LT3060EDCTR [Linear]

45V VIN, Micropower, Low Noise, 100mA Low Dropout, Linear Regulator; 45V VIN ,微功耗,低噪声, 100mA时的低压差,线性稳压器
LT3060EDCTR
型号: LT3060EDCTR
厂家: Linear    Linear
描述:

45V VIN, Micropower, Low Noise, 100mA Low Dropout, Linear Regulator
45V VIN ,微功耗,低噪声, 100mA时的低压差,线性稳压器

稳压器
文件: 总20页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3060  
45V V , Micropower,  
IN  
Low Noise, 100mA Low  
Dropout, Linear Regulator  
DESCRIPTION  
FEATURES  
The LT®3060 is a micropower, low dropout voltage (LDO)  
linear regulator that operates over a 1.6V to 45V input  
supplyrange.Thedevicesupplies100mAofoutputcurrent  
with a typical dropout voltage of 300mV. A single external  
capacitor provides programmable low noise reference  
performance and output soft-start functionality. The  
LT3060’s quiescent current is merely 40μA and provides  
fast transient response with a minimum 2.2μF output  
capacitor. In shutdown, quiescent current is less than 1μA  
and the reference soft-start capacitor is reset.  
n
Input Voltage Range: 1.6V to 45V  
n
Output Current: 100mA  
n
Quiescent Current: 40μA  
n
Dropout Voltage: 300mV  
n
Low Noise: 30μV  
(10Hz to 100kHz)  
REF  
RMS  
n
n
Adjustable Output: V  
= 600mV  
Output Tolerance: 2% Over Line, Load and  
Temperature  
n
Single Capacitor Soft-Starts Reference and Lowers  
Output Noise  
n
n
n
n
n
Shutdown Current: < 1ꢀA  
Reverse Battery Protection  
Current Limit Foldback Protection  
Thermal Limit Protection  
8-Lead 2mm × 2mm × 0.75mm DFN and 8-Lead  
The LT3060 optimizes stability and transient response  
with low ESR, ceramic output capacitors. The regulator  
does not require the addition of ESR as is common with  
other regulators. The LT3060 typically provides 0.1% line  
regulation and 0.03% load regulation.  
ThinSOT Packages  
Internal protection circuitry includes reverse-battery  
protection, reverse-output protection, reverse-current  
protection,currentlimitwithfoldbackandthermalshutdown.  
TheLT3060isanadjustablevoltageregulatorwithanoutput  
voltage range from the 600mV reference to 44.5V. The  
LT3060isofferedinthethermallyenhanced8-leadTSOT-23  
and 8-lead (2mm × 2mm × 0.75mm) DFN packages.  
APPLICATIONS  
n
Battery-Powered Systems  
n
Automotive Power Supplies  
n
Industrial Power Supplies  
Avionic Power Supplies  
n
n
Portable Instruments  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. ThinSOT is a Trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
Dropout Voltage  
TYPICAL APPLICATION  
350  
1.8V Low Noise Regulator  
T
= 25°C  
J
300  
250  
200  
150  
100  
50  
V
OUT  
IN  
OUT  
1.8V AT 100mA  
30ꢀV NOISE  
V
RMS  
IN  
1ꢀF  
LT3060  
SHDN  
249k  
1%  
C
FF  
10nF  
2.3V TO  
45V  
10ꢀF  
ADJ  
124k  
1%  
GND REF/BYP  
10nF  
3060 TA01  
0
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
3060 TA02  
3060f  
1
LT3060  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
IN Pin Voltage ........................................................ 50V  
OUT Pin Voltage..................................................... 50V  
Input-to-Output Differential Voltage (Note 2)......... 50V  
ADJ Pin Voltage ..................................................... 50V  
SHDN Pin Voltage .................................................. 50V  
REF/BYP Pin Voltage....................................... – 0.3V, 1V  
Output Short-Circuit Duration .......................... Indefinite  
Operating Junction Temperature (Notes 3, 5, 13)  
LT3060E, LT3060I ..............................40°C to 125°C  
LT3060MPTS8.................................... –55°C to 125°C  
LT3060HTS8 ...................................... –40°C to 150°C  
Storage Temperature Range...................65°C to 150°C  
Lead Temperature (TS8 Soldering, 10 sec)........... 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
3
4
8
7
6
5
GND  
SHDN  
IN  
REF/BYP  
ADJ  
SHDN 1  
GND 2  
GND 3  
GND 4  
8 REF/BYP  
7 ADJ  
6 OUT  
5 IN  
9
GND  
OUT  
OUT  
IN  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
DC PACKAGE  
8-LEAD (2mm s 2mm) PLASTIC DFN  
T
= 150°C, θ = 57°C/W TO 67°C/W*, θ = 25°C/W  
JMAX  
JA  
JC  
T
= 125°C, θ = 48°C/W TO 60°C/W*, θ = 20°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
* SEE APPLICATIONS INFORMATION SECTION  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3060EDC#PBF  
LT3060IDC#PBF  
LT3060ETS8#PBF  
LT3060ITS8#PBF  
LT3060MPTS8#PBF  
LT3060HTS8#PBF  
LEAD BASED FINISH  
LT3060EDC  
TAPE AND REEL  
PART MARKING*  
LDTD  
PACKAGE DESCRIPTION  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead Plastic ThinSOT  
TEMPERATURE RANGE  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
TEMPERATURE RANGE  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
55°C to 125°C  
40°C to 150°C  
LT3060EDC#TRPBF  
LT3060IDC#TRPBF  
LT3060ETS8#TRPBF  
LT3060ITS8#TRPBF  
LT3060MPTS8#TRPBF  
LT3060HTS8#TRPBF  
TAPE AND REEL  
LDTD  
LTDTF  
LTDTF  
8-Lead Plastic ThinSOT  
LTDTF  
8-Lead Plastic ThinSOT  
LTDTF  
8-Lead Plastic ThinSOT  
PART MARKING*  
LDTD  
PACKAGE DESCRIPTION  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead Plastic ThinSOT  
LT3060EDC#TR  
LT3060IDC  
LT3060IDC#TR  
LDTD  
LT3060ETS8  
LT3060ETS8#TR  
LT3060ITS8#TR  
LTDTF  
LT3060ITS8  
LTDTF  
8-Lead Plastic ThinSOT  
LT3060MPTS8  
LT3060HTS8  
LT3060MPTS8#TR  
LT3060HTS8#TR  
LTDTF  
8-Lead Plastic ThinSOT  
LTDTF  
8-Lead Plastic ThinSOT  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3060f  
2
LT3060  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
= 100mA  
MIN  
TYP  
1.6  
MAX  
UNITS  
l
Minimum Input Voltage (Notes 4, 12)  
ADJ Pin Voltage (Notes 4, 5)  
I
2.1  
V
LOAD  
V
= 2.1V, I  
= 1mA  
594  
588  
585  
600  
606  
612  
612  
mV  
mV  
mV  
IN  
LOAD  
l
l
2.1V < V < 45V, 1mA < I  
< 100mA (E, I, MP Grade)  
< 100mA (H Grade)  
IN  
LOAD  
LOAD  
2.1V < V < 45V, 1mA < I  
IN  
l
Line Regulation (Note 4)  
Load Regulation (Note 4)  
0.6  
0.2  
3.5  
mV  
ΔV = 2.1V to 45V, I  
= 1mA  
IN  
LOAD  
l
l
V
IN  
V
IN  
= 2.1V, I  
= 2.1V, I  
= 1mA to 100mA  
= 1mA to 100mA  
(E, I, MP Grade)  
(H Grade)  
4
9
mV  
mV  
LOAD  
LOAD  
Dropout Voltage  
I
I
= 1mA  
= 1mA  
75  
110  
180  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
V
= V  
IN  
OUT(NOMINAL)  
(Notes 6, 7)  
I
I
= 10mA  
= 10mA  
150  
240  
300  
200  
300  
mV  
mV  
LOAD  
LOAD  
I
I
= 50mA (Note 14)  
= 50mA (Note 14)  
280  
410  
mV  
mV  
LOAD  
LOAD  
I
I
= 100mA (Note 14)  
= 100mA (Note 14)  
350  
510  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
l
GND Pin Current  
I
I
I
I
I
= 0ꢀA  
40  
60  
160  
0.8  
2
80  
100  
350  
1.8  
4
ꢀA  
ꢀA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
+ 0.55V  
= 1mA  
IN  
OUT(NOMINAL)  
= 10mA  
= 50mA  
= 100mA  
ꢀA  
(Notes 6, 8)  
mA  
mA  
Quiescent Current in Shutdown  
ADJ Pin Bias Current (Notes 4, 9)  
Output Voltage Noise  
V
V
= 45V, V  
= 2.1V  
= 0V  
SHDN  
0.3  
15  
30  
1
ꢀA  
nA  
IN  
IN  
l
60  
C
OUT  
V
OUT  
= 10ꢀF, I  
= 600mV, BW = 10Hz to 100kHz  
= 100mA, C  
= 0.01ꢀF  
ꢀV  
RMS  
LOAD  
BYP  
l
l
Shutdown Threshold  
SHDN Pin Current (Note 10)  
Ripple Rejection (Note 4)  
Current Limit  
V
V
= Off to On  
= On to Off  
0.8  
0.7  
1.5  
V
V
OUT  
OUT  
0.3  
l
l
V
SHDN  
V
SHDN  
= 0V  
= 45V  
1
3
ꢀA  
ꢀA  
0.9  
85  
V
– V  
= 1.5V (AVG), V  
= 0.5V  
P-P  
,
65  
dB  
IN  
OUT  
RIPPLE  
f
= 120Hz, I  
= 100mA  
LOAD  
RIPPLE  
V
IN  
V
IN  
= 7V, V  
= V  
= –45V, V  
= 0  
200  
mA  
mA  
OUT  
OUT(NOMINAL)  
l
l
+ 1V (Notes 6, 12), ΔV  
= –5%  
110  
OUT  
Input Reverse Leakage Current  
Reverse Output Current (Note 11)  
V
V
= 0  
OUT  
300  
10  
ꢀA  
ꢀA  
IN  
= 1.2V, V = 0  
0.2  
OUT  
IN  
3060f  
3
LT3060  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Absolute maximum input-to-output differential voltage is not  
achievable with all combinations of rated IN pin and OUT pin voltages.  
With the IN pin at 50V, the OUT pin may not be pulled below 0V. The total  
measured voltage from IN to OUT must not exceed 50V.  
Note 6: To satisfy minimum input voltage requirements, the LT3060 is  
tested and specified for these conditions with an external resistor divider  
(bottom 115k, top 365k) for an output voltage of 2.5V. The external  
resistor divider adds 5ꢀA of DC load on the output. The external current is  
not factored into GND pin current.  
Note 7: Dropout voltage is the minimum input-to-output voltage  
differential needed to maintain regulation at a specified output current. In  
dropout, the output voltage equals: (V – V  
). For some output  
DROPOUT  
IN  
voltages, minimum input voltage requirements limit dropout voltage.  
Note 3: The LT3060 is tested and specified under pulse load conditions  
such that T T . The LT3060E regulator is 100% tested at T = 25°C.  
Note 8: GND pin current is tested with V = V + 0.5V and a  
current source load. GND pin current will increase in dropout. See GND pin  
current curves in the Typical Performance Characteristics section.  
Note 9: ADJ pin bias current flows out of the ADJ pin.  
Note 10: SHDN pin current flows into the SHDN pin.  
Note 11: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out of the GND pin.  
J
A
A
IN  
(OUT(NOMINAL)  
Performance at –40°C to 125°C is assured by design, characterization  
and correlation with statistical process controls. The LT3060I regulator is  
guaranteed over the full –40°C to 125°C operating junction temperature  
range. The LT3060MP is 100% tested over the –55°C to 125°C operating  
junction temperature range. The LT3060H is 100% tested over the  
–40°C to 150°C operating junction temperature range. High junction  
temperatures degrade operating lifetimes. Operating lifetime is derated at  
junction temperatures greater than 125°C.  
Note 12: To satisfy requirements for minimum input voltage, current limit  
Note 4: The LT3060 is tested and specified for these conditions with the  
ADJ connected to the OUT pin.  
is tested at V = V  
+ 1V or V = 2.1V, whichever is greater.  
IN  
OUT(NOMINAL)  
IN  
Note 13: This IC includes overtemperature protection that protects the  
device during momentary overload conditions. Junction temperature  
will exceed 125°C (LT3060E, LT3060I, LT3060MP) or 150°C (LT3060H)  
when overtemperature circuitry is active. Continuous operation above the  
specified maximum junction temperature may impair device reliability.  
Note 14: The dropout voltage specification is guaranteed for the DFN  
package. The dropout voltage specification for high output currents cannot  
be guaranteed for the TS8 package due to production test limitations.  
Note 5: Maximum junction temperature limits operating conditions. The  
regulated output voltage specification does not apply for all possible  
combinations of input voltage and output current. Limit the output current  
range if operating at the maximum input-to-output voltage differential.  
Limit the input-to-output voltage differential if operating at maximum  
output current. Current limit foldback will limit the maximum output  
current as a function of input-to-output voltage. See Current Limit vs  
V
– V  
in the Typical Performance Characteristics section.  
IN  
OUT  
3060f  
4
LT3060  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
= TEST POINTS  
I
= 100mA  
L
T
T
≤ 150°C  
≤ 25°C  
J
J
I
= 50mA  
= 10mA  
L
L
T
= 125°C  
J
I
T
= 25°C  
J
I
= 1mA  
L
0
0
0
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
3060 G01  
3060 G02  
3060 G03  
Quiescent Current  
ADJ Pin Voltage  
2.5V Quiescent Current  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.612  
0.610  
0.608  
0.606  
0.604  
0.602  
0.600  
0.598  
200  
175  
150  
125  
100  
75  
V
= 6V  
I
= 1mA  
IN  
T
L
OUT  
= 25°C  
= 500k  
= 2.5V  
IN  
L
L
J
R
= 120k, I = 5ꢀA  
V
= 2.1V  
R
L
V
V
= V  
IN  
SHDN  
0.596  
0.594  
0.592  
V
= V  
IN  
SHDN  
50  
25  
0.590  
0.588  
V
= 0V  
V
= 0  
SHDN  
SHDN  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
10 15 20 25 30 35 40 45  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3060 G04  
3060 G05  
3060 G06  
Quiescent Current  
2.5V GND Pin Current  
0.6V GND Pin Current  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
T
L
OUT  
= 25°C  
= 120k  
= 0.6V  
T
OUT  
SHDN  
= 25°C  
= 2.5V  
= V  
T
OUT  
SHDN  
= 25°C  
= 0.6V  
= V  
J
J
J
R
*FOR V  
*FOR V  
V
V
V
IN  
IN  
R
L
= 25Ω  
R
L
= 6Ω  
L
L
I
= 100mA*  
I
= 100mA*  
V
= V  
IN  
SHDN  
R
= 50Ω  
= 50mA*  
L
R
= 12Ω  
= 50mA*  
L
I
L
I
L
R
L
= 2.5k  
R = 600Ω  
L
I = 1mA*  
L
L
R
L
= 250Ω  
= 10mA*  
R
= 60Ω  
= 10mA*  
L
I
= 1mA*  
I
I
L
L
V
= 0  
SHDN  
0
0
0
5
10 15 20 25 30 35 40 45  
INPUT VOLTAGE (V)  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3060 G07  
3060 G08  
3060 G09  
3060f  
5
LT3060  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
SHDN Pin Input Current  
GND Pin Current vs ILOAD  
SHDN Pin Threshold  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.0  
V
= V  
+ 1V  
OUT(NOMINAL)  
IN  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
OFF TO ON  
ON TO OFF  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
10 15 20 25 30 35 40 45  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
3060 G10  
3060 G11  
3060 G12  
SHDN Pin Input Current  
ADJ Pin Bias Current  
Current Limit vs VIN–VOUT  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
40  
250  
225  
200  
175  
150  
125  
100  
75  
$V  
OUT  
= 5%  
V
= 45V  
SHDN  
T
= 125°C  
J
T
= 25°C  
J
30  
20  
T
= –50°C  
J
10  
0
–10  
–20  
–30  
–40  
–50  
50  
25  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
10 15 20 25 30 35 40 45  
INPUT/OUTPUT DIFFERENTIAL (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3060 G13  
3060 G14  
3060 G15  
Current Limit vs Temperature  
Reverse Output Current  
Reverse Output Current  
250  
225  
200  
175  
150  
125  
100  
75  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
= 25°C  
= 0V  
V
V
= 0V  
= V  
J
IN  
IN  
OUT  
V
= 1.2V  
ADJ  
CURRENT FLOWS  
INTO OUT PIN  
V
OUT  
= V  
ADJ  
ADJ  
ADJ  
50  
V
V
= 7V  
OUT  
IN  
OUT  
25  
OUT  
= 0V  
0
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
10 15 20 25 30 35 40 45  
OUTPUT VOLTAGE (V)  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3060 G16  
3060 G17  
3060 G18  
3060f  
6
LT3060  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Ripple Rejection  
5V Input Ripple Rejection  
Ripple Rejection vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
C
= C = 10nF  
FF  
REF/BYP  
C
= 10nF  
REF/BYP  
V
= 0.6V  
OUT  
C
= 10nF, C = 0  
FF  
REF/BYP  
C
= 0  
REF/BYP  
V
= 5V  
OUT  
C
= 10ꢀF  
OUT  
I
C
V
= 100mA  
I
= 100mA  
= 5V  
L
L
OUT  
I
V
V
= 100mA  
= 0.6V  
IN  
= C = 0  
V
C
V
L
OUT  
C
= C = 0  
FF  
REF/BYP  
= V  
FF  
REF/BYP  
+ 1.5V +  
= 10ꢀF  
IN  
OUT(NOMINAL)  
RIPPLE  
OUT  
C
= 2.2ꢀF  
= 2.6V + 0.5V RIPPLE AT f = 120Hz  
50mV  
= 6V + 50mV  
RIPPLE  
RMS  
OUT  
P-P  
RMS  
IN  
10  
100  
1k  
10k 100k 1M  
10M  
10  
100  
1k  
10k 100k 1M  
10M  
–75 –50 –25  
0
25 50 75 100 125 150 175  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
3060 G19  
3060 G20  
3060 G21  
Output Noise Spectral Density  
CREF/BYP = 0, CFF = 0  
Minimum Input Voltage  
Load Regulation  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
1
4
3
2
I
= 100mA  
L
I
= 50mA  
1
L
0
V
V
V
V
V
V
V
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
–1  
–2  
–3  
–4  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.6V  
0.1  
0.01  
V
V
= 2.1V  
IN  
OUT  
L
C
I
= 10ꢀF  
OUT  
L
= 0.6V  
V
= V  
IN  
= 100mA  
SHDN  
$I = 1mA TO 100mA  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
3060 G22  
3060 G24  
3060 G23  
Output Noise Spectral Density  
vs CREF/BYP, CFF = 0  
Output Noise Spectral Density  
vs CFF, CREF/BYP = 10nF  
RMS Output Noise vs Load Current  
vs CREF/BYP, CFF = 0  
10  
1
10  
1
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
C
= 0.6V  
= 10ꢀF  
C
= 100pF  
OUT  
OUT  
REF/BYP  
V
= 5V  
OUT  
C
= 0  
REF/BYP  
C
= 10pF  
C
= 0  
REF/BYP  
FF  
V
= 0.6V  
OUT  
C
= 10nF  
FF  
C
= 100pF  
REF/BYP  
0.1  
0.01  
0.1  
0.01  
C
= 1nF  
REF/BYP  
C
= 10nF  
REF/BYP  
C
= 10nF  
C
= 1nF  
1k  
C
= 1nF  
REF/BYP  
FF  
REF/BYP  
V
C
L
= 5V  
OUT  
OUT  
C
= 100pF  
C
L
= 10ꢀF  
FF  
OUT  
= 10ꢀF  
C
1
= 100nF  
REF/BYP  
I
= 100mA  
I
= 100mA  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
10k  
100k  
0.01  
0.1  
10  
100  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
3060 G25  
3060 G26  
3060 G27  
3060f  
7
LT3060  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
RMS Output Noise vs Load Current  
CREF/BYP = 10nF, CFF = 0  
RMS Output Noise  
vs Feedforward Capacitor (CFF)  
170  
160  
150  
140  
130  
120  
110  
100  
90  
120  
f = 10Hz TO 100kHz  
f = 10Hz TO 100kHz  
= 10ꢀF  
V
= 5V  
V
= 5V  
OUT  
OUT  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
C
C
= 10nF  
C
REF/BYP  
OUT  
OUT  
V
= 3.3V  
= 10ꢀF  
OUT  
V
= 2.5V  
I
I
= 5ꢀA  
OUT  
FB-DIVIDER  
= 100mA  
L
V
= 2.5V  
OUT  
V
= 3.3V  
OUT  
V
= 1.8V  
OUT  
V
= 1.5V  
OUT  
80  
70  
60  
50  
40  
V
V
= 1.2V  
= 0.6V  
OUT  
OUT  
30  
V
= 1.8V  
V
V
= 1.2V  
V = 0.6V  
OUT  
OUT  
OUT  
20  
= 1.5V  
10  
OUT  
0
0.01  
0.1  
1
10  
100  
10p  
100p  
1n  
10n  
LOAD CURRENT (mA)  
FEEDFORWARD CAPACITOR, C (F)  
FF  
3060 G28  
3060 G29  
5V 10Hz to 100kHz Output Noise  
CREF/BYP = 10nF, CFF = 10nF  
5V 10Hz to 100kHz Output Noise  
CREF/BYP = 10nF, CFF = 0  
V
V
OUT  
OUT  
100ꢀV/DIV  
100ꢀV/DIV  
3060 G30  
3060 G31  
C
I
= 10ꢀF  
1ms/DIV  
C
I
= 10ꢀF  
1ms/DIV  
OUT  
L
OUT  
L
= 100mA  
= 100mA  
5V Transient Response  
CFF = 10nF  
5V Transient Response  
CFF = 0  
V
= 5V  
V
= 5V  
OUT  
OUT  
V
V
OUT  
20mV/DIV  
OUT  
50mV/DIV  
ΔI  
= 10mA TO 100mA  
ΔI  
= 10mA TO 100mA  
OUT  
OUT  
I
I
OUT  
50mA/DIV  
OUT  
50mA/DIV  
3060 G32  
3060 G33  
V
C
= 6V  
100ꢀs/DIV  
V
C
= 6V  
20ꢀs/DIV  
IN  
OUT  
IN  
OUT  
= C = 10ꢀF  
= C = 10ꢀF  
IN  
IN  
I
= 5ꢀA  
I
= 5ꢀA  
FB-DIVIDER  
FB-DIVIDER  
3060f  
8
LT3060  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
5V Transient Response  
Load Dump  
SHDN Transient Response  
CREF/BYP = 0  
V
OUT  
V
= 5V  
OUT  
V
OUT  
2V/DIV  
= 50Ω  
10mV/DIV  
R
L
V
= 12V TO 45V  
IN  
REF/BYP  
500mV/DIV  
SHDN  
1V/DIV  
V
IN  
10V/DIV  
3060 G34  
3060 G35  
2ms/DIV  
4ms/DIV  
C
C
= C = 2.2ꢀF  
C
= C = 2.2ꢀF  
OUT IN  
OUT  
IN  
= C = 10nF  
C
= 0  
FF  
REF/BYP  
FF  
= 5ꢀA  
I
FB-DIVIDER  
SHDN Transient Response  
CREF/BYP = 10nF  
Start-Up Time  
vs REF/BYP Capacitor  
100  
10  
C
= 0  
FF  
V
OUT  
2V/DIV  
= 50Ω  
R
L
REF/BYP  
500mV/DIV  
1
SHDN  
1V/DIV  
0.1  
3060 G36  
4ms/DIV  
C
C
= C = 2.2ꢀF  
IN  
OUT  
FF  
= 0  
0.01  
10p  
100p  
1n  
10n  
100n  
REF/BYP CAPACITOR (F)  
3060 G37  
3060f  
9
LT3060  
PIN FUNCTIONS (DC8/TS8)  
REF/BYP (Pin 1 / Pin 8): Reference/Bypass. Connecting  
a single capacitor from this pin to GND bypasses the  
LT3060’s reference noise and soft-starts the reference.  
A 10nF bypass capacitor typically reduces output voltage  
An input bypass capacitor in the range of 1ꢀF to 10ꢀF  
suffices. The LT3060 withstands reverse voltages on the  
IN pin with respect to its GND and OUT pins. In a reversed  
input situation, such as a battery plugged in backwards,  
the LT3060 behaves as if a large resistor is in series with  
its input. Limited reverse current flows into the LT3060  
and no reverse voltage appears at the load. The device  
protects itself and the load.  
noise to 30ꢀV  
in a 10Hz to 100kHz bandwidth. Soft-  
RMS  
starttimeisdirectlyproportionaltotheREF/BYPcapacitor  
value. If the LT3060 is placed in shutdown, REF/BYP is  
actively pulled low by an internal device to reset soft-start.  
If low noise or soft-start performance is not required, this  
pin must be left floating (unconnected). Do not drive this  
pin with any active circuitry.  
SHDN (Pin 7 / Pin 1): Shutdown. Pulling the SHDN pin  
low puts the LT3060 into a low power state and turns  
the output off. Drive the SHDN pin with either logic or an  
open collector/drain with a pull-up resistor. The resistor  
supplies the pull-up current to the open collector/drain  
logic, normally several microamperes, and the SHDN  
pin current, typically less than 3ꢀA. If unused, connect  
the SHDN pin to IN. The LT3060 does not function if the  
SHDN pin is not connected. The SHDN pin cannot be  
driven below GND unless tied to the IN pin. If the SHDN  
pin is driven below GND while IN is powered, the output  
may turn on. SHDN pin logic cannot be referenced to a  
negative supply voltage.  
ADJ (Pin 2 / Pin 7): Adjust. This pin is the error amplifier’s  
invertingterminal.It’stypicalbiascurrentof15nAowsout  
ofthepin(seecurveofADJPinBiasCurrentvsTemperature  
in the Typical Performance Characteristics section). The  
ADJ pin voltage is 600mV referenced to GND.  
OUT(Pins3, 4/Pin6):Output. Thesepin(s)supplypower  
to the load. Stability requirements demand a minimum  
2.2ꢀF ceramic output capacitor to prevent oscillations.  
Large load transient applications require larger output  
capacitors to limit peak voltage transients. See the  
Applications Information section for details on transient  
response and reverse output characteristics. Permissible  
output voltage range is 600mV to 44.5V.  
GND (Pin 8, Exposed Pad Pin 9 / Pins 2, 3, 4): Ground.  
Connectthebottomoftheexternalresistordividerthatsets  
theoutputvoltagedirectlytoGNDforoptimumregulation.  
FortheDFNpackage,tieexposedpadPin9directlytoPin8  
andthePCBground. Thisexposedpadprovidesenhanced  
thermalperformancewithitsconnectiontothePCBground.  
See the Applications Information section for thermal  
considerations and calculating junction temperature.  
IN (Pins 5, 6 / Pin 5): Input. These pin(s) supply power to  
thedevice.TheLT3060requiresalocalINbypasscapacitor  
if it is located more than six inches from the main input  
filter capacitor. In general, battery output impedance rises  
with frequency, so adding a bypass capacitor in battery-  
powered circuits is advisable.  
3060f  
10  
LT3060  
APPLICATIONS INFORMATION  
TheLT3060isamicropower,lownoise,lowdropoutvoltage,  
100mA linear regulator with micropower shutdown. The  
device supplies up to 100mA at a typical dropout voltage  
of 300mV and operates over a 1.6V to 45V input range.  
IN  
OUT  
ADJ  
V
OUT  
V
LT3060  
IN  
R2  
R1  
R2  
R1  
SHDN  
VOUT = 0.6V 1+  
– I  
(
R2  
ADJ  
)
GND REF/BYP  
VADJ = 0.6V  
A single external capacitor can provide programmable  
low noise reference performance and output soft-start  
functionality. For example, connecting a 10nF capacitor  
from the REF/BYP pin to GND lowers output noise to  
IADJ = 15nA at 25ºC  
OUTPUT RANGE = 0.6V to 44.5V  
3060 F01  
Figure 1. Adjustable Operation  
30ꢀV  
overa10Hzto100kHzbandwidth.Thiscapacitor  
RMS  
The ADJ pin bias current, 15nA at 25˚C, flows from the  
ADJ pin through R1 to GND. Calculate the output voltage  
usingtheformulainFigure1. ThevalueofR1shouldbeno  
greater than 124k to provide a minimum 5ꢀA load current  
so that errors in the output voltage, caused by the ADJ  
pin bias current, are minimized. Note that in shutdown,  
the output is turned off and the divider current is zero.  
CurvesofADJPinVoltagevsTemperatureandADJPinBias  
CurrentvsTemperatureappearintheTypicalPerformance  
Characteristics Section.  
also soft-starts the reference and prevents output voltage  
overshoot at turn-on.  
TheLT3060’squiescentcurrentismerely4Abutprovides  
fast transient response with a minimum low ESR 2.2μF  
ceramic output capacitor. In shutdown, quiescent current  
is less than 1μA and the reference soft-start capacitor is  
reset.  
The LT3060 optimizes stability and transient response  
with low ESR, ceramic output capacitors. The regulator  
does not require the addition of ESR as is common with  
other regulators. The LT3060 typically provides 0.1% line  
regulation and 0.03% load regulation.  
The LT3060 is tested and specified with the ADJ pin tied  
to the OUT pin, yielding V  
= 0.6V. Specifications for  
OUT  
output voltages greater than 0.6V are proportional to the  
ratio of the desired output voltage to 0.6V:V /0.6V. For  
OUT  
Internal protection circuitry includes reverse-battery  
protection, reverse-output protection, reverse-current  
protection, current limit with foldback and thermal  
shutdown.  
example, load regulation for an output current change  
of 1mA to 100mA is 0.2mV (typical) at V  
= 0.6V. At  
OUT  
V
= 12V, load regulation is:  
OUT  
12V  
0.6V  
(0.2mV) = 4mV  
This “bullet-proof” protection set makes it ideal for use in  
battery-powered systems. In battery backup applications  
where the output is held up by a backup battery and the  
input is pulled to ground, the LT3060 acts like it has a  
diodeinserieswithitsoutputandpreventsreversecurrent  
flow. Additionally, in dual supply applications where the  
regulator load is returned to a negative supply, the output  
can be pulled below ground by as much as 45V and the  
device still starts normally and operates.  
Table1shows1%resistordividervaluesforsomecommon  
output voltages with a resistor divider current of 5ꢀA.  
Table 1. Output Voltage Resistor Divider Values  
V
(V)  
R1  
R2  
(kΩ)  
OUT  
(kΩ)  
1.2  
118  
121  
124  
115  
124  
124  
115  
118  
182  
249  
365  
499  
562  
845  
1.5  
1.8  
2.5  
3
Adjustable Operation  
TheLT3060hasanoutputvoltagerangeof0.6Vto44.5V.The  
output voltage is set by the ratio of two external resistors,  
as shown in Figure 1. The device servos the output to  
maintaintheADJpinvoltageat0.6Vreferencedtoground.  
The current in R1 is then equal to 0.6V/R1, and the current  
in R2 is the current in R1 minus the ADJ pin bias current.  
3.3  
5
3060f  
11  
LT3060  
APPLICATIONS INFORMATION  
Bypass Capacitance, Output Voltage Noise and  
Transient Response  
During start-up, the internal reference will soft-start if a  
reference bypass capacitor is present. Regulator start-  
up time is directly proportional to the size of the bypass  
capacitor, slowing to 6ms with a 10nF bypass capacitor  
(See Start-up Time vs REF/BYP Capacitor in the Typical  
Performance Characteristics section). The reference  
bypass capacitor is actively drained during shutdown to  
reset the internal reference soft-start.  
The LT3060 regulator provides low output voltage noise  
over the 10Hz to 100kHz bandwidth while operating at  
full load with the addition of a reference bypass capacitor  
(C  
) from the REF/BYP pin to GND. A good quality,  
REF/BYP  
lowleakagecapacitorisrecommended. Thiscapacitorwill  
bypass the internal reference of the regulator, providing a  
lowfrequencynoisepole.Withtheuseof10nFforC  
REF/BYP,  
IN  
OUT  
V
OUT  
the output voltage noise decreases to as low as 30ꢀV  
RMS  
C
C
R2  
R1  
V
FF  
OUT  
LT3060  
IN  
when the output voltage is set for 0.6V. For higher output  
voltages (generated by using a feedback resistor divider),  
the output voltage noise gains up accordingly when using  
SHDN  
ADJ  
GND REF/BYP  
4.7nF  
5ꢀA  
CFF  
I  
(
)
FBDIVIDER  
C
by itself.  
C
REF/BYP  
REF/BYP  
VOUT  
IFBDIVIDER  
=
3060 F02  
R1+R2  
Tolowertheoutputvoltagenoiseforhigheroutputvoltages,  
includeafeedforwardcapacitor(C )fromV totheADJ  
Figure 2. Feedforward Capacitor for Fast Transient Response  
FF  
OUT  
pin.Agoodquality,lowleakagecapacitorisrecommended.  
Thiscapacitorwillbypasstheerroramplifieroftheregulator,  
providingalowfrequencynoisepole. Withtheuseof10nF  
V
C
= 5V  
OUT  
OUT  
= 10ꢀF  
I
= 5ꢀA  
FB-DIVIDER  
0
for both C and C  
, output voltage noise decreases  
FF  
RMS  
REF/BYP  
to 30ꢀV  
when the output voltage is set to 5V by a 5ꢀA  
100pF  
1nF  
feedback resistor divider. If the current in the feedback  
resistor divider is doubled, C must also be doubled to  
FF  
10nF  
achieve equivalent noise performance.  
LOAD CURRENT  
100mA/DIV  
Higher values of output voltage noise are often measured  
if care is not exercised with regard to circuit layout and  
testing. Crosstalk from nearby traces induces unwanted  
noise onto the LT3060’s output. Power supply ripple  
rejection must also be considered. The LT3060 regulator  
doesnothaveunlimitedpowersupplyrejectionandpasses  
a small portion of the input noise through to the output.  
3060 F03  
100ꢀs/DIV  
Figure 3. Transient Response vs Feedforward Capacitor  
Start-uptimeisalsoaffectedbythepresenceofafeedforward  
capacitor. Start-up time is directly proportional to the size  
of the feedforward capacitor and the output voltage, and  
is inversely proportional to the feedback resistor divider  
current,slowingto15mswitha4.7nFfeedforwardcapacitor  
and a 10ꢀF output capacitor for an output voltage set to  
5V by a 5ꢀA feedback resistor divider.  
Using a feedforward capacitor (C ) from V  
to the ADJ  
OUT  
FF  
pin has the added benefit of improving transient response  
foroutputvoltagesgreaterthan0.6V. Withnofeedforward  
capacitor, the settling time will increase as the output  
voltage is raised above 0.6V. Use the equation in Figure 2  
Output Capacitance  
to determine the minimum value of C to achieve a  
FF  
transient response that is similar to 0.6V output voltage  
performance regardless of the chosen output voltage  
(See Figure 3 and Transient Response in the Typical Perf-  
ormance Characteristics section).  
The LT3060 regulator is stable with a wide range of output  
capacitors.TheESRoftheoutputcapacitoraffectsstability,  
mostnotablywithsmallcapacitors.Useaminimumoutput  
capacitor of 2.2ꢀF with an ESR of 3Ω or less to prevent  
oscillations. If a feedforward capacitor is used with output  
3060f  
12  
LT3060  
APPLICATIONS INFORMATION  
voltages set for greater than 24V, use a minimum output  
capacitor of 4.7ꢀF. The LT3060 is a micropower device  
and output load transient response is a function of output  
capacitance. Larger values of output capacitance decrease  
the peak deviations and provide improved transient  
responseforlargerloadcurrentchanges.Bypasscapacitors,  
used to decouple individual components powered by the  
LT3060, increase the effective output capacitor value. For  
applications with large load current transients, a low ESR  
ceramic capacitor in parallel with a bulk tantalum capacitor  
often provides an optimally damped response.  
the system or thermal transients. The resulting voltages  
produced cause appreciable amounts of noise. A ceramic  
capacitorproducedthetraceinFigure6inresponsetolight  
tapping from a pencil. Similar vibration induced behavior  
can masquerade as increased output voltage noise.  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10ꢀF  
0
X5R  
–20  
–40  
Give extra consideration to the use of ceramic capacitors.  
Manufacturers make ceramic capacitors with a variety of  
dielectrics, each with different behavior across tempera-  
ture and applied voltage. The most common dielectrics  
are specified with EIA temperature characteristic codes  
of Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics  
provide high C-V products in a small package at low cost,  
butexhibitstrongvoltageandtemperaturecoefficients, as  
shown in Figures 4 and 5. When used with a 5V regulator,  
a 16V 10ꢀF Y5V capacitor can exhibit an effective value  
as low as 1ꢀF to 2ꢀF for the DC bias voltage applied, and  
over the operating temperature range. The X5R and X7R  
dielectrics yield much more stable characteristics and are  
more suitable for use as the output capacitor.  
–60  
Y5V  
–80  
–100  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3060 F04  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
40  
20  
X5R  
0
–20  
–40  
Y5V  
The X7R type works over a wider temperature range and  
has better temperature stability, while the X5R is less  
expensive and is available in higher values. Care still must  
beexercisedwhenusingX5RandX7Rcapacitors;theX5R  
and X7R codes only specify operating temperature range  
and maximum capacitance change over temperature.  
Capacitance change due to DC bias with X5R and X7R  
capacitors is better than Y5V and Z5U capacitors, but can  
still be significant enough to drop capacitor values below  
appropriate levels. Capacitor DC bias characteristics tend  
toimproveascomponentcasesizeincreases,butexpected  
capacitance at operating voltage should be verified.  
–60  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10ꢀF  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
3060 F05  
Figure 5. Ceramic Capacitor Temperature Characteristics  
V
C
C
I
= 0.6V  
= 10ꢀF  
= 10nF  
= 100mA  
OUT  
OUT  
REF/BYP  
LOAD  
V
OUT  
500ꢀV/DIV  
Voltageandtemperaturecoefficientsarenottheonlysources  
ofproblems. Someceramiccapacitorshaveapiezoelectric  
response. A piezoelectric device generates voltage across  
its terminals due to mechanical stress, similar to the way  
a piezoelectric accelerometer or microphone works. For a  
ceramic capacitor, the stress is induced by vibrations in  
3060 F06  
4ms/DIV  
Figure 6. Noise Resulting from Tapping on a Ceramic Capacitor  
3060f  
13  
LT3060  
APPLICATIONS INFORMATION  
Overload Recovery  
GND pin current is determined using the GND Pin Current  
curvesintheTypicalPerformanceCharacteristicssection.  
Power dissipation equals the sum of the two components  
listed above.  
Like many IC power regulators, the LT3060 has safe  
operating area protection. The safe operating area  
protection decreases current limit as input-to-output  
voltage increases, and keeps the power transistor inside  
a safe operating region for all values of input-to-output  
voltage. The LT3060 provides some output current at all  
values of input-to-output voltage up to the specified 45V  
operational maximum.  
The LT3060 regulator has internal thermal limiting that  
protects the device during overload conditions. For  
continuous normal conditions, the maximum junction  
temperature of 125°C (E-grade, I-grade, MP-grade) or  
150°C(H-grade)mustnotbeexceeded.Carefullyconsider  
allsourcesofthermalresistancefromjunction-to-ambient  
including other heat sources mounted in proximity to the  
LT3060.  
Whenpowerisrstapplied, theinputvoltagerisesandthe  
output follows the input; allowing the regulator to start-up  
intoveryheavyloads. Duringstart-up, astheinputvoltage  
is rising, the input-to-output voltage differential is small,  
allowing the regulator to supply large output currents.  
With a high input voltage, a problem can occur wherein  
the removal of an output short will not allow the output  
to recover. Other regulators, such as the LT1083/LT1084/  
LT1085familyandLT1764Aalsoexhibitthisphenomenon,  
so it is not unique to the LT3060. The problem occurs  
with a heavy output load when the input voltage is high  
and the output voltage is low. Common situations are: (1)  
immediately after the removal of a short-circuit or (2) if  
the shutdown pin is pulled high after the input voltage is  
alreadyturnedon.Theloadlineintersectstheoutputcurrent  
curve at two points creating two stable output operating  
points for the regulator. With this double intersection, the  
input power supply needs to be cycled down to zero and  
brought up again for the output to recover.  
The underside of the LT3060 DFN package has exposed  
2
metal (1mm ) from the lead frame to the die attachment.  
The package allows heat to directly transfer from the  
die junction to the printed circuit board metal to control  
maximumoperatingjunctiontemperature.Thedual-in-line  
pin arrangement allows metal to extend beyond the ends  
of the package on the topside (component side) of a PCB.  
Connect this metal to GND on the PCB. The multiple IN  
and OUT pins of the LT3060 also assist in spreading heat  
to the PCB.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes also can spread the heat generated by  
power devices.  
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on a 4 layer FR-4 board with 1oz  
solid internal planes and 2oz top/bottom external trace  
planes with a total board thickness of 1.6mm. The four  
layers were electrically isolated with no thermal vias  
present. PCB layers, copper weight, board layout and  
thermal vias will affect the resultant thermal resistance.  
For more information on thermal resistance and high  
thermal conductivity test boards, refer to JEDEC standard  
JESD51, notably JESD51-12 and JESD51-7. Achieving  
low thermal resistance necessitates attention to detail  
and careful PCB layout.  
Thermal Considerations  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C for  
LT3060E, LT3060I, LT3060MP or 150°C for LT3060H).  
Two components comprise the power dissipated by the  
device:  
1. Output current multiplied by the input/output voltage  
differential: I  
• (V V ), and  
OUT  
IN OUT  
2. GND pin current multiplied by the input voltage:  
• V  
I
GND  
IN  
3060f  
14  
LT3060  
APPLICATIONS INFORMATION  
Table 2. DC Package, 8-Lead DFN  
COPPER AREA  
The maximum junction temperature equals the maximum  
ambient temperature plus the maximum junction tem-  
perature rise above ambient or:  
BOARD AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
TOPSIDE* BACKSIDE  
2
2
2
(mm )  
(mm )  
(mm )  
T
= 85°C + 27.8°C = 112.8°C  
JMAX  
2500  
1000  
225  
100  
50  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
48°C/W  
49°C/W  
50°C/W  
54°C/W  
60°C/W  
Protection Features  
The LT3060 incorporates several protection features  
that make it ideal for use in battery-powered circuits. In  
addition to the normal protection features associated with  
monolithicregulators,suchascurrentlimitingandthermal  
limiting, the device also protects against reverse-input  
voltages, reverse-output voltages and reverse output-to-  
input voltages.  
*Device is mounted on topside  
Table 3. TS8 Package, 8 Lead TSOT-23  
COPPER AREA  
BOARD AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
TOPSIDE* BACKSIDE  
2
2
2
(mm )  
(mm )  
(mm )  
Current limit protection and thermal overload protection  
protect the device against current overload conditions at  
the output of the device. The typical thermal shutdown  
temperatureis165°C.Fornormaloperation,donotexceed  
a junction temperature of 125°C (LT3060E, LT3060I,  
LT3060MP) or 150°C (LT3060H).  
2500  
1000  
225  
100  
50  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
57°C/W  
58°C/W  
59°C/W  
63°C/W  
67°C/W  
*Device is mounted on topside  
The LT3060 IN pin withstands reverse voltages up to 50V.  
Thedevicelimitscurrentowtolessthan300ꢀA(typically  
less than 50ꢀA) and no negative voltage appears at OUT.  
Thedeviceprotectsbothitselfandtheloadagainstbatteries  
that are plugged in backwards.  
Calculating Junction Temperature  
Example: Given an output voltage of 2.5V, an input volt-  
age range of 12V 5%, an output current range of 0mA  
to 50mA and a maximum ambient temperature of 85°C,  
what will the maximum junction temperature be?  
The SHDN pin cannot be driven below GND unless tied to  
the IN pin. If the SHDN pin is driven below GND while IN is  
powered, the output may turn on. SHDN pin logic cannot  
be referenced to a negative supply voltage.  
The power dissipated by the device equals:  
I
• (V  
–V ) + I  
• V  
OUT(MAX)  
IN(MAX) OUT  
GND IN(MAX)  
The LT3060 incurs no damage if its output is pulled below  
ground. If the input is left open-circuit or grounded, the  
output can be pulled below ground by 50V. No current  
flows through the pass transistor from the output.  
However, current flows in (but is limited by) the resistor  
divider that sets the output voltage. Current flows from  
the bottom resistor in the divider and from the ADJ pin’s  
internal clamp through the top resistor in the divider to  
the external circuitry pulling OUT below ground. If the  
input is powered by a voltage source, the output sources  
current equal to its current limit capability and the LT3060  
protects itself by thermal limiting. In this case, grounding  
the SHDN pin turns off the device and stops the output  
from sourcing current.  
where,  
I
= 50mA  
= 12.6V  
OUT(MAX)  
V
IN(MAX)  
I
at (I = 50mA, V = 12.6V) = 0.6mA  
OUT IN  
GND  
So,  
P = 50mA • (12.6V – 2.5V) + 0.6mA • 12.6V = 0.513W  
Using a DFN package, the thermal resistance ranges from  
48°C/W to 60°C/W depending on the copper area with  
no thermal vias. So the junction temperature rise above  
ambient approximately equals:  
0.513W • 54°C/W = 27.8°C  
3060f  
15  
LT3060  
APPLICATIONS INFORMATION  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
The LT3060 incurs no damage if the ADJ pin is pulled  
above or below ground by less than 50V. If the input is  
left open-circuit or grounded, the ADJ pin performs like  
a large resistor (typically 30k) in series with a diode when  
pulled below ground and like 30k in series with two diodes  
when pulled above ground.  
T
= 25°C  
= 0V  
J
IN  
V
CURRENT FLOWS  
INTO OUT PIN  
V
= V  
OUT  
ADJ  
ADJ  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulled to some intermediate voltage or left open-  
circuit. Current flow back into the output follows the curve  
shown in Figure 7.  
OUT  
0
5
10 15 20 25 30 35 40 45  
OUTPUT VOLTAGE (V)  
3060 F07  
Figure 7. Reverse Output Current  
If the LT3060’s IN pin is forced below the OUT pin or the  
OUT pin is pulled above the IN pin, input current typically  
drops to less than 1ꢀA. This occurs if the LT3060 input is  
connected to a discharged (low voltage) battery and either  
abackupbatteryorasecondregulatorholdsuptheoutput.  
The state of the SHDN pin has no effect on the reverse  
current if the output is pulled above the input.  
3060f  
16  
LT3060  
TYPICAL APPLICATION  
Paralleling of Regulators for Higher Output Current  
R1  
0.15Ω  
2.5V  
200mA  
IN  
OUT  
ADJ  
R8  
1.91k  
1%  
+
C2  
LT3060  
C1  
2.2ꢀF  
V
IN  
> 2.9V  
4.7ꢀF  
SHDN  
R9  
604Ω  
1%  
GND REF/BYP  
C3  
1nF  
R2  
0.15Ω  
IN  
OUT  
LT3060  
SHDN  
GND REF/BYP  
R6  
1.74k  
1%  
SHDN  
ADJ  
R7  
604Ω  
1%  
C4  
1nF  
R3  
200Ω  
R4  
200Ω  
R5  
1k  
7
3
+
6
LT1637  
4
2
C5  
10nF  
3060 TA03  
3060f  
17  
LT3060  
PACKAGE DESCRIPTION  
DC Package  
8-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1719 Rev Ø)  
0.70 0.05  
2.55 0.05  
0.64 0.05  
1.15 0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 0.05  
0.45 BSC  
1.37 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
TYP  
5
8
R = 0.05  
TYP  
0.40 0.10  
PIN 1 NOTCH  
2.00 0.10 0.64 0.10  
(4 SIDES)  
(2 SIDES)  
R = 0.20 OR  
0.25 s 45°  
CHAMFER  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
(DC8) DFN 0106 REVØ  
4
1
0.23 0.05  
0.45 BSC  
0.75 0.05  
0.200 REF  
1.37 0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3060f  
18  
LT3060  
PACKAGE DESCRIPTION  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3060f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT3060  
RELATED PARTS  
PART  
DESCRIPTION  
NUMBER  
COMMENTS  
LT1761  
LT1762  
LT1763  
LT1764/A  
100mA, Low Noise LDO  
300mV Dropout Voltage, Low Noise: 20ꢀV  
300mV Dropout Voltage, Low Noise: 20ꢀV  
300mV Dropout Voltage, Low Noise: 20ꢀV  
340mV Dropout Voltage, Low Noise: 40ꢀV  
, V = 1.8V to 20V, ThinSOT package  
RMS IN  
150mA, Low Noise LDO  
, V = 1.8V to 20V, MS8 package  
RMS IN  
500mA, Low Noise LDO  
, V = 1.8V to 20V, SO-8 Package  
RMS IN  
3A, Fast Transient Response, Low Noise LDO  
, V = 2.7V to 20V, TO-220 and DD  
RMS IN  
Packages “A” version stable also with ceramic caps  
LT1962  
300mA, Low Noise LDO  
270mV Dropout Voltage, Low Noise: 20ꢀV , V = 1.8V to 20V, MS8 Package  
RMS IN  
LT1963/A  
1.5A Low Noise, Fast Transient Response LDO  
340mV Dropout Voltage, Low Noise: 40ꢀV  
, V = 2.5V to 20V, “A” version stable  
RMS IN  
with ceramic caps, TO-220, DD, SOT-223 and SO-8 Packages  
LT1964  
LT1965  
200mA, Low Noise, Negative LDO  
340mV Dropout Voltage, Low Noise 30ꢀV , V = –1.8V to –20V, ThinSOT Package  
RMS IN  
1.1A, Low Noise, Low Dropout Linear Regulator 290mV Dropout Voltage, Low Noise: 40ꢀV  
, V : 1.8V to 20V, V : 1.2V to 19.5V,  
OUT  
RMS IN  
stable with ceramic caps, TO-220, DDPak, MSOP and 3 × 3 DFN Packages  
LT3008  
20mA, 45V, 3uA Iq Micropower LDO  
300mV Dropout Voltage, Low Iq: 3ꢀA, V = 2.0V to 45V, V  
= 0.6V to 39.5V;  
IN  
OUT  
ThinSOT and 2 × 2 DFN-6 packages  
LT3009  
LT3010  
20mA, 3uA Iq Micropower LDO  
280mV Dropout Voltage, Low Iq: 3ꢀA, V = 1.6V to 20V, ThinSOT and SC-70 packages  
IN  
50mA, High Voltage, Micropower LDO  
V : 3V to 80V, V : 1.275V to 60V, VDO = 0.3V, I = 30ꢀA, ISD < 1ꢀA, Low Noise:  
IN  
OUT  
Q
<100ꢀV  
, Stable with 1ꢀF Output Capacitor, Exposed MS8 Package  
RMS  
LT3011  
50mA, High Voltage, Micropower LDO with  
PWRGD  
V : 3V to 80V, V : 1.275V to 60V, VDO = 0.3V, I = 46ꢀA, ISD < 1ꢀA, Low Noise:  
IN  
OUT  
Q
<100ꢀV  
, PowerGood, Stable with 1ꢀF Output Capacitor, 3 × 3 DFN-10 and Exposed  
RMS  
MS12E Packages  
LT3012  
LT3013  
250mA, 4V to 80V, Low Dropout Micropower  
Linear Regulator  
V : 4V to 80V, V : 1.24V to 60V, VDO = 0.4V, I = 40ꢀA, ISD < 1ꢀA, TSSOP-16E and  
IN OUT Q  
4mm × 3mm DFN-12 Packages  
250mA, 4V to 80V, Low Dropout Micropower  
Linear Regulator with PWRGD  
V : 4V to 80V, V : 1.24V to 60V, VDO = 0.4V, I = 65ꢀA, ISD < 1ꢀA, PowerGood  
IN  
OUT  
Q
feature; TSSOP-16E and 4mm × 3mm DFN-12 Packages  
LT3014/HV 20mA, 3V to 80V, Low Dropout Micropower  
Linear Regulator  
V : 3V to 80V (100V for 2ms, “HV” version), V : 1.22V to 60V, VDO = 0.35V, I =  
IN  
OUT  
Q
7ꢀA, ISD < 1ꢀA, ThinSOT and 3mm × 3mm DFN-8 Packages  
LT3050  
100mA, Low Noise Linear Regulator with  
340mV Dropout Voltage, Low Noise: 30ꢀV , V : 1.6V to 45V, V : 0.6V to 44.5V,  
RMS IN  
OUT  
Precision Current Limit and Diagnostic Functions. Programmable Precision Current Limit: 5%, Programmable Minimum I  
Monitor,  
OUT  
Output Current Monitor, Fault Indicator, Reverse Protection, 12-Lead 2mm × 3mm DFN  
and MSOP Packages.  
LT3080/-1  
LT3082  
1.1A, Parallelable, Low Noise, Low Dropout  
Linear Regulator  
300mV Dropout Voltage (2-supply operation), Low Noise: 40ꢀV  
, V : 1.2V to 36V,  
RMS IN  
V
: 0V to 35.7V, current-based reference with 1-resistor V  
set; directly parallelable  
OUT  
OUT  
(no op amp required), stable with ceramic caps, TO-220, SOT-223, MSOP and 3 × 3  
DFN Packages; “-1” version has integrated internal ballast resistor  
200mA, Parallelable, Single Resistor, Low  
Dropout Linear Regulator  
Outputs May Be Paralleled for Higher Output, Current or Heat Spreading, Wide Input  
Voltage Range: 1.2V to 40V Low Value Input/Output Capacitors Required: 0.22μF, Single  
Resistor Sets Output Voltage Initial Set Pin Current Accuracy: 1%, Low Output Noise:  
40μV  
(10Hz to 100kHz) Reverse-Battery Protection, Reverse-Current Protection  
RMS  
8-Lead SOT-23, 3-Lead SOT-223 and 8-Lead 3mm × 3mm DFN Packages  
LT3085  
LT3092  
500mA, Parallelable, Low Noise, Low Dropout  
Linear Regulator  
275mV Dropout Voltage (2-supply operation), Low Noise: 40ꢀV , V : 1.2V to 36V,  
RMS IN  
V
: 0V to 35.7V, current-based reference with 1-resistor V  
set; directly parallelable  
OUT  
OUT  
(no op amp required), stable with ceramic caps, MS8E and 2 × 3 DFN-6 packages  
200mA Two-Terminal Programmable Current  
Source  
Programmable Two-Terminal Current Source, Maximum Output Current: 200mA Wide  
Input Voltage Range: 1.2V to 40V, Resistor Ratio Sets Output Current Initial Set Pin  
Current Accuracy: 1%, Current Limit and Thermal Shutdown Protection Reverse-  
Voltage Protection, Reverse-Current Protection 8-Lead SOT-23, 3-Lead SOT-223 and  
8-Lead 3mm × 3mm DFN Packages  
3060f  
LT 0110 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY