LT3070EUFD#PBF [Linear]

LT3070 - 5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator; Package: QFN; Pins: 28; Temperature Range: -40°C to 85°C;
LT3070EUFD#PBF
型号: LT3070EUFD#PBF
厂家: Linear    Linear
描述:

LT3070 - 5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator; Package: QFN; Pins: 28; Temperature Range: -40°C to 85°C

输出元件 调节器
文件: 总28页 (文件大小:675K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3070  
5A, Low Noise,  
Programmable Output,  
85mV Dropout  
Linear Regulator  
FEATURES  
DESCRIPTION  
The LT®3070 is a low voltage, UltraFast™ transient re-  
sponse linear regulator. The device supplies up to 5A of  
output current with a typical dropout voltage of 85mV.  
A 0.01µF reference bypass capacitor decreases output  
n
Output Current: 5A  
n
Dropout Voltage: 85mV Typical  
n
Digitally Programmable V : 0.8V to 1.8V  
OUT  
n
Digital Output Margining: 1ꢀ, ꢁꢀ or 5ꢀ  
n
Low Output Noise: 25µV  
(10Hz to 100kHz)  
voltage noise to 25µV  
. The LT3070’s high bandwidth  
RMS  
RMS  
n
n
n
n
Parallel Multiple Devices for 10A or More  
permits the use of low ESR ceramic capacitors, saving  
bulk capacitance and cost. The LT3070’s features make  
it ideal for high performance FPGAs, microprocessors or  
sensitive communication supply applications.  
Precision Current Limit: 20ꢀ  
1ꢀ Accuracy Over Line, Load and Temperature  
Stable with Low ESR Ceramic Output Capacitors  
(15µF Minimum)  
Output voltage is digitally selectable in 50mV increments  
over a 0.8V to 1.8V range. A margining function allows  
the user to adjust system output voltage in increments of  
1ꢀ, 3ꢀ or 5ꢀ. The IC incorporates a uniꢁue tracking  
functiontocontrolabuckregulatorpoweringtheLT3070’s  
input. This tracking function drives the buck regulator to  
n
n
n
High Freꢁuency PSRR: 30dB at 1MHz  
Enable Function Turns Output On/Off  
VIOC Pin Controls Buck Converter to Maintain Low  
Power Dissipation and Optimize Efficiency  
PWRGD/UVLO/Thermal Shutdown Flag  
Current Limit with Foldback Protection  
Thermal Shutdown  
n
n
n
n
maintain the LT3070’s input voltage to V  
minimizing power dissipation.  
+ 300mV,  
OUT  
28-Lead (4mm × 5mm × 0.75mm) QFN Package  
InternalprotectionincludesUVLO,reverse-currentprotec-  
tion, precision current limiting with power foldback and  
thermal shutdown. The LT3070 regulator is available in a  
thermally enhanced 28-lead, 4mm × 5mm QFN package.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
UltraFast and VLDO are trademarks of Linear Technology Corporation. All other trademarks are  
the property of their respective owners. Patents pending.  
APPLICATIONS  
n
FPGA and DSP Supplies  
n
ASIC and Microprocessor Supplies  
n
Servers and Storage Devices  
n
Post Buck Regulation and Supply Isolation  
TYPICAL APPLICATION  
Dropout Voltage  
0.9V, 5A Regulator  
150  
V
= V  
OUT(NOMINAL)  
IN  
50k  
V
BIAS  
2.2V TO 3.6V  
PWRGD  
2.2µF  
120  
90  
60  
30  
0
BIAS  
V
IN  
1.2V  
IN  
EN  
V
PWRGD  
SENSE  
330µF  
V
0.9V  
5A  
OUT  
V
= 1.8V  
= 3.3V  
OUT  
LT3070  
OUT  
O0  
V
BIAS  
2.2µF*  
4.7µF*  
10µF*  
V
O1  
V
O2  
V
V
= 0.8V  
= 2.5V  
OUT  
BIAS  
*X5R OR X7R CAPACITORS  
MARGSEL  
MARGTOL  
VIOC  
REF/BYP  
GND  
1nF  
0.01µF  
0
1
2
3
4
5
3070 TA01a  
OUTPUT CURRENT (A)  
3070 TA01b  
3070fb  
1
For more information www.linear.com/LT3070  
LT3070  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
IN, OUT ..................................................... –0.3V to 3.3V  
BIAS............................................................. –0.3V to 4V  
O2 O1 O0  
28 27 26 25 24 23  
V , V , V Inputs .................................... –0.3V to 4V  
VIOC  
PWRGD  
REF/BYP  
GND  
IN  
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
MARGTOL  
MARGSEL  
GND  
MARGSEL, MARGTOL Input ........................ –0.3V to 4V  
EN Input....................................................... –0.3V to 4V  
SENSE Input................................................. –0.3V to 4V  
VIOC, PWRGD Outputs ................................ –0.3V to 4V  
REF/BYP Output........................................... –0.3V to 4V  
Output Short-Circuit Duration……...................Indefinite  
Operating Junction Temperature (Note 2)  
LT3070E/LT3070I ............................. –40°C to 125°C  
LT3070MP ......................................... –55°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
SENSE  
OUT  
29  
GND  
IN  
OUT  
IN  
OUT  
IN  
OUT  
9
10 11 12 13 14  
UFD PACKAGE  
28-LEAD (4mm × 5mm) PLASTIC QFN  
T
= 125°C, θ = 30°C/W TO 35°C/W  
JMAX  
JA  
EXPOSED PAD (PIN 29) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3070EUFD#PBF  
LT3070IUFD#PBF  
LT3070MPUFD#PBF  
LEAD BASED FINISH  
LT3070EUFD  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3070EUFD#TRPBF  
LT3070IUFD#TRPBF  
LT3070MPUFD#TRPBF  
TAPE AND REEL  
3070  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
PACKAGE DESCRIPTION  
3070  
3070  
PART MARKING*  
3070  
LT3070EUFD#TR  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
LT3070IUFD  
LT3070IUFD#TR  
3070  
LT3070MPUFD  
LT3070MPUFD#TR  
3070  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3070fb  
2
For more information www.linear.com/LT3070  
LT3070  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COUT = 15µF (Note 9), VIN = VOUT + 0.ꢁV (Note 5), VBIAS = 2.5V unless  
otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
0.95  
2.2  
TYP  
MAX  
3.0  
UNITS  
l
l
IN Pin Voltage Range  
BIAS Pin Voltage Range (Note 3)  
Regulated Output Voltage  
V
≥ V  
+ 150mV, I = 5A  
V
V
IN  
OUT  
OUT  
3.6  
l
l
l
l
l
l
l
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 0.8V, 10mA ≤ I  
= 0.9V, 10mA ≤ I  
≤ 5A, 1.05V ≤ V ≤ 1.25V  
0.792  
0.891  
0.990  
1.089  
1.188  
1.485  
1.782  
0.800  
0.900  
1.000  
1.100  
1.200  
1.500  
1.800  
0.808  
0.909  
1.010  
1.111  
1.212  
1.515  
1.818  
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
IN  
≤ 5A, 1.15V ≤ V ≤ 1.35V  
IN  
= 1V, 10mA ≤ I  
≤ 5A, 1.25V ≤ V ≤ 1.45V  
IN  
= 1.1V, 10mA ≤ I  
= 1.2V, 10mA ≤ I  
= 1.5V, 10mA ≤ I  
= 1.8V, 10mA ≤ I  
≤ 5A, 1.35V ≤ V ≤ 1.55V  
IN  
OUT  
OUT  
OUT  
OUT  
≤ 5A, 1.45V ≤ V ≤ 1.65V, V  
= 3.3V  
= 3.3V  
= 3.3V  
IN  
BIAS  
BIAS  
BIAS  
≤ 5A, 1.75V ≤ V ≤ 1.95V, V  
IN  
≤ 5A, 2.05V ≤ V ≤ 2.25V, V  
IN  
l
l
Regulated Output Voltage Margining  
(Note 3)  
MARGTOL = 0V, MARGSEL = V  
0.8  
–1.2  
1
–1  
1.2  
–0.8  
BIAS  
OUT  
MARGTOL = 0V, MARGSEL = 0V, I  
= 10mA  
l
l
MARGTOL = FLOAT, MARGSEL = V  
2.7  
3
3.3  
BIAS  
MARGTOL = FLOAT, MARGSEL = 0V, I  
= 10mA  
–3.3  
–3  
–2.7  
OUT  
OUT  
l
l
MARGTOL = V  
MARGTOL = V  
, MARGSEL= V  
4.6  
–5.4  
5
–5  
5.4  
–4.6  
BIAS  
BIAS  
BIAS  
, MARGSEL = 0V, I  
= 10mA  
l
l
Line Regulation to V  
1.0  
1.0  
mV  
mV  
V
V
= 0.8V, V = 1.05V to 2.7V, V  
= 3.3V, I  
= 3.3V, I  
= 10mA  
= 10mA  
IN  
OUT  
OUT  
IN  
BIAS  
BIAS  
OUT  
OUT  
= 1.8V, V = 2.05V to 2.7V, V  
IN  
l
l
Line Regulation to V  
2.0  
1.0  
mV  
mV  
V
OUT  
V
OUT  
= 0.8V, V  
= 1.8V, V  
= 2.2V to 3.6V, V = 1.1V, I  
= 10mA  
OUT  
BIAS  
BIAS  
BIAS  
IN  
= 3.25V to 3.6V, V = 2.1V, I  
= 10mA  
OUT  
IN  
Load Regulation,  
OUT  
V
V
V
V
V
= 2.5V, V = 1.05V, V  
= 0.8V  
= 1.0V  
= 1.2V  
= 1.5V  
= 1.8V  
–1.5  
–2  
–3.0  
–5.5  
mV  
mV  
BIAS  
BIAS  
BIAS  
BIAS  
BIAS  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
l
l
l
l
I  
= 10mA to 5A  
= 2.5V, V = 1.25V, V  
–4.0  
–7.5  
mV  
mV  
IN  
= 3.3V, V = 1.45V, V  
–2  
–4.0  
–7.5  
mV  
mV  
IN  
= 3.3V, V = 1.75V, V  
–2.5  
–3  
–5.0  
–9.0  
mV  
mV  
IN  
= 3.3V, V = 2.05V, V  
–7.0  
–13  
mV  
mV  
IN  
l
l
Dropout Voltage,  
= V  
I
I
= 1A, V  
= 1V  
20  
50  
35  
mV  
OUT  
OUT  
OUT  
V
(Note 6)  
OUT(NOMINAL)  
IN  
= 2.5A, V  
= 1V  
65  
85  
mV  
mV  
OUT  
l
l
I
= 5A, V  
= 1V  
85  
120  
150  
mV  
mV  
OUT  
OUT  
l
l
SENSE Pin Current  
Ground Pin Current,  
V
V
= 1.1V, V  
BIAS  
= 0.8V  
SENSE  
IN  
35  
50  
65  
µA  
µA  
IN  
= 3.3V, V = 2.1V, V  
= 1.8V  
200  
300  
400  
SENSE  
l
l
I
I
= 10mA  
= 5A  
0.65  
0.9  
1.1  
1.35  
1.8  
2.3  
mA  
mA  
OUT  
OUT  
V
= 1.3V, V  
= 1V  
OUT  
IN  
3070fb  
3
For more information www.linear.com/LT3070  
LT3070  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COUT = 15µF (Note 9), VIN = VOUT + 0.ꢁV (Note 5), VBIAS = 2.5V unless  
otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
BIAS Pin Current in Nap Mode  
EN = Low  
120  
200  
320  
µA  
l
l
l
l
l
l
BIAS Pin Current,  
IN  
I
I
I
I
I
I
= 10mA  
= 100mA  
= 500mA  
= 1A  
= 2.5A  
= 5A  
0.75  
1.25  
2.0  
1.08  
1.8  
3.0  
3.8  
5.2  
6.9  
1.5  
2.4  
mA  
mA  
mA  
mA  
mA  
mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
= 1.3V, V  
= 1V  
OUT  
4.0  
2.6  
5.0  
3.5  
4.5  
7.0  
10.0  
l
l
l
Current Limit (Note 5)  
V
V
V
– V  
< 0.3V, V  
= 1.0V, V  
= 1.7V, V  
= 3.3V  
= 3.3V  
= 3.3V  
5.1  
3.2  
1.2  
6.4  
4.5  
2.5  
7.7  
5.8  
4.3  
A
A
A
IN  
IN  
IN  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
– V  
– V  
l
Reverse Output Current (Note 8)  
V
= 0V, V  
= 1.8V  
OUT  
300  
450  
µA  
IN  
l
l
PWRGD V  
Threshold  
Percentage of V  
Percentage of V  
, V  
OUT(NOMINAL) OUT  
OUT(NOMINAL) OUT  
Rising  
Falling  
87  
82  
90  
85  
93  
88  
OUT  
, V  
l
PWRGD V  
I
= 200µA (Fault Condition)  
50  
150  
mV  
OL  
PWRGD  
l
l
V
Undervoltage Lockout  
V
V
Rising  
Falling  
1.1  
0.9  
1.55  
1.4  
2.1  
1.7  
V
V
BIAS  
BIAS  
BIAS  
l
V -V  
IN OUT  
Servo Voltage by VIOC  
250  
300  
350  
mV  
l
l
VIOC Output Current  
V
V
= V  
+ 150mV, Sourcing Out of the Pin  
+ 450mV, Sinking Into the Pin  
160  
170  
235  
255  
310  
340  
µA  
µA  
IN  
IN  
OUT(NOMINAL)  
= V  
OUT(NOMINAL)  
l
l
l
V
V
Input Threshold (Logic-0 State),  
O2 O1 O0  
Input Falling  
0.25  
V
IL  
, V , V , MARGSEL, MARGTOL  
V
V
Input Range (Logic-Z State),  
, V , V , MARGSEL, MARGTOL  
0.75  
V
– 0.9  
V
IZ  
BIAS  
O2 O1 O0  
V
V
Input Threshold (Logic-1 State),  
, V , V , MARGSEL, MARGTOL  
Input Rising  
V
– 0.25  
V
IH  
BIAS  
O2 O1 O0  
Input Hysteresis (Both Thresholds),  
, V , V , MARGSEL, MARGTOL  
60  
25  
25  
mV  
µA  
µA  
V
O2 O1 O0  
l
l
Input Current High,  
, V , V , MARGSEL, MARGTOL  
V
V
= V  
= 2.5V, Current Flows Into Pin  
40  
40  
IH  
BIAS  
V
O2 O1 O0  
Input Current Low,  
, V , V , MARGSEL, MARGTOL  
= 0V, V  
= 2.5V, Current Flows Out of Pin  
BIAS  
IL  
V
O2 O1 O0  
l
l
l
l
EN Pin Threshold  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= Off to On, V  
= On to Off, V  
= Off to On, V  
= On to Off, V  
= 2.5V  
1.4  
V
V
V
V
BIAS  
BIAS  
BIAS  
BIAS  
= 2.5V  
0.9  
=2.2V to 3.6V  
=2.2V to 3.6V  
0.56 • V  
BIAS  
0.36 • V  
BIAS  
l
l
EN Pin Logic High Current  
EN Pin Logic Low Current  
V
V
= V  
= 2.5V  
BIAS  
2.5  
4.0  
6.5  
0.1  
µA  
µA  
EN  
EN  
= 0V  
3070fb  
4
For more information www.linear.com/LT3070  
LT3070  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COUT = 15µF (Note 9), VIN = VOUT + 0.ꢁV (Note 5), VBIAS = 2.5V unless  
otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Ripple Rejection  
V
V
= V  
OUT  
+ 1.5V , V  
=0.5V , f = 120Hz,  
P-P RIPPLE  
75  
dB  
BIAS  
BIAS  
IN  
OUT  
AVG RIPPLE  
– V  
= 300mV, I  
= 2.5A  
OUT  
V
Ripple Rejection  
V
V
= 2.5V, V  
OUT  
= 50mV , f = 120Hz,  
P-P RIPPLE  
OUT  
66  
10  
25  
dB  
IN  
BIAS  
IN  
RIPPLE  
(Notes 3, 4, 5)  
– V  
= 300mV, I  
= 2.5A  
Reference Voltage Noise  
(REF/BYP Pin)  
C
= 10nF, BW = 10Hz to 100kHz  
µV  
µV  
REF/BYP  
RMS  
RMS  
Output Voltage Noise  
V
OUT  
= 1V, I  
= 5A, C  
= 10nF, C  
= 15µF,  
OUT  
OUT  
REF/BYP  
BW = 10Hz to 100kHz  
Note 5: The LT3070 incorporates safe operating area protection circuitry.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Current limit decreases as the V -V  
voltage increases. Current limit  
IN OUT  
foldback starts at V – V  
Characteristics for a graph of Current Limit vs V – V  
> 500mV. See the Typical Performance  
IN  
OUT  
voltage. The  
IN  
OUT  
current limit foldback feature is independent of the thermal shutdown  
circuity.  
Note 2: The LT3070 regulators are tested and specified under pulse load  
conditions such that T T . The LT3070E is 100ꢀ tested at T = 25°C.  
J
A
A
Note 6: Dropout voltage, V , is the minimum input to output voltage  
Performance at –40°C and 125°C is assured by design, characterization  
and correlation with statistical process controls. The LT3070I is  
guaranteed over the –40°C to 125°C operating junction temperature range.  
The LT3070MP is 100ꢀ tested and guaranteed over the –55°C to 125°C  
operating junction temperature range.  
DO  
differential at a specified output current. In dropout, the output voltage  
eꢁuals V – V  
.
DO  
IN  
Note 7: GND pin current is tested with V = V  
+ 300mV and a  
OUT(NOMINAL)  
IN  
current source load. VIOC is a buffered output determined by the value of  
as programmed by the V -V pins. VIOC’s output is independent of  
V
OUT  
Note ꢁ: To maintain proper performance and regulation, the BIAS supply  
O2 O0  
the margining function.  
voltage must be higher than the IN supply voltage. For a given V , the  
OUT  
BIAS voltage must satisfy the following conditions: 2.2V ≤ V  
≤ 3.6V  
Note 8: Reverse output current is tested with the IN pins grounded and the  
OUT + SENSE pins forced to the rated output voltage. This is measured as  
current into the OUT + SENSE pins.  
BIAS  
and V  
≥ (1.25 • V  
+ 1V). For V  
≤ 0.95V, the minimum BIAS  
BIAS  
OUT  
OUT  
voltage is limited to 2.2V.  
Note 4: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification does not apply  
for all possible combinations of input voltage and output current. When  
operating at maximum output current, limit the input voltage range to  
Note 9: Freꢁuency Compensation: The LT3070 must be freꢁuency  
compensated at its OUT pins with a minimum C  
of 15µF configured  
OUT  
as a cluster of (15×) 1µF ceramic capacitors or as a graduated cluster  
of 10µF/4.7µF/2.2µF ceramic capacitors of the same case size. Linear  
Technology only recommends X5R or X7R dielectric capacitors.  
V
< V  
+ 500mV.  
IN  
OUT  
3070fb  
5
For more information www.linear.com/LT3070  
LT3070  
TYPICAL PERFORMANCE CHARACTERISTICS  
Dropout Voltage vs IOUT  
Dropout Voltage vs Temperature  
Dropout Voltage vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
150  
120  
90  
30  
25  
V
= V  
V
I
= V  
IN OUT(NOMINAL)  
OUT  
V
I
= V  
OUT(NOMINAL)  
OUT  
IN  
OUT(NOMINAL)  
IN  
T = 25°C  
J
= 1A  
= 2.5A  
20  
15  
V
BIAS  
= 1.8V  
= 3.3V  
OUT  
V
60  
30  
0
10  
5
V
V
= 0.8V  
= 2.5V  
OUT  
BIAS  
V
V
V
= 1.8V, V  
= 0.8V, V  
= 1.2V, V  
= 3.3V  
= 2.5V  
= 3.3V  
V
V
V
= 1.8V, V  
= 0.8V, V  
= 1.2V, V  
= 3.3V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
1
2
3
4
5
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
3070 G03  
3070 G01  
3070 G02  
Output Voltage (0.8V)  
vs Temperature  
Dropout Voltage vs Temperature  
Dropout Voltage vs VBIAS  
200  
180  
160  
140  
120  
100  
80  
0.808  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.792  
150  
120  
90  
I
= 5A  
I
= 10mA  
V
I
= V  
OUT(NOMINAL)  
OUT  
OUT  
J
LOAD  
IN  
T = 25°C  
= 5A  
60  
30  
0
60  
40  
V
V
V
= 1.8V, V  
= 0.8V, V  
= 1.2V, V  
= 3.3V  
= 2.5V  
= 3.3V  
OUT = 1.8V  
OUT = 1.5V  
OUT = 0.8V  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
20  
0
2.2  
2.6 2.8 3.0  
3.2 3.4 3.6  
–75 –50 –25  
0
25 50 75 100 125 150 175  
2.4  
–75 –50 –25  
0
25 50 75 100 125 150 175  
BIAS VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G05  
3070 G06  
3070 G04  
Output Voltage (1V)  
vs Temperature  
Output Voltage (1.2V)  
vs Temperature  
Output Voltage (1.5V)  
vs Temperature  
1.010  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
1.212  
1.208  
1.515  
1.510  
I
= 10mA  
I
= 10mA  
LOAD  
I
= 10mA  
LOAD  
LOAD  
1.204  
1.200  
1.505  
1.500  
1.196  
1.192  
1.188  
1.495  
1.490  
1.485  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G07  
3070 G08  
3070 G09  
3070fb  
6
For more information www.linear.com/LT3070  
LT3070  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage (1.8V)  
vs Temperature  
REF/BYP Pin Voltage  
vs Temperature  
GND Pin Current vs IOUT  
606  
604  
1.818  
1.814  
1.810  
1.806  
1.802  
1.798  
1.794  
1.790  
1.786  
1.782  
3.0  
2.5  
I
= 10mA  
V
= V  
+ 300mV  
C
= 0.01µF  
REF/BYP  
LOAD  
IN  
OUT  
T = 25°C  
J
602  
600  
2.0  
1.5  
598  
596  
594  
1.0  
0.5  
0
V
OUT  
V
OUT  
V
OUT  
= 1.8V, V  
= 1.2V, V  
= 0.8V, V  
= 3.3V  
= 3.3V  
= 2.5V  
BIAS  
BIAS  
BIAS  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
1
2
3
4
5
–75 –50 –25  
0
25 50  
175  
75 100 125 150  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
3070 G10  
3070 G12  
3070 G11  
BIAS Pin Undervoltage Lockout  
Threshold  
BIAS Pin Current in Nap Mode  
BIAS Pin Current vs IOUT  
400  
350  
300  
250  
200  
150  
100  
50  
10  
9
8
7
6
5
4
3
2
1
0
2.5  
2.0  
1.5  
V
J
= V  
+ 300mV  
OUT  
V
V
= 2.5V  
IN  
BIAS  
EN  
T = 25°C  
= 0V  
V
RISING  
BIAS  
V
BIAS  
= 1.8V  
= 3.3V  
OUT  
V
V
V
= 0.8V  
OUT  
BIAS  
V
BIAS  
FALLING  
= 2.5V  
1.0  
0.5  
0
0
0
1
2
3
4
5
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G14  
3070 G15  
3070 G13  
Enable Pin Threshold and  
Hysteresis vs VBIAS  
EN Pin Thresholds  
PWRGD Threshold Voltage  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.00  
0.95  
0.90  
0.85  
0.80  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= –55°C TO 125°C  
V
= 2.5V  
J
V
V
= 2.5V  
= 1V  
BIAS  
BIAS  
OUT  
TYPICAL HYSTERESIS = 150mV  
V
BIAS  
EN PIN RISING  
V
RISING  
OUT  
MAX ENABLE  
TYP ENABLE  
EN PIN FALLING  
V
FALLING  
OUT  
MIN DISABLE  
TYP DISABLE  
3
2
2.5  
3.5  
4
–75 –50 –25  
0
25 50 75 100 125 150 175  
–50 –25  
50  
75 100 125 150 175  
–75  
0
25  
BIAS VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G52  
3070 G16  
3070 G17  
3070fb  
7
For more information www.linear.com/LT3070  
LT3070  
TYPICAL PERFORMANCE CHARACTERISTICS  
Logic Input Threshold Voltages  
PWRGD VOL vs Temperature  
Logic Input Threshold Voltages  
Logic Low to Hi-Z State Transitions  
Logic Hi-Z to High State Transitions  
100  
V
I
= 2.5V  
= 200µA  
BIAS  
0.8  
0.7  
0.6  
3.0  
2.9  
2.8  
SEE APPLICATIONS INFORMATION  
FOR MORE DETAILS  
PWRGD  
V
= 3.3V  
BIAS  
LOGIC Hi-Z TO HIGH THRESHOLD IS  
RELATIVE TO V VOLTAGE  
80  
60  
BIAS  
SEE APPLICATIONS INFORMATION  
FOR MORE DETAILS  
INPUT RISING  
LOGIC LOW TO Hi-Z  
INPUT RISING  
LOGIC Hi-Z TO HIGH  
40  
20  
0
INPUT FALLING  
0.5  
0.4  
0.3  
2.7  
2.6  
2.5  
LOGIC Hi-Z TO LOW  
INPUT FALLING  
LOGIC HIGH TO Hi-Z  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G50  
3070 G18  
3070 G19  
Logic Pin Input Current,  
High State  
Logic Pin Input Current,  
Low State  
EN Pin Logic High Current  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
= V  
= 2.5V  
BIAS  
V
= V  
= 2.5V  
V
V
= 2.5V  
BIAS  
LOGIC  
CURRENT FLOWS OUT OF THE PIN  
EN  
LOGIC  
BIAS  
CURRENT FLOWS INTO THE PIN  
= 0V  
0
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G16  
3070 G21  
3070 G22  
SENSE Pin Current  
SENSE Pin Current  
Current Limit vs Temperature  
65  
60  
55  
50  
45  
40  
35  
30  
25  
400  
375  
350  
325  
300  
275  
250  
225  
200  
7.50  
7.25  
7.00  
6.75  
6.50  
6.25  
6.00  
5.75  
5.50  
5.25  
5.00  
V
V
= 2.5V  
= 0.8V  
V
V
= 3.3V  
= 1.8V  
V
– V  
= 300mV  
OUT(NOMINAL)  
BIAS  
OUT  
BIAS  
OUT  
IN  
CURRENT FLOWS INTO SENSE  
CURRENT FLOWS INTO SENSE  
V
V
V
= 1.8V, V  
= 1.2V, V  
= 0.8V, V  
= 3.3V  
= 3.3V  
= 2.5V  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G23  
3070 G24  
3070 G25  
3070fb  
8
For more information www.linear.com/LT3070  
LT3070  
TYPICAL PERFORMANCE CHARACTERISTICS  
BIAS Pin Ripple Rejection  
IN Pin Ripple Rejection  
Current Limit vs VIN – VOUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
7
6
5
4
3
2
1
0
V
V
= 1.3V  
= 1V  
V
= 3.3V  
IN  
OUT  
OUT  
BIAS  
T = 25°C  
J
I
= 5A  
80  
C
OUT  
= 10µF + 4.7µF + 2.2µF  
70  
60  
50  
40  
30  
20  
10  
0
C
C
= 117µF  
= 16.9µF  
OUT  
OUT  
V
V
V
I
= 1V  
OUT  
IN  
BIAS  
OUT  
V
V
V
= 1.8V  
= 1.2V  
= 0.8V  
V
V
V
= 2.5V + 500mV  
= 2.7V + 500mV  
= 3.3V + 500mV  
= 1.3V + 50mV RIPPLE  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
P-P  
P-P  
P-P  
P-P  
= 2.5V  
= 1A  
1.00 1.25  
0
0.25 0.50 0.75  
1.50 1.75 2.00  
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
IN-TO-OUT VOLTAGE DIFFERENTIAL (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
3070 G27  
3070 G28  
3070 G26  
Minimum BIAS Voltage  
vs Temperature  
IN Pin Ripple Rejection  
Minimum BIAS Voltage vs IOUT  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
V
V  
= V  
OUT  
V
V
V
V
+ 300mV  
OUT(NOMINAL)  
IN  
V
V
V
= 1.8V  
= 1.2V  
= 0.8V  
I
= 5A  
OUT  
OUT  
OUT  
OUT  
= –1%, T = 25°C  
J
= 1.8V  
OUT  
= 1.5V  
OUT  
OUT  
OUT  
= 1.2V  
= 0.8V TO 1V  
C
C
= 117µF  
= 16.9µF  
OUT  
OUT  
V
V
V
= 1V  
OUT  
IN  
BIAS  
= 1.3V + 50mV RIPPLE  
P-P  
= 2.5V  
= 5A  
I
OUT  
1
2
4
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
3
10  
100  
1k  
10k 100k  
1M  
10M  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
FREQUENCY (Hz)  
3070 G29  
3070 G30  
3070 G31  
Minimum BIAS Voltage vs VOUT  
Bias Voltage Line Regulation  
Load Regulation  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
–2  
–4  
I
= 5A  
V
V
V
= 2.2V TO 3.6V  
BIAS  
OUT  
J
T = 25°C  
= 1.1V  
IN  
= 0.8V  
OUT  
OUT  
I
= 10mA  
–6  
–8  
V
V
= V  
+ 300mV  
OUT(NOMINAL)  
IN  
= 3.3V  
BIAS  
I  
= 100mA TO 5A  
OUT  
V
V
V
= 0.8V  
= 1.2V  
= 1.8V  
OUT  
OUT  
OUT  
–10  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G51  
3070 G32  
3070 G33  
3070fb  
9
For more information www.linear.com/LT3070  
LT3070  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Voltage Line Regulation  
Input Voltage Line Regulation  
Bias Voltage Line Regulation  
400  
300  
300  
250  
300  
250  
V
V
V
I
= 3.3V  
V
V
V
I
= 3.25V TO 3.6V  
V
V
V
I
= 3.3V  
BIAS  
IN  
OUT  
BIAS  
IN  
OUT  
BIAS  
IN  
OUT  
= 2.05V TO 2.7V  
= 1.8V  
= 2.1V  
= 1.05V TO 2.7V  
= 0.8V  
= 1.8V  
= 10mA  
= 10mA  
= 10mA  
OUT  
OUT  
OUT  
200  
200  
150  
200  
150  
100  
0
–100  
–200  
–300  
–400  
100  
50  
0
100  
50  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G36  
3070 G35  
3070 G34  
Output Voltage Start-Up Time  
vs CREF/BYP  
Nap Mode Recovery Time vs IOUT  
Output Noise Spectral Density  
20  
18  
16  
14  
12  
10  
8
400  
350  
300  
250  
1.0  
0.1  
V
V
= 3.3V  
OUT(NOM)  
EN = LOW TO HIGH  
BIAS  
IN  
V
I
= 2.5V TO 3.3V  
V
V
I
C
C
= 2.5V  
= 1V  
BIAS  
OUT  
OUT  
BIAS  
OUT  
OUT  
= V  
+ 300mV  
= 10mA  
C
= 10µF + 4.7µF + 2.2µF  
= 5A  
I
= 5A (SET BY A RESISTOR LOAD)  
OUT  
T = 25°C  
J
= 16.9µF  
OUT  
REF/BYP  
T = 25°C  
J
SEE APPLICATIONS  
INFORMATION FOR  
START-UP DETAILS  
= 0.01µF  
V
= 1.8V,  
= 117µF  
= 1.2V,  
= 117µF  
= 0.8V,  
= 117µF  
OUT  
C
V
C
V
C
OUT  
OUT  
OUT  
OUT  
OUT  
200  
150  
0.01  
0.001  
6
100  
50  
0
4
2
0
1
2
4
0
5
3
0
0.1  
0.2  
0.3  
0.4  
0.5  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT CURRENT (A)  
REF/BYP CAPACITANCE (µF)  
3070 G38  
3070 G39  
3070 G37  
RMS Output Noise  
vs Output Current  
Input Voltage Line Transient  
Response  
Output Noise (10Hz to 100kHz)  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
C
= V  
+ 300mV  
OUT(NOMINAL)  
IN  
= 3.3V  
BIAS  
OUT  
= 16.9µF  
V
OUT  
1mV/DIV  
V
OUT  
100µV/DIV  
V
IN  
50mV/DIV  
V
V
V
= 1.8V  
= 1.2V  
= 0.8V  
3070 G42  
OUT  
OUT  
OUT  
3070 G41  
V
V
I
= 1.3V  
= 1V  
20µs/DIV  
V
I
= 1V  
1ms/DIV  
IN  
OUT  
OUT  
OUT  
OUT  
= 5A  
= 5A  
C
= 16.9µF  
OUT  
C
= 16.9µF  
0.01  
0.1  
1
10  
OUT  
OUTPUT CURRENT (A)  
3070 G40  
3070fb  
10  
For more information www.linear.com/LT3070  
LT3070  
TYPICAL PERFORMANCE CHARACTERISTICS  
Bias Voltage Line Transient  
Response  
VIOC Amplifier IN-to-OUT Servo  
Voltage  
VIOC Amplifier Output Current  
vs Temperature  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
300  
275  
V
= 2.5V  
BIAS  
V
OUT  
10mV/DIV  
I
SOURCING  
VIOC  
250  
225  
I
SINKING  
VIOC  
V
BIAS  
200mV/DIV  
200  
175  
150  
3070 G43  
V
V
V
I
= 1.3V  
20µs/DIV  
IN  
= 2.5V  
= 1V  
BIAS  
OUT  
OUT  
= 5A  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
C
= 16.9µF  
OUT  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3070 G44  
3070 G45  
Transient Load Response  
Transient Load Response  
V
V
OUT  
OUT  
50mV/DIV  
AC-COUPLED  
50mV/DIV  
AC-COUPLED  
I
OUT  
I
OUT  
2A/DIV  
∆I = 500mA  
TO 5A  
2A/DIV  
∆I = 500mA  
TO 5A  
3070 G46  
3070 G47  
V
C
I
= 1V  
20µs/DIV  
= 10µF + 4.7µF + 2.2µF  
/t = 100ns  
V
C
I
= 1V  
= 117µF  
/t  
20µs/DIV  
= 100ns  
OUT  
OUT  
OUT  
OUT  
t
t
OUT RISE FALL  
OUT RISE FALL  
Transient Load Response  
Transient Load Response  
V
V
OUT  
OUT  
50mV/DIV  
50mV/DIV  
AC-COUPLED  
AC-COUPLED  
I
I
OUT  
OUT  
2A/DIV  
∆I = 500mA  
TO 5A  
2A/DIV  
∆I = 500mA  
TO 5A  
3070 G48  
3070 G49  
V
C
= 1V  
20µs/DIV  
= 10µF + 4.7µF + 2.2µF  
/t = 1µs  
V
C
= 1V  
20µs/DIV  
= 1µs  
OUT  
OUT  
OUT  
OUT  
= 117µF  
I
t
I
t
/t  
OUT RISE FALL  
OUT RISE FALL  
3070fb  
11  
For more information www.linear.com/LT3070  
LT3070  
PIN FUNCTIONS  
VIOC (Pin 1): Voltage for In-to-Out Control. The IC in-  
corporates a uniꢁue tracking function to control a buck  
regulator powering the LT3070’s input. The VIOC pin is  
the output of this tracking function that drives the buck  
IN (Pins 5, 6, 7, 8): Input Supply. These pins supply  
power to the high current pass transistor. Tie all IN pins  
together for proper performance. The LT3070 reꢁuires a  
bypass capacitor at IN to maintain stability and low input  
impedance over freꢁuency. A 47µF input bypass capacitor  
suffices for most battery and power plane impedances.  
Minimizinginputtraceinductanceoptimizesperformance.  
regulator to maintain the LT3070’s input voltage at V  
+
OUT  
300mV. This function maximizes efficiency and minimizes  
power dissipation. See the Applications Information sec-  
tion for more information on proper control of the buck  
regulator.  
Applications that operate with low V -V  
differential  
IN OUT  
voltagesandthathavelarge,fastloadtransientsmayreꢁuire  
much higher input capacitor reꢁuirements to prevent the  
input supply from drooping and allowing the regulator to  
enter dropout. See the Applications Information section  
for more information on input capacitor reꢁuirements.  
PWRGD (Pin 2): Power Good. The PWRGD pin is an open-  
drain NMOS output that actively pulls low if any one of  
these fault modes is detected:  
• V  
is less than 90ꢀ of V  
on the rising  
OUT  
edge of V  
OUT(NOMINAL)  
drops below 85ꢀ of V  
OUT(NOMINAL)  
OUT (Pins 15, 16, 17, 18): Output. These pins supply  
power to the load. Tie all OUT pins together for proper  
performance. A minimum output capacitance of 15µF is  
reꢁuired for stability. LTC recommends low ESR, X5R or  
X7R dielectric ceramic capacitors for best performance.  
A parallel ceramic capacitor combination of 10µF + 4.7µF  
+ 2.2µF or 15 1µF ceramic capacitors in parallel provide  
excellent stability and load transient response. Large load  
transient applications reꢁuire larger output capacitors to  
limit peak voltage transients. See the Applications Infor-  
mation section for more information on output capacitor  
reꢁuirements.  
.
OUT  
• V  
for more than  
OUT  
25µs.  
• Junction temperature typically exceeds 145°C.  
• V is less than its undervoltage lockout threshold.  
BIAS  
• The OUT-to-IN reverse-current detector activates.  
See the Applications Information section for more infor-  
mation on PWRGD fault modes.  
REF/BYP (Pin ꢁ): Reference Filter. The pin is the output  
of the bandgap reference and has an impedance of ap-  
proximately 19kΩ. This pin must not be externally loaded.  
Bypassing the REF/BYP pin to GND with a 10nF capacitor  
decreases output voltage noise and provides a soft-start  
function to the reference. LTC recommends the use of a  
high ꢁuality, low leakage capacitor. See the Applications  
Information section for more information on noise and  
output voltage margining considerations.  
SENSE (Pin 19): Kelvin Sense for OUT. The SENSE pin is  
theinvertinginputtotheerroramplifier.Optimumregulation  
is obtained when the SENSE pin is connected to the OUT  
pins of the regulator. In critical applications, the resistance  
(R )ofPCBtracesbetweentheregulatorandtheloadcause  
P
small voltage drops, creating a load regulation error at the  
pointofload.ConnectingtheSENSEpinattheloadinstead  
of directly to OUT eliminates this voltage error. Figure 1  
illustratesthisKelvin-Senseconnectionmethod.Notethat  
thevoltagedropacrosstheexternalPCBtracesaddstothe  
dropout voltage of the regulator. The SENSE pin input bias  
current depends on the selected output voltage. SENSE  
GND (Pins 4, 9-14, 20, 26, 29): Ground. The exposed pad  
(Pin 29) of the QFN package is an electrical connection to  
GND.Toensureproperelectricalandthermalperformance,  
solder Pin 29 to the PCB ground and tie to all GND pins  
of the package. These GND pins are fused to the internal  
die attach paddle and the exposed pad to optimize heat  
sinkingandthermalresistancecharacteristics.SeetheAp-  
plications Information section for thermal considerations  
and calculating junction temperature.  
pin input current varies from 50µA typically at V  
= 0.8V  
OUT  
to 300µA typically at V  
= 1.8V.  
OUT  
3070fb  
12  
For more information www.linear.com/LT3070  
LT3070  
PIN FUNCTIONS  
V , V and V (Pins 2ꢁ, 24, 25): Output Voltage Se-  
+
O0 O1  
O2  
V
BIAS  
lect. These three-state pins combine to select a nominal  
output voltage from 0.8V to 1.8V in increments of 50mV.  
Output voltage is limited to 1.8V maximum by an internal  
override of V when V = high. The input logic low  
BIAS  
EN  
IN  
SENSE  
OUT  
R
P
LT3070  
V
V
V
O2  
O1  
O0  
PWRGD  
O1  
O2  
+
threshold is less than 250mV referenced to GND and the  
LOAD  
V
IN  
MARGSEL  
MARGTOL  
VIOC  
logic high threshold is greater than V  
– 250mV. The  
BIAS  
range between these two thresholds as set by a window  
REF/BYP  
GND  
comparator defines the logic Hi-Z state. See Table 1 in the  
Applications Information section that defines the V , V  
O2 O1  
R
P
3070 F01  
and V settings versus V  
.
O0  
OUT  
BIAS (Pin 27): Bias Supply. This pin supplies current to  
the internal control circuitry and the output stage driving  
the pass transistor. The LT3070 reꢁuires a minimum 2.2µF  
bypass capacitor for stability and proper operation. To  
ensure proper operation, the BIAS voltage must satisfy  
Figure 1. Kelvin Sense Connection  
MARGSEL (Pin 21): Margining Enable and Polarity Selec-  
tion. This three-state pin determines both the polarity and  
the active state of the margining function. The logic low  
threshold is less than 250mV referenced to GND and en-  
ablesnegativevoltagemargining.Thelogichigh threshold  
the following conditions: 2.2V ≤ V  
≤ 3.6V and V  
BIAS  
BIAS  
(1.25 • V  
+ 1V). For V  
≤ 0.95V, the minimum BIAS  
OUT  
OUT  
voltage is limited to 2.2V.  
isgreaterthanV  
250mVandenablespositivevoltage  
BIAS  
EN (Pin 28): Enable. This pin enables/disables the output  
margining. The voltage range between these two logic  
thresholds as set by a window comparator defines the  
logic Hi-Z state and disables the margining function.  
deviceonly.Theinternalreferenceandallsupportfunctions  
are active if V  
is above its UVLO threshold. Pulling  
BIAS  
EN low keeps the reference circuit active, but disables  
the output pass transistor and puts the LT3070 into a low  
power nap mode. The maximum rising EN threshold is  
MARGTOL (Pin 22): Margining Tolerance. This three-  
state pin selects the absolute value of margining (1ꢀ,  
3ꢀ or 5ꢀ) if enabled by the MARGSEL input. The logic  
low threshold is less than 250mV referenced to GND and  
ratioed to 0.56 ꢀ of V  
and the minimum falling ENx  
BIAS  
threshold is 0.36 ꢀ of V  
. Drive the EN pin with either  
BIAS  
enableseither 1ꢀ change in V  
depending onthe state  
OUT  
a digital logic port or an open-collector NPN or an open-  
of the MARGSEL pin. The logic high threshold is greater  
than V – 250mV and enables either 5ꢀ change in  
drain NMOS terminated with a pull-up resistor to V  
.
BIAS  
BIAS  
The pull-up resistor must be less than 35k to meet the V  
IH  
V
depending on the state of the MARGSEL pin. The  
OUT  
condition of the EN pin. If unused, connect EN to BIAS.  
voltage range between these two logic thresholds as set  
by a window comparator defines the logic Hi-Z state and  
enableseither 3ꢀ changeinV  
of the MARGSEL pin.  
depending onthe state  
OUT  
3070fb  
13  
For more information www.linear.com/LT3070  
LT3070  
BLOCK DIAGRAM  
UVLO AND  
BIAS  
27  
THERMAL  
SHUTDOWN  
IN  
5-8  
+
I
SENSE  
REF/BYP  
+
EAMP  
BUF  
OUT  
15-18  
LDO CORE  
SENSE  
19  
2
PWRGD  
DETECT  
+
VIOC  
GND  
V
+ 300mV  
1
OUT(NOM)  
REF/BYP  
600mV  
V
3
REF  
4,9-14,20,26,29  
PROGRAM CONTROL  
EN  
28  
V
V
V
O0  
MARGSEL MARGTOL  
22  
O2  
O1  
25 24 23 21  
3070 BD  
LOGIC HIGH STATE  
+
V
– 0.25V  
BIAS  
TO INTERNAL ENABLE  
SEE ENABLE THRESHOLD  
CURVE  
EN  
100k  
LOGIC Hi-Z STATE  
TO LOGIC  
V
BIAS  
HIGH IF IN > V  
– 0.25V  
– 0.9V  
BIAS  
V
– 0.9V  
+
+
BIAS  
100k  
V
, V , VO0  
O2 O1  
HIGH IF IN < V  
BIAS  
MARGSEL OR  
MARGTOL  
AND IN > 0.75V  
0.75V  
100k  
HIGH IF IN < 0.25V  
LOGIC LOW STATE  
+
0.25V  
3070fb  
14  
For more information www.linear.com/LT3070  
LT3070  
APPLICATIONS INFORMATION  
Introduction  
This combines the efficiency of a switching regulator  
with superior linear regulator response. It also permits  
thermal management of the system even with a maximum  
5A output load.  
Current generation FPGA and ASIC processors place  
stringent demands on the power supplies that power the  
core,I/Oandtransceiverchannels.Thesemicroprocessors  
may cycle load current from near zero to amps in tens of  
nanoseconds. Output voltage specifications, especially in  
the 1V range, reꢁuire tight tolerances including transient  
responseaspartofthereꢁuirement.SomeASICprocessors  
reꢁuire only a single output voltage from which the core  
and I/O circuitry operate. Some high performance FPGA  
processorsreꢁuireseparatepowersupplyvoltagesforthe  
processor core, the I/O, and the transceivers. Often, these  
supply voltages must be low noise and high bandwidth  
to achieve the lowest bit-error rates. These reꢁuirements  
mandate the need for very accurate, low noise, high cur-  
rent, very high speed regulator circuits that operate at low  
input and output voltages.  
LT3070 internal protection includes input undervoltage  
lockout(UVLO),reverse-currentprotection,precisioncur-  
rent limiting with power foldback and thermal shutdown.  
The LT3070 regulator is available in a thermally enhanced  
28-lead, 4mm × 5mm QFN package.  
The LT3070’s architecture drives an internal N-channel  
power MOSFET as a source follower. This configuration  
permits a user to obtain an extremely low dropout, Ultra-  
Fast transient response regulator with excellent high fre-  
ꢁuencyPSRRperformance.TheLT3070achievessuperior  
regulator bandwidth and transient load performance by  
eliminatingexpensivebulktantalumorelectrolyticcapaci-  
tors in the most modern and demanding microprocessor  
applications. Users realize significant cost savings as all  
additional bulk capacitance is removed. The additional  
savings of insertion cost, purchasing/inventory cost and  
board space are readily apparent. Precision incremental  
output voltage control accommodates legacy and future  
microprocessor power supply voltages.  
The LT3070 is a low voltage, UltraFast transient response  
linear regulator. The device supplies up to 5A of output  
current with a typical dropout voltage of 85mV. A 0.01µF  
referencebypasscapacitordecreasesoutputvoltagenoise  
to 25µV  
(BW = 10Hz to 100kHz). The LT3070’s high  
RMS  
bandwidthprovidesUltraFasttransientresponseusinglow  
ESR ceramic output capacitors (15µF minimum), saving  
bulk capacitance, PCB area and cost.  
Output capacitor networks simplify to direct parallel com-  
binations of ceramic capacitors. Often, the high freꢁuency  
ceramic decoupling capacitors reꢁuired by these various  
FPGA and ASIC processors are sufficient to stabilize the  
system(seeStabilityandOutputCapacitancesection).This  
regulator design provides ample bandwidth and responds  
to transient load changes in a few hundred nanoseconds  
versus regulators that respond in many microseconds.  
TheLT3070’sfeaturespermitstate-of-the-art linearregula-  
torperformance.TheLT3070isidealforhighperformance  
FPGAs, microprocessors, sensitive communication sup-  
plies, and high current logic applications that also operate  
over low input and output voltages.  
Output voltage for the LT3070 is digitally selectable in  
50mV increments over a 0.8V to 1.8V range. A margining  
function allows the user to adjust system output voltage  
in increments of 1ꢀ, 3ꢀ or 5ꢀ.  
The LT3070 also incorporates precision current limiting,  
enable/disable control of output voltage and integrated  
overvoltage and thermal shutdown protection. The  
LT3070’s uniꢁue design combines the benefits of low  
dropout voltage, high functional integration, precision  
performance and UltraFast transient response, as well as  
providingsignificantcostsavingsontheoutputcapacitance  
needed in fast load transient applications.  
The IC incorporates a uniꢁue tracking function, which if  
enabled by the user, controls an upsteam regulator power-  
ingtheLT3070’sinput(seeFigure8).Thistrackingfunction  
drives the buck regulator to maintain the LT3070’s input  
voltage to V  
+ 300mV. This input-to-output voltage  
OUT  
control allows the user to change the regulator output  
voltage, and have the switching regulator powering the  
LT3070’s input to track to the optimum input voltage with  
no component changes.  
As lower voltage applications become increasingly preva-  
lent with higher freꢁuency switching power supplies, the  
LT3070 offers superior regulation and an appreciable  
3070fb  
15  
For more information www.linear.com/LT3070  
LT3070  
APPLICATIONS INFORMATION  
component cost savings. The LT3070 steps to the next  
levelofperformanceforthelatestgenerationFPGAs,DSPs  
and microprocessors. The simple versatility and benefits  
derivedfromthesecircuitsexceedthepowersupplyneeds  
of today’s high performance microprocessors.  
REF/BYP—Voltage Reference  
This pin is the buffered output of the internal bandgap  
reference and has an output impedance of 19kΩ. The  
design includes an internal compensation pole at f =  
C
4kHz. A 10nF REF/BYP capacitor to GND creates a low-  
pass pole at f = 840Hz. The 10nF capacitor decreases  
LP  
Programming Output Voltage  
reference voltage noise to about 10µV  
and soft-starts  
RMS  
Three tri-level input pins, V , V and V , select the  
the reference. The LT3070 only soft-starts the reference  
voltage during an initial turn-on seꢁuence. If the EN pin  
is toggled low after initial turn-on, the reference remains  
powered-up. Therefore, toggling the EN pin from low to  
high does not soft-start the reference. Only by turning  
the BIAS supply voltage on and off will the reference be  
soft-started. Output voltage noise is the RMS sum of the  
reference voltage noise in addition to the amplifier noise.  
O2 O1  
O0  
value of output voltage. Table 1 illustrates the 3-bit digital  
word to output voltage resulting from setting these pins  
high, low or allowing them to float.  
These pins may be tied high or low by either pin-strapping  
them to V  
or driving them with digital ports. Pins that  
BIAS  
float may either actually float or reꢁuire logic that has  
Hi-Z output capability. This allows output voltage to be  
dynamically changed if necessary.  
TheREF/BYPpinmustnotbeDCloadedbyanythingexcept  
for applications that parallel other LT3070 regulators for  
higher output currents. Consult the Applications Section  
on Paralleling for further details.  
Output voltage is selectable from a minimum of 0.8V to  
a maximum of 1.8V in increments of 50mV. The MSB,  
V , sets the pedestal voltage, and the LSB’s, V and  
O2  
O0  
O1  
V
increment V  
.
OUT  
Output Voltage Margining  
Output voltage is limited to 1.8V maximum by an internal  
override of V (default to low) when V = high.  
Twotri-levelinputpins,MARGSEL(polarity)andMARGTOL  
(scale), select the polarity and amount of output voltage  
margining. Margining is programmable in increments of  
1ꢀ, 3ꢀ and 5ꢀ. Margining is internally implemented  
as a scaling of the reference voltage.  
O1  
O2  
Table 1: VO2 to VO0 Settings vs Output Voltage  
V
V
V
V
V
V
V
V
OUT(NOM)  
O2  
O1  
O0  
OUT(NOM)  
O2  
O1  
O0  
0
0
0
0
0
0
0
0
0
Z
Z
0
0
0
Z
Z
Z
1
1
1
0
0
0
Z
1
0
Z
1
0
Z
1
0
Z
0.80V  
Z
Z
Z
Z
Z
Z
Z
1
1
1
0
Z
Z
Z
1
1
1
X
X
X
1
0
Z
1
0
Z
1
0
Z
1
1.35V  
0.85V  
0.90V  
0.95V  
1.00V  
1.05V  
1.10V  
1.15V  
1.20V  
1.25V  
1.30V  
1.40V  
1.45V  
1.50V  
1.55V  
1.60V  
1.65V  
1.70V  
1.75V  
1.80V  
Table 2 illustrates the 2-bit digital word to output voltage  
margining resulting from setting these pins high, low or  
allowing them to float.  
These pins may be set high or low by either pin-strapping  
them to V  
or driving them with digital ports. Pins that  
BIAS  
float may either actually float or reꢁuire logic that has  
“Hi-Z” output capability. This allows output voltage to be  
dynamically margined if necessary.  
TheMARGSELpindeterminesboththepolarityandtheac-  
tivestateofthemarginingfunction.Thelogiclow threshold  
islessthan250mVreferencedtoGNDandenablesnegative  
voltagemargining.Thelogichighthresholdisgreaterthan  
X = Don’t Care, 0 = Low, Z = Float, 1 = High  
The input logic low threshold is less than 250mV refer-  
enced to GND and the logic high threshold is greater than  
V
– 250mV and enables positive voltage margining.  
BIAS  
V
– 250mV. The range between these two thresholds  
The voltage range between these two logic thresholds as  
set by a window comparator defines the logic Hi-Z state  
and disables the margining function.  
3070fb  
BIAS  
as set by a window comparator defines the logic Hi-Z  
state.  
16  
For more information www.linear.com/LT3070  
LT3070  
APPLICATIONS INFORMATION  
The MARGTOL pin selects the absolute value of margin-  
ing (1ꢀ, 3ꢀ or 5ꢀ) if enabled by the MARGSEL input.  
The logic low threshold is less than 250mV referenced to  
typical BIAS pin UVLO threshold is 1.55V on the rising  
edgeofV  
.TheUVLOcircuitincorporatesabout150mV  
BIAS  
of hysteresis on the falling edge of V  
.
BIAS  
GND and enables either 1ꢀ change in V  
depending  
OUT  
High Efficiency Linear Regulator—Input-to-Output  
Voltage Control  
on the state of the MARGSEL pin. The logic high threshold  
is greater than V – 250mV and enables either 5ꢀ  
BIAS  
change in V  
depending on the state of the MARGSEL  
OUT  
TheVIOC(voltageinput-to-outputcontrol)pinisafunction  
tocontrolaswitchingregulatorandfacilitateadesignsolu-  
tionthatmaximizessystemefficiencyathighloadcurrents  
and still provides low dropout voltage performance.  
pin. The voltage range between these two logic thresholds  
as set by a window comparator defines the logic Hi-Z state  
and enables either 3ꢀ change in V  
state of the MARGSEL pin.  
depending on the  
OUT  
The VIOC pin is the output of an integrated transcon-  
ductance amplifier that sources and sinks about 250µA  
of current. It typically regulates the output of most LTC®  
switching regulators or LTM® power modules, by sinking  
currentfromtheITHcompensationnode.TheVIOCfunction  
controls a buck regulator powering the LT3070’s input by  
Table 2: Programming Margining  
MARGSEL  
MARGTOL  
ꢀ OF V  
OUT(NOM)  
0
0
0
Z
Z
Z
1
1
1
0
Z
1
0
Z
1
0
Z
1
–1  
–3  
–5  
0
maintaining the LT3070’s input voltage to V  
+ 300mV.  
OUT  
0
This 300mV V -V  
differential voltage is chosen to  
IN OUT  
0
provide fast transient response and good high freꢁuency  
PSRRwhileminimizingpowerdissipationandmaximizing  
efficiency. For example, 1.5V to 1.2V conversion and 1.3V  
to 1V conversion yield 1.5W maximum power dissipation  
at 5A full output current.  
1
3
5
Enable Function—Turning On and Off  
Figure 2 depicts that the switcher’s feedback resistor net-  
worksetsthemaximumswitchingregulatoroutputvoltage  
ifthelinearregulatorisdisabled.However,oncetheLT3070  
isenabled,theVIOCfeedbackloopdecreasestheswitching  
The EN pin enables/disables the output device only. The  
LT3070 reference and all support functions remain active  
if V  
is above its UVLO threshold. Pulling the EN pin  
BIAS  
low puts the LT3070 into nap mode. In nap mode, the  
reference circuit is active, but the output is disabled and  
ꢁuiescent current decreases.  
regulator output voltage back to V  
+ 300mV.  
OUT  
Using the VIOC function creates a feedback loop between  
the LT3070 and the switching regulator. As such, the feed-  
back loop must be freꢁuency compensated for stability.  
Fortunately,theconnectionofVIOCtomanyLTCswitching  
regulator ITH pins represents a high impedance charac-  
teristic which is the optimum circuit node to freꢁuency  
compensate the feedback loop. Figure 2 illustrates the  
typical freꢁuency compensation network used at the VIOC  
node to GND.  
Drive the EN pin with either a digital logic port or an open-  
collector NPN or an open-drain NMOS terminated with  
a pull-up resistor to V  
. The pull-up resistor must be  
IH  
BIAS  
less than 35k to meet the V condition of the EN pin. If  
unused, connect EN to BIAS.  
Input Undervoltage Lockout on BIAS Pin  
An internal undervoltage lockout (UVLO) comparator  
The VIOC amplifier characteristics are:  
monitors the BIAS supply voltage. If V  
drops below  
BIAS  
g = 3.2mS, I  
= 250µA, BW = 10MHz.  
the UVLO threshold, all functions shut down, the pass  
m
OUT  
transistor is gated off and output current falls to zero. The  
IftheVIOCfunctionisnotused,terminatetheVIOCpintoGND  
with a small capacitor (1000pF) to prevent oscillations.  
3070fb  
17  
For more information www.linear.com/LT3070  
LT3070  
APPLICATIONS INFORMATION  
LT3070  
IN  
OUT  
LOAD  
SWITCHING REGULATOR  
REF  
+
+
PWM  
FB  
VIOC  
V
+
OUT  
V
300mV  
REF  
REFERENCE  
I
TH  
3070 F02  
Figure 2. VIOC Control Block Diagram  
PWRGD—Power Good  
Low ESR, X5R or X7R ceramic chip capacitors are the  
LTC recommended choice for stabilizing the LT3070. Ad-  
ditional bulk capacitors distributed beyond the immediate  
decouplingcapacitorsareacceptableastheirparasiticESL  
and ESR, combined with the distributed PCB inductance  
isolatesthemfromtheprimarycompensationpoleprovided  
by the local surface mount ceramic capacitors.  
PWRGD pin is an open-drain NMOS digital output that  
actively pulls low if any one of these fault modes is de-  
tected:  
• V  
is less than 90ꢀ of V  
on the rising  
OUT  
edge of V  
OUT(NOMINAL)  
drops below 85ꢀ of V  
OUT(NOMINAL)  
.
OUT  
• V  
for more than  
The LT3070 reꢁuires a minimum output capacitance of  
15µFforstability.LTCstronglyrecommendsthattheoutput  
capacitor network consist of several low value ceramic  
capacitors in parallel.  
OUT  
25µs.  
• V  
is less than its undervoltage lockout threshold.  
BIAS  
• The OUT-to-IN reverse-current detector activates.  
• Junction temperature exceeds 145°C typically.*  
Why Do Multiple, Small-Value Output Capacitors  
Connected in Parallel Work Better?  
*The junction temperature detector is an early warning  
indicator that trips approximately 20°C before thermal  
shutdown engages.  
The LT3070’s unity-gain bandwidth with C  
of 15µF is  
OUT  
about1MHzatitsfull-loadcurrentof5A. Surfacemounted  
MLCC capacitors have a self-resonance freꢁuency of  
f =1/(2π√LC),whichmustbepushedtoafreꢁuencyhigher  
R
Stability and Output Capacitance  
than the regulator bandwidth. Standard MLCC capacitors  
are acceptable. To keep the resonant freꢁuency greater  
than 1MHz, the product 1/(2π√LC) must be greater than  
1MHz. At this bandwidth, PCB vias can add significant  
inductance, thus the fundamental decoupling capacitors  
must be mounted on the same plane as the LT3070.  
The LT3070’s feedback loop reꢁuires an output capacitor  
for stability. Choose C  
carefully and mount it in close  
OUT  
proximitytotheLT3070’sOUTandGNDpins. Includewide  
routing planes for OUT and GND to minimize inductance.  
If possible, mount the regulator immediately adjacent to  
the application load to minimize distributed inductance  
for optimal load transient performance. Point-of-Load  
applications present the best case layout scenario for  
extracting full LT3070 performance.  
Typical0603or0805case-sizecapacitorshaveanESLof  
~800pHandPCBmountingcancontributeupto~200pH.  
Thus, it becomes necessary to reduce the parasitic  
3070fb  
18  
For more information www.linear.com/LT3070  
LT3070  
APPLICATIONS INFORMATION  
inductance by using a parallel capacitor combination.  
applications, this total value of capacitance may be close  
to the LT3070’s minimum 15µF capacitance reꢁuirement.  
Thismayreducethereꢁuiredvalueofcapacitancedirectly  
at the LT3070’s output. Multiple low value capacitors in  
parallel present a favorable freꢁuency characteristic that  
pushes many of the parasitic poles/zeroes beyond the  
LT3070’s unity-gain crossover freꢁuency. This techniꢁue  
illustrates the method that extracts the full bandwidth  
performance of the LT3070.  
A suitable methodology must control this paralleling as  
capacitorswiththesameself-resonantfreꢁuency, f , will  
R
form a tank circuit that can induce ringing of their own  
accord.SmallamountsofESR(5mΩto20mΩ)havesome  
benefit in dampening the resonant loop, but higher ESRs  
degrade the capacitor response to transient load steps  
with rise/fall times less than 1µs. The most area efficient  
parallel capacitor combination is a graduated 4/2/1 scale  
of f of the same case size. Under these conditions, the  
R
Giveadditionalconsiderationtotheuseofceramiccapaci-  
tors.Ceramiccapacitorsaremanufacturedwithavarietyof  
dielectrics,eachwithdifferentbehavioracrosstemperature  
and applied voltage. The most common dielectrics used  
arespecifiedwithEIAtemperaturecharacteristiccodesof  
Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics are  
good for providing high capacitances in a small package,  
but they tend to have strong voltage and temperature  
coefficients as shown in Figures 4 and 5. When used with  
a 5V regulator, a 16V 10µF Y5V capacitor can exhibit an  
effective value as low as 1µF to 2µF for the DC bias voltage  
appliedandovertheoperatingtemperaturerange.TheX5R  
and X7R dielectrics result in more stable characteristics  
and are more suitable for use as the output capacitor.  
The X7R type has better stability across temperature,  
while the X5R is less expensive and is available in higher  
values. Care still must be exercised when using X5R and  
X7R capacitors; the X5R and X7R codes only specify  
operating temperature range and maximum capacitance  
change over temperature. Capacitance change due to  
DC bias with X5R and X7R capacitors is better than Y5V  
and Z5U capacitors, but can still be significant enough to  
drop capacitor values below appropriate levels. Capacitor  
DC bias characteristics tend to improve as component  
case size increases, but expected capacitance at operat-  
ing voltage should be verified. Voltage and temperature  
coefficients are not the only sources of problems. Some  
ceramiccapacitorshaveapiezoelectricresponse.Apiezo-  
electric device generates voltage across its terminals due  
to mechanical stress, similar to the way a piezoelectric  
microphone works. For a ceramic capacitor the stress  
can be induced by vibrations in the system or thermal  
transients.  
individual ESLs are relatively uniform, and the resonance  
peaks are deconstructively spread beyond the regulator  
bandwidth. The recommended parallel combination that  
approximates 15µF is 10µF + 4.7µF + 2.2µF. Capacitors  
with case sizes larger than 0805 have higher ESL and  
lower ESR (<5mΩ). Therefore, more capacitors with  
smaller values (<10µF) must be chosen. Users should  
consider new generation, low inductance capacitors to  
push out f and maximize stability. Refer to the surface  
R
mount ceramic capacitor manufacturer’s data sheets for  
capacitor specifications. Figure 3 illustrates an optimum  
PCB layout for the parallel output capacitor combination,  
but also illustrates the GND connection between the IN  
capacitor and the OUT capacitors to minimize the AC  
GND loop for fast load transients. This tight bypassing  
connection minimizes EMI and optimizes bypassing.  
Many of the applications in which the LT3070 excels,  
such as FPGA, ASIC processor or DSP supplies, typically  
reꢁuireahighfreꢁuencydecouplingcapacitornetworkfor  
thedevicebeingpowered.Thisnetworkgenerallyconsists  
of many low value ceramic capacitors in parallel. In some  
LT3070  
SENSE  
IN OUT  
GND  
Lo-Z  
INPUT  
LOAD PLANE  
2.2µF  
4.7µF  
10µF  
47µF  
3070 F03  
Figure ꢁ. Example PCB Layout  
3070fb  
19  
For more information www.linear.com/LT3070  
LT3070  
APPLICATIONS INFORMATION  
20  
the LT3070 back to the power supply ground), large input  
capacitors are reꢁuired to avoid an unstable application.  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
This is due to the inductance of the wire forming an LC  
tank circuit with the input capacitor and not a result of the  
LT3070 being unstable. The self inductance, or isolated  
inductance, of a wire is directly proportional to its length.  
However, the diameter of a wire does not have a major  
influence on its self inductance. For example, one inch of  
18-AWG, 0.04 inch diameter wire has 28nH of self induc-  
tance. The self inductance of a 2-AWG isolated wire with  
a diameter of 0.26 inch is about half the inductance of a  
18-AWG wire. The overall self inductance of a wire can  
be reduced in two ways. One is to divide the current flow-  
ing towards the LT3070 between two parallel conductors  
which flows in the same direction in each. In this case,  
the farther the wires are placed apart from each other, the  
more inductance will be reduced, up to a 50ꢀ reduction  
when placed a few inches apart. Splitting the wires basi-  
cally connects two eꢁual inductors in parallel. However,  
when placed in close proximity from each other, mutual  
inductance is added to the overall self inductance of the  
wires. Themosteffectivewaytoreduceoverallinductance  
is to place the forward and return-current conductors (the  
wire for the input and the wire for the return ground) in  
very close proximity. Two 18-AWG wires separated by  
0.05 inch reduce the overall self inductance to about one-  
fourth of a single isolated wire. If the LT3070 is powered  
by a battery mounted in close proximity with ground and  
power planes on the same circuit board, a 47µF input  
capacitor is sufficient for stability. However, if the LT3070  
is powered by a distant supply, use a low ESR, large value  
input capacitor on the order of 330µF. As power supply  
output impedance varies, the minimum input capacitance  
needed for application stability also varies.  
–20  
–40  
–60  
Y5V  
–80  
–100  
10 12  
DC BIAS VOLTAGE (V)  
0
2
4
6
8
14 16  
3070 F04  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
40  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
20  
X5R  
0
–20  
Y5V  
–40  
–60  
–80  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
3070 F05  
Figure 5. Ceramic Capacitor Temperature Characteristics  
Stability and Input Capacitance  
The LT3070 is stable with a minimum capacitance of  
47µF connected to its IN pins. Use low ESR capacitors to  
minimize instantaneous voltage drops under large load  
transient conditions. Large V droops during large load  
IN  
transients may cause the regulator to enter dropout with  
corresponding degradation in load transient response.  
Increased values of input and output capacitance may be  
necessary depending on an application’s reꢁuirements.  
Sufficient input capacitance is critical as the circuit is  
intentionally operated close to dropout to minimize power.  
Ideally, the output impedance of the supply that powers  
IN should be less than 10mΩ to support a 5A load with  
large transients.  
Bias Pin Capacitance Requirements  
The BIAS pin supplies current to most of the internal  
control circuitry and the output stage driving the pass  
transistor. The LT3070 reꢁuires a minimum 2.2µF by-  
pass capacitor for stability and proper operation. To  
ensure proper operation, the BIAS voltage must sat-  
isfy the following conditions: 2.2V ≤ V  
≤ 3.6V and  
BIAS  
V
≥ (1.25 • V  
+ 1V). For V ≤ 0.95V, the  
In cases where wire is used to connect a power supply  
to the input of the LT3070 (and also from the ground of  
BIAS  
OUT  
OUT  
minimum BIAS voltage is limited to 2.2V.  
3070fb  
20  
For more information www.linear.com/LT3070  
LT3070  
APPLICATIONS INFORMATION  
Load Regulation  
values of input-to-output voltage up to the absolute maxi-  
mum voltage rating. See the Current Limit vs V curve in  
IN  
The LT3070 provides a Kelvin sense pin for V , allowing  
OUT  
the Typical Performance Characteristics.  
the application to correct for parasitic package and PCB  
I-R drops. However, LTC recommends that the SENSE pin  
terminate in close proximity to the LT3070’s OUT pins.  
Thisminimizesparasiticinductanceandoptimizesregula-  
tion. The LT3070 handles moderate levels of output line  
Duringstart-up,aftertheBIASvoltagehascleareditsUVLO  
threshold and V is increasing, output voltage increases  
IN  
at the rate of current limit charging C  
.
OUT  
With a high input voltage, a problem can occur where the  
removal of an output short will not allow the output volt-  
agetorecover. Otherregulatorswithcurrentlimitfoldback  
also exhibit this phenomenon, so it is not uniꢁue to the  
LT3070. The load line for such a load may intersect the  
output current curve at two points: normal operation and  
the SOA restricted load current settings. A common situ-  
ation is immediately after the removal of a short circuit,  
but with a static load ≥ 1A. In this situation, removal of the  
impedance, but excessive impedance between V  
OUT  
and adversely affects stability.  
and  
OUT  
C
causes excessive phase shift in the feedback loop  
Figure 1 in the Pin Functions section illustrates the Kelvin-  
Sense connection method that eliminates voltage drops  
duetoPCBtraceresistance.However,notethatthevoltage  
drop across the external PCB traces adds to the dropout  
voltage of the regulator. The SENSE pin input bias current  
depends on the selected output voltage. SENSE pin input  
load or reduction of I  
to <1A will clear this condition  
OUT  
currentvariesfrom5AtypicallyatV  
=0.8Vto300µA  
and allow V  
to return to normal regulation.  
OUT  
OUT  
typically at V  
= 1.8V.  
OUT  
Reverse Voltage  
The LT3070 incorporates a circuit that detects if V de-  
Short-Circuit and Overload Recovery  
IN  
Like many IC power regulators, the LT3070 has safe op-  
erating area (SOA) protection. The safe area protection  
decreasescurrentlimitasinput-to-outputvoltageincreases  
and keeps the power transistor inside a safe operating  
region for all values of input-to-output voltage up to the  
creases below V . This reverse-voltage detector has  
OUT  
a typical threshold of about (V – V ) = –6mV. If the  
IN  
OUT  
threshold is exceeded, this detector circuit turns off the  
drivetotheinternalNMOSpasstransistor, therebyturning  
off the output. The output pulls low with the load current  
discharging the output capacitance. This circuit’s intent  
is to limit and prevent back-feed current from OUT to IN  
if the input voltage collapses due to a fault or overload  
condition.  
absolute maximum voltage rating. V  
must be above  
BIAS  
the UVLO threshold for any function. The LT3070 has a  
precision current limit specified at 20ꢀ that is active if  
V
BIAS  
is above UVLO.  
Under conditions of maximum I  
IN OUT  
and maximum  
LOAD  
Thermal Considerations  
V -V  
the device’s power dissipation peaks at about  
The LT3070’s maximum rated junction temperature of  
125°C limits its power handling capability and is domi-  
nated by the output current multiplied by the input/output  
voltage differential:  
3W. If ambient temperature is high enough, die junction  
temperature will exceed the 125°C maximum operating  
temperature. If this occurs, the LT3070 relies on two  
additional thermal safety features. At about 145°C, the  
PWRGD output pulls low providing an early warning of an  
impendingthermalshutdowncondition.At165°Ctypically,  
the LT3070’s thermal shutdown engages and the output is  
shut down until the IC temperature falls below the thermal  
hysteresislimit.TheSOAprotectiondecreasescurrentlimit  
as the IN-to-OUT voltage increases and keeps the power  
dissipation at safe levels for all values of input-to-output  
voltage. The LT3070 provides some output current at all  
I
• (V – V  
)
OUT  
OUT  
IN  
The LT3070’s internal power and thermal limiting circuitry  
protect it under overload conditions. For continuous nor-  
mal load conditions, do not exceed the maximum junction  
temperature of 125°C. Give careful consideration to all  
sources of thermal resistance from junction to ambient.  
Thisincludesjunctiontocase, case-to-heatsinkinterface,  
3070fb  
21  
For more information www.linear.com/LT3070  
LT3070  
APPLICATIONS INFORMATION  
heat sink resistance or circuit board to ambient as the  
applicationdictates.Also,consideradditionalheatsources  
mountedinproximitytotheLT3070.TheLT3070isasurface  
mount device and as such, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Surface mount heat sinks and  
plated through-holes can also be used to spread the heat  
generated by power devices. Junction-to-case thermal  
resistance is specified from the IC junction to the bottom  
of the case directly below the die. This is the lowest resis-  
tance path for heat flow. Proper mounting is reꢁuired to  
ensure the best possible thermal flow from this area of the  
packagetotheheatsinkingmaterial.Notethattheexposed  
pad is electrically connected to GND.  
where:  
I
= 4A  
OUT(MAX)  
V
= 1.26V  
IN(MAX)  
I
I
at (I  
= 4A, V  
= 2.5V) = 6.91mA  
= 2.5V) = 0.87mA  
BIAS  
GND  
OUT  
OUT  
BIAS  
at (I  
= 4A, V  
BIAS  
thus:  
P = 4A(1.26V – 0.9V) + (6.91mA – 0.87mA)0.9V +  
0.87mA(2.5V) = 1.448W  
With the QFN package soldered to maximum copper  
area, the thermal resistance is 30°C/W. So the junction  
temperature rise above ambient eꢁuals:  
Table 3 lists thermal resistance as a function of copper  
area in a fixed board size. All measurements were taken  
in still air on a 4-layer FR-4 board with 1 oz solid internal  
planes and 2 oz top/bottom external trace planes with a  
totalboardthicknessof1.6mm.PCBlayers,copperweight,  
board layout and thermal vias affect the resultant thermal  
resistance. For further information on thermal resistance  
and high thermal conductivity test boards, refer to JEDEC  
standard JESD51, notably JESD51-12 and JESD51-7.  
Achieving low thermal resistance necessitates attention  
to detail and careful PCB layout.  
1.448W at 30°C/W = 43.44°C  
The maximum junction temperature eꢁuals the maximum  
ambienttemperatureplusthemaximumjunctiontempera-  
ture rise above ambient or:  
T
JMAX  
= 50°C + 43.44°C = 93.44°C  
Applications that cannot support extensive PCB space  
for heat sinking the LT3070 reꢁuire a derating of output  
current or increased airflow.  
Paralleling Devices for Higher I  
OUT  
Table ꢁ, UFD Plastic Package, 28-Lead QFN  
MultipleLT3070smaybeparalleledtoobtainhigheroutput  
current.Thisparallelingconceptborrowsfromthescheme  
employed by the LT3080.  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE* BACK SIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2
2
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
30°C/W  
32°C/W  
33°C/W  
35°C/W  
To accomplish this paralleling, tie the REF/BYP pins of  
the paralleled regulators together. This effectively gives  
an averaged value of multiple 600mV reference voltage  
sources. Tie the OUT pins of the paralleled regulators to  
the common load plane through a small piece of PC trace  
ballast or an actual surface mount sense resistor beyond  
the primary output capacitors of each regulator. The re-  
ꢁuired ballast is dependent upon the application output  
voltage and peak load current. The recommended ballast  
is that value which contributes 1ꢀ to load regulation. For  
example, two LT3070 regulators configured to output 1V,  
sharing a 10A load reꢁuire 2mΩ of ballast at each output.  
The Kelvin SENSE pins connect to the regulator side of  
the ballast resistors to keep the individual control loops  
from conflicting with each other (see Figures 8 and 9).  
3070fb  
2
1000mm  
2
225mm  
100mm  
2
*Device is mounted on topside  
Calculating Junction Temperature  
Example: Given an output voltage of 0.9V, an input voltage  
rangeof1.2V 5ꢀ,aBIASvoltageof2.5V,amaximumout-  
put current of 4A and a maximum ambient temperature of  
50°C, what will the maximum junction temperature be?  
The power dissipated by the device eꢁuals:  
I
• (V  
BIAS  
– V ) + (I  
– I ) • V  
OUT(MAX)  
IN(MAX)  
OUT  
BIAS GND OUT  
+ I  
• V  
GND  
22  
For more information www.linear.com/LT3070  
LT3070  
APPLICATIONS INFORMATION  
Keep this ballast trace area free of solder to maintain a  
controlled resistance.  
noise reduction of reference noise. The LT3070 deviates  
from the traditional voltage reference by generating a  
low voltage V  
from a reference current into an inter-  
REF  
Table 4 shows a simple guideline for PCB trace resistance  
as a function of weight and trace width.  
nal resistor 19k. This intermediate impedance node  
(REF/BYP)facilitatesexternalfilteringdirectly.A10nFfilter  
Table 4. PC Board Trace Resistance  
capacitor minimizes reference noise to 10µV  
at the  
RMS  
WEIGHT (Oz)  
100 MIL WIDTH*  
200 MIL WIDTH*  
600mV REF/BYP pin, eꢁuivalently a 17µV contribution to  
output noise at V = 1V. See the Typical Performance  
1
2
5.43  
2.71  
2.71  
1.36  
OUT  
Characteristics for Noise vs Output Voltage performance  
as a function of C  
.
*Trace resistance is measured in milliohms/in  
REF/BYP  
This approach also accommodates reference sharing  
between LT3070 regulators that are hooked up in cur-  
rent sharing applications. The REF/BYP filter capacitor  
delays the initial power-up time by a factor of the RC time  
Quieting the Noise  
The LT3070 offers numerous noise performance advan-  
tages. Each LDO has several sources of noise. An LDO’s  
most critical noise source is the reference, followed by  
the LDO error amplifier. Traditional low noise regulators  
bufferthevoltagereferenceouttoanexternalpin(usually  
through a large value resistor) to allow for bypassing and  
constant. V remains active in nap mode, thus start-up  
REF  
time is significantly reduced and well controlled coming  
out of nap mode (EN:LOHI).  
50k  
V
BIAS  
PWRGD  
2.5V TO 3.6V  
2.2µF  
BIAS  
V
IN  
IN  
PWRGD  
SENSE  
1.5V  
330µF  
EN  
V
1.2V  
5A  
OUT  
LT3070  
OUT  
V
O0  
V
O1  
V
O2  
2.2µF*  
4.7µF*  
10µF*  
NC  
NC  
MARGSEL  
MARGTOL  
VIOC  
*X5R OR X7R CAPACITORS  
REF/BYP  
GND  
1nF  
0.01µF  
3070 F06  
Figure 6. 1.5V to 1.2V Linear Regulator  
3070fb  
23  
For more information www.linear.com/LT3070  
LT3070  
APPLICATIONS INFORMATION  
V
BIAS  
3.3V  
47µF  
6.3V  
×3  
1Ω  
50k  
SV  
IN  
PWRGD  
2.2µF*  
NC  
2.2µF  
0.1µF  
BIAS  
PGOOD RUN PV  
PV  
SV TRACK  
IN  
IN  
IN  
0.2µH  
EN  
IN  
PWRGD  
SENSE  
OUT  
1.3V/5A  
SGND  
SW  
SW  
SW  
SW  
V
1V  
5A  
OUT  
47µF  
PV  
IN  
PV  
IN  
LT3070  
NC  
NC  
V
O0  
V
O1  
V
O2  
4.7µF*  
10µF*  
20k  
10k  
PLLLPF  
*X5R OR X7R CAPACITORS  
I
TH  
NC  
NC  
MARGTOL  
MARGSEL  
LTC3415EUHF  
MGN  
BSEL  
100µF  
6.3V  
×2  
NC  
NC  
NC  
CLKOUT  
PHMODE  
CLKIN  
VIOC  
REF/BYP  
GND  
V
FB  
SV  
IN  
2k  
4.7nF  
PGND  
0.01µF  
1nF  
I
THM  
SGND  
PGND PGND  
MODE  
3070 F07  
PGND PGND PGND PGND  
NOTE: LTC3415 SWITCHER, 2MHz INTERNAL OSCILLATOR  
LTC3415 AND LT3070 ON SAME PCB POWER PLANE  
Figure 7. Regulator with VIOC Buck Control  
V
BIAS  
3.3V  
50k  
47µF  
6.3V  
×3  
PWRGD  
1Ω  
2.2µF  
SV  
IN  
NC  
PGOOD RUN PV  
0.1µF  
BIAS  
PV  
SV TRACK  
IN  
IN  
IN  
0.2µH  
EN  
IN  
PWRGD  
SENSE  
OUT  
1.3V/7A  
SGND  
SW  
SW  
SW  
SW  
V
OUT  
47µF  
1V  
PV  
PV  
IN  
IN  
LT3070  
3.5A  
2.2µF*  
4.7µF*  
10µF*  
NC  
NC  
V
O0  
V
O1  
V
O2  
R
TRACE  
PLLLPF  
3mΩ  
*X5R OR X7R CAPACITORS  
CONTROLLED  
I
TH  
NC  
NC  
MARGTOL  
MARGSEL  
MGN  
BSEL  
P.O.L. 1  
LTC3415EUHF  
NC  
NC  
CLKOUT  
PHMODE  
VIOC  
REF/BYP  
GND  
17.5k  
1%  
POWER  
PLANE  
1V/8A  
1nF  
0.01µF  
V
FB  
15k  
1%  
100µF  
6.3V  
×2  
P.O.L. 2  
PGND  
2.2µF  
NC  
CLKIN  
MODE  
I
THM  
SGND  
PGND PGND  
R
TRACE  
3mΩ  
BIAS  
PGND PGND PGND PGND  
CONTROLLED  
EN  
IN  
PWRGD  
SENSE  
OUT  
V
OUT  
47µF  
1V  
NOTE: LTC3415 SWITCHER, 2MHz INTERNAL OSCILLATOR  
LTC3415 AND LT3070 ×2 ON SAME PCB POWER PLANE  
LT3070  
3.5A  
2.2µF*  
4.7µF*  
10µF*  
NC  
NC  
V
V
V
O0  
O1  
O2  
*X5R OR X7R CAPACITORS  
NC  
NC  
MARGTOL  
MARGSEL  
VIOC  
REF/BYP  
1nF  
GND  
0.01µF  
3070 F08  
Figure 8. 1V, 7A Point-of-Load Current Sharing Regulators  
3070fb  
24  
For more information www.linear.com/LT3070  
LT3070  
TYPICAL APPLICATIONS  
50k  
V
IN  
3.3V  
PWRGD  
2.2µF  
BIAS  
EN  
IN  
PWRGD  
SENSE  
OUT  
V
1V  
4A  
OUT  
47µF  
NC  
NC  
V
O0  
V
O1  
V
O2  
LT3070  
2.2µF*  
4.7µF*  
10µF*  
R
TRACE  
2.5mΩ  
CONTROLLED  
NC  
NC  
MARGTOL  
MARGSEL  
VIOC  
*X5R OR X7R CAPACITORS  
0.01µF  
P.O.L. 1  
REF/BYP  
POWER  
PLANE  
1V/7A  
1nF  
GND  
V
IN  
3.3V  
V
IN  
3.3V  
P.O.L. 2  
2.2µF  
NC  
NC  
NC  
NC  
NC  
R
TRACE  
BIAS  
2.5mΩ  
EN  
IN  
V
PWRGD  
SENSE  
OUT  
SW1 CLKIN1 CLKOUT1 CLKIN2 CLKOUT2  
CONTROLLED  
V
1.3V/8A  
BUCK1  
V
V
OUT1  
MGN1  
FB1  
IN1  
SV  
V
1V  
4A  
OUT  
100µF  
6.3V  
X5R  
47µF  
10µF  
NC  
NC  
IN1  
O0  
20k  
LT3070  
RUN1  
2.2µF*  
10µF*  
10µF*  
10µF*  
4.7µF*  
V
V
O1  
PLLLPF1  
MODE1  
PHMODE1  
TRACK1  
ITH1  
O2  
ITHM1  
BSEL1  
PGOOD1  
10k  
2k  
4.7nF  
NC  
NC  
MARGTOL  
MARGSEL  
VIOC  
*X5R OR X7R CAPACITORS  
0.01µF  
NC  
NC  
REF/BYP  
GND  
LTM4616  
V
2.1V/8A  
BUCK2  
1nF  
V
V
OUT2  
MGN2  
FB2  
IN2  
SV  
100µF  
6.3V  
X5R  
10µF  
IN2  
RUN2  
V
IN  
3.3V  
PLLLPF2  
MODE2  
PHMODE2  
TRACK2  
ITH2  
2.2µF  
ITHM2  
BSEL2  
PGOOD2  
BIAS  
NC  
NC  
EN  
IN  
PWRGD  
SENSE  
OUT  
V
1.8V  
5A  
OUT  
SW2 SGND1 GND1 SGND2 GND2  
47µF  
V
O0  
V
O1  
V
O2  
LT3070  
2.2µF*  
4.7µF*  
NC  
NC  
NC  
NC  
MARGTOL  
MARGSEL  
VIOC  
*X5R OR X7R CAPACITORS  
0.01µF  
20k  
NOTE: THE TWO LTM4616 MODULE CHANNELS ARE  
INDEPENDENTLY CONTROLLED BY THE VIOC  
CONTROLS FROM THE LINEAR REGULATORS  
REF/BYP  
GND  
1nF  
2k  
4.7nF  
10k  
V
IN  
3.3V  
2.2µF  
BIAS  
EN  
IN  
PWRGD  
SENSE  
OUT  
V
1.5V  
3A  
OUT  
47µF  
V
O0  
V
O1  
V
O2  
LT3070  
2.2µF*  
4.7µF*  
NC  
NC  
NC  
NC  
MARGTOL  
MARGSEL  
VIOC  
*X5R OR X7R CAPACITORS  
REF/BYP  
1nF  
GND  
0.01µF  
3070 F09  
Figure 9. Triple Output Supply Providing 1V, 8A and 1.8V, 5A and 1.5V, A  
3070fb  
25  
For more information www.linear.com/LT3070  
LT3070  
PACKAGE DESCRIPTION  
UFD Package  
28-Lead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1712 Rev B)  
0.70 ±0.05  
4.50 ± 0.05  
3.10 ± 0.05  
2.50 REF  
2.65 ± 0.05  
3.65 ± 0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
3.50 REF  
4.10 ± 0.05  
5.50 ± 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.35  
× 45° CHAMFER  
2.50 REF  
R = 0.115  
TYP  
R = 0.05  
TYP  
0.75 ± 0.05  
4.00 ± 0.10  
(2 SIDES)  
27  
28  
0.40 ± 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 ± 0.10  
(2 SIDES)  
3.50 REF  
3.65 ± 0.10  
2.65 ± 0.10  
(UFD28) QFN 0506 REV B  
0.25 ± 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3070fb  
26  
For more information www.linear.com/LT3070  
LT3070  
REVISION HISTORY  
REV  
DATE  
5/10  
4/13  
DESCRIPTION  
PAGE NUMBER  
A
Entire data sheet revised  
1 to 28  
B
Clarified Parameter conditions in Electrical Characteristics table  
Added Enable Pin Threshold graph  
Clarified EN pin operation  
4
7
13  
14  
28  
Enhanced Block Diagrams  
Added LT3071 to Related Parts  
3070fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT3070  
TYPICAL APPLICATION  
50k  
V
BIAS  
PWRGD  
2.5V TO 3.6V  
2.2µF  
BIAS  
V
IN  
IN  
PWRGD  
SENSE  
1.5V  
330µF  
EN  
V
1.2V  
5A  
OUT  
LT3070  
OUT  
V
O0  
V
O1  
V
O2  
2.2µF*  
4.7µF*  
10µF*  
NC  
NC  
MARGSEL  
MARGTOL  
VIOC  
*X5R OR X7R CAPACITORS  
REF/BYP  
GND  
1nF  
0.01µF  
3070 TA02  
1.5V to 1.2V Linear Regulator  
RELATED PARTS  
PART  
DESCRIPTION  
500mA, Low Noise LDO  
COMMENTS  
LT1763  
300mV Dropout Voltage, Low Noise: 20µV  
SO-8 Package  
, V : 1.8V to 20V,  
RMS IN  
LT1764/LT1764A  
LT1963/LT1963A  
3A, Fast Transient Response, Low Noise LDO  
1.5A Low Noise, Fast Transient Response LDO  
340mV Dropout Voltage, Low Noise: 40µV  
, V : 2.7V to 20V,  
RMS IN  
TO-220 and DD Packages “A” Version Stable Also with Ceramic Caps  
340mV Dropout Voltage, Low Noise: 40µV  
, V : 2.5V to 20V,  
RMS IN  
“A” Version Stable with Ceramic Caps, TO-220, DD, SOT-223 and  
SO-8 Packages  
LT1965  
LT3021  
1.1A, Low Noise, Low Dropout Linear Regulator  
500mA, Low Voltage, VLDO™ Linear Regulator  
290mV Dropout Voltage, Low Noise: 40µV  
, V : 1.8V to 20V,  
RMS IN  
V
: 1.2V to 19.5V, Stable with Ceramic Caps, TO-220, DD-Pak,  
OUT  
MSOP and 3mm × 3mm DFN Packages  
V : 0.9V to 10V, Dropout Voltage = 160mV (Typ), Adjustable Output  
IN  
REF  
(V = V  
= 200mV), Fixed Output Voltages: 1.2V, 1.5V, 1.8V,  
OUT(MIN)  
Stable with Low ESR, Ceramic Output Capacitors 16-Pin DFN  
(5mm × 5mm) and 8-Lead SO Packages  
LT3080/LT3080-1  
LT3085  
1.1A, Parallelable, Low Noise, Low Dropout Linear Regulator 300mV Dropout Voltage (2-Supply Operation), Low Noise: 40µV  
,
RMS  
V : 1.2V to 36V, V : 0V to 35.7V, Current-Based Reference with  
IN  
OUT  
1 Resistor V  
Set; Directly Parallelable (No Op Amp Reꢁuired),  
OUT  
Stable with Ceramic Caps, TO-220, SOT-223, MSOP-8 and 3mm  
× 3mm DFN-8 Packages; LT3080-1 has Integrated Internal Ballast  
Resistor  
500mA, Parallelable, Low Noise, Low Dropout  
Linear Regulator  
275mV Dropout Voltage (2-Supply Operation), Low Noise: 40µV  
RMS  
,
V : 1.2V to 36V, V : 0V to 35.7V, Current-Based Reference with  
IN  
OUT  
1 Resistor V  
Set; Directly Parallelable (No Op Amp Reꢁuired),  
OUT  
Stable with Ceramic Caps, MSOP-8 and 2mm × 3mm DFN-6  
Packages  
LTC3025-1/  
LTC3025-2  
500mA Micropower VLDO Linear Regulator  
in 2mm × 2mm DFN  
V
= 0.9V to 5.5V, Dropout Voltage: 75mV, Low Noise 80µV  
,
IN  
RMS  
Low I : 54µA, Fixed Output: 1.2V (LTC3025-2); Adjustable Output  
Q
Range: 0.4V to 3.6V (LTC3025-1) 2mm × 2mm 6-Lead DFN Package  
LTC3026  
LT3071  
1.5A, Low Input Voltage VLDO Regulator  
V : 1.14V to 3.5V (Boost Enabled), 1.14V to 5.5V (with External  
IN  
5V), V = 0.1V, I = 950µA, Stable with 10µF Ceramic Capacitors,  
DO  
Q
10-Lead MSOP and DFN-10 Packages  
5A, Low Noise, Programmable Output, 85mV Dropout Linear V : 0.95V to 3V, V : 0.8V to 1.8V in 50mV Increments, Low  
Regulator with Analog Margining  
IN  
OUT  
Noise: 25µV  
, Stable with Ceramic Capacitors, 4mm × 5mm  
RMS  
28-Lead QFN Package  
3070fb  
LT 0413 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT3070  
LINEAR TECHNOLOGY CORPORATION 2009  

相关型号:

LT3070EUFD#TRPBF

LT3070 - 5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3070EUFDPBF

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator
Linear

LT3070EUFDTR

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator
Linear

LT3070EUFDTRPBF

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator
Linear

LT3070IUFD

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator
Linear

LT3070IUFD#PBF

LT3070 - 5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3070IUFD#TR

IC VREG 0.8 V-1.8 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.15 V DROPOUT, PQCC28, 4 X 5 MM, 0.75 MM HEIGHT, PLASTIC, MO-220, QFN-28, Adjustable Positive Single Output LDO Regulator
Linear

LT3070IUFDPBF

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator
Linear

LT3070IUFDTR

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator
Linear

LT3070IUFDTRPBF

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator
Linear

LT3070MPUFD

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator
Linear

LT3070MPUFD#PBF

LT3070 - 5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator; Package: QFN; Pins: 28; Temperature Range: -55&deg;C to 125&deg;C
Linear