Signal Voltage Gain  
150  
110  
750  
500  
110  
80  
750  
500  
V/mV  
V/mV  
O
V = 0.05V to 3.5V, R = 50k  
O
L
Maximum Output Voltage  
Swing  
Output Low, No Load  
4.0  
105  
7
150  
4.0  
105  
7
150  
mV  
mV  
Output Low, I  
= 100µA  
SINK  
Output High, No Load  
Output High, 2k to GND  
4.1  
3.3  
4.3  
3.8  
4.1  
3.3  
4.3  
3.8  
V
V
I
Supply Current per Amplifier  
40  
55  
42  
63  
µA  
S
VS = ±15V, TA = 25°C, unless otherwise noted.  
LT2078AC/LT2078AI  
LT2079AC/LT2079AI  
LT2078C/LT2078I  
LT2079C/LT2079I  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
LT2078  
LT2079  
50  
60  
250  
350  
70  
80  
350  
450  
µV  
µV  
I
I
Input Offset Current  
Input Bias Current  
Input Voltage Range  
0.05  
6
0.25  
8
0.05  
6
0.35  
10  
nA  
nA  
OS  
B
13.5  
–15.0  
13.8  
–15.3  
13.5  
–15.0  
13.8  
–15.3  
V
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= 13.5V, –15V  
98  
114  
114  
95  
98  
114  
114  
dB  
dB  
CM  
V = 5V, 0V to ±18V  
100  
S
A
VOL  
V = ±10V, R = 50k  
V = ±10V, R = 2k  
1000  
400  
5000  
1100  
1000  
300  
5000  
1100  
V/mV  
V/mV  
O
O
L
L
V
OUT  
Maximum Output Voltage  
Swing  
R = 50k  
L
±13.0  
±11.0  
±14.0  
±13.2  
±13.0  
±14.0  
V
V
L
R = 2k  
±11.0 ±13.2  
SR  
Slew Rate  
0.06  
0.10  
46  
0.06  
0.10  
47  
V/µs  
µA  
I
Supply Current per Amplifier  
65  
75  
S
VS = ±15V, 40°C TA 85°C for I grades, unless otherwise noted.  
LT2078AI/LT2079AI  
LT2078I/LT2079I  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT2078  
LT2079  
90  
100  
430  
500  
120  
130  
600  
700  
µV  
µV  
OS  
V  
T  
Input Offset Voltage Drift  
(Note 5)  
LT2078  
LT2079  
0.5  
0.6  
1.8  
3.0  
0.6  
0.7  
2.5  
3.8  
µV/°C  
µV/°C  
OS  
I
I
Input Offset Current  
0.07  
7
0.70  
10  
0.1  
7
1.0  
12  
nA  
nA  
OS  
B
Input Bias Current  
A
Large-Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
V = ±10V, R = 5k  
200  
92  
700  
110  
110  
±13.5  
52  
150  
88  
700  
110  
110  
±13.5  
54  
V/mV  
dB  
VOL  
O
L
CMRR  
PSRR  
V
= 13V, –14.9V  
CM  
V = 5V, 0V to ±18V  
S
96  
92  
dB  
Maximum Output Voltage Swing R = 5k  
±11.0  
±11.0  
V
L
I
Supply Current per Amplifier  
80  
95  
µA  
S
4
LT2078/LT2079  
VS = ±15V, 0°C TA 70°C, unless otherwise noted (Note 6).  
ELECTRICAL CHARACTERISTICS  
LT2078AC/LT2079AC  
LT2078C/LT2079C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT2078  
LT2079  
70  
80  
330  
410  
90  
100  
460  
540  
µV  
µV  
OS  
V  
T  
Input Offset Voltage Drift  
(Note 5)  
LT2078  
LT2079  
0.5  
0.6  
1.8  
3.0  
0.6  
0.7  
2.5  
3.8  
µV/°C  
µV/°C  
OS  
I
I
Input Offset Current  
0.06  
6
0.35  
9
0.06  
6
0.50  
11  
nA  
nA  
OS  
B
Input Bias Current  
A
Large-Signal Voltage Gain  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
V
V
= ±10V, R = 5k  
300  
95  
1200  
112  
112  
250  
92  
1200  
112  
112  
V/mV  
dB  
VOL  
O
L
CMRR  
PSRR  
= 13V, –15V  
CM  
V = 5V, 0V to ±18V  
98  
95  
dB  
S
Maximum Output Voltage Swing R = 5k  
±11.0 ±13.6  
±11.0 ±13.6  
V
L
I
Supply Current per Amplifier  
49  
73  
50  
85  
µA  
S
The  
denotes specifications which apply over the full operating  
Note 3: This parameter is guaranteed by design and is not tested.  
temperature range.  
Note 4: Power supply rejection ratio is measured at the minimum supply  
voltage. The op amps actually work at 1.8V supply but with a typical offset  
skew of 300µV.  
Note 1: Typical parameters are defined as the 60% yield of parameter  
distributions of individual amplifiers, i.e., out of 100 LT2079s (or 100  
LT2078s) typically 240 op amps (or 120) will be better than the indicated  
specification.  
Note 2: This parameter is tested on a sample basis only. All noise  
parameters are tested with V = ±2.5V, V = 0V.  
Note 5: This parameter is not 100% tested.  
Note 6: The LT2078C/LT2079C are designed, characterized and expected  
to meet the industrial temperature limits, but are not tested at 40°C and  
85°C. I-grade parts are guaranteed.  
S
O
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Distribution of Offset Voltage  
Drift with Temperature  
Input Bias and Offset Currents vs  
Temperature  
Input Bias Current vs  
Common Mode Voltage  
100  
50  
0
0
–2  
25  
20  
15  
10  
5
V
= 5V, 0V TO ±15V  
V = 5V, 0V  
S
S
V
V
= 5V, 0V  
CM  
S
= 0.1V  
I
OS  
80 LT2078'S  
25 LT2079'S  
= 260 OP AMPS  
T
= 125°C  
A
T
= –55°C  
A
–4  
T
= 25°C  
–6  
A
–5  
–6  
–7  
–8  
I
B
–10  
–12  
0
–50  
0
25  
50  
75 100 125  
–25  
–1  
0
1
2
3
4
–2  
–1  
0
1
2
TEMPERATURE (°C)  
COMMON MODE VOLTAGE (V)  
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)  
LT2078/79 • TPC02  
LT2078/79 • TPC03  
LT2078/79 • TPC01  
5
LT2078/LT2079  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
0.1Hz to 10Hz Noise  
0.01Hz to 10Hz Noise  
Noise Spectrum  
1000  
T
S
= 25°C  
T
= 25°C  
T
V
= 25°C  
A
A
A
S
V
= ±2.5V  
V
= ±2.5V  
= ±2.5V  
S
CHANNEL A  
CHANNEL B  
(AT V = ±15V  
S
VOLTAGE NOISE  
IS 4% LESS  
300  
100  
CURRENT  
NOISE  
CURRENT NOISE  
IS UNCHANGED)  
CHANNEL A  
CHANNEL B  
0.4µV  
VOLTAGE  
NOISE  
30  
10  
1/f CORNER  
0.7Hz  
0.1  
1
10  
100  
1000  
0
2
4
6
8
10  
0
20  
40  
60  
80  
100  
FREQUENCY (Hz)  
TIME (SEC)  
TIME (SEC)  
LT2078/79 • TPC06  
LT2078/79 • TPC04  
LT2078/79 • TPC05  
Long Term Stability of Two  
Representative Units (LT2078)  
10Hz Voltage Noise Distribution  
Warm-Up Drift  
15  
10  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
35  
30  
25  
20  
15  
10  
5
T
= 25°C, V = 5V, 0V  
CM  
T
= 25°C  
V = ±15V  
S
A
S
A
T
S
= 25°C  
A
V
= 0.1V  
V
= ±2.5V  
WARM UP DRIFT  
AT V = 5V, 0V IS  
S
1A  
2B  
IMMEASURABLY LOW  
5
0
–5  
–10  
–15  
LT2079  
1B  
2A  
LT2078  
0
1
2
0
3
35  
VOLTAGE NOISE DENSITY (nV/Hz)  
40  
0
1
2
3
4
5
25  
30  
TIME (MONTHS)  
TIME AFTER POWER-ON (MINUTES)  
LT2078/79 • TPC09  
LT2078/79 • TPC07  
LT2078/79 • TPC08  
Output Saturation vs Temperature  
vs Sink Current  
Output Voltage Swing vs  
Load Current  
Minimum Supply Voltage  
+
1000  
100  
10  
100  
0
V
V
= 0V  
I
= 2mA  
SINK  
25°C  
125°C  
–55°C  
–0.1V V 0.4V  
CM  
+
V
– 1  
– 2  
I
= 1mA  
SINK  
125°C  
I
= 100µA  
= 10µA  
SINK  
+
–100  
–200  
–300  
–400  
–500  
V
I
SINK  
70°C  
V
S
= 5V, 0V  
0°C  
25°C  
I
= 1µA  
–55°C  
SINK  
V
V
+ 2  
+ 1  
NONFUNCTIONAL  
125°C  
NO LOAD  
25°C  
R
L
= 5k TO GND  
–55°C  
1
V
–50 –25  
0
25  
50  
75 100 125  
2
3
0
1
0.01  
0.1  
1
10  
TEMPERATURE (°C)  
SOURCING OR SINKING LOAD CURRENT (mA)  
POSITIVE SUPPLY VOLTAGE (V)  
LT2078/79 • TPC11  
LT2078/79 • TPC11.5  
LT2078/79 • TPC10  
6
LT2078/LT2079  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain, Phase vs Frequency  
Voltage Gain vs Load Resistance  
Voltage Gain vs Frequency  
10M  
1M  
140  
120  
100  
80  
30  
V
V
= ±15V  
= 5V, 0V  
S
S
PHASE  
MARGIN  
58°  
T
= 25°C  
A
25°C  
100  
120  
140  
160  
180  
200  
–55°C  
V
= ±15V  
125°C  
S
20  
±15V  
5V, 0V  
PHASE  
MARGIN  
46°  
V
S
= 5V, 0V  
–55°C  
125°C  
10  
60  
25°C  
5V, 0V  
±15V  
40  
0
20  
0
100k  
–10  
–20  
0.01 0.1  
100  
1k  
10k  
100k  
1M  
100 1k  
1
10  
10k 100k 1M  
10  
30  
100  
1000  
300  
LOAD RESISTANCE TO GROUND ()  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
LT2078/79 • TPC14  
LT2078/79 • TPC13  
LTC2078/79 TPC12  
Slew Rate, Gain Bandwidth Product  
and Phase Margin vs Temperature  
Channel Separation vs Frequency  
Capacitive Load Handling  
0.12  
0.10  
0.08  
0.06  
0.04  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
T
= 25°C  
= 5V, 0V  
A
S
SLEW = ±15V  
V
75  
SLEW = 5V, 0V  
= ±15V  
65  
55  
45  
φ
M
A
V
= 1  
φ
M
= 5V, 0V  
A
V
= 5  
240 GBW = ±15V  
A
= 10  
V
220  
T
= 25°C  
A
S
200  
V
V
= ±2.5V  
GBW = 5V, 0V  
= 3V  
IN  
P-P  
180  
f
O
= 20kHz  
R
= 10k  
L
160  
10  
100  
1000  
10000  
–50  
0
25  
50  
75 100 125  
–25  
1
100  
1k  
10k  
100k 1M  
10  
CAPACITIVE LOAD (pF)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
LT2078/79 • TPC17  
LT2078/79 • TPC15  
LT2078/79 • TPC16  
Power Supply Rejection Ratio  
vs Frequency  
Undistorted Output Swing  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
120  
100  
80  
60  
40  
20  
0
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
V
= ±15V  
100k  
T
= 25°C  
S
L
A
R
5
4
3
2
1
0
V
= 5V, 0V  
100k  
S
L
V
= ±15V  
S
R
POSITIVE  
V
S
= 5V, 0V  
NEGATIVE  
SUPPLY  
V
= 5V, 0V  
SUPPLY  
S
L
R
1k  
V
R
= ±15V  
S
L
= 30k  
T
= 25°C  
A
T
= 25°C  
LOAD R ,  
L
A
S
V
= ±2.5V + 1V SINE WAVE  
TO GND  
P-P  
1k  
FREQUENCY (Hz)  
100k 1M  
0.1  
1
10 100  
10k  
0.01  
1
10  
100  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
LT2078/79 • TPC18  
LT2078/79 • TPC20  
LT2078/79 • TPC19  
7
LT2078/LT2079  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Common Mode Range vs  
Supply Current vs Temperature  
Temperature  
Closed-Loop Output Impedance  
+
55  
50  
45  
40  
35  
30  
25  
V
+
V
V
= 2.5V TO 18V  
= 0V TO –18V  
1k  
+
+
V
V
V
– 1  
– 2  
+ 1  
A
= 100  
V
V
= ±15V  
S
100  
A
= 10  
V
10  
1
A
= 1  
V
V
= 5V, 0V  
S
V
0.1  
V
– 1  
–50 –25  
10  
100  
1k  
10k  
100k  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
LT2078/79 • TPC23  
LT2078/79 • TPC21  
LT2078/79 • TPC22  
Small-Signal Transient Response  
VS = 5V, 0V  
Small-Signal Transient Response  
VS = ± 2.5V  
Small-Signal Transient Response  
VS = ± 15V  
0V  
0V  
0V  
AV = 1  
L = 15pF  
INPUT 50mV TO 150mV  
10µs/DIV  
AV = 1  
L = 15pF  
10µs/DIV  
AV = 1  
CL = 15pF  
10µs/DIV  
C
C
LT2078/79 • TPC24  
LT2078/79 • TPC25  
LT2078/79 • TPC26  
Large-Signal Transient Response  
VS = 5V, 0V  
Large-Signal Transient Response  
VS = ± 15V  
0V  
0V  
AV = 1  
NO LOAD  
100µs/DIV  
AV = 1, NO LOAD  
50µs/DIV  
INPUT PULSE 0V TO 3.8V  
LT2078/79 • TPC28  
LT2078/79 • TPC27  
8
LT2078/LT2079  
W
W
SI PLIFIED SCHEMATIC  
1/2 LT2078, 1/4 LT2079  
+
V
5k  
11.5k  
12.5k  
3.6k  
1.3k  
10k  
10k  
Q6  
2.2k  
Q16  
5.6k  
Q54  
1
Q53  
2
1
Q14  
Q15  
Q32  
Q5  
Q52  
Q47  
Q37  
Q30  
Q46  
Q29  
Q3  
V
Q24  
Q4  
1
3
Q40  
3k  
Q26  
Q25  
Q41  
Q35  
+
Q12  
4
V
8.6k  
C1  
50pF  
C4  
4pF  
2.9k  
30  
OUT  
Q11  
1
Q44  
C5  
2.5pF  
Q27  
Q1  
Q21  
150k  
600Ω  
600Ω  
+
IN  
IN  
Q31  
C3  
J1  
40pF  
Q36  
Q18  
Q28  
Q2  
Q22  
Q33  
Q48  
+
Q19  
V
Q42  
Q50  
Q49  
Q39  
Q9  
Q23  
Q17  
Q10  
+
9.1k  
V
700k  
Q51  
Q55  
C2  
175pF  
Q7  
Q8  
Q45  
Q20  
10k  
Q34  
Q43  
Q38  
4A  
5.35k  
30Ω  
6.2k  
1.35k  
6.2k  
700k  
V
LT2078/79 • SIMPLIFIED SCHEM  
9
LT2078/LT2079  
U
W U U  
APPLICATIONS INFORMATION  
The LT2078/LT2079 devices are fully specified with  
V+ = 5V, V= 0V, VCM = 0.1V. This set of operating  
conditions appears to be the most representative for  
battery powered micropower circuits. Offset voltage is  
internally trimmed to a minimum value at these supply  
voltages. When 9V or 3V batteries or ±2.5V dual supplies  
are used, bias and offset current changes will be minimal.  
Offset voltage changes will be just a few microvolts as  
givenbythePSRRandCMRRspecifications.Forexample,  
if PSRR = 114dB (=2µV/V), at 9V the offset voltage change  
will be 8µV. Similarly, VS = ±2.5V, VCM = 0V is equivalent  
to a common mode voltage change of 2.4V or a VOS  
change of 7µV if CMRR = 110dB (3µV/V).  
As an example, consider the instrumentation amplifier  
shown on the front page. When the common mode signal  
is low and the output is high, amplifier A has to sink  
current. When the common mode signal is high and the  
output low, amplifier B has to sink current. The competing  
devices require a 12k pull-down resistor at the output of  
amplifier A and a 15k at the output of B to handle the  
specified signals. (The LT2078 does not need pull-down  
resistors.) When the common mode input is high and the  
outputishighthesepull-downresistorsdraw300µA(150µA  
each), which is excessive for micropower applications.  
The instrumentation amplifier is by no means the only  
application requiring current sinking capability. In seven  
of the nine single supply applications shown in this data  
sheet the op amps have to be able to sink current. In two  
of the applications the first amplifier has to sink only the  
6nA input bias current of thesecond opamp. The compet-  
ing devices, however, cannot even sink 6nA without a  
pull-down resistor  
A full set of specifications is also provided at ±15V supply  
voltages for comparison with other devices and for com-  
pleteness.  
Single Supply Operation  
The LT2078/LT2079 is quite tolerant of power supply  
bypassing. In some applications requiring faster settling  
time the positive supply pin of the LT2078/LT2079 should  
be bypassed with a small capacitor (about 0.1µF). The  
same is true for the negative supply pin when using split  
supplies.  
Since the output of the LT2078/LT2079 cannot go exactly  
to ground, but can only approach ground to within a few  
millivolts, care should be exercised to ensure that the  
output is not saturated. For example, a 1mV input signal  
will cause the amplifier to set up in its linear region in the  
gain 100 configuration shown in Figure 1, but is not  
enough to make the amplifier function properly in the  
voltage follower mode.  
The LT2078/LT2079 are fully specified for single supply  
operation, i.e., when the negative supply is 0V. Input  
common mode range goes below ground and the output  
swings within a few millivolts of ground while sinking  
current. All competing micropower op amps either cannot  
swing to within 600mV of ground (OP-20, OP-220, OP-  
420) or need a pull-down resistor connected to the output  
to swing to ground (OP-90, OP-290, OP-490, HA5141/42/  
44). This difference is critical because in many applica-  
tions these competing devices cannot be operated as  
micropoweropampsandswingtogroundsimultaneously.  
Single supply operation can also create difficulties at the  
input. Thedrivingsignalcanfallbelow0Vinadvertently  
or on a transient basis. If the input is more than a few  
hundred millivolts below ground, two distinct problems  
can occur on previous single supply designs, such as the  
LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-420  
(1 and 2), OP-90/290/490 (2 only):  
5V  
5V  
R
99R  
OUTPUT  
SATURATION  
100mV  
3.5mV  
1mV  
+
1mV  
+
LT2078/79 • F02a  
LT2078/79 • F02b  
Figure 1a. Gain 100 Amplifier  
Figure 1b. Voltage Follower  
10  
LT2078/LT2079  
U
W U U  
APPLICATIONS INFORMATION  
1. Whentheinputismorethanadiodedropbelowground,  
unlimited current will flow from the substrate (V–  
terminal) to the input. This can destroy the unit. On the  
LT2078/LT2079, resistors in series with the input protect  
the devices even when the input is 5V below ground.  
rejection of the LT2078/LT2079 is very good, typically  
108dB. Therefore, as long as the input operates in the  
normal common mode range, there will be very little  
common mode induced distortion. If the op amp is oper-  
ating inverting there is no common mode induced distor-  
tion. Crossover distortion will increase as the output load  
resistancedecreases.ForthelowestdistortiontheLT2078/  
LT2079 should be operated with the output always sourc-  
ing current, this is usually accomplished by putting a  
resistor from the output to V. In an inverting configura-  
tion with no load, the output will source and sink current  
through the feedback resistor. High value feedback resis-  
tors will reduce crossover distortion and maintain  
micropower operation.  
2. When the input is more than 400mV below ground (at  
25°C), the input stage saturates and phase reversal  
occurs at the output. This can cause lockup in servo  
systems. Due to a unique phase reversal protection cir-  
cuitry, the LT2078/LT2079 output does not reverse, as  
illustrated in Figure 2, even when the inputs are at 1V.  
Distortion  
There are two main contributors of distortion in op amps:  
distortion caused by nonlinear common mode rejection  
and output crossover distortion as the output transitions  
from sourcing to sinking current. The common mode  
Matching Specifications  
In many applications the performance of a system de-  
pends on the matching between two op amps, rather than  
Table 1  
LT2078AC/LT2079AC/LT2078AI/LT2079AI  
LT2078C/LT2079C/LT2078I/LT2079I  
PARAMETER  
Match, V  
50% YIELD  
98% YIELD  
50% YIELD  
98% YIELD  
190  
UNITS  
µV  
µV  
µV/°C  
nA  
V
OS  
LT2078  
LT2079  
30  
40  
0.5  
6
110  
150  
1.2  
8
50  
50  
0.6  
6
OS  
250  
1.8  
10  
Temperature Coefficient V  
Average Noninverting I  
OS  
B
Match of Noninverting I  
CMRR Match  
PSRR Match  
0.12  
120  
117  
0.4  
100  
105  
0.15  
117  
117  
0.5  
97  
102  
nA  
dB  
dB  
B
4V  
2V  
4V  
2V  
4V  
2V  
0V  
0V  
0V  
6VP-P INPUT  
–1V TO 5V  
1ms/DIV  
1ms/DIV  
OP-90 EXHIBITS OUTPUT PHASE REVERSAL  
1ms/DIV  
LT2078/LT2079 NO PHASE REVERSAL  
LT2078/79 • F01a  
LT2078/79 • F01b  
LT2078/79 • F01C  
Figure 2. Voltage Follower with Input Exceeding the Negative Common Mode Range (VS = 5V, 0V)  
11  
LT2078/LT2079  
U
W U U  
APPLICATIONS INFORMATION  
the individual characteristics of the two devices, the two  
and three op amp instrumentation amplifier configura-  
tions shown in this data sheet are examples. Matching  
characteristicsarenot100%testedontheLT2078/LT2079.  
expected matching performance at VS = 5V, 0V between  
the two sides of the LT2078, and between amplifiers A and  
D, and between amplifiers B and C of the LT2079.  
Comparator Applications  
Some specifications are guaranteed by definition. For  
example, 70µV maximum offset voltage implies that mis-  
match cannot be more than 140µV. 95dB (= 17.5µV/V)  
CMRR means that worst-case CMRR match is 89dB  
(= 35µV/V). However, Table 1 can be used to estimate the  
The single supply operation of the LT2078/LT2079 and its  
ability to swing close to ground while sinking current  
lends itself to use as a precision comparator with TTL  
compatible output.  
4
2
4
2
0
0
0
100  
0
–100  
VS = 5V, 0V  
200µs/DIV  
VS = 5V, 0V  
200µs/DIV  
LT2078/79 • F03  
LT2078/79 • F04  
Figure 3. Comparator Rise Response  
Time to 10mV, 5mV, 2mV Overdrives  
Figure 4. Comparator Fall Response  
Time to 10mV, 5mV, 2mV Overdrives  
U
TYPICAL APPLICATIONS  
Micropower, 10ppm/°C, ±5V Reference  
Gain of 10 Difference Amplifier  
2M  
10M  
9V  
LT1034BC-1.2  
220k  
3V  
5V  
1M  
OUT  
1M  
–IN  
+IN  
120k  
8
OUTPUT  
3
2
1/2 LT2078  
0.0035V TO 2.4V  
1M  
+
1M  
6
5
1
LT2078/79 • TA04  
+
1/2 LT2078  
7
BANDWIDTH  
OUTPUT OFFSET  
OUTPUT NOISE = µV80 (0.1Hz TO 10Hz)  
=
=
20kHz  
0.7mV  
P-P  
1/2 LT2078  
–5.000V  
OUT  
510k  
4
10M  
+
LT2078/79 • TA03  
–9V  
µ2V60 OVER FULL  
RMS  
510k  
1%  
BANDWIDTH  
SUPPLY CURRENT = 9V BATTERY = 115µA  
–9V BATTERY = 8µ5A  
OUTPUT NOISE = 36µV , 0.1Hz TO 10Hz  
THE USEFULNESS OF DIFFERENCE AMPLIFIERS IS LIMITED BY THE FACT THAT  
THE INPUT RESISTANCE IS EQUAL TO THE SOURCE RESISTANCE. THE PICOAMPERE  
OFFSET CURRENT AND LOW CURRENT NOISE OF THE LT2078 ALLOWS THE USE OF  
1M SOURCE RESISTORS WITHOUT DEGRADATION IN PERFORMANCE. IN ADDITION,  
WITH MEGOHM RESISTORS MICROPOWER OPERATION CAN BE MAINTAINED  
20k  
160k  
1%  
P-P  
THE LT2078 CONTRIBUTES LESS THAN 3% OF THE TOTAL OUTPUT NOISE AND  
DRIFT WITH TIME AND TEMPERATURE. THE ACCURACY OF THE –5V OUTPUT  
DEPENDS ON THE MATCHING OF THE TWO 1M RESISTORS  
12  
LT2078/LT2079  
U
TYPICAL APPLICATIONS  
Picoampere Input Current, Triple Op Amp  
85V, –100V Common Mode Range  
Instrumentation Amplifier (AV = 10)  
Instrumentation Amplifier with Bias Current Cancellation  
3
R2  
–IN  
+
1M  
1M  
1
1/4 LT2079  
9V  
10M  
2
R1  
1M  
10M  
10M  
8
2
3
+IN  
–IN  
R3  
100k  
100k  
1
6
9.1M  
2R  
R
1/2 LT2078  
G
200k  
20M  
7
OUTPUT  
+
1/2 LT2078  
8V TO –9V  
9
4
5
LT2078/79 • TA06  
+
R1  
1M  
6
5
8
OUTPUT  
4mV TO 8.2V  
–9V  
1M  
1/4 LT2079  
7
10  
LT2078/79 • TA05  
1/4 LT2079  
+
BANDWIDTH  
OUTPUT OFFSET  
OUTPUT NOISE  
=
=
=
=
2kHz  
8mV  
P-P  
R2  
1M  
+IN  
+
0.8mV(0.1Hz TO 10Hz)  
R3  
9.1M  
1.4mV OVER FULL BANDWIDTH  
RMS  
(DOMINATED BY RESISTOR NOISE)  
10M  
9V  
4
R
10M  
INPUT RESISTANCE  
=
12  
13  
+
2R1 R3  
14  
2R  
20M  
GAIN = 1 +  
= 100 FOR VALUES SHOWN  
1/4 LT2079  
(
)
R
R2  
G
INPUT BIAS CURRENT TYPICALLY < 150pA  
11  
INPUT RESISTANCE = 3R = 30M FOR VALUES SHOWN  
NEGATIVE COMMON MODE LIMIT = (I )(2R) + 20mV 140mV  
B
GAIN BANDWIDTH PRODUCT = 1.8MHz  
Half-Wave Rectifier  
Absolute Value Circuit (Full-Wave Rectifier)  
2M  
200k  
3.5V  
0V  
5V  
3V  
2M  
200k  
8
2
3
INPUT  
INPUT  
1
5
6
OUTPUT  
1/2 LT2078  
+
1/2 LT2078  
1M  
7
1N4148  
+
3.5V  
OUTPUT  
+
1/2 LT2078  
4
V
= 6mV  
OMIN  
NO DISTORTION TO 100Hz  
1.8V  
–3.5V  
1.8V  
0V  
LT2078/79 • TA08  
V
= 4mV  
OMIN  
–1.8V  
LT2078/79 • TA07  
NO DISTORTION TO 100Hz  
Programmable Gain Amplifier (Single Supply)  
1.11k  
10k  
100k  
1M  
3V TO 18V  
3V TO 18V  
11  
4
2
3
1
1
1/4 LT2079  
13  
12  
A
+
6
5
14  
2
4
9
OUT  
1/4 LT2079  
11  
7
B
3
8
1/4 LT2079  
+
LT2078/79 • TA09  
9
+
C
7
8
CD4016B  
PIN 5  
LOW  
1/4 LT2079  
GAIN  
1000  
100  
10  
PIN 13  
HIGH  
LOW  
PIN 6  
LOW  
LOW  
HIGH  
CD4016B  
10  
IN  
+
HIGH  
LOW  
13  
5
6
ERROR DUE TO SWITCH ON RESISTANCE,  
LEAKAGE CURRENT, NOISE AND TRANSIENTS  
ARE ELIMINATED  
LOW  
13  
LT2078/LT2079  
TYPICAL APPLICATIONS  
U
Single Supply, Micropower, Second Order Lowpass Filter with 60Hz Notch  
0.02µF  
6
5
5V  
8
27.6k  
0.1%  
27.6k  
0.1%  
OUTPUT  
TYPICAL OFFSET  
600µV  
3
7
2.64M  
0.1%  
2.64M  
0.1%  
IN  
+
1/2 LT2078  
1
0.01µF  
1/2 LT2078  
+
2
2000pF  
0.5%  
4
5.1M  
1%  
120k  
5%  
1.35M  
0.1%  
100pF  
1000pF  
0.5%  
1000pF  
0.5%  
f
= 40Hz  
C
LT2078/79 • TA10  
Q = 30  
Micropower Multiplier/Divider  
505k  
0.1%  
505k  
0.1%  
Z INPUT  
(5mV TO 50V)  
Y INPUT  
(5mV TO 50V)  
9V  
4
220pF  
220pF  
Q1  
Q3  
13  
6
5
Q1,Q2, Q3, Q4 = MAT-04  
30k  
5%  
TYPICAL LINEARITY = 0.01% OF FULL-SCALE OUTPUT  
7
14  
(X)(Y)  
(Z)  
1/4 LT2079  
1/4 LT2079  
OUTPUT =  
, POSITIVE INPUTS ONLY  
30k  
5%  
+
+
12  
10k  
GAIN  
X + Y+ Z + OUT  
500k  
OUT  
499k  
0.5%  
11  
NEGATIVE SUPPLY CURRENT = 165µA +  
POSITIVE SUPPLY CURRENT = 165µA +  
–1.5V TO –9V  
505k  
0.1%  
500k  
X INPUT  
(5mV TO 50V)  
BANDWIDTH (< 3V SIGNAL): X AND Y INPUTS = 10kHz  
P-P  
9
Z INPUT = 4kHz  
8
OUTPUT  
(5mV TO 8V)  
220pF  
1/4 LT2079  
+
2
3
Q2  
Q4  
10  
1
1/4 LT2079  
lt2078/79 • TA11  
+
30k  
5%  
Micropower Dead Zone Generator  
Q4  
V
SET  
DEAD ZONE  
CONTROL INPUT  
0.4V TO 5V  
1M*  
1M**  
1M**  
510k  
2
3
Q2  
Q3  
INPUT  
1
470k  
1/4 LT2079  
+
1M*  
1M**  
GAIN  
200k  
Q1  
2N4393  
9
1M**  
8
13  
1/4 LT2079  
+
1N914  
10  
14  
1M  
V
OUT  
1/4 LT2079  
510k  
510k  
12  
+
LT2078/79 • TA12  
9V  
1N914  
1M  
1M  
680k  
Q6  
V
V
SET  
OUT  
2N4393  
4
6
5
1000pF  
7
V
IN  
Q5  
1/4 LT2079  
BIPOLAR SYMMETRY IS EXCELLENT  
BECAUSE ONE DEVICE, Q2,  
SETS BOTH LIMITS  
SUPPLY CURRENT 240µA  
BANDWIDTH = 150kHz  
+
V
SET  
11  
1% FILM  
*
**  
RATIO MATCH 0.05%  
Q2, Q3, Q4, Q5 CA3096 TRANSISTOR ARRAY  
–9V  
14  
LT2078/LT2079  
U
TYPICAL APPLICATIONS  
Lead-Acid Low-Battery Detector with System Shutdown  
BATTERY  
OUTPUT  
2M  
1%  
2M  
1%  
910k  
5%  
3
12V  
+
1
LO = BATTERY LOW  
(IF V < 10.90V)  
1/2 LT2078  
S
2
8
5
6
+
LO = SYSTEM SHUTDOWN  
(IF V < 10.05V)  
7
1/2 LT2078  
S
255k  
1%  
280k  
1%  
4
LT1004-1.2  
LT2078/79 • TA13  
TOTAL SUPPLY CURRENT = 105µA  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
0.189 – 0.197*  
(4.801 – 5.004)  
(LTC DWG # 05-08-1610)  
7
5
8
6
0.228 – 0.244  
(5.791 – 6.197)  
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
1
2
3
4
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
S Package  
14-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.337 – 0.344*  
(8.560 – 8.738)  
14  
13  
12  
11  
10  
9
8
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
S14 0695  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
5
6
7
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT2078/LT2079  
TYPICAL APPLICATION  
U
Platinum RTD Signal Conditioner with Curvature Correction  
3V (LITHIUM)  
13k*  
1µF  
12.3k*  
5k  
220°C  
TRIM  
8
LT1004-1.2  
3
2
+
10k*  
1
43.2k**  
1/2 LT2078  
4
50k  
1k**  
1k**  
1k**  
5°C  
TRIM  
6
5
0.02V TO 2.2V  
=
7
OUT  
1/2 LT2078  
+
2°C TO 220°C ±0.1°C  
R
P
= ROSEMOUNT 118MF  
** = TRW MAR-6 0.1%  
* = 1% METAL FILM  
R
P
1k AT  
1.21M*  
(SELECT AT 110°C)  
1µF  
0°C  
LT2078/79 • TA14  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1178/LT1179 Dual/Quad 17µA Max, Single Supply Precision Op Amps  
70µV V Max and 2.5µV/°C Drift Max, 85kHz GBW, 0.04V/µs Slew  
Rate, Input/Output Common Mode Includes Ground  
OS  
LT1211/LT1212 14MHz, 7V/µs Single Supply Dual and Quad Precision Op Amps 275µV V Max, 6µV/°C Drift Max Input Voltage Range Includes Ground  
OS  
LT1490/LT1491 Dual/ Quad Micropower Rail-to-Rail Input and Output Op Amps Single Supply Input Range: –0.4V to 44V, Micropower 50µA Amplifier,  
Rail-to-Rail Input and Output, 200kHz GBW  
LT2178/LT2179 Dual/Quad 17µA Max, Single Supply Precision Op Amps  
SO-8 and 14-Lead Standard Pinout, 70µV VOS Max, 85kHz GBW  
LT/GP 1096 7K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1996  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY