LT3020IMS8-1.5#PBF [Linear]

暂无描述;
LT3020IMS8-1.5#PBF
型号: LT3020IMS8-1.5#PBF
厂家: Linear    Linear
描述:

暂无描述

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总16页 (文件大小:192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
100mA, Low Voltage,  
Very Low Dropout  
Linear Regulator  
U
DESCRIPTIO  
FEATURES  
The LT®3020 is a very low dropout voltage (VLDOTM) linear  
regulator that operates from input supplies down to 0.9V.  
This device supplies 100mA of output current with a  
typical dropout voltage of 150mV. The LT3020 is ideal for  
low input voltage to low output voltage applications,  
providing comparable electrical efficiency to that of a  
switching regulator.  
VIN Range: 0.9V to 10V  
Minimum Input Voltage: 0.9V  
Dropout Voltage: 150mV Typical  
Output Current: 100mA  
Adjustable Output (VREF = VOUT(MIN) = 200mV)  
Fixed Output Voltages: 1.2V, 1.5V, 1.8V  
Stable with Low ESR, Ceramic Output Capacitors  
(2.2µF Minimum)  
The LT3020 regulator optimizes stability and transient  
response with low ESR, ceramic output capacitors as  
small as 2.2µF. Other LT3020 features include 0% typical  
line regulation and 0.2% typical load regulation. In shut-  
down, quiescent current drops to 3µA.  
0.2% Load Regulation from 1mA to 100mA  
Quiescent Current: 120µA (Typ)  
3µA Typical Quiescent Current in Shutdown  
Current Limit Protection  
Reverse-Battery Protection  
Internal protection circuitry includes reverse-battery pro-  
tection, current limiting, thermal limiting with hysteresis,  
andreverse-currentprotection. TheLT3020isavailableas  
an adjustable output device with an output range down to  
the 200mV reference. Three fixed output voltages, 1.2V,  
1.5V and 1.8V, are also available.  
No Reverse Current  
Thermal Limiting with Hysteresis  
8-Lead DFN (3mm × 3mm) and MSOP Packages  
U
APPLICATIO S  
Low Current Regulators  
Battery-Powered Systems  
The LT3020 regulator is available in the low profile  
(0.75mm) 8-lead (3mm × 3mm) DFN package with Ex-  
posed Pad and the 8-lead MSOP package.  
Cellular Phones  
Pagers  
Wireless Modems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
VLDO is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Minimum Input Voltage  
1.1  
I
= 100mA  
L
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.8V to 1.5V, 100mA VLDO Regulator  
V
OUT  
V
IN  
IN  
OUT  
LT3020-1.5  
SHDN  
GND  
1.5V  
1.8V  
100mA  
2.2µF  
2.2µF  
3020 TA01  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
3020 TA02  
3020fc  
1
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
IN Pin Voltage........................................................ ±10V  
OUT Pin Voltage .................................................... ±10V  
Input-to-Output Differential Voltage....................... ±10V  
ADJ Pin Voltage .................................................... ±10V  
SHDN Pin Voltage................................................. ±10V  
Output Short-Circut Duration.......................... Indefinite  
Operating Junction Temperature Range  
(Notes 2, 3) .......................................... 40°C to 125°C  
Storage Temperature Range  
DD .................................................... 65°C to 125°C  
MS8.................................................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART NUMBER  
ORDER PART NUMBER  
LT3020EDD  
LT3020IDD  
LT3020EDD-1.2  
LT3020EDD-1.5  
LT3020EDD-1.8  
LT3020IDD-1.2  
LT3020IDD-1.5  
LT3020IDD-1.8  
TOP VIEW  
TOP VIEW  
OUT  
OUT  
OUT  
GND  
1
2
3
4
8
7
6
5
IN  
OUT  
OUT  
ADJ  
GND  
1
2
3
4
8
7
6
5
IN  
IN  
IN  
9
9
NC  
NC  
SHDN  
SHDN  
DD PART MARKING  
DD PART MARKING  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
LAEX  
LBYH  
LBKC  
LBKD  
LBKF  
LBYJ  
LBYK  
LBYM  
TJMAX = 125°C, θJA = 35°C/ W*, θJC = 3°C/ W  
EXPOSED PAD IS GND (PIN 9) CONNECT TO PIN 4  
*SEE THE APPLICATIONS INFORMATION SECTION  
TJMAX = 125°C, θJA = 35°C/ W*, θJC = 3°C/ W  
EXPOSED PAD IS GND (PIN 9) CONNECT TO PIN 4  
*SEE THE APPLICATIONS INFORMATION SECTION  
ORDER PART NUMBER  
ORDER PART NUMBER  
LT3020EMS8  
LT3020IMS8  
LT3020EMS8-1.2  
LT3020EMS8-1.5  
LT3020EMS8-1.8  
LT3020IMS8-1.2  
LT3020IMS8-1.5  
LT3020IMS8-1.8  
TOP VIEW  
TOP VIEW  
OUT  
OUT  
OUT  
GND  
1
2
3
4
8 IN  
7 IN  
6 NC  
5 SHDN  
OUT  
OUT  
ADJ  
GND  
1
2
3
4
8 IN  
7 IN  
6 NC  
5 SHDN  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PART MARKING  
MS8 PART MARKING  
TJMAX = 150°C, θJA = 125°C/ W, θJC = 40°C/ W  
TJMAX = 150°C, θJA = 125°C/ W, θJC = 40°C/ W  
SEE THE APPLICATIONS INFORMATION SECTION  
SEE THE APPLICATIONS INFORMATION SECTION  
LTAGL  
LTBYN  
LTBKG  
LTBKH  
LTBKJ  
LTBYP  
LTBYQ  
LTBYR  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
3020fc  
2
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
J
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage (Note 14)  
I
I
= 100mA, T > 0°C  
0.9  
0.9  
1.05  
1.10  
V
V
LOAD  
LOAD  
J
= 100mA, T < 0°C  
J
ADJ Pin Voltage (Notes 4, 5)  
V
= 1.5V, I  
= 1mA  
LOAD  
196  
193  
200  
200  
204  
206  
mV  
mV  
IN  
1.15V < V < 10V, 1mA < I  
< 100mA  
IN  
LOAD  
Regulated Output Voltage  
(Note 4)  
LT3020-1.2  
LT3020-1.5  
LT3020-1.8  
V
IN  
= 1.5V, I  
= 1mA  
LOAD  
1.176  
1.157  
1.200  
1.200  
1.224  
1.236  
V
V
1.5V < V < 10V, 1mA < I  
< 100mA  
< 100mA  
< 100mA  
IN  
LOAD  
LOAD  
LOAD  
V
IN  
= 1.8V, I  
= 1mA  
LOAD  
1.470  
1.447  
1.500  
1.500  
1.530  
1.545  
V
V
1.8V < V < 10V, 1mA < I  
IN  
V
= 2.1V, I  
= 1mA  
LOAD  
1.764  
1.737  
1.800  
1.800  
1.836  
1.854  
V
V
IN  
2.1V < V < 10V, 1mA < I  
IN  
Line Regulation (Note 6)  
Load Regulation (Note 6)  
V = 1.15V to 10V, I  
= 1mA  
V = 1.5V to 10V, I  
–1.75  
–10.5  
–13  
0
0
0
0
1.75  
10.5  
13  
mV  
mV  
mV  
mV  
IN  
LOAD  
LT3020-1.2  
LT3020-1.5  
LT3020-1.8  
= 1mA  
= 1mA  
= 1mA  
IN  
LOAD  
LOAD  
LOAD  
V = 1.8V to 10V, I  
IN  
V = 2.1V to 10V, I  
–15.8  
15.8  
IN  
V
IN  
= 1.15V, I  
= 1mA to 100mA  
–1  
–6  
0.4  
1
1
6
mV  
mV  
mV  
mV  
LOAD  
LT3020-1.2  
LT3020-1.5  
LT3020-1.8  
V
= 1.5V, I  
= 1.8V, I  
= 2.1V, I  
= 1mA to 100mA  
= 1mA to 100mA  
= 1mA to 100mA  
IN  
IN  
IN  
LOAD  
LOAD  
LOAD  
V
V
–7.5  
–9  
1.5  
2
7.5  
9
Dropout Voltage (Notes 7, 12)  
GND Pin Current  
I
I
= 10mA  
= 10mA  
85  
115  
180  
mV  
mV  
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
150  
180  
285  
mV  
mV  
LOAD  
LOAD  
I
I
I
I
= 0mA  
= 1mA  
= 10mA  
= 100mA  
120  
570  
920  
2.25  
250  
µA  
µA  
µA  
LOAD  
LOAD  
LOAD  
LOAD  
V
IN  
= V  
OUT(NOMINAL)  
(Notes 8, 12)  
3.5  
mA  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
V
= 2.2µF, I  
= 100mA, BW = 10Hz to 100kHz, V  
= 1.2V (Notes 6, 9)  
= 1.2V  
245  
20  
µV  
RMS  
OUT  
ADJ  
LOAD  
OUT  
= 0.2V,  
50  
nA  
RIPPLE  
V
OUT  
V
OUT  
= Off to On  
= On to Off  
0.61  
0.61  
0.9  
V
V
0.25  
SHDN Pin Current (Note 10)  
V
V
= 0V, V = 10V  
±1  
µA  
µA  
µA  
dB  
dB  
SHDN  
SHDN  
IN  
= 10V, V = 10V  
3
3
9.5  
IN  
Quiescent Current in Shutdown  
Ripple Rejection (Note 6)  
V
IN  
V
IN  
= 6V, V  
= 0V  
9
SHDN  
– V  
= 1V, V  
= 0.5V , f  
= 120Hz, I  
= 100mA  
64  
60  
OUT  
RIPPLE  
P-P RIPPLE  
LOAD  
LT3020-1.2 V – V  
= 1V, V  
= 1V, V  
= 1V, V  
= 0.5V , f  
= 120Hz,  
IN  
OUT  
OUT  
OUT  
RIPPLE  
RIPPLE  
RIPPLE  
P-P RIPPLE  
I
= 100mA  
LOAD  
LT3020-1.5 V – V  
= 0.5V , f  
= 120Hz,  
= 120Hz,  
58  
56  
dB  
dB  
IN  
P-P RIPPLE  
I
= 100mA  
LOAD  
LT3020-1.8 V – V  
= 0.5V , f  
P-P RIPPLE  
IN  
I
= 100mA  
LOAD  
3020fc  
3
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
J
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Current Limit (Note 12)  
V
V
= 10V, V  
= V  
= 0V  
360  
310  
mA  
mA  
IN  
IN  
OUT  
OUT(NOMINAL)  
+ 0.5V, V  
= –5%  
110  
OUT  
Input Reverse Leakage Current  
V
V
= –10V, V  
= 0V  
OUT  
1
10  
µA  
IN  
Reverse Output Current  
(Notes 11, 13)  
= 1.2V, V = 0V  
3
5
µA  
µA  
µA  
µA  
OUT  
IN  
LT3020-1.2  
LT3020-1.5  
LT3020-1.8  
V
V
V
= 1.2V, V = 0V  
10  
10  
10  
15  
15  
15  
OUT  
OUT  
OUT  
IN  
= 1.5V, V = 0V  
IN  
= 1.8V, V = 0V  
IN  
Note 7: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout the  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
output voltage equals: (V – V  
).  
IN  
DROPOUT  
Note 2: The LT3020 regulators are tested and specified under pulse load  
conditions such that T T . The LT3020E is 100% production tested at  
Note 8: GND pin current is tested with V = V  
and a current  
OUT(NOMINAL)  
IN  
J
A
source load. The device is tested while operating in its dropout region.  
This condition forces the worst-case GND pin current. GND pin current  
decreases at higher input voltages.  
Note 9: Adjust pin bias current flows out of the ADJ pin.  
Note 10: Shutdown pin current flows into the SHDN pin.  
Note 11: Reverse output current is tested with IN grounded and OUT  
forced to the rated output voltage. This current flows into the OUT pin and  
out of the GND pin. For fixed voltage devices this includes the current in  
the output resistor divider.  
T = 25°C. Performance at –40°C and 125°C is assured by design,  
A
characterization and correlation with statistical process controls. The  
LT3020I is guaranteed over the full –40°C to 125°C operating junction  
temperature range.  
Note 3: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 4: Maximum junction temperature limits operating conditions. The  
regulated output voltage specification does not apply for all possible  
combinations of input voltage and output current. Limit the output current  
range if operating at maximum input voltage. Limit the input voltage range  
if operating at maximum output current.  
Note 5: Typically the LT3020 supplies 100mA output current with a 1V  
input supply. The guaranteed minimum input voltage for 100mA output  
current is 1.10V.  
Note 12: The LT3020 is tested and specified for these conditions with an  
external resistor divider (20k and 100k) setting V  
to 1.2V. The external  
OUT  
resistor divider adds 10µA of load current.  
Note 13: Reverse current is higher for the case of (rated_output) < V  
<
OUT  
V
because the no-load recovery circuitry is active in this region and is  
IN,  
trying to restore the output voltage to its nominal value.  
Note 14: Minimum input voltage is the minimum voltage required by the  
control circuit to regulate the output voltage and supply the full 100mA  
Note 6: The LT3020 is tested and specified for these conditions with an  
rated current. This specification is tested at V  
= 0.5V. At higher output  
OUT  
external resistor divider (20k and 30.1k) setting V  
to 0.5V. The external  
OUT  
voltages the minimum input voltage required for regulation will be equal to  
the regulated output voltage V plus the dropout voltage.  
resistor divider adds 10µA of output load current. The line regulation and  
load regulation specifications refer to the change in the 0.2V reference  
voltage, not the 0.5V output voltage. Specifications for fixed output voltage  
devices are referred to the output voltage.  
OUT  
3020fc  
4
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Typical Dropout Voltage  
Dropout Voltage  
Quiescent Current  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
250  
V
= 1.2V  
V
V
L
= 6V  
OUT  
IN  
OUT  
= 0  
= 1.2V  
225  
200  
175  
150  
125  
100  
75  
I
= 100mA  
L
I
T
J
= 125°C  
I
L
= 50mA  
= 10mA  
V
= V  
IN  
SHDN  
I
L
T
J
= 25°C  
50  
50  
50  
I
= 1mA  
L
25  
25  
25  
V
SHDN  
= 0V  
0
0
0
0
10 20 30 40 50 60 70 80 90 100  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3020 G01  
3020 G02  
3020 G03  
Output Voltage  
Output Voltage  
ADJ Pin Voltage  
1.830  
1.820  
1.810  
1.800  
1.790  
1.780  
1.770  
1.530  
1.520  
1.510  
1.500  
1.490  
1.480  
1.470  
206  
204  
202  
200  
198  
196  
194  
I
= 1mA  
I
= 1mA  
I = 1mA  
L
L
L
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
3020 G04  
3020 G22  
3020 G23  
Output Voltage  
Quiescent Current  
GND Pin Current  
1.230  
1.220  
1.210  
1.200  
1.190  
1.180  
1.170  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
I
= 1mA  
V
I
J
= 1.2V  
V
J
= 1.2V  
OUT  
L
OUT  
= 0  
T
= 25°C  
L
T
= 25°C  
R
L
= 12  
L
I
= 100mA  
R
L
= 24Ω  
= 50mA  
L
I
R
L
= 120Ω  
= 10mA  
L
I
500  
V
V
= V  
IN  
SHDN  
R
= 1.2k, I = 1mA  
L
250  
L
= 0V  
6
SHDN  
0
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
1
2
3
4
5
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3020 G05  
3020 G06  
3020 G24  
3020fc  
5
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quiescent Current  
GND Pin Current  
Quiescent Current  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
T
= 1.5V (LT 3020-1.5)  
V
= 1.8V (LT 3020-1.8)  
V
= 1.5V (LT 3020-1.5)  
OUT  
= 25°C  
OUT  
= 0  
OUT  
= 0  
I
I
J
L
L
T
= 25°C  
T
J
= 25°C  
J
R
L
= 15  
L
I
= 100mA  
R
L
= 30Ω  
= 50mA  
L
I
R
L
= 150Ω  
= 10mA  
L
R
= 1.5k  
L
I
I
L
= 1mA  
500  
V
V
5
= V  
IN  
SHDN  
V
V
5
= V  
IN  
SHDN  
250  
= 0V  
SHDN  
6
= 0V  
SHDN  
6
0
4
0
1
2
3
5
6
7
8
9
10  
4
0
1
2
3
7
8
9
10  
4
0
1
2
3
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3020 G28  
3020 G25  
3020 G27  
GND Pin Current  
GND Pin Current vs I  
SHDN Pin Threshold  
LOAD  
2000  
1800  
1600  
1400  
1200  
1000  
800  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
V
V
J
= 1.7V  
= 1.2V  
= 25°C  
I = 1mA  
L
IN  
OUT  
V
J
= 1.8V (LT 3020-1.8)  
OUT  
= 25°C  
T
T
R
L
= 18Ω  
L
I
= 100mA  
R
L
= 36Ω  
L
I
= 50mA  
R
L
= 180Ω  
600  
L
R
L
= 1.8k  
L
I
= 10mA  
I
= 1mA  
500  
400  
250  
200  
0
0
4
0
10 20 30 40 50 60 70 80 90 100  
–50 –25  
0
25  
TEMPERATURE (°C)  
50  
75 100 125  
0
1
2
3
5
6
7
8
9
10  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
3020 G07  
3020 G08  
3020 G26  
SHDN Pin Input Current  
SHDN Pin Input Current (µA)  
ADJ Pin Bias Current  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
25  
20  
15  
10  
5
T
J
= 25°C  
V
SHDN  
= 10V  
0
0
1
2
3
4
5
6
7
8
9
10  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
SHDN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3020 G09  
3020 G10  
3020 G11  
3020fc  
6
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Reverse Output Current  
Current Limit  
Input Ripple Rejection  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
70  
V
V
= 0V  
V
= 0V  
IN  
OUT  
OUT  
= 1.2V  
60  
50  
40  
V
= 10V  
IN  
V
= 1.7V  
IN  
C
= 10µF  
OUT  
30  
20  
10  
0
V
V
= 1.5V + 50mV  
= 0.5V  
RIPPLE  
10k  
IN  
OUT  
= 100mA  
RMS  
C
= 2.2µF  
OUT  
I
L
0
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
10  
100  
1k  
100k  
1M  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
3020 G13  
3020 G12  
3020 G14  
Load Regulation  
L
Minimum Input Voltage  
I = 1mA to 100mA  
Input Ripple Rejection  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.8  
I
= 100mA  
L
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
V
= 1.15V  
OUT  
IN  
= 0.5V  
V
V
L
= 1.5V + 0.5V RIPPLE AT f = 120Hz  
OUT  
= 100mA  
IN  
P-P  
*LOAD REGULATION NUMBER REFERS  
= 0.5V  
TO CHANGE IN THE 200mV REFERENCE  
VOLTAGE  
I
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3020 G15  
3020 G16  
3020 G17  
Transient Response  
Output Noise Spectral Density  
10  
1
V
= 1.2V  
OUT  
I
= 100mA  
L
V
OUT  
C
= 2.2µF  
OUT  
50mV/DIV  
I
OUT  
100mA/DIV  
0.1  
50µs/DIV  
3020 G21  
I
= 10mA TO 100mA  
OUT  
OUT  
V
= 1.5V  
0.01  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
3020 G18  
3020fc  
7
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
RMS Output Noise vs Load  
Current (10Hz to 100kHz)  
No-Load Recovery Threshold  
300  
250  
200  
150  
100  
50  
18  
16  
14  
12  
10  
8
V
OUT  
C
OUT  
= 1.2V  
= 2.2µF  
6
4
2
0
0
0.01  
0.1  
1
10  
100  
0
5
10  
15  
20  
LOAD CURRENT (mA)  
OUTPUT OVERSHOOT (%)  
3020 G20  
3020 G19  
U
U
U
PI FU CTIO S  
OUT (Pins 1, 2): These pins supply power to the load. Use  
aminimumoutputcapacitorof2.2µFtopreventoscillations.  
Applications with large load transients require larger out-  
put capacitors to limit peak voltage transients. See the  
Applications Information section for more information on  
output capacitance and reverse output characteristics.  
supplies the pull-up current to the open collector/drain  
logic, normally several microamperes, and the SHDN pin  
current, typically 2.3µA. If unused, connect the SHDN pin  
toVIN. TheLT3020doesnotfunctioniftheSHDNpinisnot  
connected.  
IN (Pins 7, 8): These pins supply power to the device. The  
LT3020 requires a bypass capacitor at IN if it is more than  
six inches away from the main input filter capacitor. The  
output impedance of a battery rises with frequency, so  
include a bypass capacitor in battery-powered circuits. A  
bypasscapacitorintherangeof2.2µFto10µFsuffices.The  
LT3020 withstands reverse voltages on the IN pin with  
respecttogroundandtheOUTpin.Inthecaseofareversed  
input, which occurs if a battery is plugged in backwards,  
the LT3020 acts as if a diode is in series with its input. No  
reverse current flows into the LT3020 and no reverse volt-  
age appears at the load. The device protects itself and the  
load.  
OUT (Pin 3, Fixed Voltage Device Only): This pin is the  
sense point for the internal resistor divider. It should be  
tied directly to the other OUT pins (1, 2) for best results.  
ADJ (Pin 3, Adjustable Device Only): This pin is the  
inverting terminal to the error amplifier. Its typical input  
bias current of 20nA flows out of the pin (see curve of ADJ  
Pin Bias Current vs Temperature in the Typical Perfor-  
mance Characteristics). The ADJ pin reference voltage is  
200mV (referred to GND).  
GND (Pin 4): Ground.  
SHDN (Pin 5): The SHDN pin puts the LT3020 into a low  
powerstate. PullingtheSHDNpinlowturnstheoutputoff.  
Drive the SHDN pin with either logic or an open collector/  
drain device with a pull-up resistor. The pull-up resistor  
GND (Pin 9, DD8 Package Only): Ground. Solder Pin 9  
(the exposed pad) to the PCB. Connect directly to Pin 4 for  
best performance.  
3020fc  
8
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
W
BLOCK DIAGRA  
IN  
(7, 8)  
R3  
THERMAL  
SHUTDOWN  
SHDN  
(5)  
SHUTDOWN  
D1  
Q3  
CURRENT  
GAIN  
ERROR AMP  
+
Q1  
200mV  
212mV  
BIAS CURRENT  
AND  
REFERENCE  
GENERATOR  
OUT  
D2  
(1, 2)  
OUT SENSE  
(3)  
NO-LOAD  
RECOVERY  
Q2  
R2  
+
25k  
ADJ  
(3)  
R1  
FIXED  
OUT  
NOTE:  
V
R1  
R2  
FOR LT3020 ADJUST PIN 3 IS CONNECTED TO  
THE ADJUST PIN, R1 AND R2 ARE EXTERNAL.  
FOR LT3020-1.X PIN 3 IS CONNECTED TO THE  
OUTPUT SENSE PIN, R1 AND R2 ARE INTERNAL.  
1.2V 20k 100k  
1.5V 20k 130k  
1.8V 20k 160k  
GND  
(4,9)  
3020 BD  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT3020 is a very low dropout linear regulator capable  
of 0.9V input supply operation. Devices supply 100mA of  
output current and dropout voltage is typically 150mV.  
Quiescent current is typically 120µA and drops to 3µA in  
shutdown. The LT3020 incorporates several protection  
features, making it ideal for use in battery-powered sys-  
tems. The device protects itself against reverse-input and  
reverse-output voltages. In battery backup applications  
where the output is held up by a backup battery when the  
input is pulled to ground, the LT3020 acts as if a diode is  
in series with its output which prevents reverse current  
flow. In dual supply applications where the regulator load  
is returned to a negative supply, the output can be pulled  
below ground by as much as 10V without affecting start-  
up or normal operation.  
current in R2 is the current in R1 minus the ADJ pin bias  
current. The ADJ pin bias current of 20nA flows out of the  
pin.UsetheformulainFigure1tocalculateoutputvoltage.  
An R1 value of 20k sets the resistor divider current to  
10µA. Note that in shutdown the output is turned off and  
the divider current is zero. Curves of ADJ Pin Voltage vs  
Temperature and ADJ Pin Bias Current vs Temperature  
appearintheTypicalPerformanceCharacteristicssection.  
Specifications for output voltages greater than 200mV are  
proportional to the ratio of desired output voltage to  
200mV; (VOUT/200mV). For example, load regulation for  
IN  
OUT  
ADJ  
V
OUT  
+
V
LT3020-ADJ  
IN  
R2  
SHDN  
GND  
R1  
Adjustable Operation  
3020 F01  
(R2)  
R2  
The LT3020’s output voltage range is 0.2V to 9.5V. Figure  
1 shows that the output voltage is set by the ratio of two  
external resistors. The device regulates the output to  
maintain the ADJ pin voltage at 200mV referenced to  
ground. The current in R1 equals 200mV/R1 and the  
V
= 200mV 1 +  
– I  
ADJ  
OUT  
ADJ  
(
)
R1  
V
= 200mV  
I
= 20nA AT 25°C  
ADJ  
OUTPUT RANGE = 0.2V TO 9.5V  
Figure 1. Adjustable Operation  
3020fc  
9
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
W U U  
U
APPLICATIO S I FOR ATIO  
an output current change of 1mA to 100mA is typically  
0.4mVatVADJ =200mV. AtVOUT =1.5V, loadregulationis:  
20  
0
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
X5R  
(1.5V/200mV) • (0.4mV) = 3mV  
–20  
–40  
Output Capacitance and Transient Response  
The LT3020’s design is stable with a wide range of output  
capacitors, but is optimized for low ESR ceramic capaci-  
tors. The output capacitor’s ESR affects stability, most  
notably with small value capacitors. Use a minimum  
output capacitor of 2.2µF with an ESR of 0.3or less to  
prevent oscillations. The LT3020 is a low voltage device,  
and output load transient response is a function of output  
capacitance.Largervaluesofoutputcapacitancedecrease  
the peak deviations and provide improved transient re-  
sponse for larger load current changes. For output capaci-  
torvaluesgreaterthan20µFasmallfeedforwardcapacitor  
with a value of 300pF across the upper divider resistor (R2  
in Figure 1) is required.  
–60  
Y5V  
–80  
–100  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3020 F02  
Figure 2. Ceramic Capacitor DC Bias Characteristics  
40  
20  
X5R  
0
–20  
Give extra consideration to the use of ceramic capacitors.  
Manufacturers make ceramic capacitors with a variety of  
dielectrics, each with a different behavior across tempera-  
tureandappliedvoltage.Themostcommondielectricsare  
Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics  
provide high C-V products in a small package at low cost,  
but exhibit strong voltage and temperature coefficients.  
The X5R and X7R dielectrics yield highly stable  
characterisiticsandaremoresuitableforuseastheoutput  
capacitor at fractionally increased cost. The X5R and X7R  
dielectrics both exhibit excellent voltage coefficient char-  
acteristics. The X7R type works over a larger temperature  
range and exhibits better temperature stability whereas  
X5R is less expensive and is available in higher values.  
Figures 2 and 3 show voltage coefficient and temperature  
coefficient comparisons between Y5V and X5R material.  
–40  
Y5V  
–60  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
3020 F03  
Figure 3. Ceramic Capacitor Temperature Characteristics  
1mV/DIV  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltageacrossitsterminalsduetomechanicalstress,simi-  
lartothewayapiezoelectricaccelerometerormicrophone  
works. For a ceramic capacitor, the stress can be induced  
by vibrations in the system or thermal transients. The re-  
sultingvoltagesproducedcancauseappreciableamounts  
of noise. A ceramic capacitor produced Figure 4’s trace in  
V
C
LOAD  
= 1.3V  
= 10µF  
= 0  
1ms/DIV  
3020 F04  
OUT  
OUT  
I
Figure 4. Noise Resulting from Tapping on a Ceramic Capacitor  
3020fc  
10  
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
W U U  
APPLICATIO S I FOR ATIO  
U
response to light tapping from a pencil. Similar vibration  
induced behavior can masquerade as increased output  
voltage noise.  
1. Output current multiplied by the input-to-output volt-  
age differential: (IOUT)(VIN – VOUT) and  
2. GND pin current multiplied by the input voltage:  
(IGND)(VIN).  
No-Load/Light-Load Recovery  
GND pin current is found by examining the GND pin  
currentcurvesintheTypicalPerformanceCharacteristics.  
Power dissipation is equal to the sum of the two compo-  
nents listed above.  
A possible transient load step that occurs is where the  
output current changes from its maximum level to zero  
current or a very small load current. The output voltage  
responds by overshooting until the regulator lowers the  
amountofcurrentitdeliverstothenewlevel.Theregulator  
loop response time and the amount of output capacitance  
control the amount of overshoot. Once the regulator has  
decreased its output current, the current provided by the  
resistor divider (which sets VOUT) is the only current  
remaining to discharge the output capacitor from the level  
to which it overshot. The amount of time it takes for the  
output voltage to recover easily extends to milliseconds  
with microamperes of divider current and a few microfar-  
ads of output capacitance.  
The LT3020 regulator has internal thermal limiting (with  
hysteresis)designedtoprotectthedeviceduringoverload  
conditions. For normal continuous conditions, do not  
exceedthemaximumjunctiontemperatureratingof125°C.  
Carefully consider all sources of thermal resistance from  
junction to ambient including other heat sources mounted  
in proximity to the LT3020.  
TheundersideoftheLT3020DDpackagehasexposedmetal  
(4mm2) from the lead frame to where the die is attached.  
This allows heat to directly transfer from the die junction  
to the printed circuit board metal to control maximum  
operating junction temperature. The dual-in-line pin ar-  
rangement allows metal to extend beyond the ends of the  
package on the topside (component side) of a PCB. Con-  
nectthismetaltoGNDonthePCB.ThemultipleINandOUT  
pinsoftheLT3020alsoassistinspreadingheattothePCB.  
To eliminate this problem, the LT3020 incorporates a  
no-load or light-load recovery circuit. This circuit is a  
voltage-controlledcurrentsinkthatsignificantlyimproves  
the light load transient response time by discharging the  
output capacitor quickly and then turning off. The current  
sink turns on when the output voltage exceeds 6% of the  
nominal output voltage. The current sink level is then  
proportional to the overdrive above the threshold up to a  
maximum of approximately 15mA. Consult the curve in  
the Typical Performance Characteristics for the No-Load  
Recovery Threshold.  
The LT3020 MS8 package has pin 4 fused with the lead  
frame. This also allows heat to transfer from the die to the  
printedcircuitboardmetal, thereforereducingthethermal  
resistance. Copper board stiffeners and plated through-  
holes can also be used to spread the heat generated by  
power devices.  
If external circuitry forces the output above the no load  
recoverycircuit’sthreshold, thecurrentsinkturnsoninan  
attempt to restore the output voltage to nominal. The  
currentsinkremainsonuntiltheexternalcircuitryreleases  
the output. However, if the external circuitry pulls the  
output voltage above the input voltage, or the input falls  
belowtheoutput,theLT3020turnsthecurrentsinkoffand  
shuts down the bias current/reference generator circuitry.  
The following tables list thermal resistance for several  
different board sizes and copper areas for two different  
packages. Measurements were taken in still air on 3/32"  
FR-4 board with one ounce copper.  
Table 1. Measured Thermal Resistance for DD Package  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
2500mm2  
900mm2  
225mm2  
100mm2  
50mm2  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
35°C/W  
40°C/W  
55°C/W  
60°C/W  
70°C/W  
Thermal Considerations  
The LT3020’s power handling capability is limited by its  
maximumratedjunctiontemperatureof125°C.Thepower  
dissipated by the device is comprised of two components:  
3020fc  
11  
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 2. Measured Thermal Resistance for MS8 Package  
Current limit protection and thermal overload protection  
protect the device against current overload conditions at  
the output of the device. For normal operation, do not  
exceed a junction temperature of 125°C.  
COPPER AREA  
TOPSIDE* BACKSIDE  
THERMAL RESISTANCE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
2500mm2  
1000mm2  
225mm2  
100mm2  
50mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
110°C/W  
115°C/W  
120°C/W  
130°C/W  
140°C/W  
The IN pins of the device withstand reverse voltages of  
10V. The LT3020 limits current flow to less than 1µA and  
no negative voltage appears at OUT. The device protects  
both itself and the load against batteries that are plugged  
in backwards.  
*Device is mounted on topside.  
Calculating Junction Temperature  
The LT3020 incurs no damage if OUT is pulled below  
ground. If IN is left open circuit or grounded, OUT can be  
pulled below ground by 10V. No current flows from the  
pass transistor connected to OUT. However, current flows  
in(butislimitedby)theresistordividerthatsetstheoutput  
voltage. Current flows from the bottom resistor in the  
divider and from the ADJ pin’s internal clamp through the  
top resistor in the divider to the external circuitry pulling  
OUT below ground. If IN is powered by a voltage source,  
OUT sources current equal to its current limit capability  
and the LT3020 protects itself by thermal limiting. In this  
case, grounding SHDN turns off the LT3020 and stops  
OUT from sourcing current.  
Example: Given an output voltage of 1.8V, an input voltage  
range of 2.25V to 2.75V, an output current range of 1mA  
to 100mA, and a maximum ambient temperature of 70°C,  
what will the maximum junction temperature be for an  
application using the DD package?  
The power dissipated by the device is equal to:  
IOUT(MAX)(VIN(MAX) – VOUT) + IGND(VIN(MAX)  
where  
)
IOUT(MAX) = 100mA  
VIN(MAX) = 2.75V  
IGND at (IOUT = 100mA, VIN = 2.75V) = 3mA  
The LT3020 incurs no damage if the ADJ pin is pulled  
above or below ground by 10V. If IN is left open circuit or  
grounded and ADJ is pulled above ground, ADJ acts like a  
25k resistor in series with a 1V clamp (one Schottky diode  
in series with one diode). ADJ acts like a 25k resistor in  
series with a Schottky diode if pulled below ground. If IN  
is powered by a voltage source and ADJ is pulled below its  
reference voltage, the LT3020 attempts to source its  
current limit capability at OUT. The output voltage in-  
creases to VIN – VDROPOUT with VDROPOUT set by whatever  
load current the LT3020 supports. This condition can  
potentially damage external circuitry powered by the  
LT3020 if the output voltage increases to an unregulated  
high voltage. If IN is powered by a voltage source and ADJ  
is pulled above its reference voltage, two situations can  
occur. If ADJ is pulled slightly above its reference voltage,  
theLT3020turnsoffthepasstransistor, nooutputcurrent  
is sourced and the output voltage decreases to either the  
voltage at ADJ or less. If ADJ is pulled above its no load  
recovery threshold, the no load recovery circuitry turns on  
and attempts to sink current. OUT is actively pulled low  
so  
P = 100mA(2.75V – 1.8V) + 3mA(2.75V) = 0.103W  
The thermal resistance is in the range of 35°C/W to  
70°C/W depending on the copper area. So the junction  
temperatureriseaboveambientisapproximatelyequalto:  
0.103W(52.5°C/W) = 5.4°C  
The maximum junction temperature equals the maximum  
junction temperature rise above ambient plus the maxi-  
mum ambient temperature or:  
TJMAX = 70°C + 5.4°C = 75.4°C  
Protection Features  
The LT3020 incorporates several protection features that  
make it ideal for use in battery-powered circuits. In addi-  
tion to the normal protection features associated with  
monolithic regulators, such as current limiting and ther-  
mal limiting, the device also protects against reverse-  
input voltages, reverse-output voltages and reverse  
output-to-input voltages.  
3020fc  
12  
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
W U U  
APPLICATIO S I FOR ATIO  
U
and the output voltage clamps at a Schottky diode above  
ground. Please note that the behavior described above  
applies to the LT3020 only. If a resistor divider is con-  
nected under the same conditions, there will be additional  
V/R current.  
of a wire does not have a major influence on its self-  
inductance. For example, the self inductance of a 2-AWG  
isolated wire with a diameter of 0.26 in. is about half the  
inductance of a 30-AWG wire with a diameter of 0.01 in.  
One foot of 30-AWG wire has 465nH of self inductance.  
The overall self-inductance of a wire can be reduced in two  
ways. One is to divide the current flowing towards the  
LT3020 between two parallel conductors. In this case, the  
farther the wires are placed apart from each other, the  
more inductance will be reduced, up to a 50% reduction  
when placed a few inches apart. Splitting the wires basi-  
cally connects two equal inductors in parallel. However,  
when placed in close proximity from each other, mutual  
inductance is added to the overall self inductance of the  
wires. Themosteffectivewaytoreduceoverallinductance  
is to place the forward and return-current conductors (the  
wire for the input and the wire for ground) in very close  
proximity. Two 30-AWG wires separated by 0.02 in. re-  
duce the overall self-inductance to about one-fifth of a  
single isolated wire.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulledtosomeintermediatevoltageorisleftopen  
circuit. In the case where the input is grounded, there is  
less than 1µA of reverse output current.  
IftheLT3020INpinisforcedbelowtheOUTpinortheOUT  
pin is pulled above the IN pin, input current drops to less  
than 10µA typically. This occurs if the LT3020 input is  
connected to a discharged (low voltage) battery and either  
a backup battery or a second regulator circuit holds up the  
output. The state of the SHDN pin has no effect on the  
reverse output current if OUT is pulled above IN.  
If the LT3020 is powered by a battery mounted in close  
proximity on the same circuit board, a 2.2µF input capaci-  
tor is sufficient for stability. However, if the LT3020 is  
powered by a distant supply, use a larger value input  
capacitor following the guideline of roughly 1µF (in addi-  
tion to the 2.2µF minimum) per 8 inches of wire length. As  
power supply output impedance may vary, the minimum  
input capacitance needed to stabilize the application may  
alsovary. Extracapacitancemayalsobeplaceddirectlyon  
the output of the power supply; however, this will require  
an order of magnitude more capacitance as opposed to  
placingextracapacitanceincloseproximitytotheLT3020.  
Furthermore, seriesresistancemaybeplacedbetweenthe  
supply and the input of the LT3020 to stabilize the appli-  
cation; as little as 0.1to 0.5will suffice.  
Input Capacitance and Stability  
The LT3020 is designed to be stable with a minimum  
capacitance of 2.2µF placed at the IN pin. Ceramic capaci-  
tors with very low ESR may be used. However, in cases  
where a long wire is used to connect a power supply to the  
input of the LT3020 (and also from the ground of the  
LT3020 back to the power supply ground), use of low  
value input capacitors combined with an output load  
current of 20mA or greater may result in an unstable  
application. This is due to the inductance of the wire  
forming an LC tank circuit with the input capacitor and not  
a result of the LT3020 being unstable.  
The self-inductance, or isolated inductance, of a wire is  
directly proportional to its length. However, the diameter  
3020fc  
13  
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 1203  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
3020fc  
14  
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
0.52  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
(.0205)  
REF  
(NOTE 3)  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.127 ± 0.076  
(.009 – .015)  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0204  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3020fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT3020/LT3020-1.2/  
LT3020-1.5/LT3020-1.8  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 4.2V to 30V/36V, V  
LT1121/LT1121HV  
150mA, Micropower LDOs  
= 3.75V, V = 0.42V, I = 30µA,  
OUT(MIN) DO Q  
= 16µA, Reverse-Battery Protection, SOT-223, S8, Z Packages  
IN  
I
SD  
LT1129  
LT1761  
700mA, Micropower LDO  
V : 4.2V to 30V, V  
DD, SOT-223, S8, TO220-5, TSSOP20 Packages  
= 3.75V, V = 0.4V, I = 50µA, I = 16µA,  
OUT(MIN) DO Q SD  
IN  
100mA, Low Noise Micropower LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 20µA, I < 1µA,  
DO Q SD  
IN  
OUT(MIN)  
Low Noise: < 20µV  
ThinSOT Package  
, Stable with 1µF Ceramic Capacitor,  
RMS  
LT1762  
150mA, Low Noise Micropower LDO  
500mA, Low Noise Micropower LDO  
3A, Low Noise, Fast Transient Response LDOs  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 25µA, I < 1µA,  
OUT(MIN) DO Q SD  
IN  
Low Noise: <20µV  
, MS8 Package  
RMS  
LT1763  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 30µA, I < 1µA,  
OUT(MIN) DO Q SD  
IN  
Low Noise: < 20µV  
, S8 Package  
RMS  
LT1764/LT1764A  
V : 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I < 1µA,  
OUT(MIN) DO Q SD  
IN  
Low Noise: <40µV  
, “A” Version Stable with Ceramic Capacitors,  
RMS  
DD, TO220-5 Packages  
LTC1844  
150mA, Low Noise, Micropower VLDO  
300mA, Low Noise Micropower LDO  
V : 1.6V to 6.5V, V  
= 1.25V, V = 0.09V, I = 35µA, I < 1µA,  
OUT(MIN) DO Q SD  
IN  
Low Noise: < 30µV  
, ThinSOT Package  
RMS  
LT1962  
V : 1.8V to 20V, V  
= 1.22V, V = 0.27V, I = 30µA, I < 1µA,  
OUT(MIN) DO Q SD  
IN  
Low Noise: < 20µV  
, MS8 Package  
RMS  
LT1963/LT1963A  
1.5A, Low Noise, Fast Transient Response LDOs  
V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I < 1µA,  
OUT(MIN) DO Q SD  
IN  
Low Noise: < 40µV  
, “A” Version Stable with Ceramic Capacitors,  
RMS  
DD, TO220-5, SOT223, S8 Packages  
LT1964  
LT3010  
200mA, Low Noise Micropower, Negative LDO  
50mA, High Voltage, Micropower LDO  
300mA, Low Voltage, Micropower LDO  
V : –2.2V to –20V, V  
= 1.21V, V = 0.34V, I = 30µA, I = 3µA,  
OUT(MIN) DO Q SD  
IN  
Low Noise: <30µV  
, Stable with Ceramic Capacitors,  
RMS  
ThinSOT Package  
V : 3V to 80V, V  
= 1.2V, V = 0.3V, I = 30µA, I < 1µA,  
DO Q SD  
, Stable with 1µF Output Capacitor, Exposed  
IN  
OUT(MIN)  
Low Noise: <100µV  
RMS  
MS8E Package  
LTC3025  
LT3150  
V : 0.9V to 5.5V, V  
1µF Ceramic Capacitors, DFN-6 Package  
= 0.4V, V = 0.05V, I = 54µA, Stable with  
OUT(MIN) DO Q  
IN  
Low V , Fast Transient Response, VLDO Controller V : 1.1V to 10V, V = 1.23V, V = Set by External MOSFET  
IN  
IN  
OUT(MIN)  
DO  
R , 1.4MHz Boost Converter Generates Gate Drive, SSOP16 Package  
DS(ON)  
3020fc  
LT/LT 0905 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT3020IMS8-1.5#TR

LT3020 - 100mA, Low Voltage, Very Low Dropout Linear Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3020IMS8-1.5#TRPBF

LT3020 - 100mA, Low Voltage, Very Low Dropout Linear Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3020IMS8-1.8

100mA, Low Voltage, Very Low Dropout Linear Regulator
Linear

LT3020IMS8-1.8#TRPBF

LT3020 - 100mA, Low Voltage, Very Low Dropout Linear Regulators; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3020_15

100mA, Low Voltage, Very Low Dropout Linear Regulator
Linear

LT3021

500mA, Low Voltage, Very Low Dropout Linear Regulator
Linear

LT3021-1.2

500mA, Low Voltage, Very Low Dropout Linear Regulator
Linear

LT3021-1.2_15

500mA, Low Voltage, Very Low Dropout Linear Regulator
Linear

LT3021-1.5

500mA, Low Voltage, Very Low Dropout Linear Regulator
Linear

LT3021-1.5_15

500mA, Low Voltage, Very Low Dropout Linear Regulator
Linear

LT3021-1.8

500mA, Low Voltage, Very Low Dropout Linear Regulator
Linear

LT3021-1.8_15

500mA, Low Voltage, Very Low Dropout Linear Regulator
Linear