LT3013EDE#TRPBF [Linear]

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: DFN; Pins: 12; Temperature Range: -40°C to 85°C;
LT3013EDE#TRPBF
型号: LT3013EDE#TRPBF
厂家: Linear    Linear
描述:

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: DFN; Pins: 12; Temperature Range: -40°C to 85°C

光电二极管 输出元件 调节器
文件: 总20页 (文件大小:224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3013  
250mA, 4V to 80V  
Low Dropout Micropower  
Linear Regulator with PWRGD  
DESCRIPTION  
FEATURES  
The LT®3013 is a high voltage, micropower low dropout  
linearregulator. Thedeviceiscapableofsupplying250mA  
ofoutputcurrentwithadropoutvoltageof400mV.Designed  
foruseinbattery-poweredorhighvoltagesystems,thelow  
quiescent current (65μA operating and 1μA in shutdown)  
makes the LT3013 an ideal choice. Quiescent current is  
also well controlled in dropout.  
n
Wide Input Voltage Range: 4V to 80V  
n
Low Quiescent Current: 65μA  
n
Low Dropout Voltage: 400mV  
n
Output Current: 250mA  
n
No Protection Diodes Needed  
n
Adjustable Output from 1.24V to 60V  
n
1μA Quiescent Current in Shutdown  
n
Stable with 3.3μF Output Capacitor  
Other features of the LT3013 include a PWRGD flag to  
indicate output regulation. The delay between regulated  
output level and flag indication is programmable with  
a single capacitor. The LT3013 also has the ability to  
operate with very small output capacitors. The regulator  
is stable with only 3.3μF on the output while most older  
devices require between 10μF and 100μF for stability.  
Small ceramic capacitors can be used without any need  
for series resistance (ESR) as is common with other  
regulators. Internal protection circuitry includes reverse-  
battery protection, current limiting, thermal limiting and  
reverse current protection.  
n
Stable with Aluminum, Tantalum or Ceramic  
Capacitors  
Reverse-Battery Protection  
n
n
No Reverse Current Flow from Output to Input  
n
Thermal Limiting  
n
Thermally Enhanced 16-Lead TSSOP and  
12-Pin (4mm × 3mm) DFN Package  
APPLICATIONS  
n
Low Current High Voltage Regulators  
n
Regulator for Battery-Powered Systems  
The device is available with an adjustable output with a  
1.24Vreferencevoltage. TheLT3013regulator isavailable  
in the thermally enhanced 16-lead TSSOP and the low  
profile (0.75mm), 12-pin (4mm × 3mm) DFN package,  
both providing excellent thermal characteristics.  
n
Telecom Applications  
Automotive Applications  
n
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Dropout Voltage  
TYPICAL APPLICATION  
400  
350  
300  
250  
200  
150  
100  
50  
5V Supply with Shutdown  
V
OUT  
IN  
OUT  
ADJ  
5V  
250mA  
V
LT3013  
IN  
750k  
249k  
5.4V TO  
80V  
1.6M  
3.3μF  
1μF  
SHDN  
PWRGD  
GND  
C
T
3013 TA01  
V
SHDN  
OUTPUT  
1000pF  
<0.3V  
>2.0V  
OFF  
ON  
0
0
50  
100  
150  
200  
250  
OUTPUT CURRENT (mA)  
3013 TA02  
3013fe  
1
LT3013  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Storage Temperature Range  
IN Pin Voltage ......................................................... 80V  
OUT Pin Voltage...................................................... 60V  
IN to OUT Differential Voltage ................................. 80V  
ADJ Pin Voltage ....................................................... 7V  
SHDN Pin Input Voltage.......................................... 80V  
CT Pin Voltage .................................................7V, 0.5V  
PWRGD Pin Voltage.......................................80V, 0.5V  
Output Short-Circuit Duration .......................... Indefinite  
TSSOP Package.................................–65°C to 150°C  
DFN Package......................................–65°C to 125°C  
Operating Junction Temperature Range  
(Notes 3, 10, 11)  
LT3013E.............................................–40°C to 125°C  
LT3013HFE.........................................–40°C to 140°C  
LT3013MP..........................................–55°C to 125°C  
Lead Temperature (FE16 Soldering, 10 sec) ......... 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
GND  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
NC  
NC  
OUT  
1
2
3
4
5
6
12 NC  
11 IN  
10 IN  
OUT  
IN  
OUT  
IN  
OUT  
17  
13  
ADJ  
NC  
ADJ  
9
8
7
NC  
GND  
SHDN  
GND  
SHDN  
PWRGD  
GND  
C
T
PWRGD  
C
T
GND  
DE PACKAGE  
FE PACKAGE  
12-LEAD (4mm s 3mm) PLASTIC DFN  
16-LEAD PLASTIC TSSOP  
T
= 125°C, θ = 40°C/W, θ = 16°C/W  
JA JC  
EXPOSED PAD (PIN 13) IS GND  
MUST BE SOLDERED TO PCB  
JMAX  
T
JMAX  
= 140°C, θ = 40°C/W, θ = 16°C/W  
JA JC  
EXPOSED PAD (PIN 17) IS GND  
MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3013EDE#PBF  
LT3013EFE#PBF  
LT3013HFE#PBF  
LT3013MPFE#PBF  
LEAD BASED FINISH  
LT3013EDE  
TAPE AND REEL  
LT3013EDE#TRPBF  
LT3013EFE#TRPBF  
LT3013HFE#TRPBF  
LT3013MPFE#TRPBF  
TAPE AND REEL  
LT3013EDE#TR  
PART MARKING  
3013  
PACKAGE DESCRIPTION  
12-Lead (4mm x 3mm) Plastic DFN  
16-Lead Plastic TSSOP  
TEMPERATURE RANGE  
40°C to 125°C  
40°C to 125°C  
40°C to 140°C  
55°C to 125°C  
TEMPERATURE RANGE  
40°C to 125°C  
40°C to 125°C  
40°C to 140°C  
55°C to 125°C  
3013EFE  
3013HFE  
16-Lead Plastic TSSOP  
3013MPFE  
PART MARKING  
3013  
16-Lead Plastic TSSOP  
PACKAGE DESCRIPTION  
12-Lead (4mm x 3mm) Plastic DFN  
16-Lead Plastic TSSOP  
LT3013EFE  
LT3013EFE#TR  
3013EFE  
LT3013HFE  
LT3013HFE#TR  
3013HFE  
16-Lead Plastic TSSOP  
LT3013MPFE  
LT3013MPFE#TR  
3013MPFE  
16-Lead Plastic TSSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3013fe  
2
LT3013  
(LT3013E, LT3013MP)  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
= 250mA  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
ADJ Pin Voltage (Notes 2,3)  
I
4
4.75  
V
LOAD  
V
= 4V, I  
= 1mA  
1.225  
1.2  
1.24  
1.24  
1.255  
1.28  
V
V
IN  
LOAD  
l
l
4.75V < V < 80V, 1mA < I  
< 250mA  
IN  
LOAD  
Line Regulation  
ΔV = 4V to 80V, I  
IN  
= 1mA (Note 2)  
0.1  
7
5
mV  
LOAD  
Load Regulation (Note 2)  
12  
25  
mV  
mV  
V
IN  
V
IN  
= 4.75V, ΔI  
= 4.75V, ΔI  
= 1mA to 250mA  
= 1mA to 250mA  
LOAD  
LOAD  
l
l
l
Dropout Voltage  
I
I
= 10mA  
= 10mA  
160  
250  
400  
230  
300  
mV  
mV  
LOAD  
LOAD  
V
= V  
(Notes 4, 5)  
OUT(NOMINAL)  
IN  
I
I
= 50mA  
= 50mA  
340  
420  
mV  
mV  
LOAD  
LOAD  
I
I
= 250mA  
= 250mA  
490  
620  
mV  
mV  
LOAD  
LOAD  
l
l
GND Pin Current  
I
I
I
= 0mA  
= 100mA  
= 250mA  
65  
3
10  
120  
μA  
mA  
mA  
LOAD  
LOAD  
LOAD  
V
= 4.75V  
IN  
l
(Notes 4, 6)  
18  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, I  
= 250mA, BW = 10Hz to 100kHz  
100  
30  
μV  
RMS  
OUT  
LOAD  
(Note 7 )  
100  
2
nA  
l
l
V
OUT  
V
OUT  
= Off to On  
= On to Off  
1.3  
0.8  
V
V
0.3  
85  
SHDN Pin Current (Note 8)  
V
SHDN  
V
SHDN  
= 0V  
= 6V  
0.3  
0.1  
2
1
μA  
μA  
Quiescent Current in Shutdown  
PWRGD Trip Point  
V
IN  
= 6V, V  
= 0V  
1
5
μA  
SHDN  
l
l
% of Nominal Output Voltage, Output Rising  
% of Nominal Output Voltage  
90  
94  
%
%
PWRGD Trip Point Hysteresis  
PWRGD Output Low Voltage  
1.1  
140  
3.0  
1.6  
75  
I
= 50μA  
250  
6
mV  
μA  
V
PWRGD  
C Pin Charging Current  
T
C Pin Voltage Differential  
T
V – V  
CT(PWRGD High) CT(PWRGD Low)  
Ripple Rejection  
Current Limit  
V
IN  
= 7V(Avg), V  
= 0.5V , f  
= 120Hz, I = 250mA  
LOAD  
65  
dB  
mA  
mA  
μA  
RIPPLE  
P-P RIPPLE  
V
IN  
V
IN  
= 7V, V  
= 0V  
400  
OUT  
l
= 4.75V, ΔV  
= –0.1V (Note 2)  
250  
OUT  
Reverse Output Current (Note 9)  
V
OUT  
= 1.24V, V < 1.24V (Note 2)  
12  
25  
IN  
(LT3013H)  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the 40°C to 140°C operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
= 200mA  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
ADJ Pin Voltage (Notes 2,3)  
I
4
4.75  
V
LOAD  
V
= 4V, I  
= 1mA  
1.225  
1.2  
1.24  
1.24  
1.255  
1.28  
V
V
IN  
LOAD  
l
l
4.75V < V < 80V, 1mA < I  
< 200mA  
IN  
LOAD  
Line Regulation  
ΔV = 4V to 80V, I  
IN  
= 1mA (Note 2)  
0.1  
6
5
mV  
LOAD  
Load Regulation (Note 2)  
V
IN  
V
IN  
= 4.75V, ΔI  
= 4.75V, ΔI  
= 1mA to 200mA  
= 1mA to 200mA  
12  
30  
mV  
mV  
LOAD  
LOAD  
l
3013fe  
3
LT3013  
(LT3013H)  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the 40°C to 140°C operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Dropout Voltage  
IN  
I
I
= 10mA  
= 10mA  
160  
230  
320  
mV  
mV  
LOAD  
LOAD  
l
l
V
= V  
(Notes 4, 5)  
OUT(NOMINAL)  
I
I
= 50mA  
= 50mA  
250  
360  
340  
450  
mV  
mV  
LOAD  
LOAD  
I
I
= 200mA  
= 200mA  
490  
630  
mV  
mV  
LOAD  
LOAD  
l
l
GND Pin Current  
I
I
I
= 0mA  
= 100mA  
= 200mA  
65  
3
7
130  
μA  
mA  
mA  
LOAD  
LOAD  
LOAD  
V
= 4.75V  
IN  
l
(Notes 4, 6)  
18  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, I  
= 200mA, BW = 10Hz to 100kHz  
100  
30  
μV  
RMS  
OUT  
LOAD  
(Note 7)  
100  
2
nA  
l
l
V
OUT  
V
OUT  
= Off to On  
= On to Off  
1.3  
0.8  
V
V
0.3  
85  
SHDN Pin Current (Note 8)  
V
SHDN  
V
SHDN  
= 0V  
= 6V  
0.3  
0.1  
2
1
μA  
μA  
Quiescent Current in Shutdown  
PWRGD Trip Point  
V
IN  
= 6V, V  
= 0V  
1
5
μA  
%
SHDN  
l
l
% of Nominal Output Voltage, Output Rising  
% of Nominal Output Voltage  
90  
95  
PWRGD Trip Point Hysteresis  
PWRGD Output Low Voltage  
1.1  
140  
3.0  
1.6  
75  
%
I
= 50μA  
250  
6
mV  
μA  
V
PWRGD  
C Pin Charging Current  
T
C Pin Voltage Differential  
T
V – V  
CT(PWRGD High) CT(PWRGD Low)  
Ripple Rejection  
Current Limit  
V
IN  
= 7V(Avg), V  
= 0.5V , f  
= 120Hz, I = 200mA  
LOAD  
65  
dB  
RIPPLE  
P-P RIPPLE  
V
IN  
V
IN  
= 7V, V  
= 0V  
400  
mA  
mA  
OUT  
l
= 4.75V, ΔV  
= –0.1V (Note 2)  
200  
OUT  
Reverse Output Current (Note 9)  
V
OUT  
= 1.24V, V < 1.24V (Note 2)  
12  
25  
μA  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3013 is tested and specified for these conditions with the  
ADJ pin connected to the OUT pin.  
Note 3: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply  
for all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 4: To satisfy requirements for minimum input voltage, the LT3013 is  
tested and specified for these conditions with an external resistor divider  
(249k bottom, 649k top) for an output voltage of 4.5V. The external  
resistor divider will add a 5μA DC load on the output.  
Note 7: ADJ pin bias current flows into the ADJ pin.  
Note 8: SHDN pin current flows out of the SHDN pin.  
Note 9: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 10: The LT3013E is guaranteed to meet performance specifications  
from 0°C to 125°C operating junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LT3013H is tested to the LT3013H Electrical Characteristics table at  
140°C operating junction temperature. High junction temperatures degrade  
operating lifetimes. Operating lifetime is derated at junction temperatures  
greater than 125°C. The LT3013MP is 100% tested and guaranteed over  
the –55°C to 125°C operating junction temperature range.  
Note 11: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C (LT3013E, LT3013MP) or 140°C (LT3013H)  
when overtemperature protection is active. Continuous operation above  
the specified maximum operating junction temperature may impair device  
reliability.  
Note 5: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to (V – V  
).  
IN  
DROPOUT  
Note 6: GND pin current is tested with V = 4.75V and a current source  
IN  
load. This means the device is tested while operating close to its dropout  
region. This is the worst-case GND pin current. The GND pin current will  
decrease slightly at higher input voltages.  
3013fe  
4
LT3013  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
600  
500  
400  
300  
200  
100  
0
600  
500  
600  
500  
400  
300  
200  
100  
0
= TEST POINTS  
T
≤ 125°C  
J
T
= 125°C  
J
I
= 250mA  
L
I
= 100mA  
L
400  
300  
T
≤ 25°C  
J
T
= 25°C  
J
I
= 50mA  
L
I
= 10mA  
= 1mA  
L
200  
100  
0
I
L
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–25  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3013 G02  
3013 G03  
3013 G01  
Quiescent Current  
ADJ Pin Voltage  
120  
100  
80  
60  
40  
20  
0
1.260  
V
= 6V  
= ∞  
I
L
= 1mA  
IN  
L
= 0  
R
I
1.255  
1.250  
L
V
= V  
IN  
SHDN  
1.245  
1.240  
1.235  
1.230  
1.225  
V
= GND  
SHDN  
1.220  
–50  
–25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G05  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G04  
–25  
3013fe  
5
LT3013  
TYPICAL PERFORMANCE CHARACTERISTICS  
Quiescent Current  
Quiescent Current  
GND Pin Current  
250  
225  
200  
175  
150  
125  
100  
75  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
T
R
V
= 25°C  
T
= 25°C  
= ∞  
J
L
T = 25°C  
J
J
L
=
R
*FOR V  
= 1.24V  
OUT  
= 1.24V  
OUT  
R
I
= 49.6Ω  
L
L
V
= V  
IN  
= 25mA*  
SHDN  
R
L
= 124Ω  
= 10mA*  
V
= V  
IN  
L
SHDN  
I
V
= GND  
R
L
I
L
= 1.24k  
= 1mA*  
SHDN  
50  
25  
V
= GND  
SHDN  
0
0
10 20 30 40 50 60 70 80  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3013 G06b  
3013 G07  
3013 G06  
GND Pin Current  
GND Pin Current vs ILOAD  
10  
10  
9
8
7
6
5
4
3
2
1
0
T
= 25°C, *FOR V  
= 1.24V  
OUT  
V
J
= 4.75V  
J
IN  
9
8
7
6
5
4
3
2
1
0
T
= 25°C  
R
L
= 4.96Ω  
L
I
= 250mA*  
R
= 12.4Ω  
= 100mA*  
L
I
L
R
= 24.8Ω, I = 50mA*  
L
L
0
1
2
3
4
5
6
7
8
9
10  
0
50  
100  
150  
200  
250  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
3013 G08  
3013 G09  
3013fe  
6
LT3013  
TYPICAL PERFORMANCE CHARACTERISTICS  
SHDN Pin Current  
SHDN Pin Threshold  
SHDN Pin Current  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= 25°C  
V
V
= 6V  
J
IN  
SHDN  
CURRENT FLOWS  
= 0V  
OUT OF SHDN PIN  
CURRENT FLOWS  
OUT OF SHDN PIN  
OFF-TO-ON  
ON-TO-OFF  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–25  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
–50  
0
25  
50  
TEMPERATURE (°C)  
75 100  
125 150  
–25  
SHDN PIN VOLTAGE (V)  
3013 G10  
3013 G11  
3013 G12  
ADJ Pin Bias Current  
PWRGD Trip Point  
120  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
100  
80  
OUTPUT RISING  
OUTPUT FALLING  
60  
40  
20  
0
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G13  
–50  
0
25 50 75  
125 150  
100  
–25  
–25  
TEMPERATURE (°C)  
3013 G25  
3013fe  
7
LT3013  
TYPICAL PERFORMANCE CHARACTERISTICS  
PWRGD Output Low Voltage  
CT Charging Current  
CT Comparator Thresholds  
200  
180  
160  
140  
120  
100  
80  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
= 50μA  
PWRGD TRIPPED HIGH  
PWRGD  
V
(HIGH)  
CT  
60  
40  
V
(LOW)  
20  
CT  
0
–50  
0
25 50 75 100 125 150  
–50  
–25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G28  
–25  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G27  
–25  
TEMPERATURE (°C)  
3013 G26  
Current Limit  
Current Limit  
700  
600  
500  
400  
300  
200  
100  
0
1000  
V
= 0V  
OUT  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25°C  
J
T
= 125°C  
J
V
V
= 7V  
IN  
OUT  
= 0V  
0
10 20 30 40 50 60 70 80  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–25  
INPUT VOLTAGE (V)  
3013 G15  
3013 G14  
3013fe  
8
LT3013  
TYPICAL PERFORMANCE CHARACTERISTICS  
Reverse Output Current  
Reverse Output Current  
Input Ripple Rejection  
92  
88  
84  
80  
76  
72  
68  
64  
60  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
T
V
V
= 25°C  
= 0V  
V
V
= 0V  
= V  
J
IN  
IN  
OUT  
= 1.24V  
ADJ  
= V  
OUT  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
60  
ADJ  
PIN CLAMP  
(SEE APPLICATIONS  
INFORMATION)  
40  
60  
40  
V
L
V
= 4.75V + 0.5V RIPPLE AT f = 120Hz  
P-P  
IN  
20  
0
I
= 250mA  
20  
= 1.24V  
OUT  
0
0
1
2
3
4
5
6
7
8
9
10  
–50  
–25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50  
0
25 50 75  
125 150  
100  
–25  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
3013 G17  
3013 G18  
3013 G16  
Input Ripple Rejection  
Minimum Input Voltage  
100  
90  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
LOAD  
= 4.75V + 50mV  
RIPPLE  
RMS  
I
= 250mA  
IN  
LOAD  
I
= 250mA  
80  
70  
60  
50  
C
= 10μF  
OUT  
40  
30  
20  
10  
0
C
= 3.3μF  
OUT  
10  
100  
1k  
10k  
100k  
1M  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G20  
–25  
FREQUENCY (Hz)  
3013 G19  
3013fe  
9
LT3013  
TYPICAL PERFORMANCE CHARACTERISTICS  
Load Regulation  
Output Noise Spectral Density  
10  
1
0
C
= 3.3μF  
= 250mA  
ΔI = 1mA TO 250mA  
L
OUT  
–2  
–4  
I
LOAD  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
0.1  
0.01  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G21  
–25  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10Hz to 100kHz Output Noise  
Transient Response  
0.15  
0.10  
0.05  
0
V
OUT  
–0.05  
–0.10  
–0.15  
300  
200  
100  
0
100μV/DIV  
V
V
C
C
= 6V  
= 5V  
= 3.3μF CERAMIC  
IN  
OUT  
IN  
= 3.3μF CERAMIC  
LOAD  
OUT  
ΔI  
= 100mA TO 200mA  
3013 G23  
C
I
OUT  
= 10μF  
1ms/DIV  
OUT  
L
= 250mA  
V
= 1.24V  
0
100  
200  
300  
400  
500  
TIME (μs)  
3013 G24  
3013fe  
10  
LT3013  
PIN FUNCTIONS (DFN Package)/(TSSOP Package)  
NC (Pins 1, 9, 12)/(Pins 2, 12, 15): No Connect. These  
pins have no internal connection; connecting NC pins  
to a copper area for heat dissipation provides a small  
improvement in thermal performance.  
SHDN (Pin 8)/(Pin 11): Shutdown. The SHDN pin is used  
to put the LT3013 into a low power shutdown state. The  
output will be off when the SHDN pin is pulled low. The  
SHDNpincanbedriveneitherby5Vlogicoropen-collector  
logic with a pull-up resistor. The pull-up resistor is only  
requiredtosupplythepull-upcurrentoftheopen-collector  
gate,normallyseveralmicroamperes.Ifunused,theSHDN  
OUT (Pins 2, 3)/(Pins 3, 4): Output. The output supplies  
power to the load. A minimum output capacitor of 3.3μF is  
required to prevent oscillations. Larger output capacitors  
will be required for applications with large transient loads  
to limit peak voltage transients. See the Applications  
Information section for more information on output  
capacitance and reverse output characteristics.  
pin must be tied to a logic high or V .  
IN  
C (Pin 7)/(Pin 10): Timing Capacitor. The C pin allows  
T
T
the use of a small capacitor to delay the timing between  
the point where the output crosses the PWRGD threshold  
and the PWRGD flag changes to a high impedance state.  
Current out of this pin during the charging phase is  
3μA. The voltage difference between the PWRGD low  
and PWRGD high states is 1.6V (see the Applications  
Information Section).  
ADJ (Pin 4)/(Pin 5): Adjust. This is the input to the error  
amplifier. This pin is internally clamped to 7V. It has a  
bias current of 30nA which flows into the pin (see curve  
of ADJ Pin Bias Current vs Temperature in the Typical  
Performance Characteristics). The ADJ pin voltage is  
1.24V referenced to ground, and the output voltage range  
is 1.24V to 60V.  
IN (Pins 10, 11)/(Pins 13,14): Input. Power is supplied  
to the device through the IN pin. A bypass capacitor is  
required on this pin if the device is more than six inches  
away from the main input filter capacitor. In general, the  
output impedance of a battery rises with frequency, so it is  
advisabletoincludeabypasscapacitorinbattery-powered  
circuits. A bypass capacitor in the range of 1μF to 10μF is  
sufficient. The LT3013 is designed to withstand reverse  
voltages on the IN pin with respect to ground and the OUT  
pin. In the case of a reversed input, which can happen if  
a battery is plugged in backwards, the LT3013 will act as  
if there is a diode in series with its input. There will be  
no reverse current flow into the LT3013 and no reverse  
voltage will appear at the load. The device will protect both  
itself and the load.  
GND (Pins 5, 13)/(Pins 1, 6, 8, 9, 16, 17): Ground. The  
exposedbacksideofthepackageisanelectricalconnection  
forGND.Assuch,toensureoptimumdeviceoperationand  
thermalperformance,theexposedpadmustbeconnected  
directly to Pin 5/Pin 6 on the PC board.  
PWRGD (Pin 6)/(Pin 7): Power Good. The PWRGD flag is  
an open collector flag to indicate that the output voltage  
has come up to above 90% of the nominal output voltage.  
There is no internal pull-up on this pin; a pull-up resistor  
must be used. The PWRGD pin will change state from an  
open-collector to high impedance after both the output is  
above 90% of the nominal voltage and the capacitor on  
the CT pin has charged through a 1.6V differential. The  
maximum pull-down current of the PWRGD pin in the low  
state is 50μA.  
3013fe  
11  
LT3013  
APPLICATIONS INFORMATION  
The LT3013 is a 250mA high voltage low dropout regula-  
tor with micropower quiescent current and shutdown.  
The device is capable of supplying 250mA at a dropout  
voltage of 400mV. The low operating quiescent current  
(65μA) drops to 1μA in shutdown. In addition to the  
low quiescent current, the LT3013 incorporates several  
protection features which make it ideal for use in bat-  
tery-powered systems. The device is protected against  
both reverse input and reverse output voltages. In battery  
backup applications where the output can be held up by  
a backup battery when the input is pulled to ground, the  
LT3013 acts like it has a diode in series with its output  
and prevents reverse current flow.  
Note that in shutdown the output is turned off and the  
divider current will be zero.  
The adjustable device is tested and specified with the  
ADJ pin tied to the OUT pin and a 5μA DC load (unless  
otherwisespecified)foranoutputvoltageof1.24V. Speci-  
fications for output voltages greater than 1.24V will be  
proportional to the ratio of the desired output voltage to  
1.24V; (V /1.24V). For example, load regulation for an  
OUT  
outputcurrentchangeof1mAto250mAis7mVtypicalat  
V
OUT  
= 1.24V. At V  
= 12V, load regulation is:  
OUT  
(12V/1.24V) • (–7mV) = –68mV  
Output Capacitance and Transient Response  
Adjustable Operation  
The LT3013 is designed to be stable with a wide range of  
output capacitors. The ESR of the output capacitor affects  
stability, most notably with small capacitors. A minimum  
output capacitor of 3.3μF with an ESR of 3ꢀ or less is  
recommended to prevent oscillations. The LT3013 is a  
micropower device and output transient response will be  
a function of output capacitance. Larger values of output  
capacitance decrease the peak deviations and provide  
improved transient response for larger load current  
changes. Bypass capacitors, used to decouple individual  
components powered by the LT3013, will increase the  
effective output capacitor value.  
The LT3013 has an output voltage range of 1.24V to 60V.  
The output voltage is set by the ratio of two external  
resistors as shown in Figure 1. The device servos the  
output to maintain the voltage at the adjust pin at 1.24V  
referenced to ground. The current in R1 is then equal to  
1.24V/R1 and the current in R2 is the current in R1 plus  
the ADJ pin bias current. The ADJ pin bias current, 30nA  
at 25°C, flows through R2 into the ADJ pin. The output  
voltagecanbecalculatedusingtheformulainFigure1.The  
value of R1 should be less than 250k to minimize errors  
in the output voltage caused by the ADJ pin bias current.  
V
IN  
OUT  
ADJ  
OUT  
R2  
V
= 1.24V 1 +  
= 1.24V  
+ (I )(R2)  
ADJ  
OUT  
ADJ  
+
R1  
LT3013  
GND  
R2  
R1  
V
IN  
V
I
= 30nA AT 25°C  
OUTPUT RANGE = 1.24V TO 60V  
ADJ  
3013 F01  
Figure 1. Adjustable Operation  
3013fe  
12  
LT3013  
APPLICATIONS INFORMATION  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are specified with EIA temperature  
characteristiccodesofZ5U,Y5V,X5RandX7R.TheZ5Uand  
Y5V dielectrics are good for providing high capacitances  
in a small package, but they tend to have strong voltage  
and temperature coefficients as shown in Figures 2  
and 3. When used with a 5V regulator, a 16V 10μF Y5V  
capacitor can exhibit an effective value as low as 1μF to  
2μF for the DC bias voltage applied and over the operating  
temperature range. The X5R and X7R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X7R type has better stability  
acrosstemperature, whiletheX5Rislessexpensiveandis  
availableinhighervalues.Carestillmustbeexercisedwhen  
using X5R and X7R capacitors; the X5R and X7R codes  
only specify operating temperature range and maximum  
capacitancechangeovertemperature.Capacitancechange  
due to DC bias with X5R and X7R capacitors is better than  
Y5VandZ5Ucapacitors,butcanstillbesignificantenough  
todropcapacitorvaluesbelowappropriatelevels.Capacitor  
DC bias characteristics tend to improve as component  
casesizeincreases, butexpectedcapacitanceatoperating  
voltage should be verified.  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltageacrossitsterminalsduetomechanicalstress,simi-  
lartothewayapiezoelectricaccelerometerormicrophone  
works. For a ceramic capacitor the stress can be induced  
by vibrations in the system or thermal transients.  
PWRGD Flag and Timing Capacitor Delay  
The PWRGD flag is used to indicate that the ADJ pin volt-  
age is within 10% of the regulated voltage. The PWRGD  
pin is an open-collector output, capable of sinking 50μA  
of current when the ADJ pin voltage is low. There is no  
internal pull-up on the PWRGD pin; an external pull-up  
resistor must be used. When the ADJ pin rises to within  
10% of its final reference value, a delay timer is started.  
At the end of this delay, programmed by the value of the  
capacitor on the C pin, the PWRGD pin switches to a high  
T
impedance and is pulled up to a logic level by an external  
pull-up resistor.  
To calculate the capacitor value on the C pin, use the  
T
following formula:  
ICT tDELAY  
CT(HIGH) VCT(LOW)  
CTIME  
=
V
40  
20  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
0
X5R  
0
–20  
X5R  
Y5V  
–20  
–40  
–60  
–80  
–100  
–40  
–60  
Y5V  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3013 F03  
3013 F02  
Figure 2. Ceramic Capacitor DC Bias Characteristics  
Figure 3. Ceramic Capacitor Temperature Characteristics  
3013fe  
13  
LT3013  
APPLICATIONS INFORMATION  
Figure 4 shows a block diagram of the PWRGD circuit. At  
startup,thetimingcapacitorisdischargedandthePWRGD  
pin will be held low. As the output voltage increases and  
the ADJ pin crosses the 90% threshold, the JK flip-flop  
is reset, and the 3μA current source begins to charge the  
Thermal Considerations  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C  
for LT3013E, LT3013MP or 140°C for LT3013HFE). The  
power dissipated by the device will be made up of two  
components:  
timing capacitor. Once the voltage on the C pin reaches  
T
the V  
threshold (approximately 1.7V at 25°C), the  
CT(HIGH)  
1. Output current multiplied by the input/output voltage  
capacitor voltage is clamped and the PWRGD pin is set to  
a high impedance state.  
differential: I  
• (V – V ) and,  
OUT  
IN OUT  
2. GND pin current multiplied by the input voltage:  
• V .  
Duringnormaloperation,aninternalglitchlterwillignore  
shorttransients(<15μs).Longertransientsbelowthe90%  
threshold will reset the JK flip-flop. This flip-flop ensures  
I
GND  
IN  
TheGNDpincurrentcanbefoundbyexaminingtheGNDPin  
CurrentcurvesintheTypicalPerformanceCharacteristics.  
Power dissipation will be equal to the sum of the two  
components listed above.  
that the capacitor on the C pin is quickly discharged all  
T
the way to the V  
threshold before re-starting the  
CT(LOW)  
time delay. This provides a consistent time delay after the  
ADJ pin is within 10% of the regulated voltage before the  
PWRGD pin switches to high impedance.  
The LT3013 has internal thermal limiting designed  
to protect the device during overload conditions. For  
continuous normal conditions the maximum junction  
temperatureratingof125°C(E-grade,MP-grade)or140°C  
(H-grade)must not be exceeded. It is important to give  
careful consideration to all sources of thermal resistance  
fromjunctiontoambient.Additionalheatsourcesmounted  
nearby must also be considered.  
I
3μA  
CT  
C
T
PWRGD  
+
ADJ  
V
– V  
BE  
CT(HIGH)  
J
Q
(~1.1V)  
K
V
• 90%  
REF  
+
V
CT(LOW)  
~0.1V  
3013 F04  
Figure 4. PWRGD Circuit Block Diagram  
3013fe  
14  
LT3013  
APPLICATIONS INFORMATION  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holescanalsobeusedtospreadtheheatgenerated  
by power devices.  
Calculating Junction Temperature  
Example 1: Given an output voltage of 5V, an input voltage  
range of 8V to 12V, an output current range of 0mA to  
250mA, and a maximum ambient temperature of 30°C,  
what will the maximum junction temperature be?  
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32” FR-4 board with one ounce  
copper.  
The power dissipated by the device will be equal to:  
I
• (V  
– V ) + (I  
• V  
)
OUT(MAX)  
IN(MAX)  
OUT  
GND  
IN(MAX)  
where:  
Table 1. TSSOP Measured Thermal Resistance  
I
= 250mA  
= 12V  
OUT(MAX)  
COPPER AREA  
TOPSIDE  
THERMAL RESISTANCE  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
(JUNCTION-TO-AMBIENT)  
V
IN(MAX)  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
40°C/W  
45°C/W  
50°C/W  
62°C/W  
I
at (I = 250mA, V = 12V) = 8mA  
OUT IN  
GND  
So:  
P = 250mA • (12V – 5V) + (8mA • 12V) = 1.85W  
The thermal resistance will be in the range of 40°C/W to  
62°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
Table 2. DFN Measured Thermal Resistance  
COPPER AREA  
TOPSIDE  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
40°C/W  
45°C/W  
1.85W • 50°C/W = 92.3°C  
50°C/W  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
62°C/W  
The thermal resistance junction-to-case (θ ), measured  
at the exposed pad on the back of the die, is 16°C/W.  
JC  
T
= 30°C + 92.3°C = 122.3°C  
JMAX  
Continuous operation at large input/output voltage dif-  
ferentials and maximum load current is not practical  
due to thermal limitations. Transient operation at high  
input/output differentials is possible. The approximate  
thermal time constant for a 2500sq mm 3/32” FR-4 board  
with maximum topside and backside area for one ounce  
copper is three seconds. This time constant will increase  
as more thermal mass is added (i.e., vias, larger board,  
and other components).  
Example 2: Given an output voltage of 5V, an input voltage  
of 48V that rises to 72V for 5ms(max) out of every 100ms,  
and a 5mA load that steps to 200mA for 50ms out of  
every 250ms, what is the junction temperature rise above  
ambient? Using a 500ms period (well under the time  
constant of the board), power dissipation is as follows:  
P1(48V in, 5mA load) = 5mA • (48V – 5V)  
+ (200μA • 48V) = 0.23W  
Foranapplicationwithtransienthighpowerpeaks,average  
power dissipation can be used for junction temperature  
calculations if the pulse period is significantly less than  
the thermal time constant of the device and board.  
P2(48V in, 50mA load) = 200mA • (48V – 5V)  
+ (8mA • 48V) = 8.98W  
P3(72V in, 5mA load) = 5mA • (72V – 5V)  
+ (200μA • 72V) = 0.35W  
P4(72V in, 50mA load) = 200mA • (72V – 5V)  
+ (8mA • 72V) = 13.98W  
3013fe  
15  
LT3013  
APPLICATIONS INFORMATION  
Operation at the different power levels is as follows:  
Protection Features  
76% operation at P1, 19% for P2, 4% for P3, and  
1% for P4.  
TheLT3013incorporatesseveralprotectionfeatureswhich  
make it ideal for use in battery-powered circuits. In ad-  
dition to the normal protection features associated with  
monolithicregulators,suchascurrentlimitingandthermal  
limiting, thedeviceisprotectedagainstreverse-inputvolt-  
ages, and reverse voltages from output to input.  
P
= 76%(0.23W) + 19%(8.98W) + 4%(0.35W)  
EFF  
+ 1%(13.98W) = 2.03W  
With a thermal resistance in the range of 40°C/W to  
62°C/W, this translates to a junction temperature rise  
above ambient of 81°C to 125°C.  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C  
(LT3013E, LT3013MP) or 140°C (LT3013HFE).  
High Temperature Operation  
CaremustbetakenwhendesigningLT3013applicationsto  
operate at high ambient temperatures. The LT3013 works  
at elevated temperatures but erratic operation can occur  
duetounforeseenvariationsinexternalcomponents.Some  
tantalum capacitors are available for high temperature  
operation, but ESR is often several ohms; capacitor ESR  
above 3Ω is unsuitable for use with the LT3013. Ceramic  
capacitor manufacturers (Murata, AVX, TDK, and Vishay  
Vitramonatthiswriting)nowofferceramiccapacitorsthat  
areratedto150°CusinganX8Rdielectric.Deviceinstability  
will occur if output capacitor value and ESR are outside  
design limits at elevated temperature and operating DC  
voltage bias (see information on capacitor characteristics  
underOutputCapacitanceandTransientResponse).Check  
each passive component for absolute value and voltage  
ratings over the operating temperature range.  
Like many IC power regulators, the LT3013 has safe oper-  
ating area protection. The safe area protection decreases  
the current limit as input voltage increases and keeps  
the power transistor inside a safe operating region for  
all values of input voltage. The protection is designed to  
provide some output current at all values of input voltage  
up to the device breakdown. The SOA protection circuitry  
for the LT3013 uses a current generated when the input  
voltage exceeds 25V to decrease current limit. This cur-  
rent shows up as additional quiescent current for input  
voltages above 25V. This increase in quiescent current  
occurs both in normal operation and in shutdown (see  
curve of Quiescent Current in the Typical Performance  
Characteristics).  
Leakages in capacitors or from solder flux left after  
insufficient board cleaning adversely affects low  
quiescent current operation. The output voltage resistor  
divider should use a maximum bottom resistor value of  
124k to compensate for high temperature leakage, setting  
divider current to 10μA. Consider junction temperature  
increase due to power dissipation in both the junction and  
nearbycomponentstoensuremaximumspecificationsare  
not violated for the device or external components.  
The input of the device will withstand reverse voltages of  
80V. No negative voltage will appear at the output. The  
device will protect both itself and the load. This provides  
protection against batteries which can be plugged in  
backward.  
The ADJ pin of the device can be pulled above or below  
ground by as much as 7V without damaging the device.  
If the input is left open-circuit or grounded, the ADJ pin  
will act like an open-circuit when pulled below ground,  
and like a large resistor (typically 100k) in series with a  
diode when pulled above ground. If the input is powered  
by a voltage source, pulling the ADJ pin below the refer-  
ence voltage will cause the device to current limit. This  
will cause the output to go to a unregulated high voltage.  
Pulling the ADJ pin above the reference voltage will turn  
off all output current.  
3013fe  
16  
LT3013  
APPLICATIONS INFORMATION  
In situations where the ADJ pin is connected to a resistor  
divider that would pull the ADJ pin above its 7V clamp  
voltageiftheoutputispulledhigh,theADJpininputcurrent  
must be limited to less than 5mA. For example, a resistor  
divider is used to provide a regulated 1.5V output from the  
1.24V reference when the output is forced to 60V. The top  
resistor of the resistor divider must be chosen to limit the  
current into the ADJ pin to less than 5mA when the ADJ  
pin is at 7V. The 53V difference between the OUT and ADJ  
pins divided by the 5mA maximum current into the ADJ  
pin yields a minimum top resistor value of 10.6k.  
open-circuit. Current flow back into the output will follow  
the curve shown in Figure 5. The rise in reverse output  
current above 7V occurs from the breakdown of the 7V  
clamp on the ADJ pin. With a resistor divider on the  
regulator output, this current will be reduced depending  
on the size of the resistor divider.  
When the IN pin of the LT3013 is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input current  
will typically drop to less than 2μA. This can happen if  
the input of the LT3013 is connected to a discharged  
(low voltage) battery and the output is held up by either  
a backup battery or a second regulator circuit. The state  
of the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage, or is left  
200  
T
V
V
= 25°C  
= 0V  
J
IN  
180  
160  
140  
120  
100  
80  
= V  
OUT  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
ADJ  
PIN CLAMP  
(SEE ABOVE)  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
3013 F05  
Figure 5. Reverse Output Current  
3013fe  
17  
LT3013  
TYPICAL APPLICATIONS  
5V Buck Converter with Low Current Keep Alive Backup  
D2  
D1N914  
Buck Converter  
6
C2  
L1†  
Efficiency vs Load Current  
0.33μF  
BOOST  
15μH  
V
V
IN  
OUT  
4
2
100  
90  
80  
70  
60  
50  
5.5V*  
V
SW  
5V  
IN  
V
= 5V  
OUT  
L = 68μH  
TO 60V  
C3  
4.7μF  
100V  
D1  
1A/250mA  
V
V
= 10V  
= 42V  
IN  
IN  
10MQ060N  
LT1766  
CERAMIC  
15  
14  
10  
12  
SHDN  
BIAS  
FB  
R1  
15.4k  
C1  
+
100μF 10V  
SOLID  
SYNC  
GND  
R2  
4.99k  
TANTALUM  
V
C
1, 8, 9, 16 11  
C
C
1nF  
14  
3
5
0
0.25  
0.50  
0.75  
1.00  
1.25  
3013 TA03  
IN  
OUT  
LOAD CURRENT (A)  
LT3013  
*FOR INPUT VOLTAGES BELOW 7.5V,  
SOME RESTRICTIONS MAY APPLY  
INCREASE L1 TO 30μH FOR LOAD  
CURRENTS ABOVE 0.6A AND TO  
60μH ABOVE 1A  
OPERATING  
CURRENT  
100k  
750k  
249k  
11  
7
3013 TA04  
SHDN  
ADJ  
HIGH  
LOW  
PWRGD  
GND  
C
T
1
10  
1000pF  
LT3013 Automotive Application  
IN  
OUT  
ADJ  
NO PROTECTION  
DIODE NEEDED!  
+
V
IN  
12V  
(LATER 42V)  
LT3013  
GND  
750k  
249k  
3.3μF  
1μF  
LOAD: CLOCK,  
SECURITY SYSTEM  
ETC  
SHDN  
OFF  
ON  
LT3013 Telecom Application  
V
IN  
48V  
(72V TRANSIENT)  
IN  
OUT  
+
LT3013  
GND  
750k  
249k  
BACKUP  
BATTERY  
NO PROTECTION  
DIODE NEEDED!  
3.3μF  
1μF  
LOAD:  
SYSTEM MONITOR  
ETC  
SHDN  
ADJ  
3013 TA05  
OFF  
ON  
3013fe  
18  
LT3013  
PACKAGE DESCRIPTION  
DE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695)  
0.38 0.10  
12  
4.00 0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
0.65 0.05  
R = 0.20  
TYP  
3.50 0.05  
2.20 0.05 (2 SIDES)  
1.70 0.05  
3.00 0.10 1.70 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1  
NOTCH  
PACKAGE OUTLINE  
(UE12/DE12) DFN 0603  
6
0.25 0.05  
1
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50  
BSC  
0.50  
BSC  
3.30 0.10  
(2 SIDES)  
3.30 0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 0.10  
4.50 0.10  
2.94  
(.116)  
6.40  
(.252)  
BSC  
SEE NOTE 4  
2.94  
(.116)  
0.45 0.05  
1.05 0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE16 (BB) TSSOP 0204  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3013fe  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT3013  
TYPICAL APPLICATION  
Constant Brightness for Indicator LED over Wide Input Voltage Range  
RETURN  
IN  
OUT  
LT3013  
1μF  
3.3μF  
OFF  
ON  
SHDN  
GND  
ADJ  
R
SET  
–48V  
–48V CAN VARY  
FROM –4V TO –80V  
3013 TA06  
I
= 1.24V/R  
SET  
LED  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1020  
125mA, Micropower Regulator and Comparator V : 4.5V to 36V, V  
= 2.5V, V = 0.4V, I = 40μA, I = 40μA, Comparator  
DO Q SD  
IN  
OUT(MIN)  
and Reference, Class B Outputs, S16, PDIP14 Packages  
LT1120/LT1120A  
125mA, Micropower Regulator and Comparator V : 4.5V to 36V, V  
= 2.5V, V = 0.4V, I = 40μA, I = 10μA,  
DO Q SD  
IN  
OUT(MIN)  
Comparator and Reference, Logic Shutdown, Ref Sources and Sinks 2/4mA,  
S8, N8 Packages  
LT1121/LT1121HV 150mA, Micropower, LDO  
V : 4.2V to 30/36V, V  
= 3.75V, V = 0.42V, I = 30μA, I = 16μA,  
IN  
OUT(MIN) DO Q SD  
Reverse Battery Protection, SOT-223, S8, Z Packages  
LT1129  
700mA, Micropower, LDO  
V : 4.2V to 30V, V = 3.75V, V = 0.4V, I = 50μA, I = 16μA,  
IN  
OUT(MIN)  
DO  
Q
SD  
DD, S0T-223, S8,TO220-5, TSSOP20 Packages  
LT1676  
60V, 440mA (I ), 100kHz, High Efficiency  
V : 7.4V to 60V, V  
= 1.24V, I = 3.2mA, I = 2.5μA, S8 Package  
Q SD  
OUT  
IN  
OUT(MIN)  
Step-Down DC/DC Converter  
LT1761  
100mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 20μA, I = <1μA,  
DO Q SD  
IN  
OUT(MIN)  
Low Noise < 20μV  
, Stable with 1μF Ceramic Capacitors, ThinSOTTM Package  
RMS  
LT1762  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
3A, Low Noise, Fast Transient Response, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 25μA, I = <1μA,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 20μV  
, MS8 Package  
RMS  
LT1763  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 30μA, I = <1μA,  
, S8 Package  
IN  
OUT(MIN) DO Q SD  
Low Noise < 20μV  
RMS  
LT1764/LT1764A  
V : 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1μA,  
, “A” Version Stable with Ceramic Capacitors,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 40μV  
RMS  
DD, TO220-5 Packages  
LT1766  
60V, 1.2A (I ), 200kHz, High Efficiency  
V : 5.5V to 60V, V  
= 1.2V, I = 2.5mA, I = 25μA, TSSOP16/E Package  
Q SD  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
Step-Down DC/DC Converter  
LT1776  
40V, 550mA (I ), 200kHz, High Efficiency  
V : 7.4V to 40V, V  
IN  
= 1.24V, I = 3.2mA, I = 30μA, N8, S8 Packages  
OUT  
Q
SD  
Step-Down DC/DC Converter  
LT1934/LT1934-1  
LT1956  
300mA/60mA, (I ), Constant Off-Time, High  
90% Efficiency, V : 3.2V to 34V, V  
= 1.25V, I = 14μA, I = <1μA,  
OUT  
IN  
OUT(MIN) Q SD  
Efficiency Step-Down DC/DC Converter  
ThinSOT Package  
60V, 1.2A (I ), 500kHz, High Efficiency  
V : 5.5V to 60V, V  
= 1.2V, I = 2.5mA, I = 25μA, TSSOP16/E Package  
Q SD  
OUT  
IN  
OUT(MIN)  
Step-Down DC/DC Converter  
LT1962  
300mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.27V, I = 30μA, I = <1μA,  
DO Q SD  
IN  
OUT(MIN)  
Low Noise < 20μV  
, MS8 Package  
RMS  
LT1963/LT1963A  
1.5A, Low Noise, Fast Transient Response, LDO V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1μA,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 40μV  
, “A” Version Stable with Ceramic Capacitors,  
RMS  
DD, TO220-5, S0T-223, S8 Packages  
LT1964  
200mA, Low Noise Micropower, Negative LDO  
50mA, 3V to 80V, Low Noise Micropower LDO  
V : –1.9V to –20V, V = 1.21V, V = 0.34V, I = 30μA, I = 3μA,  
IN  
OUT(MIN)  
DO  
Q
SD  
Low Noise < 30μVRMS, Stable with Ceramic Capacitors, ThinSOT Package  
LT3010/LT3010H  
LT3012/LT3012H  
LT3014/HV  
V : 3V to 8V, V = 1.275V, V = 0.3V, I = 30μA, I = 1μA,  
IN  
OUT(MIN)  
DO  
Q
SD  
Low Noise < 100μV  
, MS8E Package, H Grade = +140°C T  
RMS  
JMAX  
250mA, 4V to 80V, Low Dropout Micropower  
Linear Regulator  
V : 4V to 80V, V : 1.24V to 60V, V = 0.4V, I = 40μA, I = <1μA,  
IN OUT DO Q SD  
TSSOP-16E and 4mm × 3mm DFN-12 Packages, H Grade = +140°C T  
JMAX  
20mA, 3V to 80V, Low Dropout Micropower  
Linear Regulator  
V : 3V to 80V (100V for 2ms, HV version), V : 1.22V to 60V, V = 0.35V,  
IN OUT DO  
I = 7μA, I = <1μA, ThinSOT and 3mm × 3mm DFN-8 Packages  
Q
SD  
ThinSOT is a trademark of Linear Technology Corporation.  
3013fe  
LT 0209 REV E • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3013EFE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3013EFE#TR

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3013HFE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3013HFE#PBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3013HFE#TR

IC VREG 1.24 V-60 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.62 V DROPOUT, PDSO16, 4.40 MM, PLASTIC, TSSOP-16, Adjustable Positive Single Output LDO Regulator
Linear

LT3013HFE#TRPBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3013MPFE

250mA, 4V to 80V Low Dropout Micropower
Linear

LT3013MPFE#PBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: TSSOP; Pins: 16; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT3013MPFE#TRPBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: TSSOP; Pins: 16; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT3013_09

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3014

NPN SILICON RF POWER TRANSISTOR
ASI

LT3014

20mA, 3V to 80V Low Dropout Micropower Linear Regulator
Linear