LT3010EMS8E [Linear]

50mA, 3V to 80V Low Dropout Micropower Linear Regulator; 50mA时3V至80V低压差微功耗线性稳压器
LT3010EMS8E
型号: LT3010EMS8E
厂家: Linear    Linear
描述:

50mA, 3V to 80V Low Dropout Micropower Linear Regulator
50mA时3V至80V低压差微功耗线性稳压器

稳压器
文件: 总16页 (文件大小:245K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3010/LT3010-5  
50mA, 3V to 80V  
Low Dropout  
Micropower Linear Regulator  
U
FEATURES  
DESCRIPTIO  
The LT®3010 is a high voltage, micropower low dropout  
linear regulator. The device is capable of supplying 50mA  
outputcurrentwithadropoutvoltageof300mV. Designed  
for use in battery-powered or high voltage systems, the  
low quiescent current (30µA operating and 1µA in shut-  
down) makes the LT3010 an ideal choice. Quiescent  
current is also well controlled in dropout.  
Wide Input Voltage Range: 3V to 80V  
Low Quiescent Current: 30µA  
Low Dropout Voltage: 300mV  
Output Current: 50mA  
Thermally Enhanced 8-Lead MSOP Package  
No Protection Diodes Needed  
Fixed Output Voltage: 5V (LT3010-5)  
Adjustable Output from 1.275V to 60V (LT3010)  
Other features of the LT3010 include the ability to operate  
with very small output capacitors. The regulators are  
stable with only 1µF on the output while most older  
devices require between 10µF and 100µF for stability.  
Small ceramic capacitors can be used without the neces-  
sary addition of ESR as is common with other regulators.  
Internal protection circuitry includes reverse-battery pro-  
tection, current limiting, thermal limiting and reverse  
current protection.  
1µA Quiescent Current in Shutdown  
Stable with 1µF Output Capacitor  
Stable with Aluminum, Tantalum or Ceramic  
Capacitors  
Reverse-Battery Protection  
No Reverse Current Flow from Output  
Thermal Limiting  
U
APPLICATIO S  
The device is available in a fixed output voltage of 5V and  
as an adjustable device with a 1.275V reference voltage.  
The LT3010 regulator is available in the 8-lead MSOP  
package with an exposed pad for enhanced thermal han-  
dling capability.  
Low Current High Voltage Regulators  
Regulator for Battery-Powered Systems  
Telecom Applications  
Automotive Applications  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Dropout Voltage  
350  
5V Supply with Shutdown  
300  
V
OUT  
250  
200  
150  
100  
50  
IN  
OUT  
LT3010-5  
5V  
50mA  
V
IN  
5.4V TO  
80V  
1µF  
1µF  
SHDN SENSE  
GND  
3010 TA01  
V
(PIN 5) OUTPUT  
SHDN  
<0.3V  
>2.0V  
NC  
OFF  
ON  
ON  
0
10  
20  
30  
50  
0
40  
OUTPUT CURRENT (mA)  
3010 TA02  
3010f  
1
LT3010/LT3010-5  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
IN Pin Voltage................................................... ±80V  
OUT Pin Voltage ............................................... ±60V  
IN to OUT Differential Voltage........................... ±80V  
ADJ Pin Voltage .................................................. ±7V  
SHDN Pin Input Voltage ................................... ±80V  
Output Short-Circuit Duration..................... Indefinite  
Storage Temperature Range ............ –65°C to 150°C  
Operating Junction Temperature Range  
ORDER PART  
TOP VIEW  
NUMBER  
OUT  
SENSE/ADJ*  
NC  
1
2
3
4
8 IN  
7 NC  
6 NC  
5 SHDN  
LT3010EMS8E  
LT3010EMS8E-5  
GND  
MS8E PACKAGE  
8-LEAD PLASTIC MSOP  
*SENSE FOR LT3010-5, ADJ FOR LT3010  
TJMAX = 125°C, θJA = 40°C/ W, θJC = 16°C/ W†  
SEE APPLICATIONS INFORMATION SECTION.  
EXPOSED PAD IS GND  
MS8 PART MARKING  
LTZF  
LTAEF  
(MUST BE SOLDERED TO PCB)  
MEASURED AT BOTTOM PAD  
(Notes 3, 10, 11) ......................... –40°C to 125°C  
Lead Temperature (Soldering, 10 sec)............ 300°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
LT3010  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
Regulated Output Voltage (Note 3)  
I
= 50mA  
3
4
V
LOAD  
LT3010-5  
V
= 5.5V, I  
= 1mA  
LOAD  
4.925  
4.850  
5.000  
5.000  
5.075  
5.150  
V
V
IN  
6V < V < 80V, 1mA < I  
< 50mA  
< 50mA  
IN  
LOAD  
ADJ Pin Voltage  
(Notes 2,3)  
LT3010  
V
= 3V, I  
= 1mA  
1.258  
1.237  
1.275  
1.275  
1.292  
1.313  
V
V
IN  
LOAD  
4V < V < 80V, 1mA < I  
IN  
LOAD  
Line Regulation  
LT3010-5  
LT3010 (Note 2)  
V = 5.5V to 80V, I  
= 1mA  
LOAD  
3
3
15  
13  
mV  
mV  
IN  
V = 3V to 80V, I  
= 1mA  
IN  
LOAD  
Load Regulation  
LT3010-5  
V
V
= 6V, I  
= 6V, I  
= 1mA to 50mA  
= 1mA to 50mA  
25  
50  
90  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
LT3010 (Note 2)  
V
V
= 4V, I  
= 4V, I  
= 1mA to 50mA  
= 1mA to 50mA  
10  
20  
32  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
Dropout Voltage  
I
I
= 1mA  
= 1mA  
100  
200  
300  
150  
190  
mV  
mV  
LOAD  
LOAD  
V
IN  
= V  
OUT(NOMINAL)  
(Notes 4, 5)  
I
I
= 10mA  
= 10mA  
260  
350  
mV  
mV  
LOAD  
LOAD  
I
I
= 50mA  
= 50mA  
370  
550  
mV  
mV  
LOAD  
LOAD  
GND Pin Current  
I
I
I
I
= 0mA  
= 1mA  
= 10mA  
= 50mA  
30  
100  
400  
1.8  
60  
180  
700  
3.3  
µA  
µA  
µA  
LOAD  
LOAD  
LOAD  
LOAD  
V
IN  
= V  
OUT(NOMINAL)  
(Notes 4, 6)  
mA  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10µF, I  
= 50mA, BW = 10Hz to 100kHz  
100  
50  
µV  
RMS  
OUT  
LOAD  
(Note 7)  
100  
2
nA  
V
OUT  
V
OUT  
= Off to On  
= On to Off  
1.3  
0.8  
V
V
0.3  
SHDN Pin Current  
(Note 8)  
V
SHDN  
V
SHDN  
= 0V  
= 6V  
0.5  
0.1  
2
0.5  
µA  
µA  
Quiescent Current in Shutdown  
V
IN  
= 6V, V  
= 0V  
1
5
µA  
SHDN  
3010f  
2
LT3010/LT3010-5  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
MIN TYP  
MAX  
UNITS  
Ripple Rejection  
LT3010  
LT3010-5  
V
IN  
V
IN  
= 7V(Avg), V  
= 7V(Avg), V  
= 0.5V , f  
= 120Hz, I  
= 120Hz, I  
= 50mA  
= 50mA  
65  
60  
75  
68  
dB  
dB  
RIPPLE  
RIPPLE  
P-P RIPPLE  
LOAD  
LOAD  
= 0.5V , f  
P-P RIPPLE  
Current Limit  
V
= 7V, V  
= 0V  
140  
mA  
mA  
mA  
IN  
OUT  
LT3010-5  
LT3010 (Note 2) V = 4V, V  
V
IN  
IN  
= 6V, V  
= –0.1V  
= –0.1V  
60  
60  
OUT  
OUT  
Input Reverse  
V
IN  
= –80V, V  
= 0V  
6
mA  
OUT  
Leakage Current  
Reverse Output Current  
(Note 9)  
LT3010-5  
LT3010 (Note 2) V  
V
= 5V, V < 5V  
10  
8
20  
15  
µA  
µA  
OUT  
OUT  
IN  
= 1.275V, V < 1.275V  
IN  
Note 6: GND pin current is tested with V = V  
(nominal) and a current  
OUT  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
IN  
source load. This means the device is tested while operating in its dropout  
region. This is the worst-case GND pin current. The GND pin current will  
decrease slightly at higher input voltages.  
of a device may be impaired.  
Note 2: The LT3010 (adjustable version) is tested and specified for these  
conditions with the ADJ pin connected to the OUT pin.  
Note 7: ADJ pin bias current flows into the ADJ pin.  
Note 8: SHDN pin current flows out of the SHDN pin.  
Note 9: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 10: The LT3010E is guaranteed to meet performance specifications  
from 0°C to 125°C operating junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
Note 11: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is  
active. Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
Note 3: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply for  
all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 4: To satisfy requirements for minimum input voltage, the LT3010  
(adjustable version) is tested and specified for these conditions with an  
external resistor divider (249k bottom, 392k top) for an output voltage of  
3.3V. The external resistor divider will add a 5µA DC load on the output.  
Note 5: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to (V – V  
).  
IN  
DROPOUT  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
I
L
= 50mA  
400  
300  
T
= 125°C  
J
T
125°C  
25°C  
J
I
= 10mA  
= 1mA  
L
T
J
T
= 25°C  
200  
100  
0
J
I
L
0
0
0
5
10 15 20 25 30 35 40 45 50  
OUTPUT CURRENT (mA)  
–50  
0
25  
50  
75 100 125  
–25  
0
5
10 15 20 25 30 35 40 45 50  
OUTPUT CURRENT (mA)  
3010 G01  
TEMPERATURE (°C)  
3010 G02  
3010 G03  
3010f  
3
LT3010/LT3010-5  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Quiescent Current  
LT3010 ADJ Pin Voltage  
LT3010-5 Output Voltage  
40  
1.295  
5.08  
I
L
= 1mA  
I
L
= 1mA  
35  
30  
1.290  
1.285  
5.06  
5.04  
V
SHDN  
= V  
IN  
25  
20  
15  
10  
5
1.280  
1.275  
1.270  
1.265  
1.260  
5.02  
5.00  
4.98  
4.96  
4.94  
V
R
R
> 6V  
IN  
L
L
= , I = 0 (LT3010-5)  
L
= 250k, I = 5µA (LT3010)  
L
V
= 0V  
50  
SHDN  
0
1.255  
4.92  
25  
0
75 100 125  
25  
0
50  
75 100 125  
25  
0
50  
75 100 125  
50  
25  
50  
25  
50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3010 G04  
3010 G06  
3010 G05  
LT3010 Quiescent Current  
LT3010-5 Quiescent Current  
LT3010 GND Pin Current  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
200  
180  
160  
140  
120  
100  
80  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
T
= 25°C  
R = ∞  
L
T
= 25°C  
J
L
J
J
R
=
*FOR V  
= 1.275V  
OUT  
V
= V  
IN  
R
= 25.5Ω  
= 50mA*  
SHDN  
L
L
I
R
L
= 51Ω  
L
I
= 25mA*  
R
L
= 127Ω  
= 10mA*  
L
60  
I
V
= V  
IN  
SHDN  
40  
R
= 1.27k I = 1mA*  
L
20  
L
V
= 0V  
6
SHDN  
5
V
6
= 0V  
8
SHDN  
7
0
0
0
1
2
3
4
7
8
9
10  
0
1
2
3
4
5
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3010 G08  
3010 G07  
3010 G10  
LT3010-5 GND Pin Current  
GND Pin Current vs ILOAD  
SHDN Pin Threshold  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
T
= 25°C  
V
= V  
+ 1V  
OUT(NOMINAL)  
J
IN  
*FOR V  
= 5V  
T = 25°C  
J
OUT  
1.4  
1.2  
OFF-TO-ON  
R
I
= 100Ω  
= 50mA*  
L
L
1.0  
0.8  
0.6  
0.4  
0.2  
R
L
= 200Ω  
= 25mA*  
L
I
ON-TO-OFF  
R
I
= 500Ω  
= 10mA*  
L
L
R
= 5k, I = 1mA*  
L
L
0
0
1
2
3
4
5
6
7
8
9
10  
0
5
10 15 20 25 30 35 40 45 50  
OUTPUT CURRENT (mA)  
3010 G11  
50 25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3010 G09  
3010 G12  
3010f  
4
LT3010/LT3010-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
SHDN Pin Current  
SHDN Pin Current  
ADJ Pin Bias Current  
0.6  
0.5  
0.8  
80  
T = 25°C  
J
V
SHDN  
= 0V  
CURRENT FLOWS  
OUT OF SHDN PIN  
CURRENT FLOWS  
OUT OF SHDN PIN  
0.7  
0.6  
70  
60  
0.4  
0.3  
0.5  
0.4  
0.3  
0.2  
0.1  
50  
40  
30  
20  
10  
0.2  
0.1  
0
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
25  
0
50  
75 100 125  
25  
0
50  
75 100 125  
50  
25  
50  
25  
SHDN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3010 G13  
3010 G14  
3010 G15  
Current Limit  
Current Limit  
Reverse Output Current  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 7V  
IN  
OUT  
V
T
= 0V  
T
= 25°C  
IN  
OUT  
J
J
= 0V  
= 25°C  
V
= 0V  
CURRENT FLOWS  
INTO OUTPUT PIN  
V
V
= V  
= V  
(LT3010)  
ADJ  
SENSE  
OUT  
OUT  
ADJ  
(LT3010-5)  
PIN CLAMP  
(SEE APPLICATIONS  
INFORMATION)  
LT3010  
60  
60  
40  
40  
LT3010-5  
20  
20  
0
0
–50  
0
25  
50  
75 100 125  
–25  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
3010 G17  
3010 G16  
3010 G18  
Reverse Output Current  
Input Ripple Rejection  
Input Ripple Rejection  
100  
90  
24  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
V
I
= 7V + 50mV  
RIPPLE  
V
V
V
= 0V  
= V  
IN  
L
RMS  
IN  
OUT  
OUT  
= 50mA  
= 1.275V (LT3010)  
ADJ  
21  
18  
= V  
= 5V (LT3010-5)  
SENSE  
80  
70  
15  
12  
9
C
OUT  
= 10µF  
60  
50  
LT3010-5  
LT3010  
40  
30  
20  
10  
0
C
OUT  
= 1µF  
6
V
L
= 7V + 0.5V RIPPLE AT f = 120Hz  
P-P  
IN  
3
I
= 50mA  
V
OUT  
= 1.275V  
0
25  
0
50  
75 100 125  
10  
100  
1k  
10k  
100k  
1M  
50  
25  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
3010 G21  
3010 G19  
3010 G20  
3010f  
5
LT3010/LT3010-5  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
LT3010 Minimum Input Voltage  
Load Regulation  
Output Noise Spectral Density  
10  
1
4.0  
0
I = 1mA TO 50mA  
L
C
= 1µF  
OUT  
= 50mA  
I
= 50mA  
LOAD  
I
L
3.5  
3.0  
–5  
LT3010  
–10  
2.5  
2.0  
1.5  
1.0  
0.5  
–15  
–20  
–25  
–30  
–35  
LT3010-5  
0.1  
0.01  
0
–40  
25  
0
50  
75 100 125  
25  
0
50  
75 100 125  
50  
25  
50  
25  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3010 G24  
3010 G22  
3010 G23  
LT3010-5 10Hz to 100kHz  
Output Noise  
LT3010-5 Transient Response  
0.2  
0.1  
0
VOUT  
100µV/DIV  
–0.1  
–0.2  
V
C
C
= 6V  
IN  
IN  
= 1µF CERAMIC  
= 1µF CERAMIC  
= 1mA TO 50mA  
OUT  
I  
LOAD  
50  
25  
0
COUT = 1µF  
IL = 50mA  
1ms/DIV  
3010 G25  
0
200  
400  
600  
800  
1000  
TIME (µs)  
3010 G26  
3010f  
6
LT3010/LT3010-5  
U
U
U
PI FU CTIO S  
OUT (Pin 1): Output. The output supplies power to the  
load. A minimum output capacitor of 1µF is required to  
prevent oscillations. Larger output capacitors will be re-  
quired for applications with large transient loads to limit  
peak voltage transients. See the Applications Information  
section for more information on output capacitance and  
reverse output characteristics.  
the Typical Performance Characteristics). The ADJ pin  
voltage is 1.275V referenced to ground, and the output  
voltage range is 1.275V to 60V.  
GND (Pin 4, Tab): Ground. The exposed backside of the  
package is an electrical connection for GND. As such, to  
ensure optimum device operation, the exposed pad must  
be connected directly to pin 4 on the PC board.  
SENSE (Pin 2): Sense. For the LT3010-5, the SENSE pin  
is the input to the error amplifier. Optimum regulation will  
be obtained at the point where the SENSE pin is connected  
to the OUT pin of the regulator. In critical applications,  
small voltage drops are caused by the resistance (RP) of  
PC traces between the regulator and the load. These may  
be eliminated by connecting the SENSE pin to the output  
at the load as shown in Figure 1 (Kelvin Sense Connec-  
tion). Note that the voltage drop across the external PC  
traces will add to the dropout voltage of the regulator. The  
SENSEpinbiascurrentis10µAatthenominalratedoutput  
voltage.  
SHDN (Pin 5): Shutdown. The SHDN pin is used to put the  
LT3010 into a low power shutdown state. The output will  
be off when the SHDN pin is pulled low. The SHDN pin can  
be driven either by 5V logic or open-collector logic with a  
pull-up resistor. The pull-up resistor is only required to  
supply the pull-up current of the open-collector gate,  
normally several microamperes. If unused, the SHDN pin  
can be left open circuit. The device will be active, output  
on, if the SHDN pin is not connected.  
IN (Pin 8): Input. Power is supplied to the device through  
the IN pin. A bypass capacitor is required on this pin if the  
device is more than six inches away from the main input  
filter capacitor. In general, the output impedance of a  
battery rises with frequency, so it is advisable to include a  
bypass capacitor in battery-powered circuits. A bypass  
capacitor in the range of 1µF to 10µF is sufficient. The  
LT3010 is designed to withstand reverse voltages on the  
IN pin with respect to ground and the OUT pin. In the case  
of a reversed input, which can happen if a battery is  
plugged in backwards, the LT3010 will act as if there is a  
diode in series with its input. There will be no reverse  
current flow into the LT3010 and no reverse voltage will  
appear at the load. The device will protect both itself and  
the load.  
ADJ (Pin 2): Adjust. For the adjustable LT3010, this is the  
input to the error amplifier. This pin is internally clamped  
to ±7V. It has a bias current of 50nA which flows into the  
pin (see curve of ADJ Pin Bias Current vs Temperature in  
R
P
8
5
1
2
IN  
OUT  
LT3010  
+
+
SHDN SENSE  
GND  
LOAD  
V
IN  
4, TAB  
3010 F01  
Figure 1. Kelvin Sense Connection  
3010f  
7
LT3010/LT3010-5  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT3010 is a 50mA high voltage low dropout regulator  
with micropower quiescent current and shutdown. The  
device is capable of supplying 50mA at a dropout voltage  
of 300mV. The low operating quiescent current (30µA)  
drops to 1µA in shutdown. In addition to the low quiescent  
current, the LT3010 incorporates several protection fea-  
tures which make it ideal for use in battery-powered  
systems. The device is protected against both reverse  
input and reverse output voltages. In battery backup  
applications where the output can be held up by a backup  
batterywhentheinputispulledtoground,theLT3010acts  
like it has a diode in series with its output and prevents  
reverse current flow.  
A small capacitor (C1) placed in parallel with the top  
resistor(R2)oftheoutputdividerisnecessaryforstability  
and transient performance of the adjustable LT3010. The  
impedance of C1 at 10kHz should be less than the value of  
R1.  
The adjustable device is tested and specified with the ADJ  
pintiedtotheOUTpinanda5µADCload(unlessotherwise  
specified) for an output voltage of 1.275V. Specifications  
for output voltages greater than 1.275V will be propor-  
tional to the ratio of the desired output voltage to 1.275V;  
(VOUT/1.275V). For example, load regulation for an  
output current change of 1mA to 50mA is –10mV typical  
at VOUT = 1.275V. At VOUT = 12V, load regulation is:  
Adjustable Operation  
(12V/1.275V) • (–10mV) = –94mV  
The adjustable version of the LT3010 has an output  
voltage range of 1.275V to 60V. The output voltage is set  
bytheratiooftwoexternalresistorsasshowninFigure 2.  
The device servos the output to maintain the voltage at  
the adjust pin at 1.275V referenced to ground. The  
current in R1 is then equal to 1.275V/R1 and the current  
in R2 is the current in R1 plus the ADJ pin bias current.  
TheADJpinbiascurrent,50nAat25°C,flowsthroughR2  
into the ADJ pin. The output voltage can be calculated  
using the formula in Figure 2. The value of R1 should be  
less than 250k to minimize errors in the output voltage  
caused by the ADJ pin bias current. Note that in shut-  
down the output is turned off and the divider current will  
be zero.  
Output Capacitance and Transient Response  
The LT3010 is designed to be stable with a wide range of  
output capacitors. The ESR of the output capacitor affects  
stability, most notably with small capacitors. A minimum  
output capacitor of 1µF with an ESR of 3or less is  
recommended to prevent oscillations. The LT3010 is a  
micropower device and output transient response will be  
a function of output capacitance. Larger values of output  
capacitance decrease the peak deviations and provide  
improved transient response for larger load current  
changes. Bypass capacitors, used to decouple individual  
components powered by the LT3010, will increase the  
effective output capacitor value.  
V
IN  
OUT  
LT3010  
ADJ  
OUT  
+
R2  
R1  
C1  
V
IN  
GND  
3010 F02  
R2  
R1  
V
V
= 1.275V 1 +  
+ (I )(R2)  
ADJ  
OUT  
ADJ  
(
)
= 1.275V  
I
= 50nA AT 25°C  
OUTPUT RANGE = 1.275V TO 60V  
ADJ  
Figure 2. Adjustable Operation  
3010f  
8
LT3010/LT3010-5  
W U U  
APPLICATIO S I FOR ATIO  
U
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common di-  
electrics used are Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
in a small package, but exhibit strong voltage and tem-  
perature coefficients as shown in Figures 3 and 4. When  
used with a 5V regulator, a 10µF Y5V capacitor can exhibit  
an effective value as low as 1µF to 2µF over the operating  
temperature range. The X5R and X7R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X7R type has better stability  
across temperature, while the X5R is less expensive and  
is available in higher values.  
similar to the way a piezoelectric accelerometer or micro-  
phone works. For a ceramic capacitor the stress can be  
induced by vibrations in the system or thermal transients.  
Thermal Considerations  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components:  
1. Output current multiplied by the input/output voltage  
differential: IOUT • (VIN – VOUT) and,  
2. GND pin current multiplied by the input voltage:  
IGND • VIN.  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics.Powerdissipationwillbeequaltothesumofthetwo  
components listed above.  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
40  
20  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
0
X5R  
X5R  
–20  
–20  
–40  
–40  
Y5V  
–60  
–60  
Y5V  
–80  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
–100  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3010 F04  
3010 F03  
Figure 4. Ceramic Capacitor Temperature Characterics  
Figure 3. Ceramic Capacitor DC Bias Characterics  
3010f  
9
LT3010/LT3010-5  
W U U  
U
APPLICATIO S I FOR ATIO  
maximumtopsideandbacksideareaforoneouncecopper  
is 3 seconds. This time constant will increase as more  
thermal mass is added (i.e. vias, larger board, and other  
components).  
The LT3010 series regulators have internal thermal limit-  
ing designed to protect the device during overload condi-  
tions. For continuous normal conditions the maximum  
junction temperature rating of 125°C must not be ex-  
ceeded. It is important to give careful consideration to all  
sources of thermal resistance from junction to ambient.  
Additional heat sources mounted nearby must also be  
considered.  
For an application with transient high power peaks, aver-  
age power dissipation can be used for junction tempera-  
turecalculationsaslongasthepulseperiodissignificantly  
less than the thermal time constant of the device and  
board.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
Calculating Junction Temperature  
Example 1: Given an output voltage of 5V, an input voltage  
range of 24V to 30V, an output current range of 0mA to  
50mA, and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
The following table lists thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
The power dissipated by the device will be equal to:  
I
OUT(MAX) • (VIN(MAX) – VOUT) + (IGND • VIN(MAX)  
where:  
IOUT(MAX) = 50mA  
)
Table 1. Measured Thermal Resistance  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
BACKSIDE  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
(JUNCTION-TO-AMBIENT)  
40°C/W  
VIN(MAX) = 30V  
45°C/W  
IGND at (IOUT = 50mA, VIN = 30V) = 1mA  
50°C/W  
62°C/W  
So:  
P = 50mA • (30V – 5V) + (1mA • 30V) = 1.28W  
The thermal resistance junction-to-case (θJC), measured  
at the exposed pad on the back of the die, is 16°C/W.  
The thermal resistance will be in the range of 40°C/W to  
62°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
Continuous operation at large input/output voltage differ-  
entials and maximum load current is not practical due to  
thermal limitations. Transient operation at high input/  
output differentials is possible. The approximate thermal  
time constant for a 2500sq mm 3/32" FR-4 board with  
1.31W • 50°C/W = 65.5°C  
3010f  
10  
LT3010/LT3010-5  
W U U  
APPLICATIO S I FOR ATIO  
U
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
Protection Features  
TheLT3010incorporatesseveralprotectionfeatureswhich  
make it ideal for use in battery-powered circuits. In addi-  
tion to the normal protection features associated with  
monolithic regulators, such as current limiting and ther-  
mal limiting, the device is protected against reverse-input  
voltages, and reverse voltages from output to input.  
T
JMAX = 50°C + 65.5°C = 115.5°C  
Example 2: Given an output voltage of 5V, an input voltage  
of 48V that rises to 72V for 5ms(max) out of every 100ms,  
and a 5mA load that steps to 50mA for 50ms out of every  
250ms, what is the junction temperature rise above ambi-  
ent? Using a 500ms period (well under the time constant  
of the board), power dissipation is as follows:  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
P1(48V in, 5mA load) = 5mA • (48V – 5V)  
+ (200µA • 48V) = 0.23W  
The input of the device will withstand reverse voltages of  
80V.Currentflowintothedevicewillbelimitedtolessthan  
6mA (typically less than 100µA) and no negative voltage  
will appear at the output. The device will protect both itself  
and the load. This provides protection against batteries  
which can be plugged in backward.  
P2(48V in, 50mA load) = 50mA • (48V – 5V)  
+ (1mA • 48V) = 2.20W  
P3(72V in, 5mA load) = 5mA • (72V – 5V)  
+ (200µA • 72V) = 0.35W  
P4(72V in, 50mA load) = 50mA • (72V – 5V)  
+ (1mA • 72V) = 3.42W  
The ADJ pin of the adjustable device can be pulled above  
or below ground by as much as 7V without damaging the  
device. Iftheinputisleftopencircuitorgrounded, theADJ  
pin will act like an open circuit when pulled below ground,  
and like a large resistor (typically 100k) in series with a  
diode when pulled above ground. If the input is powered  
by a voltage source, pulling the ADJ pin below the refer-  
ence voltage will cause the device to try and force the  
current limit current out of the output. This will cause the  
output to go to a unregulated high voltage. Pulling the ADJ  
pin above the reference voltage will turn off all output  
current.  
Operation at the different power levels is as follows:  
76% operation at P1, 19% for P2, 4% for P3, and  
1% for P4.  
P
EFF = 76%(0.23W) + 19%(2.20W) + 4%(0.35W)  
+ 1%(3.42W) = 0.64W  
With a thermal resistance in the range of 40°C/W to  
62°C/W, this translates to a junction temperature rise  
above ambient of 26°C to 38°C.  
3010f  
11  
LT3010/LT3010-5  
W U U  
U
APPLICATIO S I FOR ATIO  
In situations where the ADJ pin is connected to a resistor  
divider that would pull the ADJ pin above its 7V clamp  
voltage if the output is pulled high, the ADJ pin input  
current must be limited to less than 5mA. For example, a  
resistor divider is used to provide a regulated 1.5V output  
fromthe1.22Vreferencewhentheoutputisforcedto60V.  
The top resistor of the resistor divider must be chosen to  
limitthecurrentintotheADJpintolessthan5mAwhenthe  
ADJ pin is at 7V. The 53V difference between the OUT and  
ADJ pins divided by the 5mA maximum current into the  
ADJ pin yields a minimum top resistor value of 10.6k.  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 5. The rise in reverse output  
current above 7V occurs from the breakdown of the 7V  
clamp on the ADJ pin. With a resistor divider on the  
regulator output, this current will be reduced depending  
on the size of the resistor divider.  
When the IN pin of the LT3010 is forced below the OUT pin  
or the OUT pin is pulled above the IN pin, input current will  
typicallydroptolessthan2µA. Thiscanhappeniftheinput  
of the LT3010 is connected to a discharged (low voltage)  
battery and the output is held up by either a backup battery  
orasecondregulatorcircuit.ThestateoftheSHDNpinwill  
have no effect on the reverse output current when the  
output is pulled above the input.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulled to some intermediate voltage, or is left  
100  
T
= 25°C  
IN  
A
V
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
= 0V  
CURRENT FLOWS  
INTO OUTPUT PIN  
ADJ  
PIN CLAMP  
(SEE ABOVE)  
V
V
= V  
ADJ  
= V  
SENSE  
(LT3010)  
OUT  
OUT  
(LT3010-5)  
LT3010  
LT3010-5  
4
0
1
2
3
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
3010 F05  
Figure 5. Reverse Output Current  
3010f  
12  
LT3010/LT3010-5  
U
TYPICAL APPLICATIO S  
5V Buck Converter with Low Current Keep Alive Backup  
D2  
D1N914  
6
C2  
L1†  
0.33µF  
BOOST  
15µH  
V
V
IN  
OUT  
4
2
5.5V*  
V
SW  
5V  
IN  
C3  
4.7µF  
100V  
D1  
TO 60V  
1A/50mA  
10MQ060N  
LT1766  
CERAMIC  
15  
14  
10  
12  
SHDN  
BIAS  
FB  
R1  
C1  
+
15.4k  
100µF 10V  
SOLID  
SYNC  
GND  
R2  
4.99k  
TANTALUM  
V
C
1, 8, 9, 16 11  
C
C
1nF  
8
5
1
2
3010 TA03  
IN  
OUT  
*FOR INPUT VOLTAGES BELOW 7.5V,  
SOME RESTRICTIONS MAY APPLY  
INCREASE L1 TO 30µH FOR LOAD  
CURRENTS ABOVE 0.6A AND TO  
60µH ABOVE 1A  
LT3010-5  
OPERATING  
CURRENT  
SHDN  
SENSE  
HIGH  
LOW  
GND  
4
Buck Converter  
Efficiency vs Load Current  
100  
V
= 5V  
OUT  
L = 68µH  
V
V
= 10V  
= 42V  
IN  
IN  
90  
80  
70  
60  
50  
0
0.25  
0.50  
0.75  
1.00  
1.25  
LOAD CURRENT (A)  
3010 TA04  
3010f  
13  
LT3010/LT3010-5  
U
TYPICAL APPLICATIO  
LT3010 Automotive Application  
IN  
OUT  
NO PROTECTION  
DIODE NEEDED!  
+
V
IN  
LT3010-5  
1µF  
12V  
1µF  
LOAD: CLOCK,  
SECURITY SYSTEM  
ETC  
(LATER 42V)  
SHDN  
SENSE  
GND  
OFF  
ON  
LT3010 Telecom Application  
V
IN  
IN  
OUT  
48V  
(72V TRANSIENT)  
+
LT3010-5  
BACKUP  
BATTERY  
NO PROTECTION  
DIODE NEEDED!  
1µF  
1µF  
LOAD:  
SYSTEM MONITOR  
ETC  
SHDN  
SENSE  
GND  
3010 TA05  
OFF  
ON  
Constant Brightness for Indicator LED over Wide Input Voltage Range  
RETURN  
IN  
OUT  
LT3010  
1µF  
1µF  
OFF ON  
–48V  
SHDN ADJ  
GND  
R
SET  
3010 TA06  
I
= 1.275V/R  
LED  
SET  
–48V CAN VARY FROM –4V TO –80V  
3010f  
14  
LT3010/LT3010-5  
U
PACKAGE DESCRIPTIO  
MS8E Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1662)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 ± 0.102  
(.080 ± .004)  
1
1.83 ± 0.102  
(.072 ± .004)  
0.889 ± 0.127  
(.035 ± .005)  
2.794 ± 0.102  
(.110 ± .004)  
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
2.083 ± 0.102  
(.082 ± .004)  
8
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.206)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
(.0165 ± .0015)  
8
7 6  
5
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.90 ± 0.15  
(1.93 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.13 ± 0.076  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
MSOP (MS8E) 0802  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3010f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT3010/LT3010-5  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 4.5V to 36V, V  
LT1020  
125mA, Micropower Regulator and Comparator  
= 2.5V, V = 0.4V, I = 40µA, I = 40µA,  
OUT DO Q SD  
IN  
Comparator and Reference, Class B Outputs, S16, PDIP14 Packages  
LT1120/LT1120A 125mA, Micropower Regulator and Comparator  
V : 4.5V to 36V, V = 2.5V, V = 0.4V, I = 40µA, I = 10µA,  
Comparator and Reference,Logic Shutdown, Ref Sources and Sinks 2/4mA,  
S8, N8 Packages  
IN  
OUT  
DO  
Q
SD  
LT1121/  
LT1121HV  
150mA, Micropower, LDO  
700mA, Micropower, LDO  
V : 4.2V to 30/36V, V  
Reverse Battery Protection, SOT-223, S8, Z Packages  
= 3.75V, V = 0.42V, I = 30µA, I = 16µA,  
OUT DO Q SD  
IN  
LT1129  
LT1616  
LT1676  
LT1761  
LT1762  
LT1763  
V : 4.2V to 30V, V = 3.75V, V = 0.4V, I = 50µA, I = 16µA,  
IN  
OUT  
DO  
Q
SD  
DD, S0T-223, S8,TO220-5, TSSOP20 Packages  
25V, 500mA (I ), 1.4MHz, High Efficiency  
V : 3.6V to 25V, V  
= 1.25V, I = 1.9mA, I = <1µA, ThinSOT Package  
Q SD  
OUT  
IN  
OUT  
OUT  
Step-Down DC/DC Converter  
60V, 440mA (I ), 100kHz, High Efficiency  
V : 7.4V to 60V, V  
IN  
= 1.24V, I = 3.2mA, I = 2.5µA, S8 Package  
Q SD  
OUT  
Step-Down DC/DC Converter  
100mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
IN  
= 1.22V, V = 0.3V, I = 20µA, I = <1µA,  
OUT DO Q SD  
Low Noise < 20µV  
, Stable with 1µF Ceramic Capacitors, ThinSOT Package  
RMS P-P  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
IN  
= 1.22V, V = 0.3V, I = 25µA, I = <1µA,  
OUT  
DO  
Q
SD  
Low Noise < 20µV  
, MS8 Package  
RMS P-P  
V : 1.8V to 20V, V  
IN  
= 1.22V, V = 0.3V, I = 30µA, I = <1µA,  
OUT  
DO  
Q
SD  
Low Noise < 20µV  
, S8 Package  
RMS P-P  
LT1764/LT1764A 3A, Low Noise, Fast Transient Response, LDO  
V : 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1µA,  
OUT DO Q SD  
IN  
Low Noise < 40µV  
, “A” Version Stable with Ceramic Capacitors,  
RMS P-P  
DD, TO220-5 Packages  
LT1766  
LT1776  
60V, 1.2A (I ), 200kHz, High Efficiency  
Step-Down DC/DC Converter  
V : 5.5V to 60V, V  
= 1.20V, I = 2.5mA, I = 25µA, TSSOP16/E Package  
Q SD  
OUT  
IN  
OUT  
OUT  
40V, 550mA (I ), 200kHz, High Efficiency  
V : 7.4V to 40V, V  
IN  
= 1.24V, I = 3.2mA, I = 30µA, N8, S8 Packages  
Q SD  
OUT  
Step-Down DC/DC Converter  
LT1934/  
LT1934-1  
300mA/60mA, (I ), Constant Off-Time, High  
Efficiency Step-Down DC/DC Converter  
90% Efficiency, V : 3.2V to 34V, V  
ThinSOT Package  
= 1.25V, I = 14µA, I = <1µA,  
OUT Q SD  
OUT  
IN  
LT1956  
60V, 1.2A (I ), 500kHz, High Efficiency  
Step-Down DC/DC Converter  
V : 5.5V to 60V, V  
IN  
= 1.20V, I = 2.5mA, I = 25µA, TSSOP16/E Package  
OUT Q SD  
OUT  
LT1962  
300mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.27V, I = 30µA, I = <1µA,  
, MS8 Package  
IN  
OUT  
DO  
Q
SD  
Low Noise < 20µV  
RMS P-P  
LT1963/LT1963A 1.5A, Low Noise, Fast Transient Response, LDO  
V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1µA,  
OUT DO Q SD  
IN  
Low Noise < 40µV  
, “A” Version Stable with Ceramic Capacitors,  
RMS P-P  
DD, TO220-5, S0T-223, S8 Packages  
LT1964  
200mA, Low Noise Micropower, Negative LDO  
V : –0.9V to –20V, V  
= –1.21V, V = 0.34V, I = 30µA, I = 3µA,  
OUT DO Q SD  
IN  
Low Noise < 30µV  
, Stable with Ceramic Capacitors, ThinSOT Package  
RMS P-P  
3010f  
LT/TP 0403 2K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LT3010EMS8E#PBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3010EMS8E-5

50mA, 3V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3010EMS8E-5#PBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3010EMS8E-5#TRPBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3010H

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3010HMS8E

50mA, 3V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3010HMS8E#PBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3010HMS8E#TRPBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3010HMS8E-5

50mA, 3V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3010HMS8E-5#PBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3010HMS8E-5#TRPBF

LT3010/LT3010-5 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3010MPMS8E

50mA, 3V to 80V Low Dropout Micropower Linear Regulator
Linear