LT3012 [Linear]

250mA, 4V to 80V Low Dropout Micropower Linear Regulator; 250毫安, 4V至80V低压差微功耗线性稳压器
LT3012
型号: LT3012
厂家: Linear    Linear
描述:

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
250毫安, 4V至80V低压差微功耗线性稳压器

稳压器
文件: 总16页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3012  
250mA, 4V to 80V  
Low Dropout  
Micropower Linear Regulator  
DESCRIPTION  
FEATURES  
The LT®3012 is a high voltage, micropower low dropout  
linearregulator.Thedeviceiscapableofsupplying250mAof  
output current with a dropout voltage of 400mV. Designed  
foruseinbattery-poweredorhighvoltagesystems,thelow  
quiescent current (40μA operating and 1μA in shutdown)  
makes the LT3012 an ideal choice. Quiescent current is  
also well controlled in dropout.  
n
Wide Input Voltage Range: 4V to 80V  
n
Low Quiescent Current: 40μA  
n
Low Dropout Voltage: 400mV  
n
Output Current: 250mA  
n
No Protection Diodes Needed  
n
Adjustable Output from 1.24V to 60V  
n
1μA Quiescent Current in Shutdown  
n
Stable with 3.3μF Output Capacitor  
Other features of the LT3012 include the ability to operate  
with very small output capacitors. The regulator is stable  
with only 3.3μF on the output while most older devices  
require between 10μF and 100μF for stability. Small ce-  
ramic capacitors can be used without any need for series  
resistance (ESR) as is common with other regulators.  
Internal protection circuitry includes reverse-battery  
protection, current limiting, thermal limiting and reverse  
current protection.  
n
Stable with Aluminum, Tantalum or Ceramic  
Capacitors  
Reverse-Battery Protection  
n
n
No Reverse Current Flow from Output to Input  
n
Thermal Limiting  
n
Thermally Enhanced 16-Lead TSSOP and  
12-Pin (4mm × 3mm) DFN Packages  
APPLICATIONS  
The device is available with an adjustable output with a  
1.24V reference voltage. The LT3012 regulator is available  
in the 16-lead TSSOP and 12 pin low profile (0.75mm)  
(4mm × 3mm) DFN packages with an exposed pad for  
enhanced thermal handling capability.  
n
Low Current High Voltage Regulators  
n
Regulator for Battery-Powered Systems  
n
Telecom Applications  
n
Automotive Applications  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
5V Supply with Shutdown  
Dropout Voltage  
400  
V
OUT  
350  
300  
250  
200  
150  
100  
50  
IN  
OUT  
ADJ  
5V  
250mA  
V
IN  
LT3012  
750k  
249k  
5.4V TO  
80V  
3.3μF  
1μF  
SHDN  
GND  
3012 TA01  
V
SHDN  
OUTPUT  
<0.3V  
>2.0V  
OFF  
ON  
0
50  
100  
150  
250  
0
200  
OUTPUT CURRENT (mA)  
3012 TA02  
3012fd  
1
LT3012  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
IN Pin Voltage ......................................................... 80V  
OUT Pin Voltage...................................................... 60V  
IN to OUT Differential Voltage ................................. 80V  
ADJ Pin Voltage ........................................................ 7V  
SHDN Pin Input Voltage.......................................... 80V  
Output Short-Circuit Duration .......................... Indefinite  
Storage Temperature Range  
TSSOP Package.................................–65°C to 150°C  
DFN Package......................................–65°C to 125°C  
Operating Junction Temperature Range  
(Notes 3, 10, 11)  
LT3012E.............................................–40°C to 125°C  
LT3012HFE.........................................–40°C to 140°C  
Lead Temperature (FE16 Soldering, 10 sec) ......... 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
GND  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
NC  
NC  
OUT  
OUT  
ADJ  
GND  
NC  
1
2
3
4
5
6
12 NC  
11 IN  
10 IN  
OUT  
OUT  
ADJ  
GND  
NC  
IN  
IN  
13  
17  
9
8
7
NC  
NC  
SHDN  
NC  
SHDN  
NC  
GND  
GND  
DE PACKAGE  
12-LEAD (4mm × 3mm) PLASTIC DFN  
FE PACKAGE  
16-LEAD PLASTIC TSSOP  
= 140°C, θ = 40°C/W, θ = 16°C/W  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
T
= 125°C, θ = 40°C/W, θ = 16°C/W  
JA JC  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
T
JMAX  
JA JC  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3012EDE#PBF  
LT3012EFE#PBF  
LT3012HFE#PBF  
LEAD BASED FINISH  
LT3012EDE  
TAPE AND REEL  
LT3012EDE#TRPBF  
LT3012EFE#TRPBF  
LT3012HFE#TRPBF  
TAPE AND REEL  
LT3012EDE#TR  
PART MARKING  
3012  
PACKAGE DESCRIPTION  
12-Lead (4mm × 3mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 125°C  
3012EFE  
16-Lead Plastic TSSOP  
–40°C to 125°C  
–40°C to 140°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 140°C  
3012HFE  
PART MARKING  
3012  
16-Lead Plastic TSSOP  
PACKAGE DESCRIPTION  
12-Lead (4mm × 3mm) Plastic DFN  
16-Lead Plastic TSSOP  
LT3012EFE  
LT3012EFE#TR  
3012EFE  
LT3012HFE  
LT3012HFE#TR  
3012HFE  
16-Lead Plastic TSSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3012fd  
2
LT3012  
(LT3012E)  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the –40°C to 125°C operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
= 250mA  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
ADJ Pin Voltage (Notes 2, 3)  
I
4
4.75  
V
LOAD  
V
= 4V, I  
= 1mA  
LOAD  
1.225  
1.2  
1.24  
1.24  
1.255  
1.28  
V
V
IN  
l
l
4.75V < V < 80V, 1mA < I  
< 250mA  
IN  
LOAD  
Line Regulation  
ΔV = 4V to 80V, I  
IN  
= 1mA (Note 2)  
0.1  
7
5
mV  
LOAD  
Load Regulation (Note 2)  
V
IN  
V
IN  
= 4.75V, ΔI  
= 4.75V, ΔI  
= 1mA to 250mA  
= 1mA to 250mA  
12  
25  
mV  
mV  
LOAD  
LOAD  
l
l
l
Dropout Voltage  
I
I
= 10mA  
= 10mA  
160  
250  
400  
230  
300  
mV  
mV  
LOAD  
LOAD  
V
= V  
(Notes 4, 5)  
OUT(NOMINAL)  
IN  
I
I
= 50mA  
= 50mA  
340  
420  
mV  
mV  
LOAD  
LOAD  
I
I
= 250mA  
= 250mA  
490  
620  
mV  
mV  
LOAD  
LOAD  
l
l
GND Pin Current  
= 4.75V (Notes 4, 6)  
I
I
I
= 0mA  
= 100mA  
= 250mA  
40  
3
10  
100  
μA  
mA  
mA  
LOAD  
LOAD  
LOAD  
V
IN  
l
18  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, I  
= 250mA, BW = 10Hz to 100kHz  
100  
30  
μV  
RMS  
OUT  
LOAD  
(Note 7)  
100  
2
nA  
l
l
V
OUT  
V
OUT  
= Off to On  
= On to Off  
1.3  
0.8  
V
V
0.3  
SHDN Pin Current (Note 8)  
V
SHDN  
V
SHDN  
= 0V  
= 6V  
0.3  
0.1  
2
1
μA  
μA  
Quiescent Current in Shutdown  
Ripple Rejection  
V
= 6V, V  
= 0V  
SHDN  
1
5
μA  
dB  
IN  
IN  
V
= 7V(Avg), V  
= 0.5V  
f
= 120Hz, I = 250mA  
LOAD  
65  
75  
RIPPLE  
P-P, RIPPLE  
Current Limit  
V
IN  
V
IN  
= 7V, V  
= 0V  
OUT  
400  
mA  
mA  
l
= 4.75V, ΔV  
= –0.1V (Note 2)  
250  
OUT  
Reverse Output Current (Note 9)  
V
OUT  
= 1.24V, V < 1.24V (Note 2)  
12  
25  
μA  
IN  
(LT3012H)  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the –40°C to 140°C operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
= 200mA  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
ADJ Pin Voltage (Notes 2, 3)  
I
4
4.75  
V
LOAD  
V
= 4V, I  
= 1mA  
LOAD  
1.225  
1.2  
1.24  
1.24  
1.255  
1.28  
V
V
IN  
l
l
4.75V < V < 80V, 1mA < I  
< 200mA  
LOAD  
IN  
Line Regulation  
ΔV = 4V to 80V, I  
IN  
= 1mA (Note 2)  
0.1  
6
5
mV  
LOAD  
Load Regulation (Note 2)  
V
IN  
V
IN  
= 4.75V, ΔI  
= 4.75V, ΔI  
= 1mA to 200mA  
= 1mA to 200mA  
12  
30  
mV  
mV  
LOAD  
LOAD  
l
l
l
Dropout Voltage  
I
I
= 10mA  
= 10mA  
160  
250  
360  
230  
320  
mV  
mV  
LOAD  
LOAD  
V
= V  
(Notes 4, 5)  
OUT(NOMINAL)  
IN  
I
I
= 50mA  
= 50mA  
340  
450  
mV  
mV  
LOAD  
LOAD  
I
I
= 200mA  
= 200mA  
490  
630  
mV  
mV  
LOAD  
LOAD  
l
l
GND Pin Current  
= 4.75V (Notes 4, 6)  
I
I
I
= 0mA  
= 100mA  
= 200mA  
40  
3
7
110  
μA  
mA  
mA  
LOAD  
LOAD  
LOAD  
V
IN  
l
18  
3012fd  
3
LT3012  
(LT3012H)  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the –40°C to 140°C operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
= 10μF, I  
MIN  
TYP  
100  
30  
MAX  
UNITS  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 200mA, BW = 10Hz to 100kHz  
μV  
RMS  
OUT  
LOAD  
(Note 7)  
100  
2
nA  
l
l
V
OUT  
V
OUT  
= Off to On  
= On to Off  
1.3  
0.8  
V
V
0.3  
SHDN Pin Current (Note 8)  
V
SHDN  
V
SHDN  
= 0V  
= 6V  
0.3  
0.1  
2
1
μA  
μA  
Quiescent Current in Shutdown  
Ripple Rejection  
V
= 6V, V  
= 0V  
SHDN  
1
5
μA  
dB  
IN  
IN  
V
= 7V(Avg), V  
= 0.5V , f  
= 120Hz, I = 200mA  
LOAD  
65  
75  
RIPPLE  
P-P RIPPLE  
Current Limit  
V
IN  
V
IN  
= 7V, V  
= 0V  
OUT  
400  
mA  
mA  
l
= 4.75V, ΔV  
= –0.1V (Note 2)  
200  
OUT  
Reverse Output Current (Note 9)  
V
OUT  
= 1.24V, V < 1.24V (Note 2)  
12  
25  
μA  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: GND pin current is tested with V = 4.75V and a current source  
IN  
load. This means the device is tested while operating close to its dropout  
region. This is the worst-case GND pin current. The GND pin current will  
decrease slightly at higher input voltages.  
Note 2: The LT3012 is tested and specified for these conditions with the  
ADJ pin connected to the OUT pin.  
Note 7: ADJ pin bias current flows into the ADJ pin.  
Note 8: SHDN pin current flows out of the SHDN pin.  
Note 3: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply  
for all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 4: To satisfy requirements for minimum input voltage, the LT3012  
is tested and specified for these conditions with an external resistor  
divider (249k bottom, 649k top) for an output voltage of 4.5V. The external  
resistor divider will add a 5μA DC load on the output.  
Note 9: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 10: The LT3012E is guaranteed to meet performance specifications  
from 0°C to 125°C operating junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LT3012H is tested to the LT3012H Electrical Characteristics table at  
140°C operating junction temperature. High junction temperatures degrade  
operating lifetimes. Operating lifetime is derated at junction temperatures  
greater than 125°C.  
Note 5: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
Note 11: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C (LT3012E) or 140°C (LT3012H) when  
overtemperature protection is active. Continuous operation above the  
specified maximum operating junction temperature may impair device  
reliability.  
output voltage will be equal to (V – V  
).  
IN  
DROPOUT  
3012fd  
4
LT3012  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
600  
500  
400  
300  
200  
100  
0
600  
500  
600  
500  
400  
300  
200  
100  
0
= TEST POINTS  
T
≤ 125°C  
J
T
= 125°C  
J
I
= 250mA  
L
I
L
= 100mA  
400  
300  
T
≤ 25°C  
J
T
J
= 25°C  
I
= 50mA  
L
I
= 10mA  
= 1mA  
L
200  
100  
0
I
L
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–25  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3012 G03  
3012 G02  
3012 G01  
Quiescent Current  
ADJ Pin Voltage  
Quiescent Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.260  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 6V  
= ∞  
IN  
L
= 0  
I = 1mA  
L
T
= 25°C  
= ∞  
J
L
OUT  
R
R
1.255  
1.250  
I
L
V
= 1.24V  
1.245  
1.240  
1.235  
1.230  
1.225  
V
= V  
IN  
SHDN  
V
SHDN  
= V  
IN  
V
SHDN  
= GND  
V
SHDN  
= GND  
6
1.220  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3012 G04  
–25  
–50  
0
25  
50  
TEMPERATURE (°C)  
75 100  
125 150  
–25  
0
1
2
3
4
5
7
8
9
10  
INPUT VOLTAGE (V)  
3012 G05  
3012 G06  
Quiescent Current  
GND Pin Current  
GND Pin Current  
250  
225  
200  
175  
150  
125  
100  
75  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
9
8
7
6
5
4
3
2
1
0
T
= 25°C  
T
= 25°C, *FOR V  
= 1.24V  
R
J
L
T
= 25°C  
J
OUT  
J
R
=
*FOR V  
= 1.24V  
OUT  
V
= 1.24V  
OUT  
R
I
= 49.6Ω  
= 25mA*  
= 4.96Ω  
L
L
L
I
= 250mA*  
L
R
L
= 124Ω  
= 10mA*  
L
V
SHDN  
= V  
IN  
I
R
L
= 12.4Ω  
= 100mA*  
L
I
V
SHDN  
= GND  
R
L
I
L
= 1.24k  
= 1mA*  
50  
25  
R
= 24.8Ω, I = 50mA*  
L
L
0
0
10 20 30 40 50 60 70 80  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3012 G07  
3012 G08  
3012 G09  
3012fd  
5
LT3012  
TYPICAL PERFORMANCE CHARACTERISTICS  
GND Pin Current vs ILOAD  
SHDN Pin Threshold  
SHDN Pin Current  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
9
8
7
6
5
4
3
2
1
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
V
J
= 4.75V  
J
IN  
CURRENT FLOWS  
T
= 25°C  
OUT OF SHDN PIN  
V
= 1.24V  
OUT  
OFF-TO-ON  
ON-TO-OFF  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
50  
100  
150  
200  
250  
–50  
0
25 50 75  
125 150  
100  
–25  
SHDN PIN VOLTAGE (V)  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
3012 G12  
3012 G10  
3012 G11  
SHDN Pin Current  
ADJ Pin Bias Current  
Current Limit  
120  
100  
80  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
OUT  
= 0V  
V
V
= 6V  
IN  
SHDN  
= 0V  
CURRENT FLOWS  
OUT OF SHDN PIN  
T
= 25°C  
J
T
= 125°C  
J
60  
40  
20  
0
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3012 G14  
–25  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3012 G13  
0
10 20 30 40 50 60 70 80  
–25  
INPUT VOLTAGE (V)  
3012 G15  
Current Limit  
Reverse Output Current  
Reverse Output Current  
700  
600  
500  
400  
300  
200  
100  
0
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
V
V
= 0V  
= V  
T
V
V
= 25°C  
= 0V  
IN  
OUT  
J
IN  
= 1.24V  
ADJ  
= V  
OUT  
ADJ  
60  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
PIN CLAMP  
(SEE APPLICATIONS  
INFORMATION)  
40  
60  
40  
20  
0
V
V
= 7V  
IN  
OUT  
20  
= 0V  
0
–50  
–25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
0
1
2
3
4
5
6
7
8
9
10  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–25  
OUTPUT VOLTAGE (V)  
3012 G18  
3012 G16  
3012 G17  
3012fd  
6
LT3012  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Ripple Rejection  
Input Ripple Rejection  
Minimum Input Voltage  
100  
90  
92  
88  
84  
80  
76  
72  
68  
64  
60  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
LOAD  
= 4.75V + 50mV  
RIPPLE  
RMS  
I
= 250mA  
IN  
LOAD  
I
= 250mA  
80  
70  
60  
50  
C
OUT  
= 10μF  
40  
30  
20  
10  
0
V
I
= 4.75V + 0.5V RIPPLE AT f = 120Hz  
P-P  
IN  
L
= 250mA  
C
OUT  
= 3.3μF  
V
= 1.24V  
OUT  
10  
100  
1k  
10k  
100k  
1M  
–50  
–25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3012 G21  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–25  
FREQUENCY (Hz)  
3012 G20  
3012 G19  
Load Regulation  
Output Noise Spectral Density  
10  
1
0
C
I
= 3.3μF  
= 250mA  
ΔI = 1mA TO 250mA  
L
OUT  
–2  
–4  
LOAD  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
0.1  
0.01  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3012 G22  
–25  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
3012 G23  
10Hz to 100kHz Output Noise  
Transient Response  
0.15  
0.10  
0.05  
0
V
OUT  
–0.05  
–0.10  
–0.15  
300  
200  
100  
0
100μV/DIV  
V
V
C
C
= 6V  
= 5V  
= 3.3μF CERAMIC  
IN  
OUT  
IN  
= 3.3μF CERAMIC  
LOAD  
OUT  
ΔI  
= 100mA TO 200mA  
3012 G24  
C
I
= 10μF  
1ms/DIV  
OUT  
L
OUT  
= 250mA  
V
= 1.24V  
0
100  
200  
300  
400  
500  
TIME (μs)  
3012 G25  
3012fd  
7
LT3012  
PIN FUNCTIONS (DFN Package/TSSOP Package)  
NC (Pins 1, 6, 7, 9, 12)/(Pins 2, 7, 10, 12, 15): No Con-  
nect. These pins have no internal connection; connecting  
NC pins to a copper area for heat dissipation provides a  
small improvement in thermal performance.  
SHDN (Pin 8)/(Pin 11): Shutdown. The SHDN pin is used  
to put the LT3012 into a low power shutdown state. The  
output will be off when the SHDN pin is pulled low. The  
SHDNpincanbedriveneitherby5Vlogicoropen-collector  
logic with a pull-up resistor. The pull-up resistor is only  
required to supply the pull-up current of the open-collec-  
tor gate, normally several microamperes. If unused, the  
OUT (Pins 2, 3)/(Pins 3, 4): Output.The output supplies  
power to the load. A minimum output capacitor of 3.3μF  
is required to prevent oscillations. Larger output capaci-  
tors will be required for applications with large transient  
loadstolimitpeakvoltagetransients. SeetheApplications  
Information section for more information on output ca-  
pacitance and reverse output characteristics.  
SHDN pin must be tied to a logic high or to V .  
IN  
IN (Pins 10, 11)/(Pins 13,14): Input. Power is supplied  
to the device through the IN pin. A bypass capacitor is  
required on this pin if the device is more than six inches  
away from the main input filter capacitor. In general, the  
output impedance of a battery rises with frequency, so it is  
advisabletoincludeabypasscapacitorinbattery-powered  
circuits. A bypass capacitor in the range of 1μF to 10μF is  
sufficient. The LT3012 is designed to withstand reverse  
voltages on the IN pin with respect to ground and the OUT  
pin. In the case of a reversed input, which can happen if  
a battery is plugged in backwards, the LT3012 will act as  
if there is a diode in series with its input. There will be no  
reverse current flow into the LT3012 and no reverse volt-  
age will appear at the load. The device will protect both  
itself and the load.  
ADJ (Pin 4)/(Pin 5): Adjust. This is the input to the error  
amplifier. This pin is internally clamped to 7V. It has a  
bias current of 30nA which flows into the pin (see curve  
of ADJ Pin Bias Current vs Temperature in the Typical  
Performance Characteristics). The ADJ pin voltage is  
1.24V referenced to ground, and the output voltage range  
is 1.24V to 60V.  
GND (Pins 5, 13)/(Pins 1, 6, 8, 9, 16, 17): Ground. The  
exposedbacksideofthepackageisanelectricalconnection  
forGND.Assuch,toensureoptimumdeviceoperationand  
thermalperformance,theexposedpadmustbeconnected  
directly to pin 5/pin 6 on the PC board.  
APPLICATIONS INFORMATION  
The LT3012 is a 250mA high voltage low dropout regula-  
tor with micropower quiescent current and shutdown.  
The device is capable of supplying 250mA at a dropout  
voltage of 400mV. The low operating quiescent current  
(40μA) drops to 1μA in shutdown. In addition to the  
low quiescent current, the LT3012 incorporates several  
protection features which make it ideal for use in bat-  
tery-powered systems. The device is protected against  
both reverse input and reverse output voltages. In battery  
backup applications where the output can be held up by  
a backup battery when the input is pulled to ground, the  
LT3012 acts like it has a diode in series with its output  
and prevents reverse current flow.  
Adjustable Operation  
The LT3012 has an output voltage range of 1.24V to 60V.  
The output voltage is set by the ratio of two external resis-  
tors as shown in Figure 1. The device servos the output to  
maintain the voltage at the adjust pin at 1.24V referenced  
to ground. The current in R1 is then equal to 1.24V/R1  
and the current in R2 is the current in R1 plus the ADJ  
pin bias current. The ADJ pin bias current, 30nA at 25°C,  
flows through R2 into the ADJ pin. The output voltage  
can be calculated using the formula in Figure 1. The value  
of R1 should be less than 250k to minimize errors in the  
output voltage caused by the ADJ pin bias current. Note  
that in shutdown the output is turned off and the divider  
current will be zero.  
3012fd  
8
LT3012  
APPLICATIONS INFORMATION  
improved transient response for larger load current  
changes. Bypass capacitors, used to decouple individual  
components powered by the LT3012, will increase the  
effective output capacitor value.  
V
OUT  
IN  
OUT  
+
LT3012  
R2  
V
IN  
ADJ  
3012 F01  
R1  
GND  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are specified with EIA temperature char-  
acteristic codes of Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
in a small package, but they tend to have strong voltage  
and temperature coefficients as shown in Figures 2 and 3.  
When used with a 5V regulator, a 16V 10μF Y5V capacitor  
can exhibit an effective value as low as 1μF to 2μF for the  
DC bias voltage applied and over the operating tempera-  
ture range. The X5R and X7R dielectrics result in more  
stable characteristics and are more suitable for use as the  
output capacitor. The X7R type has better stability across  
temperature, while the X5R is less expensive and is avail-  
able in higher values. Care still must be exercised when  
using X5R and X7R capacitors; the X5R and X7R codes  
only specify operating temperature range and maximum  
capacitancechangeovertemperature.Capacitancechange  
due to DC bias with X5R and X7R capacitors is better than  
Y5VandZ5Ucapacitors,butcanstillbesignificantenough  
to drop capacitor values below appropriate levels. Capaci-  
tor DC bias characteristics tend to improve as component  
casesizeincreases, butexpectedcapacitanceatoperating  
voltage should be verified.  
R2  
R1  
V
= 1.24V 1 +  
= 1.24V  
+ (I )(R2)  
ADJ  
OUT  
V
I
ADJ  
ADJ  
= 30nA AT 25°C  
OUTPUT RANGE = 1.24V TO 60V  
Figure 1. Adjustable Operation  
The adjustable device is tested and specified with the  
ADJ pin tied to the OUT pin and a 5μA DC load (unless  
otherwise specified) for an output voltage of 1.24V. Speci-  
fications for output voltages greater than 1.24V will be  
proportional to the ratio of the desired output voltage to  
1.24V; (V /1.24V). For example, load regulation for an  
OUT  
outputcurrentchangeof1mAto250mAis7mVtypicalat  
V
OUT  
= 1.24V. At V  
= 12V, load regulation is:  
OUT  
(12V/1.24V) • (–7mV) = –68mV  
Output Capacitance and Transient Response  
The LT3012 is designed to be stable with a wide range of  
output capacitors. The ESR of the output capacitor affects  
stability, most notably with small capacitors. A minimum  
output capacitor of 3.3μF with an ESR of 3Ω or less is  
recommended to prevent oscillations. The LT3012 is a  
micropower device and output transient response will be  
a function of output capacitance. Larger values of output  
capacitance decrease the peak deviations and provide  
40  
20  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
0
X5R  
0
–20  
X5R  
–20  
–40  
–40  
Y5V  
–60  
–60  
Y5V  
–80  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
–100  
–100  
0
8
12 14  
2
4
6
10  
16  
–50  
25  
50  
75  
100 125  
–25  
0
DC BIAS VOLTAGE (V)  
TEMPERATURE (°C)  
3012 F02  
3012 F03  
Figure 2. Ceramic Capacitor DC Bias Characteristics  
Figure 3. Ceramic Capacitor Temperature Characteristics  
3012fd  
9
LT3012  
APPLICATIONS INFORMATION  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltageacrossitsterminalsduetomechanicalstress,simi-  
lartothewayapiezoelectricaccelerometerormicrophone  
works. For a ceramic capacitor the stress can be induced  
by vibrations in the system or thermal transients.  
normal conditions the maximum junction temperature  
rating of 125°C (E-Grade) or 140°C (H-Grade)must not  
be exceeded. It is important to give careful consideration  
to all sources of thermal resistance from junction to ambi-  
ent. Additional heat sources mounted nearby must also  
be considered.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
Current Limit and Safe Operating Area Protection  
Like many IC power regulators, the LT3012 has safe oper-  
ating area protection. The safe operating area protection  
decreases the current limit as the input voltage increases  
and keeps the power transistor in a safe operating region.  
Theprotectionisdesignedtoprovidesomeoutputcurrent  
at all values of input voltage up to the device breakdown  
(see curve of Current Limit vs Input Voltage in the Typical  
Performance Characteristics).  
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
Table 1. DFN Measured Thermal Resistance  
COPPER AREA  
TOPSIDE  
THERMAL RESISTANCE  
TheLT3012islimitedforoperatingconditionsbymaximum  
junction temperature. While operating at maximum input  
voltage, the output current range must be limited; when  
operating at maximum output current, the input voltage  
range must be limited. Device specifications will not apply  
for all possible combinations of input voltage and output  
current. OperatingtheLT3012beyondthemaximumjunc-  
tion temperature rating may impair the life of the device.  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
(JUNCTION-TO-AMBIENT)  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
40°C/W  
45°C/W  
50°C/W  
62°C/W  
Table 2. TSSOP Measured Thermal Resistance  
COPPER AREA  
TOPSIDE  
THERMAL RESISTANCE  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
(JUNCTION-TO-AMBIENT)  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
40°C/W  
Thermal Considerations  
45°C/W  
The power handling capability of the device will be limited  
by the maximum rated junction temperature of (125°C for  
LT3012E, or 140°C for LT3012HFE). The power dissipated  
by the device will be made up of two components:  
50°C/W  
62°C/W  
The thermal resistance junction-to-case (θ ), measured  
JC  
1. Output current multiplied by the input/output voltage  
at the exposed pad on the back of the die, is 16°C/W.  
differential: I  
• (V – V ) and,  
OUT  
IN OUT  
Continuous operation at large input/output voltage dif-  
ferentials and maximum load current is not practical  
due to thermal limitations. Transient operation at high  
input/output differentials is possible. The approximate  
thermal time constant for a 2500sq mm 3/32" FR-4 board  
with maximum topside and backside area for one ounce  
copper is 3 seconds. This time constant will increase as  
more thermal mass is added (i.e., vias, larger board, and  
other components).  
2. GND pin current multiplied by the input voltage:  
• V .  
I
GND  
IN  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics. Power dissipation will be equal to the sum of the  
two components listed above.  
The LT3012 has internal thermal limiting designed to pro-  
tectthedeviceduringoverloadconditions. Forcontinuous  
3012fd  
10  
LT3012  
APPLICATIONS INFORMATION  
Foranapplicationwithtransienthighpowerpeaks,average  
power dissipation can be used for junction temperature  
calculationsaslongasthepulseperiodissignificantlyless  
than the thermal time constant of the device and board.  
P3(72V in, 5mA load) = 5mA • (72V – 5V)  
+ (200μA • 72V) = 0.35W  
P4(72V in, 50mA load) = 50mA • (72V – 5V)  
+ (1mA • 72V) = 3.42W  
Calculating Junction Temperature  
Operation at the different power levels is as follows:  
Example 1: Given an output voltage of 5V, an input volt-  
age range of 24V to 30V, an output current range of 0mA  
to 50mA, and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
76% operation at P1, 19% for P2, 4% for P3, and  
1% for P4.  
P
EFF  
= 76%(0.23W) + 19%(2.20W) + 4%(0.35W)  
+ 1%(3.42W) = 0.64W  
The power dissipated by the device will be equal to:  
With a thermal resistance in the range of 40°C/W to  
62°C/W, this translates to a junction temperature rise  
above ambient of 26°C to 38°C.  
I
• (V  
– V ) + (I  
• V  
)
OUT(MAX)  
IN(MAX)  
OUT  
GND  
IN(MAX)  
where:  
I
= 50mA  
= 30V  
High Temperature Operation  
OUT(MAX)  
V
CaremustbetakenwhendesigningLT3012applicationsto  
operate at high ambient temperatures. The LT3012 works  
at elevated temperatures but erratic operation can occur  
duetounforeseenvariationsinexternalcomponents.Some  
tantalum capacitors are available for high temperature  
operation, but ESR is often several ohms; capacitor ESR  
above 3Ω is unsuitable for use with the LT3012. Ceramic  
capacitor manufacturers (Murata, AVX, TDK, and Vishay  
Vitramonatthiswriting)nowofferceramiccapacitorsthat  
areratedto150°CusinganX8Rdielectric.Deviceinstability  
will occur if output capacitor value and ESR are outside  
design limits at elevated temperature and operating DC  
voltage bias (see information on capacitor characteristics  
underOutputCapacitanceandTransientResponse).Check  
each passive component for absolute value and voltage  
ratings over the operating temperature range.  
IN(MAX)  
I
at (I  
= 50mA, V = 30V) = 1mA  
GND  
OUT IN  
So:  
P = 50mA • (30V – 5V) + (1mA • 30V) = 1.28W  
The thermal resistance will be in the range of 40°C/W to  
62°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
1.31W • 50°C/W = 65.5°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
T
= 50°C + 65.5°C = 115.5°C  
JMAX  
Example 2: Given an output voltage of 5V, an input voltage  
of 48V that rises to 72V for 5ms(max) out of every 100ms,  
and a 5mA load that steps to 50mA for 50ms out of every  
250ms, what is the junction temperature rise above ambi-  
ent? Using a 500ms period (well under the time constant  
of the board), power dissipation is as follows:  
Leakages in capacitors or from solder flux left after  
insuficient board cleaning adversely affects low  
quiescent current operation. The output voltage resistor  
divider should use a maximum bottom resistor value of  
124k to compensate for high temperature leakage, setting  
divider current to 10μA. Consider junction temperature  
increase due to power dissipation in both the junction and  
nearbycomponentstoensuremaximumspecificationsare  
not violated for the device or external components.  
P1(48V in, 5mA load) = 5mA • (48V – 5V)  
+ (200μA • 48V) = 0.23W  
P2(48V in, 50mA load) = 50mA • (48V – 5V)  
+ (1mA • 48V) = 2.20W  
3012fd  
11  
LT3012  
APPLICATIONS INFORMATION  
Protection Features  
In situations where the ADJ pin is connected to a resistor  
dividerthatwouldpulltheADJpinaboveits7Vclampvolt-  
age if the output is pulled high, the ADJ pin input current  
must be limited to less than 5mA. For example, a resistor  
divider is used to provide a regulated 1.5V output from the  
1.24V reference when the output is forced to 60V. The top  
resistor of the resistor divider must be chosen to limit the  
current into the ADJ pin to less than 5mA when the ADJ  
pin is at 7V. The 53V difference between the OUT and ADJ  
pins divided by the 5mA maximum current into the ADJ  
pin yields a minimum top resistor value of 10.6k.  
TheLT3012incorporatesseveralprotectionfeatureswhich  
make it ideal for use in battery-powered circuits. In ad-  
dition to the normal protection features associated with  
monolithicregulators,suchascurrentlimitingandthermal  
limiting, thedeviceisprotectedagainstreverse-inputvolt-  
ages, and reverse voltages from output to input.  
LikemanyICpowerregulators,theLT3012hassafeoperat-  
ingareaprotection.Thesafeareaprotectiondecreasesthe  
currentlimitasinputvoltageincreasesandkeepsthepower  
transistor inside a safe operating region for all values of  
input voltage. The protection is designed to provide some  
outputcurrentatallvaluesofinputvoltageuptothedevice  
breakdown. The SOA protection circuitry for the LT3012  
uses a current generated when the input voltage exceeds  
25V to decrease current limit. This current shows up as  
additional quiescent current for input voltages above 25V.  
This increase in quiescent current occurs both in normal  
operationandinshutdown(seecurveofQuiescentCurrent  
in the Typical Performance Characteristics).  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage, or is left  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 4. The rise in reverse output  
current above 7V occurs from the breakdown of the 7V  
clamp on the ADJ pin. With a resistor divider on the  
regulator output, this current will be reduced depending  
on the size of the resistor divider.  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C  
(LT3012E) or 140°C (LT3012HFE).  
200  
T
V
V
= 25°C  
= 0V  
J
IN  
180  
160  
140  
120  
100  
80  
= V  
OUT  
ADJ  
ADJ  
PIN CLAMP  
(SEE ABOVE)  
The input of the device will withstand reverse voltages of  
80V. No negative voltage will appear at the output. The  
device will protect both itself and the load. This provides  
protection against batteries which can be plugged in  
backward.  
CURRENT FLOWS  
INTO OUTPUT PIN  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
The ADJ pin of the device can be pulled above or below  
ground by as much as 7V without damaging the device.  
If the input is left open circuit or grounded, the ADJ pin  
will act like an open circuit when pulled below ground,  
and like a large resistor (typically 100k) in series with a  
diode when pulled above ground. If the input is powered  
by a voltage source, pulling the ADJ pin below the refer-  
ence voltage will cause the device to current limit. This  
will cause the output to go to a unregulated high voltage.  
Pulling the ADJ pin above the reference voltage will turn  
off all output current.  
OUTPUT VOLTAGE (V)  
3012 F04  
Figure 4. Reverse Output Current  
When the IN pin of the LT3012 is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input cur-  
rent will typically drop to less than 2μA. This can happen  
if the input of the LT3012 is connected to a discharged  
(low voltage) battery and the output is held up by either  
a backup battery or a second regulator circuit. The state  
of the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
3012fd  
12  
LT3012  
TYPICAL APPLICATIONS  
5V Buck Converter with Low Current Keep Alive Backup  
D2  
D1N914  
6
C2  
L1†  
15μH  
0.33μF  
BOOST  
V
V
IN  
OUT  
4
2
5.5V*  
V
SW  
5V  
IN  
C3  
4.7μF  
100V  
D1  
TO 60V  
1A/250mA  
10MQ060N  
LT1766  
CERAMIC  
15  
14  
10  
12  
SHDN  
BIAS  
FB  
R1  
C1  
+
15.4k  
100μF 10V  
SOLID  
SYNC  
GND  
R2  
4.99k  
TANTALUM  
V
C
1, 8, 9, 16 11  
C
C
1nF  
14  
11  
3
5
3012 TA03  
IN  
OUT  
*FOR INPUT VOLTAGES BELOW 7.5V,  
SOME RESTRICTIONS MAY APPLY  
INCREASE L1 TO 30μH FOR LOAD  
CURRENTS ABOVE 0.6A AND TO  
60μH ABOVE 1A  
LT3012  
750k  
249k  
OPERATING  
CURRENT  
SHDN  
ADJ  
HIGH  
LOW  
GND  
1
Buck Converter  
Efficiency vs Load Current  
100  
V
= 5V  
OUT  
L = 68μH  
V
V
= 10V  
= 42V  
IN  
IN  
90  
80  
70  
60  
50  
0
0.25  
0.50  
0.75  
1.00  
1.25  
LOAD CURRENT (A)  
3012 TA04  
3012fd  
13  
LT3012  
TYPICAL APPLICATIONS  
LT3012 Automotive Application  
IN  
OUT  
ADJ  
NO PROTECTION  
DIODE NEEDED!  
+
V
IN  
LT3012  
GND  
750k  
249k  
3.3μF  
12V  
1μF  
LOAD: CLOCK,  
SECURITY SYSTEM  
ETC  
(LATER 42V)  
SHDN  
OFF  
ON  
LT3012 Telecom Application  
V
IN  
IN  
OUT  
48V  
(72V TRANSIENT)  
+
LT3012  
GND  
750k  
BACKUP  
BATTERY  
NO PROTECTION  
DIODE NEEDED!  
3.3μF  
1μF  
LOAD:  
SYSTEM MONITOR  
ETC  
SHDN  
ADJ  
249k  
3012 TA05  
OFF  
ON  
Constant Brightness for Indicator LED over Wide Input Voltage Range  
RETURN  
IN  
OUT  
LT3012  
1μF  
3.3μF  
OFF ON  
–48V  
SHDN ADJ  
GND  
R
SET  
3012 TA06  
I
= 1.24V/R  
SET  
LED  
–48V CAN VARY FROM –4V TO –80V  
3012fd  
14  
LT3012  
PACKAGE DESCRIPTION  
DE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695)  
0.40 ± 0.10  
4.00 ±0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
R = 0.05  
TYP  
0.70 ±0.05  
3.30 ±0.10  
3.30 ±0.05  
3.60 ±0.05  
3.00 ±0.10  
(2 SIDES)  
2.20 ±0.05  
1.70 ± 0.10  
1.70 ± 0.05  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1 NOTCH  
R = 0.20 OR  
0.35 × 45°  
PACKAGE  
OUTLINE  
CHAMFER  
(UE12/DE12) DFN 0806 REV D  
6
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
0.50 BSC  
2.50 REF  
2.50 REF  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 ±0.10  
2.94  
(.116)  
4.50 ±0.10  
6.40  
(.252)  
BSC  
SEE NOTE 4  
2.94  
(.116)  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE16 (BB) TSSOP 0204  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3012fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT3012  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1020  
125mA, Micropower Regulator and Comparator V : 4.5V to 36V, V  
= 2.5V, V = 0.4V, I = 40μA, I = 40μA, Comparator  
DO Q SD  
IN  
OUT(MIN)  
and Reference, Class B Outputs, S16, PDIP14 Packages  
LT1120/LT1120A  
125mA, Micropower Regulator and Comparator V : 4.5V to 36V, V  
= 2.5V, V = 0.4V, I = 40μA, I = 10μA,  
DO Q SD  
IN  
OUT(MIN)  
Comparator and Reference, Logic Shutdown, Ref Sources and Sinks 2/4mA,  
S8, N8 Packages  
LT1121/LT1121HV 150mA, Micropower, LDO  
V : 4.2V to 30/36V, V  
= 3.75V, V = 0.42V, I = 30μA, I = 16μA,  
IN  
OUT(MIN) DO Q SD  
Reverse Battery Protection, SOT-223, S8, Z Packages  
LT1129  
700mA, Micropower, LDO  
V : 4.2V to 30V, V = 3.75V, V = 0.4V, I = 50μA, I = 16μA,  
IN  
OUT(MIN)  
DO  
Q
SD  
DD, S0T-223, S8,TO220-5, TSSOP20 Packages  
LT1676  
60V, 440mA (I ), 100kHz, High Efficiency  
V : 7.4V to 60V, V  
= 1.24V, I = 3.2mA, I = 2.5μA, S8 Package  
Q SD  
OUT  
IN  
OUT(MIN)  
Step-Down DC/DC Converter  
LT1761  
100mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 20μA, I = <1μA,  
DO Q SD  
IN  
OUT(MIN)  
Low Noise < 20μV  
, Stable with 1μF Ceramic Capacitors, ThinSOT™ Package  
RMS  
LT1762  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
3A, Low Noise, Fast Transient Response, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 25μA, I = <1μA,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 20μV  
, MS8 Package  
RMS  
LT1763  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 30μA, I = <1μA,  
, S8 Package  
IN  
OUT(MIN) DO Q SD  
Low Noise < 20μV  
RMS  
LT1764/LT1764A  
V : 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1μA,  
, “A” Version Stable with Ceramic Capacitors,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 40μV  
RMS  
DD, TO220-5 Packages  
LT1766  
60V, 1.2A (I ), 200kHz, High Efficiency  
V : 5.5V to 60V, V  
= 1.2V, I = 2.5mA, I = 25μA, TSSOP16/E Package  
Q SD  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
Step-Down DC/DC Converter  
LT1776  
40V, 550mA (I ), 200kHz, High Efficiency  
V : 7.4V to 40V, V  
IN  
= 1.24V, I = 3.2mA, I = 30μA, N8, S8 Packages  
OUT  
Q
SD  
Step-Down DC/DC Converter  
LT1934/LT1934-1  
LT1956  
300mA/60mA, (I ), Constant Off-Time, High 90% Efficiency, V : 3.2V to 34V, V  
= 1.25V, I = 14μA, I = <1μA,  
OUT  
IN  
OUT(MIN) Q SD  
Efficiency Step-Down DC/DC Converter  
ThinSOT Package  
60V, 1.2A (I ), 500kHz, High Efficiency  
V : 5.5V to 60V, V  
= 1.2V, I = 2.5mA, I = 25μA, TSSOP16/E Package  
Q SD  
OUT  
IN  
OUT(MIN)  
Step-Down DC/DC Converter  
LT1962  
300mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.27V, I = 30μA, I = <1μA,  
DO Q SD  
IN  
OUT(MIN)  
Low Noise < 20μV  
, MS8 Package  
RMS  
LT1963/LT1963A  
1.5A, Low Noise, Fast Transient Response, LDO V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1μA,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 40μV  
, “A” Version Stable with Ceramic Capacitors,  
RMS  
DD, TO220-5, S0T-223, S8 Packages  
LT1964  
200mA, Low Noise Micropower, Negative LDO  
50mA, 3V to 80V, Low Noise Micropower LDO  
V : –1.9V to –20V, V = 1.21V, V = 0.34V, I = 30μA, I = 3μA,  
IN  
OUT(MIN)  
DO  
Q
SD  
Low Noise < 30μV  
, Stable with Ceramic Capacitors, ThinSOT Package  
RMS  
LT3010/LT3010H  
LT3013/LT3013H  
V : 3V to 8V, V  
= 1.275V, V = 0.3V, I = 30μA, I = 1μA,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 100μV  
, MS8E Package, H Grade = +140°C T  
.
RMS  
JMAX  
250mA, 4V to 80V, Low Dropout Micropower  
Linear Regulator with PWRGD  
V : 4V to 80V, V : 1.24V to 60V, V = 0.4V, I = 65μA, I = <1μA,  
IN OUT DO Q SD  
Power Good Feature; TSSOP-16E and 4mm × 3mm DFN-12 Packages,  
H Grade = +140°C T  
.
JMAX  
LT3014/HV  
20mA, 3V to 80V, Low Dropout Micropower  
Linear Regulator  
V : 3V to 80V (100V for 2ms, HV version), V : 1.22V to 60V, V = 0.35V,  
IN OUT DO  
I = 7μA, I = <1μA, ThinSOT and 3mm × 3mm DFN-8 Packages.  
Q
SD  
ThinSOT is a trademark of Linear Technology Corporation.  
3012fd  
LT 0508 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3012B

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012BEDE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012BEDE#PBF

LT3012B - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3012BEDE#TRPBF

LT3012B - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3012BEFE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012EDE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012EDE#TRPBF

LT3012 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3012EDE-PBF

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012EDE-TR

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012EDE-TRPBF

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012EFE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012EFE#PBF

LT3012 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear