LT3014HVES5#TRM [Linear]

暂无描述;
LT3014HVES5#TRM
型号: LT3014HVES5#TRM
厂家: Linear    Linear
描述:

暂无描述

稳压器 调节器 光电二极管 输出元件
文件: 总16页 (文件大小:197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3014  
20mA, 3V to 80V  
Low Dropout Micropower  
Linear Regulator  
U
FEATURES  
DESCRIPTIO  
The LT®3014 is a high voltage, micropower low dropout  
linear regulator. The device is capable of supplying 20mA  
of output current with a dropout voltage of 350mV. De-  
signed for use in battery-powered or high voltage sys-  
tems, the low quiescent current (7µA operating and 1µA in  
shutdown) makes the LT3014 an ideal choice. Quiescent  
current is also well controlled in dropout.  
Wide Input Voltage Range: 3V to 80V  
Low Quiescent Current: 7µA  
Low Dropout Voltage: 350mV  
Output Current: 20mA  
LT3014HV Survives 100V Transients (2ms)  
No Protection Diodes Needed  
Adjustable Output from 1.22V to 60V  
1µA Quiescent Current in Shutdown  
Other features of the LT3014 include the ability to operate  
with very small output capacitors. The regulators are  
stable with only 0.47µF on the output while most older  
devices require between 10µF and 100µF for stability.  
Small ceramic capacitors can be used without the neces-  
sary addition of ESR as is common with other regulators.  
Internal protection circuitry includes reverse-battery pro-  
tection, current limiting, thermal limiting and reverse  
current protection.  
Stable with 0.47µF Output Capacitor  
Stable with Aluminum, Tantalum or Ceramic  
Capacitors  
Reverse-Battery Protection  
No Reverse Current Flow from Output  
Thermal Limiting  
Available in 5-Lead ThinSOTTM and  
8-Lead DFN Packages  
U
APPLICATIO S  
Thedeviceisavailableasanadjustabledevicewitha1.22V  
reference voltage. The LT3014 regulator is available in the  
5-lead ThinSOT and 8-lead DFN packages.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 6118263, 6144250.  
Low Current High Voltage Regulators  
Regulator for Battery-Powered Systems  
Telecom Applications  
Automotive Applications  
U
TYPICAL APPLICATIO  
Dropout Voltage  
400  
350  
300  
250  
200  
150  
100  
50  
5V Supply with Shutdown  
V
OUT  
IN  
OUT  
5V  
20mA  
V
IN  
LT3014  
3.92M  
1.27M  
5.4V TO  
80V  
0.47µF  
1µF  
SHDN  
GND  
ADJ  
3014 TA01  
V
OUTPUT  
OFF  
ON  
SHDN  
<0.3V  
>2.0V  
0
0
2
4
6
8
10 12 14 16 18 20  
OUTPUT CURRENT (mA)  
3014 TA02  
3014fb  
1
LT3014  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
IN Pin Voltage, Operating ................................. ±80V  
Transient (2ms Survival, LT3014HV).............. +100V  
OUT Pin Voltage ............................................... ±60V  
IN to OUT Differential Voltage........................... ±80V  
ADJ Pin Voltage .................................................. ±7V  
SHDN Pin Input Voltage ................................... ±80V  
Output Short-Circuit Duration..................... Indefinite  
Storage Temperature Range  
ThinSOT Package......................... –65°C to 150°C  
DFN Package ............................... –65°C to 125°C  
Operating Junction Temperature Range  
(Notes 3, 10, 11) ......................... –40°C to 125°C  
Lead Temperature, SOT-23  
(Soldering, 10 sec) ..................................... 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
OUT  
ADJ  
NC  
1
2
3
4
8
7
6
5
IN  
IN 1  
GND 2  
5 OUT  
4 ADJ  
NC  
9
NC  
SHDN 3  
GND  
SHDN  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
EXPOSED PAD IS GND (PIN 9)  
MUST BE SOLDERED TO PCB  
TJMAX = 125°C, θJA = 40°C/ W  
TJMAX = 125°C, θJA = 150°C/ W  
JC = 25°C/ W MEASURED AT PIN 2.  
SEE APPLICATIONS INFORMATION SECTION.  
θ
θ
JC = 10°C/ W MEASURED AT PIN 9.  
ORDER PART NUMBER  
S5 PART MARKING  
ORDER PART NUMBER  
DD PART MARKING  
LT3014ES5  
LT3014HVES5  
LTBMF  
LTBRS  
LT3014EDD  
LT3014HVEDD  
LBMG  
LBRT  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are at T = 25°C.  
J
PARAMETER  
CONDITIONS  
= 20mA  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
I
3
3.3  
V
LOAD  
ADJ Pin Voltage  
(Notes 2, 3)  
V
= 3.3V, I  
= 100µA  
LOAD  
1.200  
1.180  
1.220  
1.220  
1.240  
1.260  
V
V
IN  
3.3V < V < 80V, 100µA < I  
< 20mA  
IN  
LOAD  
Line Regulation  
Load Regulation  
V = 3.3V to 80V, I  
= 100µA (Note 2)  
LOAD  
1
10  
mV  
IN  
V
V
= 3.3V, I  
= 3.3V, I  
= 100µA to 20mA (Note 2)  
= 100µA to 20mA  
13  
25  
40  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
3014fb  
2
LT3014  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are at T = 25°C.  
J
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Dropout Voltage  
I
I
= 100µA  
= 100µA  
120  
180  
250  
mV  
mV  
LOAD  
LOAD  
V
= V  
(Notes 4, 5)  
IN  
OUT(NOMINAL)  
I
I
= 1mA  
= 1mA  
200  
300  
350  
270  
360  
mV  
mV  
LOAD  
LOAD  
I
I
= 10mA  
= 10mA  
350  
450  
mV  
mV  
LOAD  
LOAD  
I
I
= 20mA  
= 20mA  
410  
570  
mV  
mV  
LOAD  
LOAD  
GND Pin Current  
= V  
(Notes 4, 6)  
I
I
I
I
I
= 0mA  
= 100µA  
= 1mA  
= 10mA  
= 20mA  
7
12  
40  
250  
650  
20  
30  
100  
450  
1000  
µA  
µA  
µA  
µA  
µA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
IN  
OUT(NOMINAL)  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 0.47µF, I  
= 20mA, BW = 10Hz to 100kHz  
115  
4
µV  
RMS  
OUT  
LOAD  
(Note 7)  
10  
2
nA  
V
V
= Off to On  
= On to Off  
1.3  
1.3  
V
V
OUT  
OUT  
0.25  
SHDN Pin Current  
(Note 8)  
V
V
= 0V  
= 6V  
1
0
4
1
µA  
µA  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Ripple Rejection  
V
V
= 6V, V  
= 0V  
1
4
µA  
IN  
IN  
SHDN  
= 7V(Avg), V  
= 0.5V , f  
= 120Hz, I = 20mA  
LOAD  
60  
25  
70  
70  
dB  
RIPPLE  
P-P RIPPLE  
Current Limit  
V
V
= 7V, V  
= 0V  
mA  
mA  
IN  
IN  
OUT  
= 3.3V, V  
= –0.1V (Note 2)  
OUT  
Input Reverse  
Leakage Current  
V
= –80V, V  
= 0V  
OUT  
6
4
mA  
IN  
Reverse Output Current  
(Note 9)  
V
= 1.22V, V < 1.22V (Note 2)  
2
µA  
OUT  
IN  
Note 6: GND pin current is tested with V = V  
(nominal) and a current  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
IN  
OUT  
source load. This means the device is tested while operating in its dropout  
region. This is the worst-case GND pin current. The GND pin current  
decreases slightly at higher input voltages.  
Note 7: ADJ pin bias current flows into the ADJ pin.  
Note 8: SHDN pin current flows out of the SHDN pin.  
Note 2: The LT3014 is tested and specified for these conditions with the  
ADJ pin connected to the OUT pin.  
Note 3: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply for  
all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 4: To satisfy requirements for minimum input voltage, the LT3014 is  
tested and specified for these conditions with an external resistor divider  
(249k bottom, 392k top) for an output voltage of 3.3V. The external  
resistor divider adds a 5µA DC load on the output.  
Note 9: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out of the GND pin.  
Note 10: The LT3014E is guaranteed to meet performance specifications  
from 0°C to 125°C operating junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
Note 11: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is  
active. Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
Note 5: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage is equal to (V – V  
).  
IN  
DROPOUT  
3014fb  
3
LT3014  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
600  
500  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
T
J
125°C  
T = 125°C  
J
I
L
= 20mA  
400  
300  
T
25°C  
I
L
= 10mA  
J
T = 25°C  
J
I
L
= 1mA  
200  
100  
0
I
L
= 100µA  
0
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
–50  
0
25  
50  
75 100 125  
–25  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
3014 G01  
3014 G02  
3014 G03  
Quiescent Current  
ADJ Pin Voltage  
Quiescent Current  
1.240  
16  
16  
14  
12  
10  
8
I
= 100µA  
T = 25°C  
V
= 6V  
L
J
L
OUT  
IN  
L
R
V
=  
R
I
=  
1.235  
1.230  
14  
12  
= 1.22V  
= 0  
L
1.225  
1.220  
1.215  
1.210  
1.205  
10  
8
V
= V  
IN  
SHDN  
V
= V  
IN  
SHDN  
6
6
4
4
2
2
V
= 0V  
SHDN  
V
= 0V  
5
SHDN  
4
0
1.200  
0
25  
0
50  
75 100 125  
1
2
3
6
7
9
50  
25  
0
8
10  
25  
0
50  
75 100 125  
50  
25  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
3014 G05  
3014 G06  
3014 G04  
GND Pin Current  
GND Pin Current vs I  
SHDN Pin Threshold  
LOAD  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25°C  
V
T
= 3.3V  
J
IN  
J
*FOR V  
= 1.22V  
= 25°C  
OUT  
V
= 1.22V  
OUT  
R
L
= 61  
L
I
= 20mA*  
R
I
= 122Ω  
L
L
= 10mA*  
R
L
= 1.22k  
= 1mA*  
L
I
0
1
2
3
4
5
6
7
8
9
10  
–50 –25  
0
25  
50  
75 100 125  
0
2
4
6
8
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
3014 G09  
3014 G07  
3014 G08  
3014fb  
4
LT3014  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
SHDN Pin Current  
SHDN Pin Current  
ADJ Pin Bias Current  
14  
12  
10  
8
1.2  
1.0  
1.6  
T = 25°C  
V
SHDN  
= 0V  
J
CURRENT FLOWS  
OUT OF SHDN PIN  
CURRENT FLOWS  
OUT OF SHDN PIN  
1.4  
1.2  
0.8  
0.6  
1.0  
0.8  
0.6  
0.4  
0.2  
6
0.4  
0.2  
0
4
2
0
50  
0
25  
0
50  
75 100 125  
25  
2.5  
3
25  
0
50  
75 100 125  
0
0.5  
1
1.5  
2
3.5  
4
50  
25  
SHDN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3014 G12  
3014 G10  
3014 G11  
Current Limit  
Current Limit  
Reverse Output Current  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
V
V
= 7V  
V
T
= 0V  
T
= 25°C  
J
IN  
OUT  
OUT  
J
= 0V  
= 25°C  
V
= 0V  
IN  
OUT  
70  
60  
ADJ PIN  
ESD CLAMP  
V
= V  
ADJ  
50  
40  
30  
20  
10  
CURRENT FLOWS  
INTO OUTPUT PIN  
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10 12 14 16 18 20  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3014 G15  
3014 G13  
3014 G14  
Reverse Output Current  
Input Ripple Rejection  
Input Ripple Rejection  
72  
8
80  
V
V
= 0V  
= V  
V
= 7V + 0.5V  
P-P  
V
I
= 7V + 50mV  
RIPPLE  
IN  
OUT  
IN  
IN  
RMS  
= 1.22V  
ADJ  
RIPPLE AT f = 120Hz  
= 20mA  
L
70  
68  
7
6
70  
60  
I
= 20mA  
L
66  
64  
62  
60  
58  
5
4
3
2
1
50  
40  
30  
20  
10  
C
= 4.7µF  
OUT  
C
= 0.47µF  
OUT  
56  
0
0
25  
0
50  
75 100 125  
50  
25  
25  
0
50  
75 100 125  
10  
100  
1k  
10k  
100k  
1M  
50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
3014 G18  
3014 G17  
3014 G16  
3014fb  
5
LT3014  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Minimum Input Voltage  
Load Regulation  
Output Noise Spectral Density  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
1
0
I
= 20mA  
I = 100µA TO 20mA  
C
L
V
= 0.47µF  
LOAD  
L
OUT  
OUT  
OUT  
V
= 1.22V  
I
= 20mA  
–5  
= 1.22V  
–10  
–15  
–20  
–25  
–30  
–35  
0.1  
0.01  
–40  
–50 –25  
0
25  
50  
75  
100 125  
50 25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
3014 G21  
3014 G19  
3014 G20  
10Hz to 100kHz Output Noise  
Transient Response  
0.04  
0.02  
0
V
= 7V  
= 5V  
VOUT  
200µV/DIV  
IN  
–0.02  
–0.04  
V
OUT  
C
= C  
= 0.47µF CERAMIC  
IN  
OUT  
I  
= 1mA TO 5mA  
LOAD  
6
4
COUT = 0.47µF  
1ms/DIV  
3014 G22  
2
0
IL = 20mA  
V
OUT = 1.22V  
0
200  
400  
600  
800  
1000  
TIME (µs)  
3014 G23  
U
U
U
PI FU CTIO S (SOT-23 Package/DD Package)  
appear at the load. The device will protect both itself and  
the load.  
IN (Pin 1/Pin 8): Input. Power is supplied to the device  
through the IN pin. A bypass capacitor is required on this  
pinifthedeviceismorethansixinchesawayfromthemain  
input filter capacitor. In general, the output impedance of  
a battery rises with frequency, so it is advisable to include  
a bypass capacitor in battery-powered circuits. A bypass  
capacitor in the range of 0.1µF to 10µF is sufficient. The  
LT3014 is designed to withstand reverse voltages on the  
IN pin with respect to ground and the OUT pin. In the case  
of a reversed input, which can happen if a battery is  
plugged in backwards, the LT3014 will act as if there is a  
diode in series with its input. There will be no reverse  
current flow into the LT3014 and no reverse voltage will  
GND (Pin 2/Pins 4, 9): Ground.  
SHDN (Pin 3/Pin 5): Shutdown. The SHDN pin is used to  
put the LT3014 into a low power shutdown state. The  
output will be off when the SHDN pin is pulled low. The  
SHDN pin can be driven either by 5V logic or open-  
collector logic with a pull-up resistor. The pull-up resistor  
is only required to supply the pull-up current of the open-  
collector gate, normally several microamperes. If unused,  
the SHDN pin must be tied to IN or to a logic high.  
3014fb  
6
LT3014  
U
U
U
PI FU CTIO S (SOT-23 Package/DD Package)  
OUT (Pin 5/Pin 1): Output. The output supplies power to  
the load. A minimum output capacitor of 0.47µF is re-  
quired to prevent oscillations. Larger output capacitors  
will be required for applications with large transient loads  
to limit peak voltage transients. See the Applications  
Information section for more information on output ca-  
pacitance and reverse output characteristics.  
ADJ (Pin 4/Pin 2): Adjust. This is the input to the error  
amplifier. This pin is internally clamped to ±7V. It has a  
bias current of 4nA which flows into the pin (see curve of  
ADJPinBiasCurrentvsTemperatureintheTypicalPerfor-  
mance Characteristics). The ADJ pin voltage is 1.22V  
referenced to ground, and the output voltage range is  
1.22V to 60V.  
W U U  
U
APPLICATIO S I FOR ATIO  
than 1.22V will be proportional to the ratio of the desired  
output voltage to 1.22V (VOUT/1.22V). For example, load  
regulation for an output current change of 1mA to 20mA  
is –13mV typical at VOUT = 1.22V. At VOUT = 12V, load  
regulation is:  
The LT3014 is a 20mA high voltage low dropout regulator  
with micropower quiescent current and shutdown. The  
device is capable of supplying 20mA at a dropout voltage  
of 350mV. The low operating quiescent current (7µA)  
drops to 1µA in shutdown. In addition to the low quiescent  
current, the LT3014 incorporates several protection fea-  
tures which make it ideal for use in battery-powered  
systems. The device is protected against both reverse  
input and reverse output voltages. In battery backup  
applications where the output can be held up by a backup  
batterywhentheinputispulledtoground,theLT3014acts  
like it has a diode in series with its output and prevents  
reverse current flow.  
(12V/1.22V) • (–13mV) = –128mV  
V
IN  
OUT  
LT3014  
ADJ  
OUT  
+
R2  
R1  
V
IN  
GND  
3014 F01  
R2  
R1  
V
V
= 1.22V 1 +  
+ (I )(R2)  
ADJ  
OUT  
ADJ  
(
)
= 1.22V  
= 4nA AT 25°C  
I
ADJ  
Adjustable Operation  
OUTPUT RANGE = 1.22V TO 60V  
The LT3014 has an output voltage range of 1.22V to 60V.  
The output voltage is set by the ratio of two external  
resistors as shown in Figure 2. The device servos the  
output to maintain the voltage at the adjust pin at 1.22V  
referenced to ground. The current in R1 is then equal to  
Figure 1. Adjustable Operation  
Output Capacitance and Transient Response  
The LT3014 is designed to be stable with a wide range of  
1.22V/R1 and the current in R2 is the current in R1 plus output capacitors. The ESR of the output capacitor affects  
stability, most notably with small capacitors. A minimum  
output capacitor of 0.47µF with an ESR of 3or less is  
the ADJ pin bias current. The ADJ pin bias current, 4nA  
at 25°C, flows through R2 into the ADJ pin. The output  
voltage can be calculated using the formula in Figure 1. recommended to prevent oscillations. The LT3014 is a  
micropower device and output transient response will be  
a function of output capacitance. Larger values of output  
The value of R1 should be less than 1.62M to minimize  
errors in the output voltage caused by the ADJ pin bias  
current. Note that in shutdown the output is turned off capacitance decrease the peak deviations and provide  
improved transient response for larger load current  
changes. Bypass capacitors, used to decouple individual  
components powered by the LT3014, will increase the  
effective output capacitor value.  
and the divider current will be zero. The device is tested  
and specified with the ADJ pin tied to the OUT pin and a  
5µA DC load (unless otherwise specified) for an output  
voltageof1.22V.Specificationsforoutputvoltagesgreater  
3014fb  
7
LT3014  
W U U  
U
APPLICATIO S I FOR ATIO  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common di-  
electrics used are Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
in a small package, but exhibit strong voltage and tem-  
perature coefficients as shown in Figures 2 and 3. When  
used with a 5V regulator, a 10µF Y5V capacitor can exhibit  
an effective value as low as 1µF to 2µF over the operating  
temperature range. The X5R and X7R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X7R type has better stability  
across temperature, while the X5R is less expensive and  
is available in higher values.  
similar to the way a piezoelectric accelerometer or micro-  
phone works. For a ceramic capacitor the stress can be  
induced by vibrations in the system or thermal transients.  
Thermal Considerations  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components:  
1. Output current multiplied by the input/output voltage  
differential: IOUT • (VIN – VOUT) and,  
2. GND pin current multiplied by the input voltage:  
IGND • VIN.  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics.Powerdissipationwillbeequaltothesumofthetwo  
components listed above.  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
40  
20  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
0
–20  
X5R  
–20  
–40  
–40  
Y5V  
–60  
–60  
Y5V  
–80  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
–100  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3014 F03  
3014 F02  
Figure 2. Ceramic Capacitor DC Bias Characteristics  
Figure 3. Ceramic Capacitor Temperature Characteristics  
3014fb  
8
LT3014  
W U U  
APPLICATIO S I FOR ATIO  
U
Continuous operation at large input/output voltage differ-  
entials and maximum load current is not practical due to  
thermal limitations. Transient operation at high input/  
output differentials is possible. The approximate thermal  
time constant for a 2500sq mm 3/32" FR-4 board with  
maximumtopsideandbacksideareaforoneouncecopper  
is 3 seconds. This time constant will increase as more  
thermal mass is added (i.e. vias, larger board, and other  
components).  
The LT3014 regulator has internal thermal limiting de-  
signed to protect the device during overload conditions.  
For continuous normal conditions the maximum junction  
temperature rating of 125°C must not be exceeded. It is  
important to give careful consideration to all sources of  
thermal resistance from junction to ambient. Additional  
heat sources mounted nearby must also be considered.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
For an application with transient high power peaks, aver-  
age power dissipation can be used for junction tempera-  
turecalculationsaslongasthepulseperiodissignificantly  
less than the thermal time constant of the device and  
board.  
The following table lists thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
Calculating Junction Temperature  
Example 1: Given an output voltage of 5V, an input voltage  
range of 24V to 30V, an output current range of 0mA to  
20mA, and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
Table 1. SOT-23 Measured Thermal Resistance  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
50 sq mm  
BACKSIDE  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
(JUNCTION-TO-AMBIENT)  
125°C/W  
The power dissipated by the device will be equal to:  
125°C/W  
130°C/W  
I
OUT(MAX) • (VIN(MAX) – VOUT) + (IGND • VIN(MAX)  
where:  
IOUT(MAX) = 20mA  
)
135°C/W  
150°C/W  
Table 2. DFN Measured Thermal Resistance  
VIN(MAX) = 30V  
COPPER AREA  
THERMAL RESISTANCE  
IGND at (IOUT = 20mA, VIN = 30V) = 0.55mA  
TOPSIDE  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
BACKSIDE  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
(JUNCTION-TO-AMBIENT)  
40°C/W  
So:  
45°C/W  
P = 20mA • (30V – 5V) + (0.55mA • 30V) = 0.52W  
50°C/W  
The thermal resistance for the DFN package will be in the  
rangeof40°C/Wto62°C/Wdependingonthecopperarea.  
So the junction temperature rise above ambient will be  
approximately equal to:  
62°C/W  
For the DFN package, the thermal resistance junction-to-  
case(θJC),measuredattheexposedpadonthebackofthe  
die, is 16°C/W.  
0.52W • 50°C/W = 26°C  
3014fb  
9
LT3014  
W U U  
U
APPLICATIO S I FOR ATIO  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
Protection Features  
TheLT3014incorporatesseveralprotectionfeatureswhich  
make it ideal for use in battery-powered circuits. In addi-  
tion to the normal protection features associated with  
monolithic regulators, such as current limiting and ther-  
mal limiting, the device is protected against reverse-input  
voltages, and reverse voltages from output to input.  
T
JMAX = 50°C + 26°C = 76°C  
Example 2: Given an output voltage of 5V, an input voltage  
of 48V that rises to 72V for 5ms(max) out of every 100ms,  
and a 5mA load that steps to 20mA for 50ms out of every  
250ms, what is the junction temperature rise above ambi-  
ent? Using a 500ms period (well under the time constant  
of the board), power dissipation is as follows:  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
P1(48V in, 5mA load) = 5mA • (48V – 5V)  
+ (100µA • 48V) = 0.22W  
The input of the device will withstand reverse voltages of  
80V.Currentflowintothedevicewillbelimitedtolessthan  
6mA (typically less than 100µA) and no negative voltage  
will appear at the output. The device will protect both itself  
and the load. This provides protection against batteries  
which can be plugged in backward.  
P2(48V in, 20mA load) = 20mA • (48V – 5V)  
+ (0.55mA • 48V) = 0.89W  
P3(72V in, 5mA load) = 5mA • (72V – 5V)  
+ (100µA • 72V) = 0.34W  
P4(72V in, 20mA load) = 20mA • (72V – 5V)  
+ (0.55mA • 72V) = 1.38W  
The ADJ pin can be pulled above or below ground by as  
muchas7Vwithoutdamagingthedevice.Iftheinputisleft  
open circuit or grounded, the ADJ pin will act like an open  
circuit when pulled below ground, and like a large resistor  
(typically 100k) in series with a diode when pulled above  
ground. Iftheinputispoweredbyavoltagesource, pulling  
the ADJ pin below the reference voltage will cause the  
device to current limit. This will cause the output to go to  
an unregulated high voltage. Pulling the ADJ pin above the  
reference voltage will turn off all output current.  
Operation at the different power levels is as follows:  
76% operation at P1, 19% for P2, 4% for P3, and  
1% for P4.  
P
EFF = 76%(0.22W) + 19%(0.89W) + 4%(0.34W)  
+ 1%(1.38W) = 0.36W  
With a thermal resistance in the range of 40°C/W to  
62°C/W, this translates to a junction temperature rise  
above ambient of 20°C.  
3014fb  
10  
LT3014  
W U U  
APPLICATIO S I FOR ATIO  
U
In situations where the ADJ pin is connected to a resistor  
divider that would pull the ADJ pin above its 7V clamp  
voltage if the output is pulled high, the ADJ pin input  
current must be limited to less than 5mA. For example, a  
resistor divider is used to provide a regulated 1.5V output  
fromthe1.22Vreferencewhentheoutputisforcedto60V.  
The top resistor of the resistor divider must be chosen to  
limitthecurrentintotheADJpintolessthan5mAwhenthe  
ADJ pin is at 7V. The 53V difference between the OUT and  
ADJ pins divided by the 5mA maximum current into the  
ADJ pin yields a minimum top resistor value of 10.6k.  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 4. The rise in reverse output  
current above 7V occurs from the breakdown of the 7V  
clamp on the ADJ pin. With a resistor divider on the  
regulator output, this current will be reduced depending  
on the size of the resistor divider.  
When the IN pin of the LT3014 is forced below the OUT pin  
or the OUT pin is pulled above the IN pin, input current will  
typicallydroptolessthan2µA. Thiscanhappeniftheinput  
of the LT3014 is connected to a discharged (low voltage)  
battery and the output is held up by either a backup battery  
orasecondregulatorcircuit.ThestateoftheSHDNpinwill  
have no effect on the reverse output current when the  
output is pulled above the input.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulled to some intermediate voltage, or is left  
50  
T
V
V
= 25°C  
J
45  
40  
35  
30  
25  
20  
15  
10  
5
= 0V  
IN  
OUT  
ADJ PIN  
ESD CLAMP  
= V  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
0
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
3014 F04  
Figure 4. Reverse Output Current  
3014fb  
11  
LT3014  
TYPICAL APPLICATIO S  
U
5V Buck Converter with Low Current Keep Alive Backup  
D2  
D1N914  
6
C2  
L1†  
15µH  
0.33µF  
BOOST  
V
V
IN  
OUT  
4
2
5.5V*  
V
SW  
5V  
IN  
C3  
4.7µF  
100V  
D1  
TO 60V  
1A/20mA  
10MQ060N  
LT1766  
CERAMIC  
15  
14  
10  
12  
SHDN  
BIAS  
FB  
R1  
C1  
+
15.4k  
100µF 10V  
SOLID  
SYNC  
GND  
R2  
4.99k  
TANTALUM  
V
C
1, 8, 9, 16 11  
C
C
1nF  
3014 TA03  
IN  
OUT  
*FOR INPUT VOLTAGES BELOW 7.5V,  
SOME RESTRICTIONS MAY APPLY  
INCREASE L1 TO 30µH FOR LOAD  
CURRENTS ABOVE 0.6A AND TO  
60µH ABOVE 1A  
LT3014  
3.92M  
1.27M  
OPERATING  
CURRENT  
SHDN  
ADJ  
HIGH  
LOW  
GND  
Buck Converter  
Efficiency vs Load Current  
100  
V
= 5V  
OUT  
L = 68µH  
V
V
= 10V  
= 42V  
IN  
IN  
90  
80  
70  
60  
50  
0
0.25  
0.50  
0.75  
1.00  
1.25  
LOAD CURRENT (A)  
3014 TA04  
3014fb  
12  
LT3014  
U
TYPICAL APPLICATIO S  
LT3014 Automotive Application  
IN  
OUT  
ADJ  
NO PROTECTION  
DIODE NEEDED!  
+
V
IN  
LT3014  
SHDN  
R1  
R2  
1µF  
12V  
1µF  
LOAD: CLOCK,  
SECURITY SYSTEM  
ETC  
(LATER 42V)  
GND  
OFF  
ON  
LT3014 Telecom Application  
V
IN  
48V  
(72V TRANSIENT)  
IN  
OUT  
+
LT3014  
BACKUP  
BATTERY  
R1  
R2  
NO PROTECTION  
DIODE NEEDED!  
1µF  
1µF  
LOAD:  
SYSTEM MONITOR  
ETC  
SHDN  
ADJ  
GND  
3014 TA05  
OFF  
ON  
Constant Brightness for Indicator LED over Wide Input Voltage Range  
RETURN  
IN  
OUT  
LT3014  
1µF  
1µF  
OFF ON  
–48V  
SHDN ADJ  
GND  
R
SET  
3014 TA06  
I
= 1.22V/R  
SET  
LED  
–48V CAN VARY FROM –3.3V TO –80V  
3014fb  
13  
LT3014  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3014fb  
14  
LT3014  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD) DFN 1203  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
3014fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT3014  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 4.2V to 30V, V  
LT1129  
700mA, Micropower, LDO  
= 3.75V, V = 0.4V, I = 50µA, I = 16µA,  
OUT(MIN) DO Q SD  
IN  
DD, SOT-223, S8, TO220, TSSOP-20 Packages  
LT1175  
LT1185  
LT1761  
LT1762  
LT1763  
500mA, Micropower Negative LDO  
3A, Negative LDO  
V : –20V to –4.3V, V = –3.8V, V = 0.50V, I = 45µA, I = 10µA,  
IN  
OUT(MIN)  
DO  
Q
SD  
DD, SOT-223, S8 Packages  
V : –35V to –4.2V, V  
TO220-5 Package  
= –2.40V, V = 0.80V, I = 2.5mA, I <1µA,  
DO Q SD  
IN  
OUT(MIN)  
100mA, Low Noise Micropower, LDO  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
ThinSOT Package  
= 1.22V, V = 0.30V, I = 20µA, I <1µA,  
DO Q SD  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 25µA, I <1µA,  
DO Q SD  
IN  
MS8 Package  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 30µA, I <1µA,  
DO Q SD  
IN  
S8 Package  
LT1764/LT1764A 3A, Low Noise, Fast Transient Response, LDO  
V : 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I <1µA,  
DO Q SD  
IN  
DD, TO220 Packages  
LTC1844  
LT1962  
150mA, Very Low Dropout LDO  
V : 1.6V to 6.5V, V  
ThinSOT Package  
= 1.25V, V = 0.08V, I = 40µA, I <1µA,  
DO Q SD  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
300mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.27V, I = 30µA, I <1µA,  
DO Q SD  
IN  
MS8 Package  
LT1963/LT1963A 1.5A, Low Noise, Fast Transient Response, LDO V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I <1µA,  
DO Q SD  
IN  
DD, TO220, SOT Packages  
LT1964  
LT3010  
LT3020  
LT3023  
LT3024  
LT3027  
LT3028  
200mA, Low Noise Micropower, Negative LDO  
50mA, 80V, Low Noise Micropower, LDO  
V : –1.9V to –20V, V  
ThinSOT Package  
= –1.21V, V = 0.34V, I = 30µA, I = 3µA,  
OUT(MIN) DO Q SD  
IN  
V : 3V to 80V, V  
IN  
= 1.28V, V = 0.3V, I = 30µA, I <1µA,  
DO Q SD  
OUT(MIN)  
MS8E Package  
100mA, Low V , Low V  
Micropower, VLDO V : 0.9V to 10V, V  
= 0.20V, V = 0.15V, I = 120µA, I <1µA,  
OUT(MIN) DO Q SD  
IN  
OUT  
IN  
DFN, MS8 Packages  
Dual 100mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
IN  
= 1.22V, V = 0.30V, I = 40µA, I <1µA,  
DO Q SD  
OUT(MIN)  
DFN, MS10 Packages  
Dual 100mA/500mA, Low Noise Micropower,  
LDO  
V : 1.8V to 20V, V  
IN  
= 1.22V, V = 0.30V, I = 60µA, I <1µA,  
DO Q SD  
OUT(MIN)  
DFN, TSSOP-16E Packages  
Dual 100mA, Low Noise LDO with Independent V : 1.8V to 20V, V  
Inputs  
= 1.22V, V = 0.30V, I = 40µA, I <1µA,  
DO Q SD  
IN  
OUT(MIN)  
DFN, MS10E Packages  
Dual 100mA/500mA, Low Noise LDO with  
Independent Inputs  
V : 1.8V to 20V, V  
IN  
= 1.22V, V = 0.30V, I = 60µA, I <1µA,  
DO Q SD  
OUT(MIN)  
DFN, TSSOP-16E Packages  
3014fb  
LT/LWI 0706 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LT3014HVES5#TRMPBF

LT3014 - 20mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3014HVES5#TRPBF

20mA, 3V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3014HVIDD

IC VREG 1.22 V-60 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.57 V DROPOUT, PDSO8, 3 X 3 MM, PLASTIC, MO-299WEED-1, DFN-8, Adjustable Positive Single Output LDO Regulator
Linear

LT3014HVIDD#TR

Adjustable Positive LDO Regulator, 1.22V Min, 60V Max, 0.57V Dropout, PDSO8
Linear

LT3014HVIS5

IC VREG 1.22 V-60 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.57 V DROPOUT, PDSO5, PLASTIC, MO-193, TSOT-23, 5 PIN, Adjustable Positive Single Output LDO Regulator
Linear

LT3014HVIS5#TR

Adjustable Positive LDO Regulator, 1.22V Min, 60V Max, 0.57V Dropout, PDSO5
Linear

LT3014IDD

IC VREG 1.22 V-60 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.57 V DROPOUT, PDSO8, 3 X 3 MM, PLASTIC, MO-299WEED-1, DFN-8, Adjustable Positive Single Output LDO Regulator
Linear

LT3014IDD#PBF

LT3014 - 20mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3014IDD#TRPBF

20mA, 3V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3014IS5

IC VREG 1.22 V-60 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.57 V DROPOUT, PDSO5, PLASTIC, MO-193, TSOT-23, 5 PIN, Adjustable Positive Single Output LDO Regulator
Linear

LT3014IS5#PBF

LT3014 - 20mA, 3V to 80V Low Dropout Micropower Linear Regulator; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3014IS5#TR

Adjustable Positive LDO Regulator, 1.22V Min, 60V Max, 0.57V Dropout, PDSO5
Linear