LT3029EDETR [Linear]

Dual 500mA/500mA Low Dropout, Low Noise, Micropower Linear Regulator; 双500毫安/ 500毫安低压差,低噪声,微功耗线性稳压器
LT3029EDETR
型号: LT3029EDETR
厂家: Linear    Linear
描述:

Dual 500mA/500mA Low Dropout, Low Noise, Micropower Linear Regulator
双500毫安/ 500毫安低压差,低噪声,微功耗线性稳压器

稳压器
文件: 总20页 (文件大小:1587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3029  
Dual 500mA/500mA  
Low Dropout, Low Noise,  
Micropower Linear Regulator  
DESCRIPTION  
FEATURES  
The LT®3029 is a dual, micropower, low noise, low drop-  
out linear regulator. The device operates either with a  
common input supply or independent input supplies for  
each channel, over an input voltage range of 1.8V to 20V.  
Each output supplies up to 500mA of output current with  
a typical dropout voltage of 300mV. Quiescent current is  
well controlled in dropout. With an external 10nF bypass  
n
Output Current: 500mA per Channel  
n
Low Dropout Voltage: 300mV  
n
Low Noise: 20μV  
(10Hz to 100kHz)  
RMS  
n
n
Low Quiescent Current: 55μA per Channel  
Wide Input Voltage Range: 1.8V to 20V (Common or  
Independent Input Supply)  
n
n
Adjustable Output: 1.215V Reference Voltage  
Very Low Quiescent Current in Shutdown: <1μA per  
Channel  
Stable with 3.3μF Minimum Output Capacitor  
Stable with Ceramic, Tantalum or Aluminum  
Electrolytic Capacitors  
Reverse-Battery and Reverse Output-to-Input  
Protection  
Current Limit with Foldback and Thermal Shutdown  
Tracking/Sequencing Capability: Compatible with  
LTC292X Power Supply Tracking ICs  
Thermally Enhanced 16-Lead MSOP and 16-Lead  
(4mm × 3mm) DFN Packages  
capacitor, output noise is only 20μV  
over a 10Hz to  
RMS  
100kHz bandwidth. Designed for use in battery-powered  
systems,thelow5Aquiescentcurrentperchannelmakes  
it an ideal choice. In shutdown, quiescent current drops to  
less than 1μA. Shutdown control is independent for each  
channel, allowing for flexible power management.  
n
n
n
TheLT3029optimizesstabilityandtransientresponsewith  
low ESR ceramic output capacitors, requiring a minimum  
of only 3.3μF. The regulator does not require the addition  
of ESR, as is common with other regulators.  
n
n
n
Internal circuitry provides reverse-battery protection,  
reverse-current protection, current limiting with foldback  
and thermal shutdown. The device is available as an  
adjustable output voltage device with a 1.215V reference  
voltage. The LT3029 is offered in the thermally enhanced  
16-lead MSOP and 16-lead, low profile (4mm × 3mm ×  
0.75mm) DFN packages.  
APPLICATIONS  
n
General Purpose Linear Regulator  
n
Battery-Powered Systems  
n
Microprocessor Core/Logic Supplies  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Post Regulator for Switching Supplies  
n
Tracking/Sequencing Power Supplies  
Dropout Voltage vs Load Current  
TYPICAL APPLICATION  
400  
T
= 25°C  
2.5VIN to 1.5V/1.8V Application  
J
350  
300  
250  
200  
150  
100  
50  
V
IN  
2.5V  
V
OUT1  
IN1  
OUT1  
LT3029  
1.8V  
10nF  
500mA  
113k  
1%  
3.3μF  
3.3μF  
3.3μF  
BYP1  
ADJ1  
IN2  
237k  
1%  
SHDN1  
V
OUT2  
1.5V  
SHDN2 OUT2  
500mA  
10nF  
54.9k  
1%  
BYP2  
ADJ2  
0
237k  
1%  
GND  
0
50 100 150 200 250 300 350 400 450 500  
OUTPUT CURRENT (mA)  
3029 TA01b  
3029 TA01  
3029f  
1
LT3029  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
IN1, IN2 Pin Voltage................................................ 22V  
OUT1, OUT2 Pin Voltage......................................... 22V  
Input-to-Output Differential Voltage........................ 22V  
ADJ1, ADJ2 Pin Voltage............................................ 9V  
BYP1, BYP2 Pin Voltage ........................................ 0.6V  
SHDN1 , SHDN2 Pin Voltage.................................. 22V  
Output Short-Circuit Duration .......................... Indefinite  
Operating Junction Temperature (Notes 2, 12)  
LT3029E............................................. –40°C to 125°C  
LT3029I.............................................. –40°C to 125°C  
LT3029H ............................................ –40°C to 150°C  
LT3029MP.......................................... –55°C to 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
(MSOP Only)..................................................... 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
BYP1  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
ADJ1  
SHDN1  
IN1  
BYP1  
NC  
OUT1  
OUT1  
GND  
OUT2  
OUT2  
BYP2  
1
2
3
4
5
6
7
8
16 ADJ1  
15 SHDN1  
14 IN1  
OUT1  
OUT1  
GND  
17  
GND  
13 IN1  
IN1  
17  
GND  
12 IN2  
IN2  
11 IN2  
10 SHDN2  
OUT2  
OUT2  
BYP2  
IN2  
9
ADJ2  
SHDN2  
ADJ2  
MSE PACKAGE  
16-LEAD PLASTIC MSOP  
DE PACKAGE  
T
= 125°C (LT3029E/LT3029I, LT3029MP), θ = 37°C/W, θ : 5°C/W TO 10°C/W  
JA JC  
JMAX  
16-LEAD (4mm s 3mm) PLASTIC DFN  
T
= 150°C (LT3029H), θ = 37°C/W, θ : 5°C/W TO 10°C/W  
JA JC  
JMAX  
T
= 125°C, θ = 38°C/W, θ = 4.3°C/W  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB GND  
JMAX  
JA  
JC  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB GND  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3029EDE#PBF  
LT3029IDE#PBF  
LT3029EMSE#PBF  
LT3029IMSE#PBF  
LT3029HMSE#PBF  
LT3029MPMSE#PBF  
LEAD BASED FINISH  
LT3029EDE  
TAPE AND REEL  
PART MARKING*  
3029  
PACKAGE DESCRIPTION  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead Plastic MSOP  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–55°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–55°C to 125°C  
LT3029EDE#TRPBF  
LT3029IDE#TRPBF  
LT3029EMSE#TRPBF  
LT3029IMSE#TRPBF  
LT3029HMSE#TRPBF  
LT3029MPMSE#TRPBF  
TAPE AND REEL  
3029  
3029  
3029  
16-Lead Plastic MSOP  
3029  
16-Lead Plastic MSOP  
3029  
16-Lead Plastic MSOP  
PART MARKING*  
3029  
PACKAGE DESCRIPTION  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead Plastic MSOP  
LT3029EDE#TR  
LT3029IDE  
LT3029IDE#TR  
3029  
LT3029EMSE  
LT3029EMSE#TR  
LT3029IMSE#TR  
3029  
LT3029IMSE  
3029  
16-Lead Plastic MSOP  
LT3029HMSE  
LT3029HMSE#TR  
LT3029MPMSE#TR  
3029  
16-Lead Plastic MSOP  
LT3029MPMSE  
3029  
16-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3029f  
2
LT3029  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 2)  
PARAMETER  
CONDITIONS  
= 500mA  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage (Notes 3, 11)  
ADJ1, ADJ2 Pin Voltage (Notes 3, 4, 9)  
I
1.8  
2.3  
V
LOAD  
V
= 2V, I  
= 1mA  
1.203  
1.191  
1.173  
1.215  
1.215  
1.215  
1.227  
1.239  
1.239  
V
V
V
IN  
LOAD  
l
l
2.3V < V < 20V, 1mA < I  
< 500mA (E, I, MP)  
< 500mA (H)  
IN  
LOAD  
LOAD  
2.3V < V < 20V, 1mA < I  
IN  
l
Line Regulation (Note 3)  
Load Regulation (Note 3)  
ΔV = 2V to 20V, I  
= 1mA  
LOAD  
0.5  
2.5  
5
mV  
IN  
V
IN  
V
IN  
V
IN  
= 2.3V, ΔI  
= 2.3V, ΔI  
= 2.3V, ΔI  
= 1mA to 500mA  
= 1mA to 500mA (E, I, MP)  
= 1mA to 500mA (H)  
6
15  
32  
mV  
mV  
mV  
LOAD  
LOAD  
LOAD  
l
l
Dropout Voltage  
I
I
= 10mA  
= 10mA  
0.11  
0.16  
0.2  
0.18  
0.25  
V
V
LOAD  
LOAD  
l
l
l
l
V
= V  
OUT(NOMINAL)  
IN  
(Notes 5, 6, 11)  
I
I
= 50mA  
= 50mA  
0.22  
0.31  
V
V
LOAD  
LOAD  
I
I
= 100mA  
= 100mA  
0.25  
0.34  
V
V
LOAD  
LOAD  
I
I
= 500mA  
= 500mA  
0.3  
0.36  
0.46  
V
V
LOAD  
LOAD  
l
l
l
l
l
l
GND Pin Current (per Channel)  
I
I
I
I
I
I
= 0mA  
55  
90  
1.1  
2
4.3  
10  
150  
250  
2
μA  
μA  
mA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
= 1mA  
IN  
OUT(NOMINAL)  
(Notes 5, 7)  
= 50mA  
= 100mA  
= 250mA  
= 500mA  
3.5  
8
16  
Output Voltage Noise  
C
= 10μF, C  
= 10nF, I  
= 500mA,  
20  
μV  
RMS  
OUT  
BYP  
LOAD  
BW = 10Hz to 100kHz  
ADJ1/ADJ2 Pin Bias Current  
Shutdown Threshold  
ADJ1, ADJ2 (Notes 3, 8)  
30  
100  
1.1  
nA  
l
l
V
V
= Off to On  
= On to Off  
0.45  
0.40  
V
V
OUT  
OUT  
0.20  
l
l
SHDN1/SHDN2 Pin Current (Note 10)  
V
V
, V  
= 0V  
= 20V  
0
0.6  
0.5  
3
μA  
μA  
SHDN1 SHDN2  
, V  
SHDN1 SHDN2  
Quiescent Current in Shutdown (per Channel)  
Ripple Rejection  
V
= 6V, V  
= 0V, V = 0V  
SHDN2  
0.01  
67  
0.1  
μA  
dB  
IN  
SHDN1  
V
= 2.715V (Avg), V  
= 0.5V ,  
P-P  
55  
IN  
RIPPLE  
f
= 120Hz, I  
= 500mA  
RIPPLE  
LOAD  
Current Limit (Note 9)  
V
V
= 7V, V  
= 0V  
1.5  
A
IN  
IN  
OUT  
l
l
= 2.3V, ΔV  
= –0.1V  
= 0V  
520  
mA  
OUT  
Input Reverse Leakage Current  
Reverse Output Current  
V
V
= –20V, V  
1
mA  
μA  
IN  
OUT  
= 1.215V, V = 0V  
0.5  
10  
OUT  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The LT3029 is tested and specified for these conditions with the  
ADJ1/ADJ2 pin connected to the corresponding OUT1/OUT2 pin.  
Note 4: Maximum junction temperature limits operating conditions. The  
regulated output voltage specification does not apply for all possible  
combinations of input voltage and output current. When operating at  
maximum input voltage, limit the output current range. When operating at  
maximum output current, limit the input voltage range.  
Note 2: The LT3029 is tested and specified under pulse load conditions  
such that T ≈ T . The LT3029E is 100% tested at T = 25°C. Performance  
J
A
A
of the LT3029E over the full –40°C to 125°C operating junction  
temperature range is assured by design, characterization and correlation  
with statistical process controls. The LT3029I is guaranteed over the full  
–40°C to 125°C operating junction temperature range. The LT3029MP is  
100% tested and guaranteed over the –55°C to 125°C operating junction  
temperature range. The LT3029H is tested at 150°C operating junction  
temperature. High junction temperatures degrade operating lifetimes.  
Operating lifetime is derated at junction temperatures greater than 125°C.  
Note 5: To satisfy minimum input voltage requirements, the LT3029 is  
tested and specified for these conditions with an external resistor divider  
(two 243k resistors) for an output voltage of 2.437V. The external resistor  
divider adds 5μA of DC load on the output.  
Note 6: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage equals: V – V  
.
IN  
DROPOUT  
3029f  
3
LT3029  
ELECTRICAL CHARACTERISTICS  
Note 7: GND pin current is tested with V = 2.437V and a current source  
Note 10: SHDN1/SHDN2 pin current flows into the pin.  
IN  
load. This means the device is tested while operating in its dropout region  
or at the minimum input voltage specification. This is the worst-case  
GND pin current. The GND pin current decreases slightly at higher input  
voltages. Total GND pin current equals the sum of output 1 and output 2  
GND pin currents.  
Note 8: ADJ1/ADJ2 pin bias current flows into the pin.  
Note 9: The LT3029 contains current limit foldback circuitry. See the  
Note 11: The LT3029 minimum input voltage specification limits dropout  
voltage under some output voltage/load conditions. See the curve of  
Minimum Input Voltage in the Typical Performance Characteristics.  
Note 12: The LT3029 includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature exceeds the maximum operating junction temperature when  
overtemperature protection is active. Continuous operation above the  
specified maximum operating junction temperature may impair device  
reliability.  
Typical Performance Characteristics for current limit as a function of the  
V
– V  
differential voltage.  
IN  
OUT  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
T
= 150°C  
J
T
= 150°C  
J
T
= 125°C  
J
T
= 25°C  
J
T
= 25°C  
J
T
= –55°C  
J
0
0
200  
0
50 100 150  
250 300 350 400 450 500  
200  
250 300 350 400 450 500  
0
50 100 150  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3029 G02  
3029 G01  
Dropout Voltage vs Temperature  
Quiescent Current (per Channel)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
150  
125  
100  
75  
V
= 6V  
= 243k, I = 5μA  
L
IN  
L
R
I
= 500mA  
L
I
= 250mA  
= 100mA  
L
I
L
V
= V  
IN  
SHDN  
I
= 10mA  
L
50  
25  
I
= 50mA  
L
I
= 1mA  
L
0
0
25  
–75 –50 –25  
0
50 75 100 125 150 175  
25  
–75 –50 –25  
0
50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3029 G03  
3029 G04  
3029f  
4
LT3029  
TJ = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
ADJ1 or ADJ2 Pin Voltage  
Quiescent Current (per Channel)  
1.239  
1.233  
1.227  
1.221  
1.215  
1.209  
1.203  
1.197  
1.191  
160  
140  
120  
100  
80  
I
= 1mA  
T
= 25°C  
= 243k  
OUT  
L
J
L
R
V
= 1.215V  
V
= V  
IN  
SHDN  
60  
40  
20  
V
= 0V  
SHDN  
0
25  
–75 –50 –25  
0
50 75 100 125 150 175  
8
0
2
4
6
10 12 14 16 18 20  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3029 G05  
3029 G06  
GND Pin Current (per Channel)  
GND Pin Current (per Channel)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
16  
14  
12  
10  
8
T
= 25°C  
OUT  
T
= 25°C  
OUT  
J
J
FOR V  
= 1.215V  
FOR V  
= 1.215V  
R
= 24.3Ω, I = 50mA  
L
L
R
R
= 2.43Ω, I = 500mA  
L
L
6
= 4.05Ω, I = 300mA  
L
L
4
R
R
= 121.5Ω, I = 10mA  
L
L
R
= 12.15Ω, I = 100mA  
L
L
2
= 1.215kΩ, I = 1mA  
L
L
0
4
0
1
2
3
5
6
7
8
9
10  
4
0
1
2
3
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3029 G07  
3029 G08  
SHDN1 or SHDN2 Pin Threshold  
(On-to-Off)  
GND Pin Current vs ILOAD  
16  
14  
12  
10  
8
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= 25°C  
I
= 1mA  
J
L
V
= V  
+ 1V  
IN  
OUT(NOMINAL)  
6
4
2
0
200  
250 300 350 400 450 500  
0
50 100 150  
25  
–75 –50 –25  
0
50 75 100 125 150 175  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
3029 G09  
3029 G10  
3029f  
5
LT3029  
TJ = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
SHDN1 or SHDN2 Pin Threshold  
(Off-to-On)  
SHDN1 or SHDN2 Pin  
Input Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= 25°C  
J
I
= 500mA  
L
I
= 1mA  
L
25  
0
2
4
6
8
12 14 16 18 20  
–75 –50 –25  
0
50 75 100 125 150 175  
10  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
3029 G11  
3029 G12  
SHDN1 or SHDN2 Pin  
Input Current  
ADJ1 or ADJ2 Pin Bias Current  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150  
135  
120  
105  
90  
V
= 20V  
SHDN  
75  
60  
45  
30  
15  
0
25  
–75 –50 –25  
0
50 75 100 125 150 175  
25  
–75 –50 –25  
0
50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3029 G14  
3029 G13  
Current Limit  
Current Limit  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 0V  
V
V
= 7V  
OUT  
IN  
OUT  
= 0V  
T
= 25°C  
J
T
= –55°C  
J
T
= 125°C  
J
T
= 150°C  
J
25  
8
–75 –50 –25  
0
50 75 100 125 150 175  
0
2
4
6
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
3029 G15  
3029 G16  
3029f  
6
LT3029  
TJ = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Reverse Current  
Input Ripple Rejection  
100  
90  
300  
270  
240  
210  
180  
150  
120  
90  
T
I
V
C
= 25°C  
J
L
V
V
= 0V  
ADJ  
IN  
= 500mA  
= V  
= 1.215V  
OUT  
= V  
+1V + 50mV  
RIPPLE  
IN  
BYP  
OUT(NOMINAL)  
RMS  
80  
= 0  
C
= 10μF  
OUT  
70  
I
ADJ  
60  
50  
40  
30  
20  
10  
0
C
= 3.3μF  
1M  
OUT  
60  
30  
I
OUT  
0
10  
100  
1k  
10k 100k  
10M  
25  
–75 –50 –25  
0
50 75 100 125 150 175  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
3029 G18  
I
I
FLOWS INTO ADJ PIN TO GND PIN  
FLOWS INTO OUT PIN TO IN PIN  
ADJ  
OUT  
3029 G17  
Input Ripple Rejection  
Input Ripple Rejection  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN  
= V + 1.5V + 0.5V RIPPLE  
OUT(NOMINAL) P-P  
f = 120Hz  
C
= 0.01μF  
I
L
= 500mA  
BYP  
80  
70  
60  
50  
C
= 1000pF  
BYP  
40  
30  
20  
10  
0
C
= 100pF  
BYP  
T
= 25°C  
= 500mA  
= V  
J
I
L
V
C
+1V + 50mV  
RIPPLE  
RMS  
IN  
OUT(NOMINAL)  
= 10μF  
OUT  
10  
100  
1k  
10k 100k  
1M  
10M  
25  
–75 –50 –25  
0
50 75 100 125 150 175  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
3029 G19  
3029 G20  
Channel-to-Channel Isolation  
Minimum Input Voltage  
100  
90  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
T
= 25°C  
J
V
= 1.215V  
OUT  
80  
I
= 500mA  
L
70  
60  
50  
I
= 1mA  
L
40  
30  
20  
10  
0
10  
100  
1k  
10k 100k  
1M  
10M  
25  
–75 –50 –25  
0
50 75 100 125 150 175  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
GIVEN CHANNEL IS TESTED WITH 50mV  
SIGNAL ON OPPOSING CHANNEL, BOTH  
CHANNELS DELIVERING FULL CURRENT  
3029 G21  
RMS  
3029 G22  
3029f  
7
LT3029  
TJ = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Channel-to-Channel Isolation  
Load Regulation  
0
–2  
V
OUT1  
–4  
50mV/DIV  
–6  
–8  
V
OUT2  
–10  
–12  
–14  
–16  
–18  
–20  
50mV/DIV  
3029 G23  
50μs/DIV  
C
C
C
= 10μF  
= 10μF  
BYP2  
ΔI = 50mA TO 500mA  
ΔI = 1mA TO 500mA  
L
OUT1  
OUT2  
BYP1  
L1  
L2  
= 6V, V  
ΔI = 50mA TO 500mA  
25  
–75 –50 –25  
0
50 75 100 125 150 175  
= C  
= 0.01μF  
V
IN  
= V  
= 5V  
OUT1  
OUT2  
TEMPERATURE (°C)  
3029 G24  
Output Noise Spectral Density  
Output Noise Spectral Density  
10  
1
10  
1
T
= 25°C  
OUT  
= 500mA  
T
= 25°C  
J
J
C
I
= 10μF  
C
C
I
= 10μF  
OUT  
= 0  
L
BYP  
= 500mA  
V
= 5V  
L
V
= 5V  
OUT  
OUT  
C
= 1000pF  
BYP  
V
= V  
ADJ  
OUT  
C
=
BYP  
V
=V  
OUT  
ADJ  
100pF  
0.1  
0.1  
0.01  
C
= 0.01μF  
BYP  
0.01  
0.01  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
3029 G26  
3029 G25  
RMS Output Noise  
vs Load Current  
RMS Output Noise  
vs Bypass Capacitor  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
T
= 25°C  
T
= 25°C  
OUT  
= 500mA  
J
J
C
= 10μF  
C
I
= 10μF  
OUT  
C
C
V
= 5V  
OUT  
= 0  
BYP  
BYP  
L
BW  
= 10nF  
f
= 10Hz TO 100kHz  
V
= 5V  
OUT  
V
= 1.215V  
OUT  
V
=V  
ADJ  
OUT  
60  
60  
40  
40  
V
= 5V  
OUT  
20  
20  
V
=V  
ADJ  
OUT  
0
0.01  
0
0.1  
1
10  
100  
10  
100  
1000  
10000  
LOAD CURRENT (mA)  
C
(pF)  
BYP  
3029 G28  
3029 G27  
3029f  
8
LT3029  
TJ = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
10Hz to 100kHz Output Noise,  
CBYP = 0pF  
10Hz to 100kHz Output Noise,  
CBYP = 100pF  
V
V
OUT  
100μV/DIV  
OUT  
100μV/DIV  
3029 G29  
3029 G30  
1ms/DIV  
1ms/DIV  
C
L
V
= 10μF  
C
= 10μF  
OUT  
OUT  
I
= 500mA  
I = 500mA  
L
= 5V  
V
= 5V  
OUT  
OUT  
10Hz to 100kHz Output Noise,  
CBYP = 1000pF  
10Hz to 100kHz Output Noise,  
CBYP = 0.01μF  
V
V
OUT  
OUT  
100μV/DIV  
100μV/DIV  
3029 G31  
3029 G32  
1ms/DIV  
1ms/DIV  
C
I
= 10μF  
C
I
= 10μF  
OUT  
L
OUT  
L
= 500mA  
= 500mA  
V
= 5V  
OUT  
V
= 5V  
OUT  
3029f  
9
LT3029  
TJ = 25°C, unless otherwise noted.  
Transient Response, CBYP = 0.01μF  
TYPICAL PERFORMANCE CHARACTERISTICS  
Transient Response, CBYP = 0pF  
V
DEVIATION  
OUT  
V
DEVIATION  
OUT  
200mV/DIV  
250mA/DIV  
50mV/DIV  
LOAD CURRENT DEVIATION  
LOAD CURRENT DEVIATION  
250mA/DIV  
3029 G33  
3029 G34  
200μs/DIV  
= 100mA  
20μs/DIV  
I = 100mA  
L
V
C
C
= 6V  
I
V
C
C
= 6V  
IN  
IN  
L
J
IN  
IN  
= 10μF  
T = 25°C  
= 10μF  
T = 25°C  
J
= 10μF  
V
= 5V  
= 10μF  
V
= 5V  
OUT  
OUT  
OUT  
OUT  
Start-Up Time from Shutdown,  
CBYP = 0pF  
Start-Up Time from Shutdown,  
CBYP = 0.01μF  
V
V
OUT  
OUT  
1V/DIV  
1V/DIV  
SHDN  
VOLTAGE  
2V/DIV  
SHDN  
VOLTAGE  
2V/DIV  
3029 G35  
3029 G36  
1ms/DIV  
1ms/DIV  
V
C
= 2.5V  
OUT  
= 3Ω  
I
= 500mA  
V
C
= 2.5V  
OUT  
= 3Ω  
I
= 500mA  
IN  
L
IN  
L
= 10μF  
V
= 1.5V  
OUT  
= 10μF  
V
= 1.5V  
OUT  
R
R
L
L
3029f  
10  
LT3029  
PIN FUNCTIONS  
BYP1/BYP2 (Pin 1/Pin 8): Bypass. Use the BYP1/BYP2  
pins to bypass the reference of the LT3029 regulator and  
achieve low output noise performance. Internal circuitry  
Include a bypass capacitor in battery-powered circuits,  
as a battery’s output impedance rises with frequency. A  
bypass capacitor in the range of 1μF to 10μF suffices. The  
LT3029’sdesignwithstandsreversevoltagesontheINpins  
with respect to ground and the OUT pins. In the case of  
a reversed input, which occurs if a battery is plugged in  
backwards, the LT3029 acts as if a diode is in series with  
its input. No reverse current flows into the LT3029 and no  
reverse voltage appears at the load. The device protects  
itself and the load.  
clamps the BYP1/BYP2 pins to 0.6V (one V ) from  
BE  
ground. A small capacitor from the corresponding output  
to this pin bypasses the reference to lower the output  
voltage noise. Using a maximum value of 10nF reduces  
the output voltage noise to a typical 20μV  
to 100kHz bandwidth. If not used, this pin must be left  
unconnected.  
over a 10Hz  
RMS  
NC (Pin 2): No Connect. This pin is not connected to  
SHDN1/SHDN2 (Pin 15/Pin 10): Shutdown. Pulling the  
SHDN1 or SHDN2 pin low puts its corresponding LT3029  
channelintoalowpowerstateandturnsitsoutputoff. The  
SHDN1 and SHDN2 pins are completely independent of  
each other, and each SHDN pin only affects operation on  
its corresponding channel. Drive the SHDN1 and SHDN2  
pinswitheitherlogicoranopencollector/drainwithpull-up  
resistors. The resistors supply the pull-up current to the  
open collectors/drains and the SHDN1 or SHDN2 current,  
typically less than 1μA. If unused, connect the SHDN1 and  
SHDN2 to their corresponding IN pins. Each channel will  
be in its low power shutdown state if its corresponding  
SHDN pin is not connected.  
any internal circuitry. It may be floated, tied to V or tied  
IN  
to GND.  
OUT1/OUT2 (Pins 3, 4/Pins 6, 7): Output. The outputs  
supply power to the loads. A minimum 3.3μF output ca-  
pacitor prevents oscillations on each output. Applications  
with large output load transients require larger values of  
output capacitance to limit peak voltage transients. See  
the Applications Information section for more on output  
capacitance and reverse output characteristics.  
GND (Pin 5, 17): Ground. The exposed pad (Pin 17) of  
the DFN and MSOP packages is an electrical connection  
to GND. To ensure proper electrical and thermal perfor-  
mance, solder Pin 17 to the PCB ground and tie directly  
to Pin 5. Connect the bottom of the output voltage setting  
resistor divider directly to GND (Pin 5) for optimum load  
regulation performance.  
ADJ1/ADJ2: (Pin 16/Pin 9) Adjust Pin. These are the error  
amplifier inputs. These pins are internally clamped to 9V.  
A typical input bias current of 30nA flows into the pins  
(see curve of ADJ1/ADJ2 Pin Bias Current vs Temperature  
in the Typical Performance Characteristics section). The  
ADJ1andADJ2pinvoltageis1.215Vreferencedtoground  
and the output voltage range is 1.215V to 19.5V.  
IN1/IN2 (Pins 13, 14/Pins 11, 12): Inputs. The IN1/IN2  
pins supply power to each channel. The LT3029 requires  
a bypass capacitor at the IN1/IN2 pins if located more  
than six inches away from the main input filter capacitor.  
3029f  
11  
LT3029  
APPLICATIONS INFORMATION  
TheLT3029isadual500mA/500mAlowdropoutregulator  
with independent inputs, micropower quiescent current  
andshutdown.Thedevicesuppliesupto500mAfromeach  
channel’s output at a typical dropout voltage of 300mV.  
The two regulators share a common GND pin and are  
thermally coupled. However, the two inputs and outputs of  
the LT3029 operate independently. Each channel can be  
shut down independently, but a thermal shutdown fault  
on either channel shuts off the output on both channels.  
The addition of a 10nF reference bypass capacitor lowers  
LT3029  
R2  
R1⎠  
OUT1/OUT2  
V
VOUT = 1.215V 1+  
+ I  
(
R2  
(
OUT  
)
)
ADJ  
V
IN1/IN2  
IN  
R2  
C
VADJ = 1.215V  
IADJ = 30nA AT 25°C  
OUTPUT RANGE = 1.215V TO 19.5V  
ADJ1/ADJ2  
GND  
R1  
3029 F01  
Figure 1. Adjustable Operation  
and ADJ Pin Bias Current vs Temperature appear in the  
Typical Performance Characteristics section.  
output voltage noise to 20μV  
over a 10Hz to 100kHz  
RMS  
bandwidth. Additionally, the reference bypass capacitor  
improves transient response of the regulator, lowering  
the settling time for transient load conditions. The low  
operating quiescent current (55μA per channel) drops to  
less than 1μA in shutdown. In addition to the low quies-  
cent current, the LT3029 regulator incorporates several  
protection features that make it ideal for use in battery-  
powered systems. Most importantly, the device protects  
itself against reverse input voltages. Current limiting with  
foldback necessitates a minimum load current of 20μA  
for input/output voltage differentials of more than 10V to  
keep the output regulated.  
LinearTechnologytestsandspecifieseachLT3029channel  
with its ADJ pin tied to the corresponding OUT pin for a  
1.215V output voltage. Specifications for output voltages  
greaterthan1.215Vareproportionaltotheratioofdesired  
output voltage to 1.215V:  
VOUT  
1.215V  
Forexample, loadregulationoneitheroutputforanoutput  
current change of 1mA to 500mA is typically –2.5mV at  
V
OUT  
= 1.215V. At V  
= 2.5V, load regulation is:  
OUT  
2.5V  
1.215V  
Adjustable Operation  
• (2.5mV) = 5.14mV  
EachoftheLT3029’schannelshasanoutputvoltagerange  
of 1.215V to 19.5V. Figure 1 illustrates that output voltage  
is set by the ratio of two external resistors. The device  
regulates the output to maintain the corresponding ADJ  
pin voltage at 1.215V referenced to ground. R1’s current  
equals 1.215V/R1. R2’s current equals R1’s current plus  
theADJpinbiascurrent. TheADJpinbiascurrent, 30nAat  
25°C, flows through R2 into the ADJ pin. Use the formula  
in Figure 1 to calculate output voltage. Linear Technology  
recommends that the value of R1 be less than 243k to  
minimizeerrorsintheoutputvoltageduetotheADJpinbias  
current. In shutdown, the output turns off and the divider  
current is zero. Curves of ADJ Pin Voltage vs Temperature  
Table 1 shows 1% resistor divider values for some com-  
mon output voltages with a resistor divider current of  
approximately 5μA.  
Table 1. Output Voltage Resistor Divider Values  
V
R1  
(k)  
R2  
(k)  
OUT  
(V)  
1.5  
1.8  
2.5  
3
237  
237  
243  
232  
210  
200  
54.9  
113  
255  
340  
357  
619  
3.3  
5
3029f  
12  
LT3029  
APPLICATIONS INFORMATION  
Bypass Capacitance and Low Noise Performance  
Output Capacitance and Transient Response  
The LT3029 design is stable with a wide range of output  
capacitors. The ESR of the output capacitor affects stabil-  
ity, most notably with small capacitors. Linear Technology  
recommends a minimum output capacitor of 3.3μF with  
an ESR of 3Ω, or less, to prevent oscillations. The LT3029  
is a micropower device, and output transient response is  
a function of output capacitance. Larger values of output  
capacitance decrease the peak deviations and provide  
improved transient response for larger load current  
changes.  
Using a bypass capacitor connected between a channel’s  
BYP pin and its corresponding OUT pin significantly low-  
ers LT3029 output voltage noise, but is not required in  
all applications. Linear Technology recommends a good  
quality low leakage capacitor. This capacitor bypasses  
the regulator’s reference, providing a low frequency noise  
pole. A 10nF bypass capacitor introduces a noise pole that  
decreases output voltage noise to as low as 20μV  
.
RMS  
Using a bypass capacitor provides the added benefit of  
improving transient response. With no bypass capacitor,  
and a 10μF output capacitor, a 100mA to 500mA load step  
settles to within 1% of its final value in approximately  
100μs. With the addition of a 10nF bypass capacitor and  
evaluating the same load step, output voltage excursion  
stays within 1% (see Transient Response in the Typical  
Performance Characteristics section). Using a bypass  
capacitor makes regulator start-up time proportional to  
the value of the bypass capacitor. For example, a 10nF  
bypass capacitor and 10μF output capacitor slow start-up  
time to 15ms.  
Ceramic capacitors require extra consideration. Manufac-  
turersmakeceramiccapacitorswithavarietyofdielectrics,  
each with different behavior across temperature and  
applied voltage. The most common dielectrics specify  
the EIA temperature characteristic codes of Z5U, Y5V,  
X5R and X7R. Z5U and Y5V dielectrics provide high C-V  
products in a small package at low cost, but exhibit strong  
voltage and temperature coefficients, as shown in Figures  
2 and 3. When used with a 5V regulator, a 16V 10μF Y5V  
capacitor can exhibit an effective value as low as 1μF to  
40  
20  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
0
X5R  
X5R  
0
–20  
–20  
–40  
–40  
Y5V  
–60  
–60  
Y5V  
–80  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
–100  
–100  
0
8
12 14  
–50 –25  
0
25  
50  
75  
100 125  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
TEMPERATURE (°C)  
3029 F02  
3029 F03  
Figure 2. Ceramic Capacitor DC Bias Characteristics  
Figure 3. Ceramic Capacitor Temperature Characteristics  
3029f  
13  
LT3029  
APPLICATIONS INFORMATION  
2μF for the applied DC bias voltage and over the operat-  
ing temperature range. X5R and X7R dielectrics result in  
more stable characteristics and are more suitable for use  
as the output capacitor. The X7R type has better stability  
across temperature, while the X5R is less expensive and  
is available in higher values.  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or micro-  
phone works. For a ceramic capacitor, the stress can be  
induced by vibrations in the system or thermal transients.  
The resulting voltages produced can cause appreciable  
amounts of noise, especially when a ceramic capacitor is  
used for noise bypassing. A ceramic capacitor produced  
Figure 4’s trace in response to light tapping from a pencil.  
Similar vibration induced behavior can masquerade as  
increased output voltage noise.  
Exercise care even when using X5R and X7R capacitors;  
theX5RandX7Rcodesonlyspecifyoperatingtemperature  
rangeandmaximumcapacitancechangeovertemperature.  
Capacitance change due to DC bias (voltage coefficient)  
with X5R and X7R capacitors is better than with Y5V and  
Z5U capacitors, but can still be significant enough to drop  
capacitor values below appropriate levels. Capacitor DC  
biascharacteristicstendtoimproveascasesizeincreases.  
LinearTechnologyrecommendsverifyingexpectedversus  
actual capacitance values at operating voltage in situ for  
an application.  
C
C
LOAD  
= 10μF  
= 0.01μF  
= 500mA  
OUT  
BYP  
I
V
OUT  
500μV/DIV  
3029 F04  
100ms/DIV  
Figure 4. Noise Resulting from Tapping on a Ceramic Capacitor  
3029f  
14  
LT3029  
APPLICATIONS INFORMATION  
Thermal Considerations  
board stiffeners and plated through-holes can also spread  
the heat generated by power devices.  
TheLT3029’spowerhandlingcapabilitylimitsthemaximum  
rated junction temperature (125°C, LT3029E/LT3029I/  
LT3029MPor150°C,LT3029H).Twocomponentscomprise  
the power dissipated by each channel:  
The following tables list thermal resistance as a function  
of copper area in a fixed board size. All measurements  
were taken in still air on a four-layer FR-4 board with 1oz  
solid internal planes, and 2oz external trace planes with a  
total board thickness of 1.6mm. For further information  
onthermalresistanceandusingthermalinformation,refer  
to JEDEC standard JESD51, notably JESD51-12.  
1. Output current multiplied by the input/output voltage  
differential: (I )(V – V ), and  
OUT  
IN  
OUT  
2. GND pin current multiplied by the input voltage:  
(I )(V ).  
GND  
IN  
Table 2. DE Package, 16-Lead DFN  
Ground pin current is found by examining the GND Pin  
Current curves in the Typical Performance Characteristics  
section.  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE BOARD AREA  
(JUNCTION-TO-AMBIENT)  
2
2
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
36°C/W  
2
1000mm  
37°C/W  
Power dissipation for each channel equals the sum of the  
two components listed above. Total power dissipation for  
the LT3029 equals the sum of the power dissipated by  
each channel.  
2
225mm  
38°C/W  
2
100mm  
40°C/W  
*Device is mounted on topside.  
TheLT3029sinternalthermalshutdowncircuitryprotects  
bothchannelsofthedeviceifeitherchannelexperiences  
an overload or fault condition. Activation of the thermal  
shutdowncircuitryturnsbothchannelsoff.Iftheoverload  
or fault condition is removed, both outputs are allowed  
to turn back on. For continuous normal conditions, do  
not exceed the maximum junction temperature rating of  
125°C(LT3029E/LT3029I/LT3029MP)or150°C(LT3029H).  
Carefully consider all sources of thermal resistance from  
junction-to-ambient, including additional heat sources  
mounted in proximity to the LT3029. For surface mount  
devices,usetheheatspreadingcapabilitiesofthePCboard  
and its copper traces to accomplish heat sinking. Copper  
Table 3. MSE Package, 16-Lead MSOP  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE BOARD AREA  
(JUNCTION-TO-AMBIENT)  
2
2
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
35°C/W  
36°C/W  
37°C/W  
39°C/W  
2
1000mm  
2
225mm  
2
100mm  
*Device is mounted on topside.  
The junction-to-case thermal resistance (θ ), measured  
JC  
at the Exposed Pad on the back of the die, is 4.3°C/W for  
the DFN package, and 5°C/W to 10°C/W for the MSOP  
package.  
3029f  
15  
LT3029  
APPLICATIONS INFORMATION  
Calculating Junction Temperature  
Protection Features  
Example: Channel 1’s output voltage is set to 1.8V. Chan-  
nel 2’s output voltage is set to 1.5V. Each channel’s input  
voltage is 2.5V. Each channel’s output current range is  
0mA to 500mA. The application has a maximum ambient  
temperature of 50°C. What is the LT3029’s maximum  
junction temperature?  
The LT3029 regulator incorporates several protection fea-  
tures that make it ideal for use in battery-powered circuits.  
In addition to the normal protection features associated  
with monolithic regulators, such as current limiting and  
thermal limiting, the device protects itself against reverse  
input voltages and reverse voltages from output to input.  
The two regulators have independent inputs, a common  
GND pin and are thermally coupled. However, the two  
channels of the LT3029 operate independently. Each  
channel’s output can be shut down independently, and  
a fault condition on one output does not affect the other  
output electrically, unless the thermal shutdown circuitry  
is activated.  
The power dissipated by each channel equals:  
I
(V – V ) + I (V )  
OUT(MAX) IN OUT GND IN  
where for each output:  
= 500mA  
I
OUT(MAX)  
V = 2.5V  
IN  
Current limit protection and thermal overload protection  
protect the device against current overload conditions at  
each output of the LT3029. For normal operation, do not  
allowthejunctiontemperaturetoexceed125°C(LT3029E/  
LT3029I/LT3029MP)or150°C(LT3029H).Thetypicalther-  
mal shutdown temperature threshold is 165°C and the  
circuitry incorporates approximately 5°C of hysteresis.  
I
at (I  
= 500mA, V = 2.5V) = 8.5mA  
GND  
OUT IN  
So, for output 1:  
P = 500mA (2.5V – 1.8V) + 8.5mA (2.5V) = 0.37W  
For output 2:  
P = 500mA (2.5V – 1.5V) + 8.5mA (2.5V) = 0.52W  
Thethermalresistanceisintherangeof35°C/Wto40°C/W,  
dependingonthecopperarea.So,thejunctiontemperature  
rise above ambient temperature approximately equals:  
Each channel’s input withstands reverse voltages of 22V.  
Current flow into the device is limited to less than 1mA  
(typicallylessthan100μA)andnonegativevoltageappears  
at the respective channel’s output. The device protects  
both itself and the load against batteries that are plugged  
in backwards.  
(0.37W + 0.52W) 39°C/W = 34.7°C  
The maximum junction temperature then equals the maxi-  
mum ambient temperature plus the maximum junction  
temperature rise above ambient temperature, or:  
The LT3029 incurs no damage if either channel’s output  
is pulled below ground. If the input is left open-circuit,  
or grounded, the output can be pulled below ground by  
T
JMAX  
= 50°C + 34.7°C = 84.7°C  
3029f  
16  
LT3029  
APPLICATIONS INFORMATION  
22V. The output acts like an open circuit, and no current  
flows from the output. However, current flows in (but  
is limited by) the external resistor divider that sets the  
output voltage.  
into the ADJ pin to less than 5mA when the ADJ pin is  
at 9V. The 11V difference between the OUT and ADJ pins  
divided by the 5mA maximum current into the ADJ pin  
yields a minimum top resistor value of 2.2k.  
The LT3029 incurs no damage if either ADJ pin is pulled  
above or below ground by 9V. If the input is left open  
circuit or grounded, the ADJ pins perform like an open  
circuit down to –1.5V, and then like a 1.2k resistor down  
to –9V when pulled below ground. When pulled above  
ground, the ADJ pins perform like an open circuit up to  
0.5V, then like a 5.7k resistor up to 3V, then like a 1.8k  
resistor up to 9V.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage or is left  
open-circuit. Current flow back into the output follows the  
curve shown in Figure 5.  
If either of the LT3029’s IN pins is forced below its cor-  
responding OUT pin, or the OUT pin is pulled above its  
corresponding IN pin, input current for that channel typi-  
cally drops to less than 2μA. This occurs if the IN pin is  
connectedtoadischarged(lowvoltage)battery,andeither  
a backup battery or a second regulator circuit holds up  
the output. The state of that channel’s SHDN pin has no  
effect on the reverse output current if the output is pulled  
above the input.  
In situations where an ADJ pin connects to a resistor  
divider that would pull the pin above its 9V clamp volt-  
age if the output is pulled high, the ADJ pin input current  
must be limited to less than 5mA. For example, assume  
a resistor divider sets the regulated output voltage to  
1.5V, and the output is forced to 20V. The top resistor of  
the resistor divider must be chosen to limit the current  
5.0  
T
V
V
= 25°C  
J
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 0V  
IN  
ADJ  
= V  
OUT  
I
I
ADJ  
OUT  
4
0
1
2
3
5
6
7
8
9
OUTPUT VOLTAGE (V)  
I
I
FLOWS INTO ADJ PIN TO GND PIN  
FLOWS INTO OUT PIN TO IN PIN  
ADJ  
OUT  
3029 F05  
Figure 5. Reverse Output Current  
3029f  
17  
LT3029  
PACKAGE DESCRIPTION  
DE Package  
16-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1732 Rev Ø)  
0.70 ±0.05  
3.30 ±0.05  
1.70 ± 0.05  
3.60 ±0.05  
2.20 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.45 BSC  
3.15 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
TYP  
0.40 ± 0.10  
16  
4.00 ±0.10  
(2 SIDES)  
9
R = 0.05  
TYP  
3.30 ±0.10  
3.00 ±0.10  
(2 SIDES)  
1.70 ± 0.10  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DE16) DFN 0806 REV Ø  
8
1
0.23 ± 0.05  
0.45 BSC  
0.75 ±0.05  
0.200 REF  
3.15 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGED-3) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3029f  
18  
LT3029  
PACKAGE DESCRIPTION  
MSE Package  
16-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1667 Rev A)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 p 0.102  
(.112 p .004)  
2.845 p 0.102  
(.112 p .004)  
0.889 p 0.127  
(.035 p .005)  
1
8
0.35  
REF  
5.23  
(.206)  
MIN  
1.651 p 0.102  
(.065 p .004)  
1.651 p 0.102  
(.065 p .004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
16  
9
0.305 p 0.038  
0.50  
(.0197)  
BSC  
NO MEASUREMENT PURPOSE  
4.039 p 0.102  
(.159 p .004)  
(NOTE 3)  
(.0120 p .0015)  
TYP  
0.280 p 0.076  
(.011 p .003)  
RECOMMENDED SOLDER PAD LAYOUT  
16151413121110  
9
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
0o – 6o TYP  
4.90 p 0.152  
(.193 p .006)  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
1 2 3 4 5 6 7 8  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MSE16) 0608 REV A  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3029f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT3029  
TYPICAL APPLICATION  
Coincident Tracking Supply Application  
3.3V  
V
C
OUT1  
GATE  
0.1μF  
3.3V  
OUT1  
V
GATE  
CC  
1.8V  
0.1μF  
IN1  
3.3μF  
10nF 113k  
1%  
500mA  
3.3μF  
3.3μF  
OFF  
ON  
RAMP  
LTC2923  
ON  
BYP1  
ADJ1  
LT3029  
SHDN1  
V
V
OUT1  
OUT2  
1M  
237k  
1%  
500mV/DIV  
RAMPBUF  
TRACK1  
TRACK2  
FB1  
SDO  
FB2  
113k  
1%  
2.5V  
IN2  
OUT2  
V
OUT2  
54.9k  
10nF  
90.9k  
1%  
3.3μF 1.5V  
54.9k  
1%  
1%  
500mA  
BYP2  
ADJ2  
3029 TA02b  
SHDN2  
10ms/DIV  
63.4k  
1%  
237k  
1%  
GND  
GND  
3029 TA02  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1761  
100mA, Low Noise Micropower LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 20μA, I < 1μA,  
OUT(MIN) DO Q SD  
IN  
Low Noise < 20μV  
, Stable with 1μF Ceramic Capacitors, ThinSOTTM Package  
RMS  
LT1763  
500mA, Low Noise Micropower LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 30μA, I < 1μA,  
DO Q SD  
IN  
OUT(MIN)  
Low Noise < 20μV  
, S8 and DFN Packages  
RMS  
LT1963/  
LT1963A  
1.5A, Low Noise, Fast Transient  
Response LDOs  
V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I < 1μA,  
OUT(MIN) DO Q SD  
RMS  
IN  
Low Noise: < 40μV  
, “A” Version Stable with Ceramic Capacitors;  
DD, TO220-5, SOT223, S8 and TSSOP Packages  
LT1964  
LT1965  
200mA, Low Noise Micropower,  
Negative LDO  
V : –1.9V to –20V, V  
= –1.22V, V = 0.34V, I = 30μA, I = 3μA,  
OUT(MIN) DO Q SD  
IN  
Low Noise: <30μV  
, Stable with Ceramic Capacitors, ThinSOT Package  
RMS  
1.1A, Low Noise LDO  
V : 1.8V to 20V, V  
= 1.20V, V = 0.31V, I = 0.5mA, I < 1μA,  
OUT(MIN) DO Q SD  
IN  
Low Noise: <40μV  
, Stable with Ceramic Capacitors; 3mm × 3mm DFN,  
RMS  
MS8E, DD-Pak and TO-220 Packages  
LT3020  
LT3021  
LT3023  
LT3024  
LTC3025  
LTC3026  
LT3027  
LT3028  
100mA, Low Voltage VLDO  
500mA, Low Voltage VLDO  
V : 0.9V to 10V, V = 0.20V, V = 0.15V, I = 120μA, I < 3μA;  
IN  
OUT(MIN)  
DO  
Q
SD  
3mm × 3mm DFN and MS8 Packages  
V : 0.9V to 10V, V = 0.20V, V = 0.16V, I = 120μA, I < 3μA;  
IN  
OUT(MIN)  
DO  
Q
SD  
5mm × 5mm DFN and SO8 Packages  
Dual 100mA, Low Noise,  
Micropower LDO  
V : 1.8V to 20V, V = 1.22V, V = 0.30V, I = 40μA, I < 1μA;  
IN  
OUT(MIN)  
DO  
Q
SD  
DFN and MS10E Packages  
Dual 100mA/500mA, Low Noise,  
Micropower LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.30V, I = 60μA, I < 1μA;  
IN  
OUT(MIN)  
DO  
Q
SD  
DFN and TSSOP-16E Packages  
300mA, Low Voltage Micropower VLDO  
V : 0.9V to 5.5V, Low I : 54μA, Low Noise < 80μV  
, 45mV Dropout Voltage;  
IN  
Q
RMS  
2mm × 2mm 6-Lead DFN Package  
V : 1.14V to 5.5V, Low I : 950μA, Low Noise < 110μV , 100mV Dropout Voltage;  
RMS  
1.5A, Low Input Voltage VLDO  
IN  
Q
10-Lead 3mm × 3mm DFN and MS10E Packages  
Dual 100mA, Low Noise, Micropower  
LDO with Independent Inputs  
V : 1.8V to 20V, V = 1.22V, V = 0.30V, I = 50μA, I < 1μA;  
IN  
OUT(MIN)  
DO  
Q
SD  
DFN and MS10E Packages  
Dual 100mA/500mA, Low Noise, Micropower V : 1.8V to 20V, V  
LDO with Independent Inputs  
= 1.22V, V = 0.32V, I = 60μA, I < 1μA;  
IN  
OUT(MIN)  
DO  
Q
SD  
DFN and TSSOP-16E Packages  
LT3080/  
LT3080-1  
1.1A, Parallelable, Low Noise LDO  
V : 1.2V to 36V, V : 0V to 35.7V, Low Noise < 40μV  
, 300mV Dropout Voltage  
IN  
OUT  
RMS  
(2-Supply Operation), Current-Based Reference with 1-Resistor V  
Set, Directly  
OUT  
Parallelable (No Op Amp Required), Stable with Ceramic Capacitors;  
TO-220, SOT-223, MS8E and 3mm × 3mm DFN Packages  
ThinSOT is a trademark of Linear Technology Corporation.  
3029f  
LT 0110 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY