LT3060EDC-2.5#TRPBF [Linear]

LT3060 - 45V VIN, Micropower, Low Noise, 100mA Low Dropout, Linear Regulator; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C;
LT3060EDC-2.5#TRPBF
型号: LT3060EDC-2.5#TRPBF
厂家: Linear    Linear
描述:

LT3060 - 45V VIN, Micropower, Low Noise, 100mA Low Dropout, Linear Regulator; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C

稳压器
文件: 总26页 (文件大小:373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3060 Series  
45V V , Micropower,  
IN  
Low Noise, 100mA Low  
Dropout, Linear Regulator  
DescripTion  
FeaTures  
The LT®3060 series are micropower, low dropout voltage  
(LDO) linear regulators that operate over a 1.6V to 45V  
input supply range. The devices supply 100mA of output  
current with a typical dropout voltage of 300mV. A single  
externalcapacitorprovidesprogrammablelownoiserefer-  
ence performance and output soft-start functionality. The  
LT3060’s quiescent current is merely 40μA and provides  
fast transient response with a minimum 2.2μF output  
capacitor. In shutdown, quiescent current is less than 1μA  
and the reference soft-start capacitor is reset.  
n
Input Voltage Range: 1.6V to 45V  
n
Output Current: 100mA  
n
Quiescent Current: 40µA  
n
Dropout Voltage: 300mV  
n
Low Noise: 30µV  
(10Hz to 100kHz)  
REF  
RMS  
n
n
n
Adjustable Output: V  
= 600mV  
Fixed Output Voltages: 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, 5V  
Output Tolerance: 2ꢀ Over Line, Load and  
Temperature  
n
Single Capacitor Soft-Starts Reference and Lowers  
Output Noise  
Shutdown Current: < 1µA  
Reverse Battery Protection  
The LT3060 regulators optimize stability and transient  
response with low ESR, ceramic output capacitors.  
The regulators do not require the addition of ESR as is  
common with other regulators.  
n
n
n
n
n
Current Limit Foldback Protection  
Thermal Limit Protection  
Internal protection circuitry includes reverse-battery  
protection, reverse-output protection, reverse-current  
protection, current limit with foldback and thermal  
shutdown. The LT3060 series are available in fixed output  
voltages of 1.2V, 1.5V, 1.8V, 2.5V, 3.3V and 5V, and as an  
adjustable voltage regulator with an output voltage range  
fromthe600mVreferenceto44.5V.TheLT3060regulators  
are offered in the thermally enhanced 8-lead TSOT-23 and  
8-lead (2mm × 2mm × 0.75mm) DFN packages.  
8-Lead 2mm × 2mm × 0.75mm DFN and 8-Lead  
ThinSOT Packages  
applicaTions  
n
Battery-Powered Systems  
n
Automotive Power Supplies  
n
Industrial Power Supplies  
n
Avionic Power Supplies  
n
Portable Instruments  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
Dropout Voltage  
Typical applicaTion  
350  
2.5V Low Noise Regulator  
T
= 25°C  
J
300  
250  
200  
150  
100  
50  
V
OUT  
IN  
OUT  
2.5V AT 100mA  
30µV NOISE  
V
RMS  
IN  
1µF  
LT3060-2.5  
C
FF  
10nF  
3V TO  
45V  
10µF  
SHDN  
ADJ  
GND REF/BYP  
10nF  
3060 TA01  
0
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
3060 TA02  
3060fa  
1
LT3060 Series  
absoluTe MaxiMuM raTings (Note 1)  
IN Pin Voltage ........................................................ 50V  
OUT Pin Voltage..................................................... 50V  
Input-to-Output Differential Voltage (Note 2)......... 50V  
ADJ Pin Voltage ..................................................... 50V  
SHDN Pin Voltage .................................................. 50V  
REF/BYP Pin Voltage....................................... – 0.3V, 1V  
Output Short-Circuit Duration.......................... Indefinite  
Operating Junction Temperature (Notes 3, 5, 13)  
E-, I-Grades .......................................40°C to 125°C  
MP-Grade .......................................... –55°C to 125°C  
H-Grade ............................................. –40°C to 150°C  
Storage Temperature Range ..................65°C to 150°C  
Lead Temperature (TS8 Soldering, 10 sec)...........300°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
1
2
3
4
8
7
6
5
GND  
SHDN  
IN  
REF/BYP  
ADJ  
SHDN 1  
GND 2  
GND 3  
GND 4  
8 REF/BYP  
7 ADJ  
6 OUT  
5 IN  
9
GND  
OUT  
OUT  
IN  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
DC PACKAGE  
8-LEAD (2mm × 2mm) PLASTIC DFN  
T
= 150°C, θ = 57°C/W TO 67°C/W*, θ = 25°C/W  
JMAX  
JA  
JC  
T
= 125°C, θ = 48°C/W TO 60°C/W*, θ = 20°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
* SEE APPLICATIONS INFORMATION SECTION  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LDTD  
LDTD  
LFVT  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
LT3060EDC#PBF  
LT3060EDC#TRPBF  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead Plastic ThinSOT  
LT3060IDC#PBF  
LT3060IDC#TRPBF  
LT3060EDC-1.2#PBF  
LT3060IDC-1.2#PBF  
LT3060EDC-1.5#PBF  
LT3060IDC-1.5#PBF  
LT3060EDC-1.8#PBF  
LT3060IDC-1.8#PBF  
LT3060EDC-2.5#PBF  
LT3060IDC-2.5#PBF  
LT3060EDC-3.3#PBF  
LT3060IDC-3.3#PBF  
LT3060EDC-5#PBF  
LT3060IDC-5#PBF  
LT3060ETS8#PBF  
LT3060ITS8#PBF  
LT3060EDC-1.2#TRPBF  
LT3060IDC-1.2#TRPBF  
LT3060EDC-1.5#TRPBF  
LT3060IDC-1.5#TRPBF  
LT3060EDC-1.8#TRPBF  
LT3060IDC-1.8#TRPBF  
LT3060EDC-2.5#TRPBF  
LT3060IDC-2.5#TRPBF  
LT3060EDC-3.3#TRPBF  
LT3060IDC-3.3#TRPBF  
LT3060EDC-5#TRPBF  
LT3060IDC-5#TRPBF  
LT3060ETS8#TRPBF  
LT3060ITS8#TRPBF  
LFVT  
LFVV  
LFVV  
LFVW  
LFVW  
LFVX  
LFVX  
LFVY  
LFVY  
LFVZ  
LFVZ  
LTDTF  
LTDTF  
8-Lead Plastic ThinSOT  
3060fa  
2
LT3060 Series  
orDer inForMaTion  
LEAD FREE FINISH  
LT3060MPTS8#PBF  
LT3060HTS8#PBF  
LT3060ETS8-1.2#PBF  
LT3060ITS8-1.2#PBF  
LT3060MPTS8-1.2#PBF  
LT3060HTS8-1.2#PBF  
LT3060ETS8-1.5#PBF  
LT3060ITS8-1.5#PBF  
LT3060MPTS8-1.5#PBF  
LT3060HTS8-1.5#PBF  
LT3060ETS8-1.8#PBF  
LT3060ITS8-1.8#PBF  
LT3060MPTS8-1.8#PBF  
LT3060HTS8-1.8#PBF  
LT3060ETS8-2.5#PBF  
LT3060ITS8-2.5#PBF  
LT3060MPTS8-2.5#PBF  
LT3060HTS8-2.5#PBF  
LT3060ETS8-3.3#PBF  
LT3060ITS8-3.3#PBF  
LT3060MPTS8-3.3#PBF  
LT3060HTS8-3.3#PBF  
LT3060ETS8-5#PBF  
LT3060ITS8-5#PBF  
LT3060MPTS8-5#PBF  
LT3060HTS8-5#PBF  
LEAD BASED FINISH  
LT3060EDC  
TAPE AND REEL  
PART MARKING*  
LTDTF  
PACKAGE DESCRIPTION  
8-Lead Plastic ThinSOT  
TEMPERATURE RANGE  
55°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
TEMPERATURE RANGE  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
LT3060MPTS8#TRPBF  
LT3060HTS8#TRPBF  
LT3060ETS8-1.2#TRPBF  
LT3060ITS8-1.2#TRPBF  
LTDTF  
8-Lead Plastic ThinSOT  
LTFWB  
8-Lead Plastic ThinSOT  
LTFWB  
8-Lead Plastic ThinSOT  
LT3060MPTS8-1.2#TRPBF LTFWB  
8-Lead Plastic ThinSOT  
LT3060HTS8-1.2#TRPBF  
LT3060ETS8-1.5#TRPBF  
LT3060ITS8-1.5#TRPBF  
LTFWB  
LTFWC  
LTFWC  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
LT3060MPTS8-1.5#TRPBF LTFWC  
8-Lead Plastic ThinSOT  
LT3060HTS8-1.5#TRPBF  
LT3060ETS8-1.8#TRPBF  
LT3060ITS8-1.8#TRPBF  
LTFWC  
LTFWD  
LTFWD  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
LT3060MPTS8-1.8#TRPBF LTFWD  
8-Lead Plastic ThinSOT  
LT3060HTS8-1.8#TRPBF  
LT3060ETS8-2.5#TRPBF  
LT3060ITS8-2.5#TRPBF  
LTFWD  
LTFWF  
LTFWF  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
LT3060MPTS8-2.5#TRPBF LTFWF  
8-Lead Plastic ThinSOT  
LT3060HTS8-2.5#TRPBF  
LT3060ETS8-3.3#TRPBF  
LT3060ITS8-3.3#TRPBF  
LTFWF  
LTFWG  
LTFWG  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
LT3060MPTS8-3.3#TRPBF LTFWG  
8-Lead Plastic ThinSOT  
LT3060HTS8-3.3#TRPBF  
LT3060ETS8-5#TRPBF  
LT3060ITS8-5#TRPBF  
LT3060MPTS8-5#TRPBF  
LT3060HTS8-5#TRPBF  
TAPE AND REEL  
LTFWG  
LTFWH  
LTFWH  
LTFWH  
LTFWH  
PART MARKING*  
LDTD  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
PACKAGE DESCRIPTION  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
LT3060EDC#TR  
LT3060IDC  
LT3060IDC#TR  
LDTD  
LT3060EDC-1.2  
LT3060EDC-1.2#TR  
LT3060IDC-1.2#TR  
LT3060EDC-1.5#TR  
LT3060IDC-1.5#TR  
LT3060EDC-1.8#TR  
LT3060IDC-1.8#TR  
LT3060EDC-2.5#TR  
LT3060IDC-2.5#TR  
LT3060EDC-3.3#TR  
LT3060IDC-3.3#TR  
LFVT  
LT3060IDC-1.2  
LFVT  
LT3060EDC-1.5  
LFVV  
LT3060IDC-1.5  
LFVV  
LT3060EDC-1.8  
LFVW  
LT3060IDC-1.8  
LFVW  
LT3060EDC-2.5  
LFVX  
LT3060IDC-2.5  
LFVX  
LT3060EDC-3.3  
LFVY  
LT3060IDC-3.3  
LFVY  
3060fa  
3
LT3060 Series  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LFVZ  
PACKAGE DESCRIPTION  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
8-Lead Plastic ThinSOT  
TEMPERATURE RANGE  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
LT3060EDC-5  
LT3060EDC-5#TR  
LT3060IDC-5  
LT3060IDC-5#TR  
LFVZ  
LT3060ETS8  
LT3060ETS8#TR  
LTDTF  
LT3060ITS8  
LT3060ITS8#TR  
LTDTF  
LT3060MPTS8  
LT3060MPTS8#TR  
LT3060HTS8#TR  
LTDTF  
LT3060HTS8  
LTDTF  
LT3060ETS8-1.2  
LT3060ITS8-1.2  
LT3060MPTS8-1.2  
LT3060HTS8-1.2  
LT3060ETS8-1.5  
LT3060ITS8-1.5  
LT3060MPTS8-1.5  
LT3060HTS8-1.5  
LT3060ETS8-1.8  
LT3060ITS8-1.8  
LT3060MPTS8-1.8  
LT3060HTS8-1.8  
LT3060ETS8-2.5  
LT3060ITS8-2.5  
LT3060MPTS8-2.5  
LT3060HTS8-2.5  
LT3060ETS8-3.3  
LT3060ITS8-3.3  
LT3060MPTS8-3.3  
LT3060HTS8-3.3  
LT3060ETS8-5  
LT3060ITS8-5  
LT3060ETS8-1.2#TR  
LT3060ITS8-1.2#TR  
LT3060MPTS8-1.2#TR  
LT3060HTS8-1.2#TR  
LT3060ETS8-1.5#TR  
LT3060ITS8-1.5#TR  
LT3060MPTS8-1.5#TR  
LT3060HTS8-1.5#TR  
LT3060ETS8-1.8#TR  
LT3060ITS8-1.8#TR  
LT3060MPTS8-1.8#TR  
LT3060HTS8-1.8#TR  
LT3060ETS8-2.5#TR  
LT3060ITS8-2.5#TR  
LT3060MPTS8-2.5#TR  
LT3060HTS8-2.5#TR  
LT3060ETS8-3.3#TR  
LT3060ITS8-3.3#TR  
LT3060MPTS8-3.3#TR  
LT3060HTS8-3.3#TR  
LT3060ETS8-5#TR  
LT3060ITS8-5#TR  
LT3060MPTS8-5#TR  
LT3060HTS8-5#TR  
LTFWB  
LTFWB  
LTFWB  
LTFWB  
LTFWC  
LTFWC  
LTFWC  
LTFWC  
LTFWD  
LTFWD  
LTFWD  
LTFWD  
LTFWF  
LTFWF  
LTFWF  
LTFWF  
LTFWG  
LTFWG  
LTFWG  
LTFWG  
LTFWH  
LTFWH  
LTFWH  
LTFWH  
LT3060MPTS8-5  
LT3060HTS8-5  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3060fa  
4
LT3060 Series  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
= 100mA  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
(Notes 4, 12)  
I
1.6  
2.1  
V
LOAD  
Regulated Output Voltage  
(Note 5)  
LT3060-1.2: V = 2.1V, I  
= 1mA  
LOAD  
1.2  
1.2  
1.2  
V
V
V
1.188  
1.176  
1.170  
1.212  
1.224  
1.224  
IN  
l
l
2.1V < V < 45V, 1mA < I  
< 100mA (E-, I-, MP-Grades)  
< 100mA (H-Grade)  
IN  
LOAD  
LOAD  
2.1V < V < 45V, 1mA < I  
IN  
LT3060-1.5: V = 2.1V, I  
= 1mA  
LOAD  
1.5  
1.5  
1.5  
V
V
V
1.485  
1.470  
1.463  
1.515  
1.530  
1.530  
IN  
l
l
2.1V < V < 45V, 1mA < I  
< 100mA (E-, I-, MP-Grades)  
< 100mA (H-Grade)  
IN  
LOAD  
LOAD  
2.1V < V < 45V, 1mA < I  
IN  
LT3060-1.8: V = 2.35V, I  
= 1mA  
LOAD  
1.8  
1.8  
1.8  
V
V
V
1.782  
1.764  
1.755  
1.818  
1.836  
1.836  
IN  
l
l
2.35V < V < 45V, 1mA < I  
< 100mA (E-, I-, MP-Grades)  
LOAD  
LOAD  
IN  
2.35V < V < 45V, 1mA < I  
< 100mA (H-Grade)  
IN  
LT3060-2.5: V = 3.05V, I  
= 1mA  
LOAD  
2.5  
2.5  
2.5  
V
V
V
2.475  
2.450  
2.438  
2.525  
2.550  
2.550  
IN  
l
l
3.05V < V < 45V, 1mA < I  
< 100mA (E-, I-, MP-Grades)  
< 100mA (H-Grade)  
IN  
LOAD  
LOAD  
3.05V < V < 45V, 1mA < I  
IN  
LT3060-3.3: V = 3.85V, I  
= 1mA  
LOAD  
3.3  
3.3  
3.3  
V
V
V
3.267  
3.234  
3.218  
3.333  
3.366  
3.366  
IN  
l
l
3.85V < V < 45V, 1mA < I  
< 100mA (E-, I-, MP-Grades)  
< 100mA (H-Grade)  
IN  
LOAD  
LOAD  
3.85V < V < 45V, 1mA < I  
IN  
LT3060-5:  
LT3060:  
V
= 5.55V, I  
= 1mA  
LOAD  
5
5
5
V
V
V
4.950  
4.900  
4.875  
5.050  
5.100  
5.100  
IN  
l
l
5.55V < V < 45V, 1mA < I  
< 100mA (E-, I-, MP-Grades)  
< 100mA (H-Grade)  
IN  
IN  
LOAD  
LOAD  
5.55V < V < 45V, 1mA < I  
ADJ Pin Voltage  
(Notes 4, 5)  
V
= 2.1V, I  
= 1mA  
LOAD  
594  
588  
585  
600  
600  
600  
606  
612  
612  
mV  
mV  
mV  
IN  
l
l
2.1V < V < 45V, 1mA < I  
< 100mA (E-, I-, MP-Grades)  
< 100mA (H-Grade)  
IN  
IN  
LOAD  
LOAD  
2.1V < V < 45V, 1mA < I  
l
l
l
l
l
l
l
Line Regulation  
LT3060-1.2: ΔV = 2.1V to 45V, I  
= 1mA  
= 1mA  
(E-, I-, MP-Grades)  
(H-Grade)  
0.9  
3.5  
7
mV  
mV  
mV  
mV  
mV  
mV  
mV  
IN  
LOAD  
LOAD  
ΔV = 2.1V to 45V, I  
IN  
LT3060-1.5: ΔV = 2.1V to 45V, I  
= 1mA  
= 1mA  
(E-, I-, MP-Grades)  
(H-Grade)  
1
4.2  
8
IN  
LOAD  
LOAD  
ΔV = 2.1V to 45V, I  
IN  
LT3060-1.8: ΔV = 2.35V to 45V, I  
= 1mA  
= 1mA  
(E-, I-, MP-Grades)  
(H-Grade)  
1.1  
1.2  
1.3  
1.5  
0.6  
2.4  
2.5  
2.6  
2.8  
3.1  
3.7  
0.2  
4.5  
12  
IN  
LOAD  
LOAD  
ΔV = 2.35V to 45V, I  
IN  
LT3060-2.5: ΔV = 3.05V to 45V, I  
= 1mA  
= 1mA  
(E-, I-, MP-Grades)  
(H-Grade)  
5.4  
15  
IN  
LOAD  
LOAD  
ΔV = 3.05V to 45V, I  
IN  
LT3060-3.3: ΔV = 3.85V to 45V, I  
= 1mA  
= 1mA  
(E-, I-, MP-Grades)  
(H-Grade)  
7
19  
IN  
LOAD  
LOAD  
ΔV = 3.85V to 45V, I  
IN  
LT3060-5: ΔV = 5.55V to 45V, I  
= 1mA  
= 1mA  
(E-, I-, MP-Grades)  
(H-Grade)  
8.5  
25  
IN  
LOAD  
LOAD  
ΔV = 5.55V to 45V, I  
IN  
LT3060:  
(Note 4)  
ΔV = 2.1V to 45V, I  
IN  
= 1mA  
= 1mA  
(E-, I-, MP-Grades)  
(H-Grade)  
3.5  
4
IN  
LOAD  
LOAD  
ΔV = 2.1V to 45V, I  
l
l
Load Regulation  
(Note 15)  
LT3060-1.2: V = 2.1V, I  
= 1mA to 100mA  
= 1mA to 100mA  
(E-, I-, MP-Grades)  
(H-Grade)  
10  
18  
mV  
mV  
IN  
LOAD  
LOAD  
V
= 2.1V, I  
IN  
l
l
LT3060-1.5: V = 2.1V, I  
= 1mA to 100mA  
= 1mA to 100mA  
(E-, I-, MP-Grades)  
(H-Grade)  
12  
22  
mV  
mV  
IN  
LOAD  
LOAD  
V
= 2.1V, I  
IN  
l
l
LT3060-1.8: V = 2.35V, I  
= 1mA to 100mA  
= 1mA to 100mA  
(E-, I-, MP-Grades)  
(H-Grade)  
14  
27  
mV  
mV  
IN  
LOAD  
LOAD  
V
= 2.35V, I  
IN  
l
l
LT3060-2.5: V = 3.05V, I  
= 1mA to 100mA  
= 1mA to 100mA  
(E-, I-, MP-Grades)  
(H-Grade)  
19  
37  
mV  
mV  
IN  
LOAD  
LOAD  
V
= 3.05V, I  
IN  
l
l
LT3060-3.3: V = 3.85V, I  
= 1mA to 100mA  
= 1mA to 100mA  
(E-, I-, MP-Grades)  
(H-Grade)  
24  
49  
mV  
mV  
IN  
LOAD  
LOAD  
V
= 3.85V, I  
IN  
l
l
LT3060-5:  
V
V
= 5.55V, I  
= 5.55V, I  
= 1mA to 100mA  
= 1mA to 100mA  
(E-, I-, MP-Grades)  
(H-Grade)  
35  
75  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
l
l
LT3060:  
(Note 4)  
V
V
= 2.1V, I  
= 2.1V, I  
= 1mA to 100mA  
= 1mA to 100mA  
(E-, I-, MP-Grades)  
(H-Grade)  
4
9
mV  
mV  
IN  
IN  
LOAD  
LOAD  
3060fa  
5
LT3060 Series  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Dropout Voltage  
I
I
= 1mA  
= 1mA  
75  
110  
180  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
V
= V  
IN  
OUT(NOMINAL)  
(Notes 6, 7)  
I
I
= 10mA  
= 10mA  
150  
240  
300  
200  
300  
mV  
mV  
LOAD  
LOAD  
I
I
= 50mA (Note 14)  
= 50mA (Note 14)  
280  
410  
mV  
mV  
LOAD  
LOAD  
I
I
= 100mA (Note 14)  
= 100mA (Note 14)  
350  
510  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
l
GND Pin Current  
I
I
I
I
I
= 0µA  
40  
60  
160  
0.8  
2
80  
100  
350  
1.8  
4
µA  
µA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
+ 0.55V  
= 1mA  
IN  
OUT(NOMINAL)  
= 10mA  
= 50mA  
= 100mA  
µA  
(Notes 6, 8)  
mA  
mA  
Quiescent Current in  
Shutdown  
V
= 45V, V  
= 0V  
SHDN  
0.3  
15  
30  
1
µA  
IN  
l
ADJ Pin Bias Current  
(Notes 4, 9)  
V
= 2.1V  
60  
nA  
IN  
Output Voltage Noise  
C
V
= 10µF, I  
= 600mV, BW = 10Hz to 100kHz  
= 100mA, C  
= 0.01µF  
µV  
RMS  
OUT  
OUT  
LOAD  
BYP  
l
l
Shutdown Threshold  
V
OUT  
V
OUT  
= Off to On  
= On to Off  
0.8  
0.7  
1.5  
V
V
0.3  
l
l
SHDN Pin Current  
V
V
= 0V  
1
3
µA  
µA  
SHDN  
SHDN  
(Note 10)  
= 45V  
0.9  
79  
77  
75  
73  
70  
67  
85  
200  
Ripple Rejection  
64  
62  
60  
58  
55  
52  
70  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
LT3060-1.2: V = 2.7V (Avg)  
IN  
V
= 0.5V  
,
RIPPLE P-P  
= 120Hz,  
RIPPLE  
LT3060-1.5: V = 3V (Avg)  
IN  
f
I
LT3060-1.8: V = 3.3V (Avg)  
= 100mA  
IN  
LOAD  
LT3060-2.5: V = 4V (Avg)  
IN  
LT3060-3.3: V = 4.8V (Avg)  
IN  
LT3060-5:  
LT3060:  
V
V
= 6.5V (Avg)  
IN  
IN  
= 2.1V (Avg) (Note 4)  
Current Limit  
V
V
= 7V, V  
= 0  
mA  
mA  
IN  
IN  
OUT  
l
l
= V  
+ 1V (Notes 6, 12), ΔV  
= –5ꢀ  
110  
OUT(NOMINAL)  
OUT  
Input Reverse Leakage  
Current  
V
= –45V, V  
= 0  
OUT  
300  
µA  
IN  
Reverse Output Current  
(Note 11)  
5
5
10  
10  
10  
10  
10  
10  
10  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
LT3060-1.2: V  
LT3060-1.5: V  
LT3060-1.8: V  
LT3060-2.5: V  
LT3060-3.3: V  
= 1.2V, V = 0V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1.5V, V = 0V  
IN  
5
= 1.8V, V = 0V  
IN  
5
= 2.5V, V = 0V  
IN  
5
= 3.3V, V = 0V  
IN  
5
LT3060-5:  
LT3060:  
V
V
= 5V, V = 0V  
IN  
0.2  
= 1.2V, V = 0V (Note 4)  
IN  
3060fa  
6
LT3060 Series  
elecTrical characTerisTics  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: Dropout voltage is the minimum input-to-output voltage  
differential needed to maintain regulation at a specified output current.  
In dropout, the output voltage equals: (V – V ). For the  
LT3060, LT3060-1.2, LT3060-1.5 and LT3060-1.8, dropout is limited  
by the minimum input specification under some output voltages and  
load conditions. See the Minimum Input Voltage curve in the Typical  
Performance Characteristics section.  
IN  
DROPOUT  
Note 2: Absolute maximum input-to-output differential voltage is not  
achievable with all combinations of rated IN pin and OUT pin voltages.  
With the IN pin at 50V, the OUT pin may not be pulled below 0V. The total  
measured voltage from IN to OUT must not exceed 50V.  
Note 8: GND pin current is tested with V = V  
+ 0.55V and a  
OUT(NOMINAL)  
IN  
Note 3: The LT3060 regulators are tested and specified under pulse load  
conditions such that T T . The LT3060E regulators are 100ꢀ tested  
current source load. GND pin current will increase in dropout. See GND pin  
current curves in the Typical Performance Characteristics section.  
J
A
at T = 25°C. Performance at –40°C to 125°C is assured by design,  
A
Note 9: ADJ pin bias current flows out of the ADJ pin.  
Note 10: SHDN pin current flows into the SHDN pin.  
Note 11: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out of the GND pin.  
characterization and correlation with statistical process controls. The  
LT3060I regulators are guaranteed over the full –40°C to 125°C operating  
junction temperature range. The LT3060MP regulators are 100ꢀ tested  
over the –55°C to 125°C operating junction temperature range. The  
LT3060H regulators are 100ꢀ tested at the 150°C operating junction  
temperature. High junction temperatures degrade operating lifetimes.  
Operating lifetime is derated at junction temperatures greater than 125°C.  
Note 12: To satisfy requirements for minimum input voltage, current  
limit is tested at V = V  
+ 1V or V = 2.1V, whichever is  
IN  
OUT(NOMINAL)  
IN  
greater.  
Note 4: The LT3060 adjustable version is tested and specified for these  
conditions with the ADJ connected to the OUT pin.  
Note 13: This IC includes overtemperature protection that protects the  
device during momentary overload conditions. Junction temperature  
will exceed 125°C (LT3060E, LT3060I, LT3060MP) or 150°C (LT3060H)  
when overtemperature circuitry is active. Continuous operation above the  
specified maximum junction temperature may impair device reliability.  
Note 5: Maximum junction temperature limits operating conditions. The  
regulated output voltage specification does not apply for all possible  
combinations of input voltage and output current. Limit the output current  
range if operating at the maximum input-to-output voltage differential.  
Limit the input-to-output voltage differential if operating at maximum  
output current. Current limit foldback will limit the maximum output  
current as a function of input-to-output voltage. See Current Limit vs  
Note 14: The dropout voltage specification is guaranteed for the DFN  
package. The dropout voltage specification for high output currents cannot  
be guaranteed for the TS8 package due to production test limitations.  
V
– V  
in the Typical Performance Characteristics section.  
IN  
OUT  
Note 15: The load regulation specification is guaranteed for the fixed  
voltage options in the DFN package. The load regulation specification  
cannot be guaranteed for the fixed voltage options in the TS8 package due  
to production test limitations. The TS8 packages are tested similarly to the  
LT3060 adjustable version with the ADJ connected to the OUT pin.  
Note 6: To satisfy minimum input voltage requirements, the LT3060  
adjustable version is tested and specified for these conditions with an  
external resistor divider (bottom 115k, top 365k) for an output voltage of  
2.5V. The external resistor divider adds 5µA of DC load on the output. This  
external current is not factored into GND pin current.  
3060fa  
7
LT3060 Series  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
I
= 100mA  
L
T ≤ 150°C  
J
I
= 50mA  
= 10mA  
L
L
T = 125°C  
J
T ≤ 25°C  
J
I
T = 25°C  
J
I
= 1mA  
L
0
0
0
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
3060 G01  
3060 G02  
3060 G03  
Quiescent Current  
LT3060-1.2 Output Voltage  
LT3060-1.5 Output Voltage  
1.224  
1.220  
1.216  
1.212  
1.208  
1.204  
1.200  
1.196  
1.530  
1.525  
1.520  
1.515  
1.510  
1.505  
1.500  
1.495  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 1mA  
I = 1mA  
L
V
= 6V, V  
= V  
SHDN IN  
L
IN  
L
R
= ∞ (120k FOR LT3060)  
I
= 0 (5µA FOR LT3060)  
L
LT3060-1.2/-1.5/-1.8/-2.5/-3.3/-5  
LT3060  
1.192  
1.188  
1.184  
1.490  
1.485  
1.480  
1.180  
1.176  
1.475  
1.470  
V
= 0V  
SHDN  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3060 G04  
3060 G05  
3060 G06  
LT3060-1.8 Output Voltage  
LT3060-2.5 Output Voltage  
LT3060-3.3 Output Voltage  
1.836  
1.830  
1.824  
1.818  
1.812  
1.806  
1.800  
1.794  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
3.366  
3.355  
3.344  
3.333  
3.322  
3.311  
3.300  
3.289  
I
= 1mA  
I
= 1mA  
I = 1mA  
L
L
L
1.788  
1.782  
1.776  
3.278  
3.267  
3.256  
1.770  
1.764  
3.245  
3.234  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3060 G07  
3060 G08  
3060 G09  
3060fa  
8
LT3060 Series  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
LT3060-5 Output Voltage  
LT3060 ADJ Pin Voltage  
LT3060-1.2 Quiescent Current  
200  
175  
150  
125  
100  
75  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
0.612  
0.610  
0.608  
0.606  
0.604  
0.602  
0.600  
0.598  
T = 25°C  
J
I
= 1mA  
I
= 1mA  
= 2.1V  
L
L
IN  
R
V
= 240k  
OUT  
V
L
= 1.2V  
0.596  
0.594  
0.592  
V
= V  
IN  
SHDN  
50  
25  
0.590  
0.588  
V
= 0V  
6
SHDN  
0
0
1
2
3
4
5
7
8
9
10  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3060 G11  
3060 G12  
3060 G10  
LT3060-2.5 Quiescent Current  
LT3060-1.5 Quiescent Current  
LT3060-1.8 Quiescent Current  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
T = 25°C  
J
T
R
V
= 25°C  
= 360k  
= 1.8V  
T = 25°C  
J
J
L
R
V
= 300k  
OUT  
R
V
= 500k  
OUT  
L
L
= 1.5V  
= 2.5V  
OUT  
V
= V  
IN  
V
= V  
IN  
V
= V  
IN  
SHDN  
SHDN  
SHDN  
50  
50  
50  
25  
25  
25  
V
= 0V  
6
V
= 0V  
6
V
= 0V  
6
SHDN  
SHDN  
SHDN  
0
0
0
0
1
2
3
4
5
7
8
9
10  
0
1
2
3
4
5
7
8
9
10  
0
1
2
3
4
5
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3060 G13  
3060 G14  
3060 G15  
LT3060-3.3 Quiescent Current  
LT3060-5 Quiescent Current  
LT3060 Quiescent Current  
80  
70  
60  
50  
40  
30  
20  
10  
0
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
T = 25°C  
T = 25°C  
J
T = 25°C  
J
J
R
= 120k  
= 0.6V  
R
V
= 660k  
OUT  
R
V
= 1M  
L
L
OUT  
L
V
= 3.3V  
= 5V  
OUT  
V
= V  
IN  
SHDN  
V
= V  
V
= V  
SHDN IN  
SHDN  
IN  
50  
50  
25  
25  
V
= 0  
V
= 0V  
7
V
= 0V  
8
SHDN  
SHDN  
SHDN  
0
0
0
5
10 15 20 25 30 35 40 45  
INPUT VOLTAGE (V)  
0
1
2
3
4
5
6
8
9
10  
0
1
2
3
4
5
6
7
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3060 G16  
3060 G17  
3060 G18  
3060fa  
9
LT3060 Series  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
LT3060-1.2 GND Pin Current  
LT3060-1.5 GND Pin Current  
LT3060-1.8 GND Pin Current  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
T = 25°C  
OUT  
SHDN  
T = 25°C  
J
T = 25°C  
OUT  
SHDN  
J
J
*FOR V  
V
= 1.5V  
= V  
*FOR V  
V
= 1.8V  
OUT  
*FOR V  
V
= 1.2V  
= V  
= V  
IN  
IN  
SHDN  
IN  
R
L
= 18Ω  
R
L
= 12Ω  
R
L
= 15Ω  
L
L
L
I
= 100mA*  
I
= 100mA*  
I
= 100mA*  
R
L
= 30Ω  
R = 36Ω  
L
R
L
= 24Ω  
L
L
I
= 50mA*  
I
L
= 50mA*  
I
= 50mA*  
R
L
= 1.5k  
R
L
= 1.8k  
L
R
L
= 1.2k  
L
L
R
L
= 150Ω  
R
L
= 180Ω  
R
L
= 120Ω  
L
L
L
I
= 1mA*  
I
= 1mA*  
I
= 1mA*  
I
= 10mA*  
I
= 10mA*  
I
= 10mA*  
0
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3060 G20  
3060 G21  
3060 G19  
LT3060-5 GND Pin Current  
LT3060-2.5 GND Pin Current  
LT3060-3.3 GND Pin Current  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
T = 25°C  
J
OUT  
SHDN  
T = 25°C  
T = 25°C  
J
OUT  
SHDN  
J
*FOR V  
V
= 2.5V  
*FOR V  
V
= 5V  
*FOR V  
V
= 3.3V  
OUT  
= V  
= V  
IN  
= V  
IN  
SHDN  
IN  
R
L
= 25Ω  
L
R
L
= 50Ω  
R
L
= 33Ω  
L
L
I
= 100mA*  
I
= 100mA*  
I
= 100mA*  
R
L
L
= 50Ω  
R
L
= 100Ω  
L
R
L
= 66Ω  
L
I
= 50mA*  
I
= 50mA*  
I
= 50mA*  
R
L
= 5k  
L
R
L
= 3.3k  
R
L
= 2.5k  
L
L
I
= 1mA*  
R
L
L
= 250Ω  
R
L
= 500Ω  
L
R = 330Ω  
L
L
I
= 1mA*  
I
= 1mA*  
I
= 10mA*  
I
= 10mA*  
I
= 10mA*  
0
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3060 G22  
3060 G24  
3060 G23  
LT3060 GND Pin Current  
GND Pin Current vs ILOAD  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T = 25°C  
V
= V  
+ 1V  
OUT(NOMINAL)  
J
IN  
*FOR V  
= 0.6V  
OUT  
SHDN  
V
= V  
IN  
R
L
= 6Ω  
L
I
= 100mA*  
R
I
= 12Ω  
= 50mA*  
L
L
R
L
= 600Ω  
L
R
I
= 60Ω  
= 10mA*  
L
L
I
= 1mA*  
0
0
1
2
3
4
5
6
7
8
9
10  
0
10 20 30 40 50 60 70 80 90 100  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
3060 G25  
3060 G26  
3060fa  
10  
LT3060 Series  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
SHDN Pin Input Current  
SHDN Pin Input Current  
SHDN Pin Threshold  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 45V  
SHDN  
OFF TO ON  
ON TO OFF  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
10 15 20 25 30 35 40 45  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
3060 G29  
3060 G28  
3060 G27  
ADJ Pin Bias Current  
Current Limit vs Temperature  
Current Limit vs VIN–VOUT  
250  
225  
200  
175  
150  
125  
100  
75  
50  
40  
250  
225  
200  
175  
150  
125  
100  
75  
V  
= 5%  
OUT  
T = 125°C  
J
T = 25°C  
J
30  
20  
T = –50°C  
J
10  
0
–10  
–20  
–30  
–40  
–50  
50  
50  
V
V
= 7V  
IN  
OUT  
25  
25  
= 0V  
0
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
10 15 20 25 30 35 40 45  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT/OUTPUT DIFFERENTIAL (V)  
3060 G32  
3060 G30  
3060 G31  
LT3060-1.2/-1.5/-1.8/-2.5/-3.3/-5  
Reverse Output Current  
LT3060 Reverse Output Current  
Reverse Output Current  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
350  
300  
250  
200  
150  
100  
50  
T = 25°C  
J
T = 25°C  
IN  
V
V
V
V
V
V
V
= 0V, V  
= V  
= 1.2V (LT3060)  
ADJ  
J
IN  
OUT  
LT3060-1.2  
V
= 0V  
V
= 0V  
= 1.2V (LT3060-1.2)  
= 1.5V (LT3060-1.5)  
= 1.8V (LT3060-1.8)  
= 2.5V (LT3060-2.5)  
= 3.3V (LT3060-3.3)  
= 5V (LT3060-5)  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
CURRENT FLOWS  
INTO OUT PIN  
LT3060-1.5  
LT3060-1.8  
V
= V  
OUT  
ADJ  
LT3060-2.5  
LT3060-3.3  
ADJ (LT3060)  
ADJ  
OUT (LT3060-1.2/-1.5/  
-1.8/2.5/-3.3/-5)  
LT3060-5  
OUT  
OUT (LT3060)  
25 50 75 100 125 150 175  
0
0
0
5
10 15 20 25 30 35 40 45  
–75 –50 –25  
0
0
5
10 15 20 25 30 35 40 45  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
3060 G33  
3060 G34  
3060 G35  
3060fa  
11  
LT3060 Series  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
Input Ripple Rejection  
LT3060-5 Input Ripple Rejection  
Ripple Rejection vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
C
= 10nF  
C
= C = 10nF  
FF  
REF/BYP  
REF/BYP  
V
= 0.6V  
OUT  
C
= 10nF, C = 0  
FF  
REF/BYP  
C
= 0  
REF/BYP  
V
= 5V  
OUT  
C
= 10µF  
OUT  
I
C
V
= 100mA  
I
= 100mA  
= 5V  
L
L
OUT  
I
V
V
= 100mA  
L
= C = 0  
V
C
V
C
= C = 0  
FF  
REF/BYP  
= V  
FF  
REF/BYP  
= 0.6V  
OUT  
+ 1.5V +  
= 10µF  
IN  
OUT(NOMINAL)  
RIPPLE  
OUT  
= 2.6V + 0.5V RIPPLE AT f = 120Hz  
C
= 2.2µF  
IN  
P-P  
50mV  
= 6V + 50mV  
RIPPLE  
RMS  
OUT  
RMS  
IN  
–75 –50 –25  
0
25 50 75 100 125 150 175  
10  
100  
1k  
10k 100k 1M  
10M  
10  
100  
1k  
10k 100k 1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
3060 G38  
3060 G36  
3060 G37  
Output Noise Spectral Density  
CREF/BYP = 0, CFF = 0  
Minimum Input Voltage  
Load Regulation  
5
0
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
1
I
= 100mA  
L
–5  
I
= 50mA  
L
–10  
–15  
–20  
–25  
LT3060-5  
V
V
V
V
V
V
V
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
LT3060-3.3  
LT3060-2.5  
LT3060-1.8  
LT3060-1.5  
LT3060-1.2  
LT3060  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.6V  
0.1  
0.01  
C
I
= 10µF  
OUT  
L
V
= V  
IN  
= 100mA  
SHDN  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
+ 0.55V (LT3060-1.8/-2.5/-3.3/-5)  
–75 –50 –25  
0
25 50 75 100 125 150 175  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
3060 G40  
TEMPERATURE (°C)  
3060 G39  
3060 G41  
V
IN  
V
IN  
= V  
OUT(NOMINAL)  
= 2.1V (LT3060/-1.2/-1.5)  
I = 1mA TO 100mA  
L
Output Noise Spectral Density  
vs CREF/BYP, CFF = 0  
Output Noise Spectral Density  
vs CFF, CREF/BYP = 10nF  
10  
1
10  
1
C
= 100pF  
REF/BYP  
V
= 5V  
OUT  
C
= 0  
FF  
V
= 0.6V  
OUT  
C
FF  
= 10nF  
0.1  
0.01  
0.1  
0.01  
C
= 10nF  
REF/BYP  
C
= 1nF  
1k  
C
= 1nF  
FF  
REF/BYP  
V
C
L
= 5V  
OUT  
OUT  
C
= 100pF  
10k  
C
L
= 10µF  
FF  
OUT  
= 100mA  
= 10µF  
I
I
= 100mA  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
100k  
FREQUENCY (Hz)  
3060 G42  
3060 G43  
3060fa  
12  
LT3060 Series  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
RMS Output Noise vs Load Current  
vs CREF/BYP, CFF = 0  
RMS Output Noise vs Load Current  
CREF/BYP = 10nF, CFF = 0  
RMS Output Noise  
vs Feedforward Capacitor (CFF)  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
170  
160  
150  
140  
130  
120  
110  
100  
90  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
C
= 0.6V  
= 10µF  
OUT  
OUT  
f = 10Hz TO 100kHz  
f = 10Hz TO 100kHz  
OUT  
V
= 5V  
V
= 5V  
OUT  
OUT  
C
= 0  
REF/BYP  
C
C
= 10nF  
C
= 10µF  
REF/BYP  
OUT  
V
= 3.3V  
= 10µF  
OUT  
V
= 2.5V  
I
I
= 5µA  
OUT  
FB-DIVIDER  
= 100mA  
L
V
= 2.5V  
C
= 10pF  
OUT  
REF/BYP  
V
= 3.3V  
OUT  
V
= 1.8V  
OUT  
V
= 1.5V  
OUT  
C
= 100pF  
REF/BYP  
80  
70  
60  
C
= 1nF  
REF/BYP  
50  
40  
V
V
= 1.2V  
= 0.6V  
OUT  
OUT  
C
= 10nF  
REF/BYP  
V
OUT  
= 0.6V  
30  
V
= 1.8V  
V
= 1.2V  
OUT  
OUT  
20  
C
1
= 100nF  
REF/BYP  
10  
V
= 1.5V  
OUT  
0
0.01  
0.1  
10  
100  
0.01  
0.1  
1
10  
100  
10p  
100p  
1n  
10n  
LOAD CURRENT (mA)  
3060 G44  
LOAD CURRENT (mA)  
FEEDFORWARD CAPACITOR, C (F)  
FF  
3060 G45  
3060 G46  
LT3060-5 10Hz to 100kHz Output  
Noise, CREF/BYP = 10nF, CFF = 10nF  
LT3060-5 10Hz to 100kHz Output  
Noise, CREF/BYP = 10nF, CFF = 0  
V
V
OUT  
OUT  
100µV/DIV  
100µV/DIV  
3060 G47  
3060 G48  
C
I
= 10µF  
= 100mA  
= 5V  
1ms/DIV  
C
I
= 10µF  
= 100mA  
= 5V  
1ms/DIV  
OUT  
L
OUT  
OUT  
L
OUT  
V
V
LT3060-5 Transient Response,  
LT3060-5 Transient Response,  
CFF = 10nF  
C
FF = 0  
V
= 5V  
V
= 5V  
OUT  
OUT  
V
V
OUT  
20mV/DIV  
OUT  
50mV/DIV  
∆I  
OUT  
= 10mA TO 100mA  
∆I  
OUT  
= 10mA TO 100mA  
I
I
OUT  
50mA/DIV  
OUT  
50mA/DIV  
3060 G49  
3060 G50  
V
C
= 6V  
100µs/DIV  
V
C
= 6V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
= C = 10µF  
= C = 10µF  
IN  
IN  
I
= 5µA  
I
= 5µA  
FB-DIVIDER  
FB-DIVIDER  
3060fa  
13  
LT3060 Series  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
SHDN Transient Response  
CREF/BYP = 10nF  
LT3060-5 Transient Response  
Load Dump  
SHDN Transient Response  
CREF/BYP = 0  
V
OUT  
V
OUT  
V
= 5V  
OUT  
2V/DIV  
= 50Ω  
V
OUT  
2V/DIV  
= 50Ω  
R
10mV/DIV  
L
R
L
V
= 12V TO 45V  
IN  
REF/BYP  
500mV/DIV  
REF/BYP  
500mV/DIV  
SHDN  
1V/DIV  
SHDN  
1V/DIV  
V
IN  
10V/DIV  
3060 G53  
3060 G51  
3060 G52  
4ms/DIV  
2ms/DIV  
4ms/DIV  
C
C
= C = 2.2µF  
IN  
OUT  
FF  
C
C
= C = 2.2µF  
C
= C = 2.2µF  
OUT IN  
OUT  
IN  
= 0  
= C = 10nF  
C
= 0  
FF  
REF/BYP  
FF  
= 5µA  
I
FB-DIVIDER  
Start-Up Time  
vs REF/BYP Capacitor  
Start-Up Time vs CFF  
100  
100  
10  
C
= 0  
C
= 0  
REF/BYP  
FF  
LT3060-5  
I
= 5µA  
FB-DIVIDER  
LT3060-3.3  
10  
1
LT3060-2.5  
LT3060-1.8  
1
LT3060-1.5  
0.1  
0.01  
0.1  
LT3060-1.2  
100p  
0.01  
10p  
100p  
1n  
10n  
100n  
10p  
1n  
10n  
100n  
REF/BYP CAPACITOR (F)  
FEEDFORWARD CAPACITOR, C (F)  
FF  
3060 G54  
3060 G55  
3060fa  
14  
LT3060 Series  
pin FuncTions (DC8/TS8)  
REF/BYP (Pin 1/Pin 8): Reference/Bypass. Connecting  
a single capacitor from this pin to GND bypasses the  
LT3060’s reference noise and soft-starts the reference.  
A 10nF bypass capacitor typically reduces output voltage  
IN (Pins 5, 6/Pin 5): Input. These pin(s) supply power to  
thedevice.TheLT3060requiresalocalINbypasscapacitor  
if it is located more than six inches from the main input  
filter capacitor. In general, battery output impedance rises  
with frequency, so adding a bypass capacitor in battery-  
powered circuits is advisable.  
noise to 30µV  
in a 10Hz to 100kHz bandwidth. Soft-  
RMS  
starttimeisdirectlyproportionaltotheREF/BYPcapacitor  
value. If the LT3060 is placed in shutdown, REF/BYP is  
actively pulled low by an internal device to reset soft-start.  
If low noise or soft-start performance is not required, this  
pin must be left floating (unconnected). Do not drive this  
pin with any active circuitry.  
An input bypass capacitor in the range of 1µF to 10µF  
suffices. The LT3060 withstands reverse voltages on the  
IN pin with respect to its GND and OUT pins. In a reversed  
input situation, such as a battery plugged in backwards,  
the LT3060 behaves as if a large resistor is in series with  
its input. Limited reverse current flows into the LT3060  
and no reverse voltage appears at the load. The device  
protects itself and the load.  
ADJ (Pin 2/Pin 7): Adjust. This pin is the error amplifier’s  
invertingterminal.It’stypicalbiascurrentof15nAflowsout  
ofthepin(seecurveofADJPinBiasCurrentvsTemperature  
in the Typical Performance Characteristics section). The  
ADJ pin voltage is 600mV referenced to GND.  
SHDN (Pin 7/Pin 1): Shutdown. Pulling the SHDN pin  
low puts the LT3060 into a low power state and turns  
the output off. Drive the SHDN pin with either logic or an  
open collector/drain with a pull-up resistor. The resistor  
supplies the pull-up current to the open collector/drain  
logic, normally several microamperes, and the SHDN  
pin current, typically less than 3µA. If unused, connect  
the SHDN pin to IN. The LT3060 does not function if the  
SHDN pin is not connected. The SHDN pin cannot be  
driven below GND unless tied to the IN pin. If the SHDN  
pin is driven below GND while IN is powered, the output  
may turn on. SHDN pin logic cannot be referenced to a  
negative supply voltage.  
Connecting a capacitor from ADJ to OUT reduces output  
noiseandimprovestransientresponseforoutputvoltages  
greaterthan600mV.SeetheApplicationsInformationsec-  
tion for calculating the value of the feedforward capacitor.  
For fixed voltage versions of the LT3060, if low noise and  
fast transient response is not required, this pin must be  
left floating (unconnected).  
OUT(Pins3,4/Pin6):Output.Thesepin(s)supplypowerto  
theload. Stabilityrequirementsdemandaminimum2.2µF  
ceramic output capacitor to prevent oscillations. Large  
load transient applications require larger output capaci-  
tors to limit peak voltage transients. See the Applications  
Information section for details on transient response and  
reverseoutputcharacteristics. Permissibleoutputvoltage  
range is 600mV to 44.5V.  
GND (Pin 8, Exposed Pad Pin 9/Pins 2, 3, 4): Ground.  
For the adjustable LT3060, connect the bottom of the ex-  
ternal resistor divider that sets the output voltage directly  
to GND for optimum regulation. For the DFN package, tie  
exposed pad Pin 9 directly to Pin 8 and the PCB ground.  
Thisexposedpadprovidesenhancedthermalperformance  
with its connection to the PCB ground. See the Applica-  
tions Information section for thermal considerations and  
calculating junction temperature.  
3060fa  
15  
LT3060 Series  
applicaTions inForMaTion  
The LT3060 series are micropower, low noise, low drop-  
out voltage, 100mA linear regulators with shutdown. The  
devices supply up to 100mA at a typical dropout voltage  
of 300mV and operate over a 1.6V to 45V input range.  
Adjustable Operation  
The LT3060 adjustable version has an output voltage  
range of 0.6V to 44.5V. The output voltage is set by the  
ratio of two external resistors, as shown in Figure 1.  
The device servos the output to maintain the ADJ pin  
voltage at 0.6V referenced to ground. The current in  
R1 is then equal to 0.6V/R1, and the current in R2  
is the current in R1 minus the ADJ pin bias current.  
The ADJ pin bias current, 15nA at 25°C, flows from the  
ADJ pin through R1 to GND. Calculate the output voltage  
usingtheformulainFigure1. ThevalueofR1shouldbeno  
greater than 124k to provide a minimum 5µA load current  
so that errors in the output voltage, caused by the ADJ pin  
bias current, are minimized. Note that in shutdown, the  
output is turned off and the divider current is zero. Curves  
of ADJ Pin Voltage vs Temperature and ADJ Pin Bias Cur-  
rent vs Temperature appear in the Typical Performance  
Characteristics section.  
A single external capacitor provides programmable low  
noise reference performance and output soft-start func-  
tionality. For example, connecting a 10nF capacitor from  
the REF/BYP pin to GND lowers output noise to 30µV  
RMS  
over a 10Hz to 100kHz bandwidth. This capacitor also  
soft-starts the reference and prevents output voltage  
overshoot at turn-on.  
The LT3060’s quiescent current is merely 40μA for the  
adjustableversionand4Aforthefixedvoltageversions,  
while providing fast transient response with a minimum  
low ESR 2.2μF ceramic output capacitor. In shutdown,  
quiescent current is less than 1μA and the reference soft-  
start capacitor is reset.  
The LT3060 regulators optimize stability and transient  
response with low ESR, ceramic output capacitors. The  
regulators do not require the addition of ESR as is com-  
mon with other regulators. The LT3060 adjustable version  
typically provides 0.1% line regulation and 0.03% load  
regulation. For fixed voltage versions, load regulation is  
slightly increased due to 20mΩ of typical resistance in  
series with the output. Curves of load regulation appear  
in the Typical Performance Characteristics section.  
The adjustable device is tested and specified with the ADJ  
pintiedtotheOUTpin,yieldingV  
=0.6V.Specifications  
OUT  
for output voltages greater than 0.6V are proportional to  
the ratio of the desired output voltage to 0.6V:V /0.6V.  
OUT  
For example, load regulation for an output current change  
of 1mA to 100mA is 0.2mV (typical) at V  
OUT  
= 0.6V. At  
OUT  
V
= 12V, load regulation is:  
12V  
0.6V  
(0.2mV) = 4mV  
Internal protection circuitry includes reverse-battery pro-  
tection,reverse-outputprotection,reverse-currentprotec-  
tion, current limit with foldback and thermal shutdown.  
IN  
OUT  
ADJ  
V
OUT  
V
IN  
LT3060  
R2  
R1  
This “bullet-proof” protection set makes it ideal for use in  
battery-powered systems. In battery backup applications  
where the output is held up by a backup battery and the  
input is pulled to ground, the LT3060 acts like it has a  
diodeinserieswithitsoutputandpreventsreversecurrent  
flow. Additionally, in dual supply applications where the  
regulator load is returned to a negative supply, the output  
can be pulled below ground by as much as 45V and the  
device still starts normally and operates.  
R2  
R1  
SHDN  
VOUT = 0.6V 1+  
VADJ = 0.6V  
– I  
(
R2  
ADJ  
)
GND REF/BYP  
IADJ = 15nA at 25ºC  
OUTPUT RANGE = 0.6V to 44.5V  
3060 F01  
Figure 1. Adjustable Operation  
3060fa  
16  
LT3060 Series  
applicaTions inForMaTion  
Table 1 shows 1% resistor divider values for some com-  
mon output voltages with a resistor divider current of  
about 5µA.  
To lower the output voltage noise for higher output volt-  
ages, include a feedforward capacitor (C ) from V  
FF  
OUT  
to the ADJ pin. A good quality, low leakage capacitor is  
recommended.Thiscapacitorbypassestheerroramplifier  
oftheregulator,providingalowfrequencynoisepole.With  
Table 1. Output Voltage Resistor Divider Values  
V
R1  
R2  
OUT  
the use of 10nF for both C and C  
, output voltage  
FF  
REF/BYP  
when the output voltage is  
(V)  
1.2  
1.5  
1.8  
2.5  
3
(kΩ)  
(kΩ)  
noise decreases to 30µV  
RMS  
118  
121  
124  
115  
124  
124  
115  
118  
182  
249  
365  
499  
562  
845  
set to 5V by a 5µA feedback resistor divider. If the current  
in the feedback resistor divider is doubled, C must also  
FF  
be doubled to achieve equivalent noise performance.  
Higher values of output voltage noise are often measured  
if care is not exercised with regard to circuit layout and  
testing. Crosstalk from nearby traces induces unwanted  
noiseontotheLT3060’soutput. Powersupplyripplerejec-  
tion must also be considered. The LT3060 regulators do  
not have unlimited power supply rejection and will pass a  
small portion of the input noise through to the output.  
3.3  
5
Bypass Capacitance, Output Voltage Noise and  
Transient Response  
The LT3060 regulators provide low output voltage noise  
over the 10Hz to 100kHz bandwidth while operating at  
full load with the addition of a reference bypass capacitor  
Using a feedforward capacitor (C ) from V  
to the ADJ  
FF  
OUT  
pin has the added benefit of improving transient response  
foroutputvoltagesgreaterthan0.6V. Withnofeedforward  
capacitor, the settling time will increase as the output  
voltage is raised above 0.6V. Use the equation in Figure 2  
(C ) from the REF/BYP pin to GND. A good quality,  
REF/BYP  
low leakage capacitor is recommended. This capacitor  
bypasses the internal reference of the regulator, provid-  
ing a low frequency noise pole. With the use of 10nF for  
to determine the minimum value of C to achieve a  
FF  
C
the output voltage noise decreases to as low as  
whentheoutputvoltageissetfor0.6V.Forhigher  
transient response that is similar to 0.6V output voltage  
performance regardless of the chosen output voltage  
(see Figure 3 and Transient Response in the Typical Perf-  
ormance Characteristics section).  
REF/BYP,  
30µV  
RMS  
output voltages (generated by using a feedback resistor  
divider), the output voltage noise gains up accordingly  
when using C  
by itself.  
REF/BYP  
V
C
= 5V  
OUT  
OUT  
= 10µF  
I
= 5µA  
FB-DIVIDER  
0
IN  
OUT  
V
OUT  
C
C
OUT  
R2  
R1  
V
IN  
FF  
LT3060  
100pF  
1nF  
SHDN  
ADJ  
GND REF/BYP  
10nF  
4.7nF  
5µA  
CFF  
I  
(
)
FBDIVIDER  
C
LOAD CURRENT  
100mA/DIV  
REF/BYP  
VOUT  
IFBDIVIDER  
=
3060 F03  
3060 F02  
R1+R2  
100µs/DIV  
Figure 2. Feedforward Capacitor for Fast Transient Response  
Figure 3. Transient Response vs Feedforward Capacitor  
3060fa  
17  
LT3060 Series  
applicaTions inForMaTion  
During start-up, the internal reference soft-starts if a  
reference bypass capacitor is present. Regulator start-  
up time is directly proportional to the size of the bypass  
capacitor, slowing to 6ms with a 10nF bypass capacitor  
(See Start-up Time vs REF/BYP Capacitor in the Typical  
Performance Characteristics section). The reference by-  
pass capacitor is actively pulled low during shutdown to  
reset the internal reference.  
changes. Bypass capacitors, used to decouple individual  
components powered by the LT3060, increase the effec-  
tive output capacitor value. For applications with large  
load current transients, a low ESR ceramic capacitor in  
parallel with a bulk tantalum capacitor often provides an  
optimally damped response.  
Giveextraconsiderationtotheuseofceramiccapacitors.  
Manufacturers make ceramic capacitors with a variety of  
dielectrics, each with different behavior across tempera-  
ture and applied voltage. The most common dielectrics  
are specified with EIA temperature characteristic codes  
of Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics  
provide high C-V products in a small package at low cost,  
butexhibitstrongvoltageandtemperaturecoefficients,as  
shown in Figures 4 and 5. When used with a 5V regulator,  
a 16V 10µF Y5V capacitor can exhibit an effective value  
as low as 1µF to 2µF for the DC bias voltage applied, and  
over the operating temperature range. The X5R and X7R  
dielectrics yield much more stable characteristics and  
are more suitable for use as the output capacitor.  
Start-up time is also affected by the use of a feedforward  
capacitor. Start-uptimeisdirectlyproportionaltothesize  
of the feedforward capacitor and output voltage, and is  
inversely proportional to the feedback resistor divider  
current, slowing to 15ms with a 4.7nF feedforward ca-  
pacitor and a 10µF output capacitor for an output voltage  
set to 5V by a 5µA feedback resistor divider.  
Output Capacitance  
The LT3060 regulators are stable with a wide range of  
output capacitors. The ESR of the output capacitor af-  
fects stability, most notably with small capacitors. Use  
a minimum output capacitor of 2.2µF with an ESR of 3Ω  
or less to prevent oscillations. If a feedforward capacitor  
is used with output voltages set for greater than 24V, use  
a minimum output capacitor of 4.7µF. The LT3060 is a  
micropower device and output load transient response is  
a function of output capacitance. Larger values of output  
capacitance decrease the peak deviations and provide  
improved transient response for larger load current  
The X7R type works over a wider temperature range  
and has better temperature stability, while the X5R is  
less expensive and is available in higher values. Care  
still must be exercised when using X5R and X7R ca-  
pacitors; the X5R and X7R codes only specify operating  
temperature range and maximum capacitance change  
over temperature. Capacitance change due to DC bias  
with X5R and X7R capacitors is better than Y5V and Z5U  
40  
20  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
X5R  
0
–20  
–20  
–40  
–40  
Y5V  
–60  
–60  
Y5V  
–80  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
–100  
–100  
–50 –25  
0
25  
50  
TEMPERATURE (°C)  
75  
100 125  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3060 F04  
3060 F05  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
Figure 5. Ceramic Capacitor Temperature Characteristics  
3060fa  
18  
LT3060 Series  
applicaTions inForMaTion  
capacitors, but can still be significant enough to drop  
capacitor values below appropriate levels. Capacitor DC  
bias characteristics tend to improve as component case  
size increases, but expected capacitance at operating  
voltage should be verified.  
allowing the regulator to supply large output currents.  
Withahighinputvoltage,aproblemcanoccurwhereinthe  
removal of an output short will not allow the output to re-  
cover.Otherregulators,suchastheLT1083/LT1084/LT1085  
family and LT1764A also exhibit this phenomenon, so it is  
notuniquetotheLT3060.Theproblemoccurswithaheavy  
output load when the input voltage is high and the output  
voltage is low. Common situations are: (1) immediately  
after the removal of a short-circuit or (2) if the shutdown  
pin is pulled high after the input voltage is already turned  
on. The load line intersects the output current curve at two  
points creating two stable output operating points for the  
regulator. With this double intersection, the input power  
supply needs to be cycled down to zero and brought up  
again for the output to recover.  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or mi-  
crophone works. For a ceramic capacitor, the stress is  
inducedbyvibrationsinthesystemorthermaltransients.  
The resulting voltages produced cause appreciable  
amountsofnoise. Aceramiccapacitorproducedthetrace  
in Figure 6 in response to light tapping from a pencil.  
Similar vibration induced behavior can masquerade as  
increased output voltage noise.  
Thermal Considerations  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C for  
LT3060E, LT3060I, LT3060MP or 150°C for LT3060H).  
Two components comprise the power dissipated by the  
device:  
V
C
C
= 0.6V  
= 10µF  
OUT  
OUT  
= 10nF  
REF/BYP  
I
= 100mA  
LOAD  
V
OUT  
500µV/DIV  
1. Output current multiplied by the input/output voltage  
differential: I  
• (V V ), and  
OUT  
IN OUT  
2. GND pin current multiplied by the input voltage:  
• V  
3060 F06  
I
GND  
IN  
4ms/DIV  
GND pin current is determined using the GND Pin Current  
curvesintheTypicalPerformanceCharacteristicssection.  
Power dissipation equals the sum of the two components  
listed above.  
Figure 6. Noise Resulting from Tapping on a Ceramic Capacitor  
Overload Recovery  
The LT3060 regulators have internal thermal limiting that  
protectsthedeviceduringoverloadconditions.Forcontinu-  
ousnormalconditions,themaximumjunctiontemperature  
of125°C(E-grade,I-grade,MP-grade)or150°C(H-grade)  
must not be exceeded. Carefully consider all sources of  
thermal resistance from junction-to-ambient including  
other heat sources mounted in proximity to the LT3060.  
Like many IC power regulators, the LT3060 has safe  
operating area protection. The safe operating area protec-  
tion decreases current limit as input-to-output voltage  
increases, and keeps the power transistor inside a safe  
operating region for all values of input-to-output voltage.  
The LT3060 provides some output current at all values of  
input-to-outputvoltageuptothespecified45Voperational  
maximum.  
The underside of the LT3060 DFN package has exposed  
2
metal (1mm ) from the lead frame to the die attachment.  
Whenpowerisfirstapplied, theinputvoltagerisesandthe  
output follows the input; allowing the regulator to start-up  
intoveryheavyloads. Duringstart-up, astheinputvoltage  
is rising, the input-to-output voltage differential is small,  
The package allows heat to directly transfer from the die  
junction to the printed circuit board metal to control maxi-  
mum operating junction temperature. The dual-in-line pin  
3060fa  
19  
LT3060 Series  
applicaTions inForMaTion  
arrangement allows metal to extend beyond the ends of  
the package on the topside (component side) of a PCB.  
Connect this metal to GND on the PCB. The multiple IN  
and OUT pins of the LT3060 also assist in spreading heat  
to the PCB.  
Calculating Junction Temperature  
Example: Given an output voltage of 2.5V, an input volt-  
age range of 12V 5%, an output current range of 0mA  
to 50mA and a maximum ambient temperature of 85°C,  
what will the maximum junction temperature be?  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes also can spread the heat generated by  
power devices.  
The power dissipated by the device equals:  
I
• (V  
–V ) + I  
• V  
OUT(MAX)  
IN(MAX) OUT  
GND IN(MAX)  
where,  
I
= 50mA  
= 12.6V  
OUT(MAX)  
Tables 2 and 3 list thermal resistance for several different  
boardsizesandcopperareas.Allmeasurementsweretaken  
in still air on a 4 layer FR-4 board with 1oz solid internal  
planesand2oztop/bottomexternaltraceplaneswithatotal  
boardthicknessof1.6mm.Thefourlayerswereelectrically  
isolated with no thermal vias present. PCB layers, copper  
weight, board layout and thermal vias will affect the resul-  
tant thermal resistance. For more information on thermal  
resistance and high thermal conductivity test boards,  
refer to JEDEC standard JESD51, notably JESD51-12 and  
JESD51-7. Achieving low thermal resistance necessitates  
attention to detail and careful PCB layout.  
V
IN(MAX)  
I
at (I = 50mA, V = 12.6V) = 0.6mA  
OUT IN  
GND  
So,  
P = 50mA • (12.6V – 2.5V) + 0.6mA • 12.6V = 0.513W  
Using a DFN package, the thermal resistance ranges from  
48°C/W to 60°C/W depending on the copper area with  
no thermal vias. So the junction temperature rise above  
ambient approximately equals:  
0.513W • 54°C/W = 27.8°C  
The maximum junction temperature equals the maximum  
ambient temperature plus the maximum junction tem-  
perature rise above ambient or:  
Table 2. DC Package, 8-Lead DFN  
COPPER AREA  
BOARD AREA  
THERMAL RESISTANCE  
TOPSIDE* BACKSIDE  
2
2
2
(mm )  
(JUNCTION-TO-AMBIENT)  
(mm )  
(mm )  
T
JMAX  
= 85°C + 27.8°C = 112.8°C  
2500  
1000  
225  
100  
50  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
48°C/W  
49°C/W  
50°C/W  
54°C/W  
60°C/W  
Protection Features  
The LT3060 regulators incorporate several protection  
features that make it ideal for use in battery-powered  
circuits. In addition to the normal protection features  
associated with monolithic regulators, such as current  
limiting and thermal limiting, the device also protects  
against reverse-input voltages, reverse-output voltages  
and reverse output-to-input voltages.  
*Device is mounted on topside  
Table 3. TS8 Package, 8 Lead TSOT-23  
COPPER AREA  
BOARD AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
TOPSIDE* BACKSIDE  
2
2
2
(mm )  
(mm )  
(mm )  
Current limit protection and thermal overload protection  
protect the device against current overload conditions at  
the output of the device. The typical thermal shutdown  
temperature is 165°C. For normal operation, do not ex-  
ceed a junction temperature of 125°C (LT3060E, LT3060I,  
LT3060MP) or 150°C (LT3060H).  
2500  
1000  
225  
100  
50  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
57°C/W  
58°C/W  
59°C/W  
63°C/W  
67°C/W  
*Device is mounted on topside  
3060fa  
20  
LT3060 Series  
applicaTions inForMaTion  
The LT3060 IN pin withstands reverse voltages up to 50V.  
The device limits current flow to less than 300µA (typi-  
cally less than 50µA) and no negative voltage appears at  
OUT. The device protects both itself and the load against  
batteries that are plugged in backwards.  
The LT3060 incurs no damage if the ADJ pin is pulled  
above or below ground by less than 50V. For the adjust-  
able version, if the input is left open-circuit or grounded,  
the ADJ pin performs like a large resistor (typically 30k)  
in series with a diode when pulled below ground, and  
like 30k in series with two diodes when pulled above  
ground.  
The SHDN pin cannot be driven below GND unless tied to  
the IN pin. If the SHDN pin is driven below GND while IN is  
powered, the output may turn on. SHDN pin logic cannot  
be referenced to a negative supply voltage.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulled to some intermediate voltage or left open-  
circuit. Current flow back into the output follows the curve  
shown in Figures 7 and 8.  
The LT3060 incurs no damage if its output is pulled be-  
low ground. If the input is left open-circuit or grounded,  
the output can be pulled below ground by 50V. No cur-  
rent flows through the pass transistor from the output.  
However, current flows in (but is limited by) the resistor  
divider that sets the output voltage. Current flows from  
the bottom resistor in the divider and from the ADJ pin’s  
internal clamp through the top resistor in the divider to  
the external circuitry pulling OUT below ground. If the  
input is powered by a voltage source, the output sources  
current equal to its current limit capability and the LT3060  
protects itself by thermal limiting. In this case, grounding  
the SHDN pin turns off the device and stops the output  
from sourcing current.  
If the LT3060’s IN pin is forced below the OUT pin or the  
OUT pin is pulled above the IN pin, input current typically  
drops to less than 1µA. This occurs if the LT3060 input  
is connected to a discharged (low voltage) battery and  
either a backup battery or a second regulator holds up  
the output. The state of the SHDN pin has no effect on the  
reverse current if the output is pulled above the input.  
2.0  
350  
T = 25°C  
J
IN  
T = 25°C  
IN  
J
V
LT3060-1.2  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 0V  
= 0V  
300  
250  
200  
150  
100  
50  
CURRENT FLOWS  
INTO OUT PIN  
LT3060-1.5  
LT3060-1.8  
V
= V  
OUT  
ADJ  
LT3060-2.5  
LT3060-3.3  
ADJ  
LT3060-5  
OUT  
0
0
5
10 15 20 25 30 35 40 45  
OUTPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35 40 45  
OUTPUT VOLTAGE (V)  
3060 F08w  
3060 F07  
Figure 7. LT3060 Reverse Output Current  
Figure 8. LT3060-1.2/-1.5/-1.8/-2.5/-3.3/-5  
Reverse Output Current  
3060fa  
21  
LT3060 Series  
Typical applicaTion  
Paralleling of Regulators for Higher Output Current  
R1  
0.15Ω  
2.5V  
200mA  
IN  
OUT  
ADJ  
R8  
1.91k  
1%  
+
C2  
LT3060  
C1  
2.2µF  
V
IN  
> 2.9V  
4.7µF  
SHDN  
R9  
604Ω  
1%  
GND REF/BYP  
C3  
1nF  
R2  
0.15Ω  
IN  
OUT  
LT3060  
SHDN  
GND REF/BYP  
R6  
1.74k  
1%  
SHDN  
ADJ  
R7  
604Ω  
1%  
C4  
1nF  
R3  
200Ω  
R4  
200Ω  
R5  
1k  
7
3
+
6
LT1637  
4
2
C5  
10nF  
3060 TA03  
3060fa  
22  
LT3060 Series  
package DescripTion  
DC Package  
8-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1719 Rev A)  
0.70 ±0.05  
2.55 ±0.05  
0.64 ±0.05  
1.15 ±0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.45 BSC  
1.37 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
TYP  
5
8
R = 0.05  
TYP  
0.40 ± 0.10  
2.00 ±0.10 0.64 ± 0.10  
(4 SIDES)  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
0.25 × 45°  
CHAMFER  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
(DC8) DFN 0409 REVA  
4
1
0.23 ± 0.05  
0.45 BSC  
0.75 ±0.05  
0.200 REF  
1.37 ±0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3060fa  
23  
LT3060 Series  
package DescripTion  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3060fa  
24  
LT3060 Series  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
07/10 Added fixed voltage options for 1.2V, 1.5V, 1.8V, 2.5V, 3.3V and 5V  
1-26  
3060fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LT3060 Series  
Typical applicaTion  
12V Low Noise Regulator  
V
C
= 13V  
= 0  
IN  
FF  
V
OUT  
12V AT 100mA  
30µV NOISE  
IN  
OUT  
ADJ  
RMS  
V
IN  
2.37M  
1%  
C
FF  
10nF  
LT3060  
SHDN  
1µF  
10µF  
13V TO  
45V  
124k  
1%  
C
= 10nF  
FF  
GND REF/BYP  
10nF  
∆I = 10mA TO 100mA  
L
LOAD  
CURRENT  
100mA/DIV  
3060 TA04  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
TIME (ms)  
3060 TA04b  
relaTeD parTs  
PART  
DESCRIPTION  
NUMBER  
COMMENTS  
LT1761  
LT1762  
LT1763  
LT1764/  
100mA, Low Noise LDO  
150mA, Low Noise LDO  
500mA, Low Noise LDO  
3A, Fast Transient Response,  
300mV Dropout Voltage, Low Noise: 20µV  
300mV Dropout Voltage, Low Noise: 20µV  
300mV Dropout Voltage, Low Noise: 20µV  
340mV Dropout Voltage, Low Noise: 40µV  
, V = 1.8V to 20V, ThinSOT Package  
RMS IN  
, V = 1.8V to 20V, MS8 Package  
RMS IN  
, V = 1.8V to 20V, SO8 Package  
RMS IN  
, V = 2.7V to 20V, TO-220 and DD Packages,  
RMS IN  
LT1764A Low Noise LDO  
LT1764A Version Stable Also with Ceramic Capacitors  
LT1962  
LT1963/  
300mA, Low Noise LDO  
1.5A Low Noise, Fast Transient  
270mV Dropout Voltage, Low Noise: 20µV  
, V = 1.8V to 20V, MS8 Package  
RMS IN  
340mV Dropout Voltage, Low Noise: 40µV  
, V = 2.5V to 20V, LT1963A Version Stable with  
RMS IN  
LT1963A Response LDO  
Ceramic Capacitors; TO-220, DD, SOT-223 and SO8 Packages  
LT1964  
LT1965  
200mA, Low Noise, Negative LDO  
340mV Dropout Voltage, Low Noise 30µV , V = –1.8V to –20V, ThinSOT Package  
RMS IN  
1.1A, Low Noise, Low Dropout Linear  
Regulator  
290mV Dropout Voltage, Low Noise: 40µV , V : 1.8V to 20V, V : 1.2V to 19.5V, Stable with  
RMS IN OUT  
Ceramic Capacitors; TO-220, DD-Pak, MSOP and 3mm × 3mm DFN Packages  
LT3008  
20mA, 45V, 3µA I Micropower LDO  
Q
300mV Dropout Voltage, Low I : 3µA, V = 2V to 45V, V = 0.6V to 39.5V; ThinSOT and  
Q
IN  
OUT  
2mm × 2mm DFN-6 Packages  
LT3009  
LT3050  
20mA, 3µA I Micropower LDO  
Q
280mV Dropout Voltage, Low I : 3µA, V = 1.6V to 20V, ThinSOT and SC70 Packages  
Q
IN  
100mA, Low Noise Linear Regulator with 340mV Dropout Voltage, Low Noise: 30µV  
Precision Current Limit and Diagnostic  
Functions.  
, V : 1.6V to 45V, V : 0.6V to 44.5V, Program-  
OUT  
RMS IN  
mable Precision Current Limit: 5%, Programmable Minimum I  
Monitor, Output Current  
OUT  
Monitor, Fault Indicator, Reverse Protection; 12-Lead 2mm × 3mm DFN and MSOP Packages.  
LT3080/  
1.1A, Parallelable, Low Noise,  
300mV Dropout Voltage (2-Supply Operation), Low Noise: 40µV , V : 1.2V to 36V,  
RMS IN  
LT3080-1 Low Dropout Linear Regulator  
V
: 0V to 35.7V, Current-Based Reference with 1-Resistor V  
Set; Directly Parallelable (No Op  
OUT  
OUT  
Amp Required), Stable with Ceramic Capacitors; TO-220, SOT-223, MSOP and 3mm × 3mm DFN  
Packages; LT3080-1 Version Has Integrated Internal Ballast Resistor  
LT3082  
200mA, Parallelable, Single Resistor,  
Low Dropout Linear Regulator  
Outputs May Be Paralleled for Higher Output, Current or Heat Spreading, Wide Input Voltage  
Range: 1.2V to 40V Low Value Input/Output Capacitors Required: 0.22μF, Single Resistor Sets  
Output Voltage Initial Set Pin Current Accuracy: 1%, Low Output Noise: 40μV  
(10Hz to 100kHz)  
RMS  
Reverse-Battery Protection, Reverse-Current Protection; 8-Lead SOT-23, 3-Lead SOT-223 and  
8-Lead 3mm × 3mm DFN Packages  
LT3085  
LT3092  
500mA, Parallelable, Low Noise,  
Low Dropout Linear Regulator  
275mV Dropout Voltage (2-Supply Operation), Low Noise: 40µV  
, V : 1.2V to 36V,  
RMS IN  
V
: 0V to 35.7V, Current-Based Reference with 1-Resistor V  
Set, Directly Parallelable  
OUT  
OUT  
(No Op Amp Required), Stable with Ceramic Capacitors; MS8E and 2mm × 3mm DFN-6 Packages  
200mA 2-Terminal Programmable  
Current Source  
Programmable 2-Terminal Current Source, Maximum Output Current: 200mA Wide Input Voltage  
Range: 1.2V to 40V, Resistor Ratio Sets Output Current Initial Set Pin Current Accuracy: 1%,  
Current Limit and Thermal Shutdown Protection Reverse-Voltage Protection, Reverse-Current  
Protection; 8-Lead SOT-23, 3-Lead SOT-223 and 8-Lead 3mm × 3mm DFN Packages  
3060fa  
LT REV A 0710 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY