LT3024EFE#PBF [Linear]

暂无描述;
LT3024EFE#PBF
型号: LT3024EFE#PBF
厂家: Linear    Linear
描述:

暂无描述

稳压器
文件: 总16页 (文件大小:486K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3024  
Dual 100mA/500mA  
Low Dropout, Low Noise,  
Micropower Regulator  
U
FEATURES  
DESCRIPTIO  
The LT®3024 is a dual, micropower, low noise, low drop-  
out regulator. With an external 0.01µF bypass capacitor,  
output noise drops to 20µVRMS over a 10Hz to 100kHz  
bandwidth. Designedforuseinbattery-poweredsystems,  
the low 30µA quiescent current per output makes it an  
ideal choice. In shutdown, quiescent current drops to less  
than 0.1µA. Shutdown control is independent for each  
output, allowing for flexibility in power management. The  
device is capable of operating over an input voltage range  
of 1.8V to 20V. The device can supply 100mA of output  
current from Output 2 with a dropout voltage of 300mV.  
Output 1 can supply 500mA of output current with a  
dropout voltage of 300mV. Quiescent current is well  
controlled in dropout.  
Low Noise: 20µVRMS (10Hz to 100kHz)  
Low Quiescent Current: 30µA/Output  
Wide Input Voltage Range: 1.8V to 20V  
Output Current: 100mA/500mA  
Very Low Shutdown Current: <0.1µA  
Low Dropout Voltage: 300mV at 100mA/500mA  
Adjustable Outputs from 1.22V to 20V  
Stable with 1µF/3.3µF Output Capacitor  
Stable with Aluminum, Tantalum or  
Ceramic Capacitors  
Reverse-Battery Protected  
No Reverse Current  
No Protection Diodes Needed  
Overcurrent and Overtemperature Protected  
Thermally Enhanced 16-Lead TSSOP and 12-Lead  
(4mm × 3mm) DFN Packages  
The LT3024 regulator is stable with output capacitors as  
low as 1µF for the 100mA output and 3.3µF for the 500mA  
output. Small ceramic capacitors can be used without the  
series resistance required by other regulators.  
U
APPLICATIO S  
Internal protection circuitry includes reverse-battery pro-  
tection, current limiting, thermal limiting and reverse  
current protection. The device is available as an adjustable  
device with a 1.22V reference voltage. The LT3024 regu-  
latorisavailableinthethermallyenhanced16-leadTSSOP  
and 12-lead, low profile (4mm × 3mm × 0.75mm) DFN  
packages.  
Cellular Phones  
Pagers  
Battery-Powered Systems  
Frequency Synthesizers  
Wireless Modems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
3.3V/2.5V Low Noise Regulators  
10Hz to 100kHz Output Noise  
3.3V AT 500mA  
20µV NOISE  
IN  
OUT1  
RMS  
V
IN  
SHDN1  
SHDN2  
0.01µF  
10µF  
10µF  
422k  
249k  
3.7V TO  
20V  
1µF  
BYP1  
ADJ1  
V
OUT  
100µV/DIV  
20µV  
RMS  
LT3024  
2.5V AT 100mA  
20µV NOISE  
OUT2  
RMS  
0.01µF  
261k  
BYP2  
ADJ2  
3024 TA01b  
GND  
249k  
3024 TA01a  
3024f  
1
LT3024  
ABSOLUTE AXI U RATI GS  
W W  
U W  
(Note 1)  
IN Pin Voltage........................................................ ±20V  
OUT1, OUT2 Pin Voltage ....................................... ±20V  
Input-to-Output Differential Voltage....................... ±20V  
ADJ1, ADJ2 Pin Voltage ......................................... ±7V  
BYP1, BYP2 Pin Voltage ....................................... ±0.6V  
SHDN1, SHDN2 Pin Voltage ................................. ±20V  
Output Short-Circut Duration.......................... Indefinite  
Operating Junction Temperature Range  
(Note 2) ............................................ 40°C to 125°C  
Storage Temperature Range  
FE Package ....................................... 65°C to 150°C  
DE Package ...................................... 65°C to 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
NUMBER  
GND  
BYP1  
OUT1  
OUT1  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
ADJ1  
SHDN1  
IN  
BYP1  
OUT1  
OUT1  
GND  
1
2
3
4
5
6
12 ADJ1  
11 SHDN1  
10 IN  
LT3024EFE  
LT3024EDE  
17  
13  
IN  
9
8
7
IN  
OUT2  
BYP2  
GND  
SHDN2  
ADJ2  
GND  
OUT2  
BYP2  
SHDN2  
ADJ2  
FE PART  
MARKING  
DE PART  
MARKING  
DE12 PACKAGE  
12-LEAD (4mm × 3mm) PLASTIC DFN  
FE PACKAGE  
16-LEAD PLASTIC TSSOP  
3024EFE  
3024  
TJMAX = 150°C, θJA = 40°C/ W, θJC = 10°C/ W  
TJMAX = 150°C, θJA = 38°C/ W, θJC = 8°C/ W  
EXPOSED PAD (PIN 13) IS GND  
MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 17) IS GND  
MUST BE SOLDERED TO PCB  
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
(Notes 3, 11)  
Output 2, I  
Output 1, I  
= 100mA  
= 500mA  
1.8  
1.8  
2.3  
2.3  
V
V
LOAD  
LOAD  
ADJ1, ADJ2 Pin Voltage  
(Notes 3, 4)  
V
= 2V, I  
= 1mA  
IN  
1.205  
1.190  
1.190  
1.220  
1.220  
1.220  
1.235  
1.250  
1.250  
V
V
V
IN  
LOAD  
Output 2, 2.3V < V < 20V, 1mA < I  
Output 1, 2.3V < V < 20V, 1mA < I  
< 100mA  
< 500mA  
LOAD  
LOAD  
IN  
Line Regulation (Note 3)  
Load Regulation (Note 3)  
V = 2V to 20V, I  
= 1mA  
1
1
10  
mV  
IN  
LOAD  
Output 2, V = 2.3V, I  
= 1mA to 100mA  
= 1mA to 100mA  
12  
25  
mV  
mV  
IN  
LOAD  
LOAD  
V
= 2.3V, I  
IN  
Output 1, V = 2.3V, I  
= 1mA to 500mA  
= 1mA to 500mA  
1
12  
25  
mV  
mV  
IN  
LOAD  
LOAD  
V
= 2.3V, I  
IN  
3024f  
2
LT3024  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Dropout Voltage  
(Output 2)  
I
I
= 1mA  
= 1mA  
0.10  
0.15  
0.19  
V
V
LOAD  
LOAD  
V
= V  
IN  
OUT(NOMINAL)  
I
I
= 10mA  
= 10mA  
0.17  
0.24  
0.30  
0.13  
0.17  
0.20  
0.30  
0.22  
0.29  
V
V
LOAD  
LOAD  
(Notes 5, 6, 11)  
I
I
= 50mA  
= 50mA  
0.31  
0.40  
V
V
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
0.35  
0.45  
V
V
LOAD  
LOAD  
Dropout Voltage  
(Output 1)  
I
I
= 10mA  
= 10mA  
0.19  
0.25  
V
V
LOAD  
LOAD  
V
= V  
IN  
OUT(NOMINAL)  
I
I
= 50mA  
= 50mA  
0.22  
0.32  
V
V
LOAD  
LOAD  
(Notes 5, 6, 11)  
I
I
= 100mA  
= 100mA  
0.34  
0.44  
V
V
LOAD  
LOAD  
I
I
= 500mA  
= 500mA  
0.35  
0.45  
V
V
LOAD  
LOAD  
GND Pin Current  
(Output 2)  
I
I
I
I
I
= 0mA  
20  
55  
230  
1
2.2  
45  
90  
400  
2
µA  
µA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 1mA  
V
= V  
= 10mA  
= 50mA  
= 100mA  
µA  
IN  
OUT(NOMINAL)  
(Notes 5, 7)  
mA  
mA  
4
GND Pin Current  
(Output 1)  
I
I
I
I
I
I
= 0mA  
30  
65  
1.1  
2
75  
120  
1.6  
3
µA  
µA  
mA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 1mA  
V
= V  
= 50mA  
= 100mA  
= 250mA  
= 500mA  
IN  
OUT(NOMINAL)  
(Notes 5, 7)  
5
8
11  
16  
Output Voltage Noise  
C
= 10µF, C  
= 0.01µF, I  
= Full Current,  
20  
µV  
RMS  
OUT  
BYP  
LOAD  
BW = 10Hz to 100kHz  
ADJ Pin Bias Current  
Shutdown Threshold  
ADJ1, ADJ2 (Notes 3, 8)  
30  
100  
1.4  
nA  
V
V
= Off to On  
= On to Off  
0.80  
0.65  
V
V
OUT  
OUT  
0.25  
55  
SHDN1/SHDN2 Pin Current  
(Note 9)  
V
V
, V  
= 0V  
= 20V  
0
1
0.5  
3.0  
µA  
µA  
SHDN1 SHDN2  
, V  
SHDN1 SHDN2  
Quiescent Current in Shutdown  
Ripple Rejection  
V
V
= 6V, V  
= 0V, V = 0V  
SHDN2  
0.01  
65  
0.1  
µA  
IN  
SHDN1  
= 2.72V (Avg), V  
= Full Current  
= 0.5V , f = 120Hz,  
P-P RIPPLE  
dB  
IN  
RIPPLE  
I
LOAD  
Current Limit  
Output 2, V = 7V, V  
= 0V  
OUT  
200  
700  
mA  
mA  
IN  
OUT  
= 2.3V, V  
V
= 0.1V  
110  
520  
IN  
Output 1, V = 7V, V  
= 0V  
mA  
mA  
IN  
OUT  
= 2.3V, V  
V
= 0.1V  
IN  
OUT  
Input Reverse Leakage Current  
V
V
= 20V, V  
= 0V  
1
mA  
IN  
OUT  
Reverse Output Current  
(Notes 3,10)  
= 1.22V, V < 1.22V  
5
10  
µA  
OUT  
IN  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
T = 25°C. Performance at 40°C and 125°C is assured by design,  
characterization and correlation with statistical process controls.  
A
Note 2: The LT3024 regulator is tested and specified under pulse load  
Note 3: The LT3024 is tested and specified for these conditions with the  
ADJ1/ADJ2 pin connected to the corresponding OUT1/OUT2 pin.  
conditions such that T T . The LT3024 is 100% production tested at  
J
A
3024f  
3
LT3024  
ELECTRICAL CHARACTERISTICS  
Note 4: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply for  
all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
or at the minimum input voltage specification. This is the worst-case GND  
pin current. The GND pin current will decrease slightly at higher input  
voltages. Total GND pin current is equal to the sum of GND pin currents  
from Output 1 and Output 2.  
Note 8: ADJ1 and ADJ2 pin bias current flows into the pin.  
Note 9: SHDN1 and SHDN2 pin current flows into the pin.  
Note 5: To satisfy requirements for minimum input voltage, the LT3024 is  
tested and specified for these conditions with an external resistor divider  
(two 250k resistors) for an output voltage of 2.44V. The external resistor  
divider will add a 5µA DC load on the output.  
Note 6: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
Note 10: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 11: For the LT3024 dropout voltage will be limited by the minimum  
input voltage specification under some output voltage/load conditions. See  
the curve of Minimum Input Voltage in the Typical Performance  
Characteristics.  
output voltage will be equal to: V – V  
.
IN  
DROPOUT  
Note 7: GND pin current is tested with V = 2.44V and a current source  
IN  
load. This means the device is tested while operating in its dropout region  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output 2  
Typical Dropout Voltage  
Output 2  
Guaranteed Dropout Voltage  
Output 2 Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
T
125°C  
25°C  
J
T = 125°C  
J
I
= 100mA  
L
T
J
I
= 50mA  
= 10mA  
L
T = 25°C  
J
I
L
I
= 1mA  
L
0
–50  
0
0
0
25  
50  
75 100 125  
–25  
40  
40  
50 60 70 80 90 100  
0
10 20 30  
50 60 70 80 90 100  
0
10 20 30  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3024 G03  
3024 G01  
3024 G02  
Output 1  
Typical Dropout Voltage  
Output 1  
Guaranteed Dropout Voltage  
Output 1 Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
I
= 500mA  
L
I
= 250mA  
T = 125°C  
L
J
T
125°C  
25°C  
J
I
= 100mA  
L
I
= 50mA  
L
T
J
T = 25°C  
J
I
= 1mA  
L
I
L
= 10mA  
0
–50  
0
0
0
25  
50  
75 100 125  
–25  
200  
200  
250 300 350 400 450 500  
0
50 100 150  
250 300 350 400 450 500  
0
50 100 150  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3024 G06  
3024 G04  
3024 G05  
3024f  
4
LT3024  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quiescent Current (Per Output)  
ADJ1 or ADJ2 Pin Voltage  
Quiescent Current (Per Output)  
40  
35  
30  
25  
20  
15  
10  
5
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T = 25°C  
L
I = 1mA  
L
J
R
= 250k  
V
= V  
IN  
SHDN  
V
= V  
IN  
SHDN  
V
= 6V  
= 250k, I = 5µA  
L
IN  
L
R
V
SHDN  
= 0V  
0
0
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
2
4
6
10 12 14  
18  
20  
–50  
100  
–50  
100  
0
8
16  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3024 G07  
3024 G08  
3024 G09  
Output 2  
GND Pin Current vs ILOAD  
Output 1 GND Pin Current  
Output 2 GND Pin Current  
1200  
1000  
800  
600  
400  
200  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
V
IN  
= V  
+ 1V  
OUT(NOMINAL)  
T = 25°C  
J
*FOR V  
= 1.22V  
OUT  
R
L
= 24.4Ω  
L
R
L
= 12.2Ω  
L
I
= 50mA*  
I
= 100mA*  
T = 25°C  
J
V
= V  
IN  
SHDN  
OUT  
*FOR V  
= 1.22V  
R
L
= 24.4Ω  
L
I
= 50mA*  
R
L
= 122Ω  
L
I
= 10mA*  
= 1.22k  
L
R
L
= 1.22k  
L
R
L
= 122Ω  
L
R
I
I
= 1mA*  
I
= 10mA*  
= 1mA*  
L
4
40  
4
0
1
2
3
5
6
7
8
9
10  
0
10 20 30  
50 60 70 80 90 100  
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
3024 G10  
3024 G11  
3024 G12  
Output 1  
GND Pin Current vs ILOAD  
SHDN1 or SHDN2 Pin Threshold  
(On-to-Off)  
Output 1 GND Pin Current  
12  
10  
8
12  
10  
8
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
IN  
= V  
+ 1V  
I
= 1mA  
T = 25°C  
OUT(NOMINAL)  
L
J
V
= V  
IN  
SHDN  
OUT  
*FOR V  
= 1.22V  
R
L
= 2.44Ω  
L
I
= 500mA*  
R
L
= 4.07Ω  
L
6
6
I
= 300mA*  
4
4
R
L
= 12.2Ω  
L
I
= 100mA*  
2
2
0
0
4
0
50 100 150 200  
300 350 400 450 500  
0
1
2
3
5
6
7
8
9
10  
250  
–50  
0
25  
50  
75  
125  
–25  
100  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
3024 G13  
3024 G14  
3024 G15  
3024f  
5
LT3024  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
SHDN1 or SHDN2 Pin Threshold  
(Off-to-On)  
SHDN1 or SHDN2 Pin Input  
Current  
SHDN1 or SHDN2 Pin Input  
Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
SHDN  
= 20V  
I
L
= FULL  
I
L
= 1mA  
–50  
0
25  
50  
75 100 125  
0
1
2
3
4
6
7
8
9
10  
–50  
–25  
0
25  
50  
75 100 125  
–25  
5
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
3024 G16  
3024 G17  
3024 G18  
ADJ1 or ADJ2 Pin Bias Current  
Output 2 Current Limit  
Output 2 Current Limit  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
V
V
= 7V  
OUT  
V
= 0V  
IN  
OUT  
J
= 0V  
T = 25°C  
0
0
–50  
0
25  
50  
75 100 125  
0
2
3
4
5
6
7
–50  
–25  
0
25  
50  
75 100 125  
–25  
1
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
3024 G19  
3024 G20  
3024 G21  
Reverse Output Current  
Output 1 Current Limit  
Output 1 Current Limit  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 0V  
V = 7  
IN  
OUT  
T
V
V
= 25°C  
OUT  
A
V
= 0V  
= 0V  
IN  
OUT  
= V  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
0
2
3
4
5
6
7
1
4
0
1
2
3
5
6
7
8
9
10  
–50  
0
25  
50  
75 100 125  
–25  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
3024 G22  
3024 G24  
3024 G23  
3024f  
6
LT3024  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output 2  
Input Ripple Rejection  
Output 2  
Input Ripple Rejection  
Reverse Output Current  
80  
70  
60  
50  
40  
30  
20  
10  
0
18  
15  
12  
9
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 0V  
OUT  
IN  
= V  
= 1.22V  
ADJ  
C
= 0.01µF  
BYP  
C
= 1000pF  
BYP  
C
= 100pF  
BYP  
C
= 10µF  
OUT  
6
C
= 1µF  
OUT  
I
V
C
= 100mA  
I
V
C
= 100mA  
3
L
L
IN  
OUT  
= 2.3V + 50mV  
RIPPLE  
10  
= 2.3V + 50mV  
RIPPLE  
RMS  
IN  
BYP  
RMS  
= 0  
= 10µF  
0
50  
TEMPERATURE (°C)  
100 125  
0.01  
0.1  
1
100  
1000  
–50 –25  
0
25  
75  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
3024 G26  
3024 G27  
3024 G25  
Output 2  
Input Ripple Rejection  
Output 1  
Input Ripple Rejection  
Output 1  
Input Ripple Rejection  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
C
= 0.01µF  
BYP  
C
= 10µF  
OUT  
C
= 1000pF  
BYP  
C
= 100pF  
BYP  
I
= 500mA  
V
= V  
+
I
L
IN  
= 500mA  
= V  
L
V
IN  
OUT (NOMINAL)  
C
= 4.7µF  
= V +  
OUT  
1V + 0.5V RIPPLE  
P-P  
V
+
IN  
OUT(NOMINAL)  
OUT(NOMINAL)  
1V + 50mV  
C
RIPPLE  
1k  
AT f = 120Hz  
1V + 50mV  
RMS  
RIPPLE  
RMS  
= 10µF  
I
= 50mA  
C
BYP  
= 0  
OUT  
L
10  
100  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
–25  
0
25  
50  
75  
125  
–50  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
3024 G30  
3024 G29  
3024 G28  
Output 1 Ripple Rejection  
Output 2 Minimum Input Voltage  
Output 1 Minimum Input Voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
68  
66  
64  
62  
60  
58  
56  
54  
52  
V
OUT  
= 1.22V  
V
OUT  
= 1.22V  
I
L
= 500mA  
I
L
= 100mA  
I
= 1mA  
L
I
L
= 50mA  
V
= V  
+
IN  
OUT (NOMINAL)  
1V + 0.5V RIPPLE  
P-P  
AT f = 120Hz  
I
= 500mA  
L
–50  
0
25  
50  
75 100 125  
–25  
–25  
0
25  
50  
75  
125  
–50  
0
25  
50  
75  
125  
–50  
100  
100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3024 G33  
3024 G31  
3024 G32  
3024f  
7
LT3024  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Channel-to-Channel Isolation  
Channel-to-Channel Isolation  
Output 2 Load Regulation  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
100  
90  
CHANNEL 2  
80  
V
OUT1  
20mV/DIV  
70  
CHANNEL 1  
60  
50  
V
OUT2  
20mV/DIV  
40  
30  
20  
10  
0
GIVEN CHANNEL IS TESTED  
WITH 50mVRMS SIGNAL ON  
OPPOSING CHANNEL, BOTH  
CHANNELS DELIVERING FULL  
CURRENT  
C
OUT1 = 22µF  
COUT2 = 10µF  
BYP1 = CBYP2 = 0.01µF  
50µs/DIV  
3024 G50  
= 1mA TO 100mA  
IL  
C
IL1 = 50mA TO 500mA  
IL2 = 10mA TO 100mA  
–50 –25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
100k  
1M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
V
IN = 6V, VOUT1 = VOUT2 = 5V  
3024 G34  
3024 G35  
Output 1 Load Regulation  
Output Noise Spectral Density  
Output Noise Spectral Density  
10  
1
10  
1
5
0
C
L
= 10µF  
OUT  
C
C
L
= 10µF  
I = 1mA TO 500mA  
L
OUT  
BYP  
I
= FULL LOAD  
= 0  
I
= FULL LOAD  
V
OUT  
SET FOR 5V  
C
BYP  
= 1000pF  
V
OUT  
SET FOR 5V  
C
BYP  
= 100pF  
V
OUT  
=V  
ADJ  
V
OUT  
=V  
ADJ  
0.1  
0.01  
0.1  
0.01  
–5  
C
BYP  
= 0.01pF  
–10  
–50  
–25  
0
25  
50  
75  
125  
0.01  
0.1  
1
10  
100  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
3023 G38  
3024 G37  
3024 G36  
Output 2  
RMS Output Noise vs Load  
Current (10Hz to 100kHz)  
Output 1  
RMS Output Noise vs Load  
Current (10Hz to 100kHz)  
RMS Output Noise  
vs Bypass Capacitor  
160  
140  
120  
100  
80  
140  
120  
100  
80  
160  
140  
120  
100  
80  
C = 10µF  
OUT  
C
I
BW  
= 10µF  
V
= 5V  
OUT  
L
C
= 10µF  
OUT  
OUT  
C
= 0µF  
= FULL LOAD  
BYP  
BYP  
C
= 0  
BYP  
BYP  
C
= 0.01µF  
f
= 10Hz TO 100kHz  
C
= 0.01µF  
CHANNEL 2  
V
SET FOR 5V  
OUT  
V
OUT  
SET FOR 5V  
CHANNEL 1  
= 1.22V  
V
OUT  
60  
V
=V  
ADJ  
OUT  
60  
60  
CHANNEL 2  
V
OUT  
= V  
ADJ  
40  
40  
40  
CHANNEL 1  
V
SET FOR 5V  
V
SET FOR 5V  
= V  
OUT  
OUT  
V
20  
20  
20  
V
=V  
ADJ  
OUT  
10  
OUT  
ADJ  
0
0.01  
0
0
0.01  
0.1  
1
100  
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
C
(pF)  
BYP  
3024 G40  
3024 G39  
3024 G41  
3024f  
8
LT3024  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
10Hz to 100kHz Output Noise  
CBYP = 0pF  
10Hz to 100kHz Output Noise  
CBYP = 100pF  
10Hz to 100kHz Output Noise  
CBYP = 1000pF  
VOUT  
100µV/DIV  
VOUT  
100µV/DIV  
VOUT  
100µV/DIV  
COUT = 10µF  
1ms/DIV  
3024 G42  
COUT = 10µF  
1ms/DIV  
3024 G43  
COUT = 10µF  
1ms/DIV  
3024 G44  
IL = 100mA  
IL = 100mA  
IL = 100mA  
VOUT SET FOR 5V  
VOUT SET FOR 5V  
VOUT SET FOR 5V  
10Hz to 100kHz Output Noise  
CBYP = 0.01µF  
Output 2 Transient Response  
CBYP = 0.01µF  
Output 2 Transient Response  
CBYP = 0pF  
V
C
C
= 6V, V  
SET FOR 5V  
OUT  
V
C
C
= 6V, V  
SET FOR 5V  
OUT  
IN  
IN  
IN  
IN  
0.2  
0.1  
0.04  
0.02  
0
= 10µF  
= 10µF  
= 10µF  
= 10µF  
OUT  
OUT  
0
VOUT  
100µV/DIV  
–0.1  
–0.2  
–0.02  
–0.04  
100  
50  
0
100  
50  
0
C
OUT = 10µF  
1ms/DIV  
3024 G45  
IL = 100mA  
VOUT SET FOR 5V  
800  
TIME (µs)  
80  
100 120 140 160 180 200  
TIME (µs)  
0
400  
1200  
1600  
2000  
0
20 40 60  
3024 G46  
3024 G47  
Output 1 Transient Response  
CBYP = 0pF  
Output 1 Transient Response  
CBYP = 0.01µF  
V
C
C
= 6V, V  
SET FOR 5V  
OUT  
V
C
C
= 6V, V  
SET FOR 5V  
OUT  
IN  
IN  
IN  
IN  
0.4  
0.2  
0
0.10  
0.05  
0
= 10µF  
= 10µF  
= 10µF  
= 10µF  
OUT  
OUT  
–0.2  
–0.4  
–0.05  
–0.10  
600  
400  
200  
0
600  
400  
200  
0
400  
TIME (µs)  
40  
0
200  
600  
800  
1000  
0
10 20 30  
50 60 70 80 90 100  
TIME (µs)  
3024 G48  
3024 G49  
3024f  
9
LT3024  
U
U
U
(DFN Package)/(TSSOP Package)  
PI FU CTIO S  
GND (Pins 4, 13)/(Pins 1, 5, 8, 9, 16, 17): Ground. The  
Exposed Pad must be soldered to PCB ground for opti-  
mum thermal performance.  
SHDN1/SHDN2 (Pins 11/8)/(Pins 14/11): Shutdown. The  
SHDN1/SHDN2 pins are used to put the corresponding  
outputoftheLT3024regulatorintoalowpowershutdown  
state. The output will be off when the pin is pulled low. The  
SHDN1/SHDN2 pins can be driven either by 5V logic or  
open-collector logic with pull-up resistors. The pull-up  
resistors are required to supply the pull-up current of the  
open-collector gates, normally several microamperes,  
and the SHDN1/SHDN2 pin current, typically 1µA. If  
unused, the pin must be connected to VIN. The device will  
not function if the SHDN1/SHDN2 pins are not connected.  
ADJ1/ADJ2 (Pins 12/7)/(Pins 15/10): Adjust Pin. These  
are the input to the error amplifiers. These pins are  
internally clamped to ±7V. They have a bias current of  
30nAwhichflowsintothepin(seecurveofADJ1/ADJ2Pin  
Bias Current vs Temperature in the Typical Performance  
Characteristics section). The ADJ1 and ADJ2 pin voltage  
is 1.22V referenced to ground and the output voltage  
range is 1.22V to 20V.  
IN (Pins 9, 10)/(Pins 12, 13): Input. Power is supplied to  
the device through the IN pin. A bypass capacitor is  
required on this pin if the device is more than six inches  
away from the main input filter capacitor. In general, the  
output impedance of a battery rises with frequency, so it  
is advisable to include a bypass capacitor in battery-  
poweredcircuits. Abypasscapacitorintherangeof1µFto  
10µF is sufficient. The LT3024 regulator is designed to  
withstand reverse voltages on the IN pin with respect to  
ground and the OUT pin. In the case of a reverse input,  
which can happen if a battery is plugged in backwards, the  
device will act as if there is a diode in series with its input.  
There will be no reverse current flow into the regulator and  
no reverse voltage will appear at the load. The device will  
protect both itself and the load.  
BYP1/BYP2(Pins1/6)/(Pins2/7):Bypass.TheBYP1/BYP2  
pins are used to bypass the reference of the LT3024  
regulator to achieve low noise performance from the  
regulator. The BYP1/BYP2 pins are clamped internally to  
±0.6V (one VBE) from ground. A small capacitor from the  
corresponding output to this pin will bypass the reference  
to lower the output voltage noise. A maximum value of  
0.01µF can be used for reducing output voltage noise to a  
typical 20µVRMS over a 10Hz to 100kHz bandwidth. If not  
used, this pin must be left unconnected.  
OUT1/OUT2 (Pins 2, 3/5)/(Pins 3, 4/6): Output. The  
outputs supply power to the loads. A minimum output  
capacitor of 1µF is required to prevent oscillations on  
Output 2; Output 1 requires a minimum of 3.3µF. Larger  
output capacitors will be required for applications with  
large transient loads to limit peak voltage transients. See  
theApplicationsInformationsectionformoreinformation  
on output capacitance and reverse output characteristics.  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT3024 is a dual 100mA/500mA low dropout regula-  
torwithmicropowerquiescentcurrentandshutdown. The  
device is capable of supplying 100mA from Output 2 at a  
dropout voltage of 300mV. Output 1 delivers 500mA at a  
dropout voltage of 300mV. The two regulators have com-  
mon VIN and GND pins and are thermally coupled, how-  
ever, the two outputs of the LT3024 operate indepen-  
dently. They can be shut down independently and a fault  
condition on one output will not affect the other output  
electrically.Outputvoltagenoisecanbeloweredto20µVRMS  
over a 10Hz to 100kHz bandwidth with the addition of a  
0.01µFreferencebypasscapacitor. Additionally, therefer-  
ence bypass capacitor will improve transient response of  
the regulator, lowering the settling time for transient load  
conditions.Thelowoperatingquiescentcurrent(30µAper  
output) drops to less than 1µA in shutdown. In addition to  
3024f  
10  
LT3024  
W U U  
APPLICATIO S I FOR ATIO  
U
the low quiescent current, the LT3024 regulator incorpo-  
rates several protection features which make it ideal for  
use in battery-powered systems. The device is protected  
against both reverse input and reverse output voltages. In  
battery backup applications where the output can be held  
up by a backup battery when the input is pulled to ground,  
the LT3024 acts like it has a diode in series with its output  
and prevents reverse current flow. Additionally, in dual  
supplyapplicationswheretheregulatorloadisreturnedto  
a negative supply, the output can be pulled below ground  
by as much as 20V and still allow the device to start and  
operate.  
to 1.22V: VOUT/1.22V. For example, load regulation on  
Output 2 for an output current change of 1mA to 100mA  
is –1mV typical at VOUT = 1.22V. At VOUT = 12V, load  
regulation is:  
(12V/1.22V)(–1mV) = 9.8mV  
Bypass Capacitance and Low Noise Performance  
The LT3024 regulator may be used with the addition of a  
bypass capacitor from VOUT to the corresponding BYP pin  
to lower output voltage noise. A good quality low leakage  
capacitor is recommended. This capacitor will bypass the  
referenceoftheregulator,providingalowfrequencynoise  
pole. The noise pole provided by this bypass capacitor will  
lower the output voltage noise to as low as 20µVRMS with  
the addition of a 0.01µF bypass capacitor. Using a bypass  
capacitor has the added benefit of improving transient  
response. With no bypass capacitor and a 10µF output  
capacitor, a 10mA to 100mA load step on Output 2 will  
settletowithin1%ofitsfinalvalueinlessthan100µs.With  
the addition of a 0.01µF bypass capacitor, the output will  
staywithin1%forthesameloadstep.Bothoutputsexhibit  
this improvement in transient response (see Transient  
Reponse in Typical Performance Characteristics section).  
However, regulator start-up time is inversely proportional  
to the size of the bypass capacitor, slowing to 15ms with  
a 0.01µF bypass capacitor and 10µF output capacitor.  
Adjustable Operation  
The LT3024 has an output voltage range of 1.22V to 20V.  
The output voltage is set by the ratio of two external resis-  
tors as shown in Figure 1. The device servos the output to  
maintain the corresponding ADJ pin voltage at 1.22V ref-  
erenced to ground. The current in R1 is then equal to  
1.22V/R1andthecurrentinR2isthecurrentinR1plusthe  
ADJ pin bias current. The ADJ pin bias current, 30nA at  
25°C, flows through R2 into the ADJ pin. The output volt-  
age can be calculated using the formula in Figure 1. The  
value of R1 should be no greater than 250k to minimize  
errors in the output voltage caused by the ADJ pin bias  
current. Note that in shutdown the output is turned off and  
the divider current will be zero. Curves of ADJ Pin Voltage  
vs Temperature and ADJ Pin Bias Current vs Temperature  
appear in the Typical Performance Characteristics.  
Output Capacitance and Transient Response  
TheLT3024regulatorisdesignedtobestablewithawide  
rangeofoutputcapacitors. TheESRoftheoutputcapaci-  
tor affects stability, most notably with small capacitors.  
A minimum output capacitor of 1µF with an ESR of 3or  
lessisrecommendedforOutput2topreventoscillations.  
A minimum output capacitor of 3.3µF with an ESR of 3Ω  
or less is recommended for Output 1. The LT3024 is a  
micropower device and output transient response will be  
a function of output capacitance. Larger values of output  
capacitance decrease the peak deviations and provide  
improved transient response for larger load current  
changes. Bypass capacitors, used to decouple individual  
components powered by the LT3024, will increase the  
effective output capacitor value. With larger capacitors  
The device is tested and specified with the ADJ pin tied to  
thecorrespondingOUTpinforanoutputvoltageof1.22V.  
Specifications for output voltages greater than 1.22V will  
be proportional to the ratio of the desired output voltage  
IN OUT1/OUT2  
LT3024  
V
OUT  
R2  
R1  
V
= 1.22V 1+  
= 1.22V  
+ I  
(
R2  
+
)(  
)
OUT  
ADJ  
V
IN  
R2  
V
ADJ  
ADJ1/ADJ2  
GND  
I
= 30nA AT 25°C  
ADJ  
R1  
OUTPUT RANGE = 1.22V TO 20V  
3024 F01  
Figure 1. Adjustable Operation  
3024f  
11  
LT3024  
W U U  
U
APPLICATIO S I FOR ATIO  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
in a small package, but exhibit strong voltage and tem-  
perature coefficients as shown in Figures 4 and 5. When  
used with a 5V regulator, a 10µF Y5V capacitor can exhibit  
an effective value as low as 1µF to 2µF over the operating  
temperature range. The X5R and X7R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X7R type has better stability  
across temperature, while the X5R is less expensive and  
is available in higher values.  
used to bypass the reference (for low noise operation),  
larger values of output capacitors are needed. For 100pF  
of bypass capacitance on Output 2, 2.2µF of output  
capacitor is recommended. With a 330pF bypass capaci-  
tor or larger on this output, a 3.3µF output capacitor is  
recommended. For Output 1, 4.7µF of output capacitor is  
recommended for 100pF of bypass capacitance. With  
1000pForlargerbypasscapacitoronthisoutput, a6.8µF  
output capacitor is recommended. The shaded region of  
Figures2and3definetheregionsoverwhichtheLT3024  
regulator is stable. The minimum ESR needed is defined  
by the amount of bypass capacitance used, while the  
maximum ESR is 3.  
4.0  
3.5  
4.0  
3.5  
3.0  
3.0  
STABLE REGION  
2.5  
STABLE REGION  
2.5  
2.0  
2.0  
C
BYP  
= 0  
C
= 0  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
BYP  
C
= 100pF  
C
BYP  
= 100pF  
BYP  
C
BYP  
= 330pF  
C
= 330pF  
BYP  
C
BYP  
1000pF  
C
> 3300pF  
BYP  
1
3
6
9 10  
1
3
6 9 10  
7 8  
2
4
5
7 8  
2
4
5
OUTPUT CAPACITANCE (µF)  
OUTPUT CAPACITANCE (µF)  
3024 F02  
3024 F03  
Figure 2. Output 2 Stability  
Figure 3. Output 1 Stability  
40  
20  
20  
0
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
X5R  
X5R  
0
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
Y5V  
Y5V  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
50  
TEMPERATURE (°C)  
100 125  
0
8
12 14  
–50 –25  
0
25  
75  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3024 F04  
3024 F05  
Figure 5. Ceramic Capacitor Temperature Characteristics  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
3024f  
12  
LT3024  
W U U  
APPLICATIO S I FOR ATIO  
U
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or  
microphone works. For a ceramic capacitor the stress  
can be induced by vibrations in the system or thermal  
transients. The resulting voltages produced can cause  
appreciable amounts of noise, especially when a ceramic  
capacitor is used for noise bypassing. A ceramic capaci-  
tor produced Figure 6’s trace in response to light tapping  
from a pencil. Similar vibration induced behavior can  
masquerade as increased output voltage noise.  
For continuous normal conditions, the maximum junction  
temperature rating of 125°C must not be exceeded. It is  
important to give careful consideration to all sources of  
thermal resistance from junction to ambient. Additional  
heat sources mounted nearby must also be considered.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
COUT = 10µF  
C
BYP = 0.01µF  
ILOAD = 100mA  
Table 1. FE Package, 16-Lead TSSOP  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
2500mm2  
1000mm2  
225mm2  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
VOUT  
500µV/DIV  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
38°C/W  
43°C/W  
48°C/W  
60°C/W  
100mm2  
*Device is mounted on topside.  
100ms/DIV  
3024 F05  
Table 2. UE Package, 12-Lead DFN  
COPPER AREA  
Figure 6. Noise Resulting from Tapping on a Ceramic Capacitor  
THERMAL RESISTANCE  
TOPSIDE*  
2500mm2  
1000mm2  
225mm2  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
2500mm2  
40°C/W  
45°C/W  
50°C/W  
62°C/W  
Thermal Considerations  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components for each output:  
100mm2  
*Device is mounted on topside.  
1. Output current multiplied by the input/output voltage  
differential: (IOUT)(VIN – VOUT), and  
The thermal resistance junction-to-case (θJC), measured  
at the Exposed Pad on the back of the die is 10°C/W for the  
DFN package and 8°C/W for the TSSOP package.  
2. GND pin current multiplied by the input voltage:  
(IGND)(VIN).  
Calculating Junction Temperature  
The ground pin current can be found by examining the  
GND Pin Current curves in the Typical Performance Char-  
acteristics section. Power dissipation will be equal to the  
sum of the two components listed above.  
Example: Given Output 1 set for an output voltage of 3.3V,  
Output 2 set for an output voltage of 2.5V, an input voltage  
range of 3.8V to 5V, an output current range of 0mA to  
500mA for Output 1, an output current range of 0mA to  
100mA for Output 2 and a maximum ambient temperature  
of 50°C, what will the maximum junction temperature be?  
The LT3024 regulator has internal thermal limiting de-  
signed to protect the device during overload conditions.  
3024f  
13  
LT3024  
U
W U U  
APPLICATIONS INFORMATION  
The power dissipated by each output will be equal to:  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
I
OUT(MAX)(VIN(MAX) – VOUT) + IGND(VIN(MAX))  
Where for Output 1:  
IOUT(MAX) = 500mA  
The input of the device will withstand reverse voltages of  
20V.Currentflowintothedevicewillbelimitedtolessthan  
1mA (typically less than 100µA) and no negative voltage  
will appear at the output. The device will protect both itself  
and the load. This provides protection against batteries  
which can be plugged in backward.  
V
IN(MAX) = 5V  
IGND at (IOUT = 500mA, VIN = 5V) = 9mA  
For Output 2:  
I
OUT(MAX) = 100mA  
VIN(MAX) = 5V  
The output of the LT3024 can be pulled below ground  
withoutdamagingthedevice.Iftheinputisleftopencircuit  
or grounded, the output can be pulled below ground by  
20V. The output will act like an open circuit; no current will  
flow out of the pin. If the input is powered by a voltage  
source, the output will source the short-circuit current of  
the device and will protect itself by thermal limiting. In this  
case, grounding the SHDN1/SHDN2 pins will turn off the  
device and stop the output from sourcing the short-circuit  
current.  
IGND at (IOUT = 100mA, VIN = 5V) = 2mA  
So for Output 1:  
P = 500mA (5V – 3.3V) + 9mA (5V) = 0.90W  
For Output 2:  
P = 100mA (5V – 2.5V) + 2mA (5V) = 0.26W  
The thermal resistance will be in the range of 35°C/W to  
55°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
The ADJ pins can be pulled above or below ground by as  
muchas7Vwithoutdamagingthedevice.Iftheinputisleft  
opencircuitorgrounded, theADJpinswillactlikeanopen  
circuit when pulled below ground and like a large resistor  
(typically 100k) in series with a diode when pulled above  
ground.  
(0.90W + 0.26W) 50°C/W = 57.8°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
TJMAX = 50°C + 57.8°C = 107.8°C  
In situations where the ADJ pins are connected to a  
resistor divider that would pull the pins above their 7V  
clampvoltageiftheoutputispulledhigh, theADJpininput  
current must be limited to less than 5mA. For example, a  
resistor divider is used to provide a regulated 1.5V output  
fromthe1.22Vreferencewhentheoutputisforcedto20V.  
The top resistor of the resistor divider must be chosen to  
limitthecurrentintotheADJpintolessthan5mAwhenthe  
ADJ pin is at 7V. The 13V difference between output and  
ADJpindividedbythe5mAmaximumcurrentintotheADJ  
pin yields a minimum top resistor value of 2.6k.  
Protection Features  
The LT3024 regulator incorporates several protection  
features which make it ideal for use in battery-powered  
circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
limiting and thermal limiting, the device is protected  
against reverse input voltages, reverse output voltages  
and reverse voltages from output to input. The two regu-  
lators have common VIN and GND pins and are thermally  
coupled, however, the two outputs of the LT3024 operate  
independently. They can be shut down independently and  
a fault condition on one output will not affect the other  
output electrically.  
3024f  
14  
LT3024  
U
W U U  
APPLICATIONS INFORMATION  
100  
90  
80  
760  
60  
50  
40  
30  
20  
10  
0
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulledtosomeintermediatevoltageorisleftopen  
circuit. Current flow back into the output will follow the  
curve shown in Figure 7.  
T
V
V
= 25°C  
A
= 0V  
IN  
OUT  
= V  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
When the IN pin of the LT3024 is forced below either OUT  
pinoreitherOUTpinispulledabovetheINpin,inputcurrent  
for the corresponding regulator will typically drop to less  
than 2µA. This can happen if the input of the device is  
connectedtoadischarged(lowvoltage)batteryandtheout-  
put is held up by either a backup battery or a second regu-  
lator circuit. The state of the SHDN1/SHDN2 pin will have  
no effect on the reverse output current when the output is  
pulled above the input.  
4
0
1
2
3
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
3024 F07  
Figure 7. Reverse Output Current  
U
PACKAGE DESCRIPTIO  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 ±0.10  
4.50 ±0.10  
2.94  
(.116)  
SEE NOTE 4  
2.94  
(.116)  
6.40  
BSC  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.45 – 0.75  
0.09 – 0.20  
0.05 – 0.15  
(.018 – .030)  
(.0036 – .0079)  
(.002 – .006)  
0.195 – 0.30  
(.0077 – .0118)  
FE16 (BB) TSSOP 0203  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3024f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT3024  
U
PACKAGE DESCRIPTIO  
DE/UE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695)  
0.38 ± 0.10  
4.00 ±0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
R = 0.20  
TYP  
0.65 ±0.05  
3.50 ±0.05  
2.20 ±0.05 (2 SIDES)  
1.70 ±0.05  
3.00 ±0.10 1.70 ± 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1  
NOTCH  
PACKAGE  
OUTLINE  
(UE12/DE12) DFN 0603  
6
0.25 ± 0.05  
1
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50  
BSC  
0.50  
BSC  
3.30 ±0.10  
(2 SIDES)  
3.30 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1129  
700mA, Micropower, LDO  
V : 4.2V to 30V, V  
= 3.75V, I = 50µA, I < 16µA,  
IN  
OUT(MIN) Q SD  
DD, SOT-223, S8,TO220, TSSOP20 Packages  
Guaranteed Voltage Tolerance and Line/Load Regulation  
V : –20V to –4.3V, V = –3.8V, I = 45µA, I < 10µA,  
LT1175  
500mA, Micropower Negative LDO  
IN  
OUT(MIN)  
Q
SD  
DD,SOT-223, S8 Packages  
Accurate Programmable Current Limit, Remote Sense  
V : –35V to –4.2V, V = –2.40V, I = 2.5mA, I < 1µA, TO220-5 Package  
LT1185  
LT1761  
LT1762  
LT1763  
3A, Negative LDO  
IN  
OUT(MIN)  
Q
SD  
100mA, Low Noise Micropower, LDO  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
Low Noise < 20µV  
IN  
Stable with 1µF Ceramic Capacitors,  
OUT(MIN)  
RMS,  
V : 1.8V to 20V, V  
= 1.22V, I = 20µA, I < 1µA, ThinSOT Package  
Q SD  
Low Noise < 20µV  
V : 1.8V to 20V, V  
RMS,  
OUT(MIN)  
RMS,  
= 1.22V, I = 25µA, I < 1µA, MS8 Package  
IN  
Q
SD  
Low Noise < 20µV  
V : 1.8V to 20V, V  
= 1.22V, I = 30µA, I < 1µA, S8 Package  
IN  
OUT(MIN)  
Q
SD  
LT1764/LT1764A 3A, Low Noise, Fast Transient Response, LDO  
Low Noise < 40µV  
IN  
"A" Version Stable with Ceramic Capacitors,  
OUT(MIN)  
RMS,  
V : 2.7V to 20V, V  
= 1.21V, I = 1mA, I < 1µA, DD, TO220 Packages  
Q SD  
LTC1844  
LT1962  
150mA, Very Low Drop-Out LDO  
Low Noise < 30µV  
IN  
, Stable with 1µF Ceramic Capacitors,  
RMS  
V : 1.6V to 6.5V, V  
= 1.25V, I = 40µA, I < 1µA, ThinSOT Package  
Q SD  
OUT(MIN)  
OUT(MIN)  
300mA, Low Noise Micropower, LDO  
Low Noise < 20µV  
IN  
RMS,  
V : 1.8V to 20V, V  
= 1.22V, I = 30µA, I < 1µA, MS8 Package  
Q SD  
LT1963/LT1963A 1.5A, Low Noise, Fast Transient Response, LDO  
Low Noise < 40µV  
IN  
DD, TO220, SOT-223, S8 Packages  
"A" Version Stable with Ceramic Capacitors,  
OUT(MIN)  
RMS,  
V : 2.1V to 20V, V  
= 1.21V, I = 1mA, I < 1µA,  
Q SD  
LT1964  
LT3023  
LTC3407  
200mA, Low Noise Micropower, Negative LDO  
Dual 100mA, Low Noise, Micropower LDO  
Low Noise < 30µV Stable with Ceramic Capacitors,  
RMS,  
V : –0.9V to –20V, V  
= –1.21V, I = 30µA, I < 3µA, ThinSOT Package  
Q SD  
IN  
OUT(MIN)  
Low Noise < 20µV  
IN  
Stable with 1µF Ceramic Capacitors,  
OUT(MIN)  
RMS,  
V : 1.8V to 20V, V  
= 1.22V, I = 40µA, I < 1µA, MS10E, DFN Packages  
Q SD  
Dual 600mA. 1.5MHz Synchronous Step Down  
DC/DC Converter  
V : 2.5V to 5.5V, V  
IN  
= 0.6 V, I = 40µA, I < 1µA, MS10E Package  
OUT(MIN) Q SD  
3024f  
LT/TP 0104 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT3024EFE#TR

暂无描述
Linear

LT3024EFE#TRPBF

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024EFE-PBF

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024EFE-TR

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024EFE-TRPBF

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024IDE

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024IDE#PBF

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024IDE#TR

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024IDE#TRPBF

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024IDE-PBF

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024IDE-TR

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear

LT3024IDE-TRPBF

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear