LT3071MPUFD#TRPBF [Linear]

暂无描述;
LT3071MPUFD#TRPBF
型号: LT3071MPUFD#TRPBF
厂家: Linear    Linear
描述:

暂无描述

稳压器 电阻器
文件: 总28页 (文件大小:256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3083  
Adjustable 3A  
Single Resistor Low  
Dropout Regulator  
FEATURES  
DESCRIPTION  
n
Outputs May be Paralleled for Higher Current and  
The LT®3083 is a 3A low dropout linear regulator that can  
be paralleled to increase output current or spread heat on  
surfacemountedboards.Architectedasaprecisioncurrent  
source and voltage follower, this new regulator finds use  
in many applications requiring high current, adjustability  
to zero, and no heat sink. The device also brings out the  
collectorofthepasstransistortoallowlowdropoutopera-  
tion—downto310mV—whenusedwithmultiplesupplies.  
Heat Spreading  
n
Output Current: 3A  
n
Single Resistor Programs Output Voltage  
50μA Set Pin Current: 1% Initial Accuracy  
Output Adjustable to 0V  
Low Output Noise: 40μV  
n
n
n
(10Hz to 100kHz)  
RMS  
n
Wide Input Voltage Range: 1.2V to 23V  
(DD-Pak and TO-220 Packages)  
Low Dropout Voltage: 310mV  
A key feature of the LT3083 is the capability to supply a  
wide output voltage range. By using a reference current  
throughasingleresistor,theoutputvoltageisprogrammed  
to any level between zero and 23V (DD-PAK and TO-220  
packages). The LT3083 is stable with 10μF of capacitance  
on the output, and the IC is stable with small ceramic ca-  
pacitors that do not require additional ESR as is common  
with other regulators.  
n
n
n
n
n
n
<1mV Load Regulation  
<0.001%/V Line Regulation  
Minimum Load Current: 1mA  
Stable with Minimum 10μF Ceramic Capacitor  
Current Limit with Foldback and Overtemperature  
Protection  
n
Available in 16-Lead TSSOP, 12-Lead 4mm × 4mm  
DFN, 5-Lead TO-220 and 5-Lead Surface Mount  
DD-PAK Packages  
Internal protection circuitry includes current limiting and  
thermal limiting. The LT3083 is offered in the 16-lead  
TSSOP (with an exposed pad for better thermal character-  
istics), 12-lead 4mm × 4mm DFN (also with an exposed  
pad), 5-lead TO-220, and 5-lead surface mount DD-PAK  
packages.  
APPLICATIONS  
n
High Current All Surface Mount Supply  
n
High Efficiency Linear Regulator  
n
Post Regulator for Switching Supplies  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Low Parts Count Variable Voltage Supply  
n
Low Output Voltage Power Supplies  
TYPICAL APPLICATION  
Set Pin Current Distribution  
1.5V to 0.9V at 3A Supply (Using 3.3V VCONTROL  
)
N = 1052  
V
CONTROL  
3.3V  
4.7μF  
10μF  
V
CONTROL  
V
= 0.9V  
= 3A  
LT3083  
V
OUT  
MAX  
IN  
IN  
OUT  
I
1.5V  
*
10μF  
SET  
R
MIN  
909Ω  
3083 TA01a  
*OPTIONAL FOR  
MINIMUM 1mA LOAD  
REQUIREMENT  
R
18.2k  
1%  
SET  
0.1μF  
49  
49.5  
50  
50.5  
51  
SET PIN CURRENT DISTRIBUTION (μA)  
3083 TA01b  
3083f  
1
LT3083  
ABSOLUTE MAXIMUM RATINGS  
(Note 1) All Voltages Relative to VOUT  
Output Short-Circuit Duration.......................... Indefinite  
Operating Junction Temperature Range (Notes 2, 10)  
E-, I-grades........................................ –40°C to 125°C  
MP-grade........................................... –55°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
CONTROL Pin Voltage............................................. 28V  
IN Pin Voltage (T5, Q Packages) ....................18V, –0.3V  
No Overload or Short-Circuit .....................23V, –0.3V  
IN Pin Voltage (DF, FE Packages).....................8V, –0.3V  
No Overload or Short-Circuit .....................14V, –0.3V  
SET Pin Current (Note 7) ..................................... 25mA  
SET Pin Voltage (Relative to OUT).......................... 10V  
T, Q, FE Packages Only .....................................300°C  
PIN CONFIGURATION  
TOP VIEW  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
SET  
OUT  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
OUT  
IN  
TOP VIEW  
1
2
3
4
5
6
12 IN  
11 IN  
OUT  
OUT  
OUT  
OUT  
OUT  
SET  
IN  
IN  
IN  
IN  
V
10  
9
13  
OUT  
17  
OUT  
12 IN  
8
CONTROL  
11  
10  
9
V
V
CONTROL  
CONTROL  
7
V
CONTROL  
DF PACKAGE  
12-LEAD (4mm s 4mm) PLASTIC DFN  
OUT  
FE PACKAGE  
16-LEAD PLASTIC TSSOP  
T
= 125°C, θ = 37°C/W, θ = 8°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 13) IS OUT, MUST BE SOLDERED TO PCB  
T
= 125°C, θ = 25°C/W, θ = 8°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 17) IS OUT, MUST BE SOLDERED TO PCB  
FRONT VIEW  
FRONT VIEW  
5
4
3
2
1
IN  
V
5
4
3
2
1
IN  
V
CONTROL  
CONTROL  
TAB IS  
OUT  
TAB IS  
OUT  
OUT  
SET  
NC  
OUT  
SET  
NC  
Q PACKAGE  
5-LEAD PLASTIC DD-PAK  
T PACKAGE  
5-LEAD PLASTIC TO-220  
T
JMAX  
= 125°C, θ = 40°C/W, θ = 3°C/W  
T
= 125°C, θ = 15°C/W, θ = 3°C/W  
JA JC  
JA  
JC  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3083EDF#PBF  
LT3083EFE#PBF  
LT3083EQ#PBF  
LT3083ET#PBF  
LT3083IDF#PBF  
LT3083IFE#PBF  
TAPE AND REEL  
PART MARKING*  
3083  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT3083EDF#TRPBF  
LT3083EFE#TRPBF  
LT3083EQ#TRPBF  
LT3083ET#TRPBF  
LT3083IDF#TRPBF  
LT3083IFE#TRPBF  
12-Lead (4mm × 4mm) Plastic DFN  
16-Lead Plastic TSSOP  
3083FE  
LT3083Q  
LT3083T  
3083  
5-Lead Plastic DD-PAK  
5-Lead Plastic TO-220  
12-Lead (4mm × 4mm) Plastic DFN  
16-Lead Plastic TSSOP  
3083FE  
3083f  
2
LT3083  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3083IQ#PBF  
LT3083IT#PBF  
LT3083MPDF#PBF  
LT3083MPFE#PBF  
LT3083MPQ#PBF  
LT3083MPT#PBF  
LEAD BASED FINISH  
LT3083EDF  
TAPE AND REEL  
LT3083IQ#TRPBF  
LT3083IT#TRPBF  
LT3083MPDF#TRPBF  
LT3083MPFE#TRPBF  
LT3083MPQ#TRPBF  
LT3083MPT#TRPBF  
TAPE AND REEL  
LT3083EDF#TR  
LT3083EFE#TR  
PART MARKING*  
LT3083Q  
PACKAGE DESCRIPTION  
5-Lead Plastic DD-PAK  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
LT3083T  
5-Lead Plastic TO-220  
083MP  
12-Lead (4mm × 4mm) Plastic DFN  
16-Lead Plastic TSSOP  
3083MPFE  
LT3083MPQ  
LT3083MPT  
PART MARKING*  
3083  
5-Lead Plastic DD-PAK  
5-Lead Plastic TO-220  
PACKAGE DESCRIPTION  
12-Lead (4mm × 4mm) Plastic DFN  
16-Lead Plastic TSSOP  
LT3083EFE  
3083FE  
LT3083EQ  
LT3083EQ#TR  
LT3083Q  
5-Lead Plastic DD-PAK  
LT3083ET  
LT3083ET#TR  
LT3083T  
5-Lead Plastic TO-220  
LT3083IDF  
LT3083IDF#TR  
3083  
12-Lead (4mm × 4mm) Plastic DFN  
16-Lead Plastic TSSOP  
LT3083IFE  
LT3083IFE#TR  
3083FE  
LT3083IQ  
LT3083IQ#TR  
LT3083Q  
5-Lead Plastic DD-PAK  
LT3083IT  
LT3083IT#TR  
LT3083T  
5-Lead Plastic TO-220  
LT3083MPDF  
LT3083MPFE  
LT3083MPQ  
LT3083MPDF#TR  
LT3083MPFE#TR  
LT3083MPQ#TR  
LT3083MPT#TR  
083MP  
12-Lead (4mm × 4mm) Plastic DFN  
16-Lead Plastic TSSOP  
3083MPFE  
LT3083MPQ  
LT3083MPT  
5-Lead Plastic DD-PAK  
LT3083MPT  
5-Lead Plastic TO-220  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SET Pin Current  
I
V
V
= 1V, V  
≥ 1V, V  
= 2V, I  
= 1mA, T = 25°C  
LOAD  
49.5  
49  
50  
50  
50.5  
51  
μA  
μA  
SET  
IN  
IN  
CONTROL  
CONTROL  
LOAD  
J
≥ 2V, 5mA ≤ I  
≤ 3A (Note 9)  
l
l
l
l
l
Output Offset Voltage (V  
– V  
LOAD  
)
V
OS  
DF, FE Packages  
–3  
–4  
0
0
3
4
mV  
mV  
OUT  
SET  
V
= 1V, V  
= 2V, I  
= 1mA  
IN  
CONTROL  
T, Q Packages  
–4  
–6  
0
0
4
6
mV  
mV  
Load Regulation (DF, FE Packages)  
Load Regulation (T, Q Packages)  
Line Regulation (DF, FE Packages)  
Line Regulation (T, Q Packages)  
Minimum Load Current (Notes 3, 9)  
ΔI  
ΔV  
ΔI  
ΔI  
= 1mA to 3A  
= 5mA to 3A (Note 8)  
–10  
–0.4  
nA  
mV  
SET  
OS  
LOAD  
LOAD  
–1  
–4  
ΔI  
ΔV  
ΔI  
ΔI  
= 1mA to 3A  
= 5mA to 3A (Note 8)  
–10  
–0.7  
nA  
mV  
SET  
OS  
LOAD  
LOAD  
ΔI  
ΔV  
ΔV = 1V to 14V, ΔV  
ΔV = 1V to 14V, ΔV  
= 2V to 25V, I  
= 2V to 25V, I  
= 1mA  
= 1mA  
0.1  
0.002  
nA/V  
mV/V  
SET  
OS  
IN  
IN  
CONTROL  
CONTROL  
LOAD  
LOAD  
0.01  
0.01  
ΔI  
ΔV  
ΔV = 1V to 23V, ΔV  
ΔV = 1V to 23V, ΔV  
= 2V to 25V, I  
= 2V to 25V, I  
= 1mA  
= 1mA  
0.1  
0.002  
nA/V  
mV/V  
SET  
OS  
IN  
IN  
CONTROL  
CONTROL  
LOAD  
LOAD  
l
l
V
IN  
V
IN  
= 1V, V  
= 2V  
350  
500  
1
μA  
mA  
CONTROL  
= 14V (DF/FE) or 23V (T/Q), V  
= 25V  
CONTROL  
3083f  
3
LT3083  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Dropout Voltage (Note 4)  
I
I
I
= 100mA  
= 1A  
= 3A  
1.2  
1.22  
1.25  
V
V
V
CONTROL  
LOAD  
LOAD  
LOAD  
l
l
1.55  
1.6  
l
V
Dropout Voltage (Note 4)  
I
= 100mA  
10  
25  
mV  
IN  
LOAD  
l
l
I
I
= 1A, Q, T Packages  
= 1A, DF, FE Packages  
120  
90  
190  
160  
mV  
mV  
LOAD  
LOAD  
l
l
I
I
= 3A, Q, T Packages  
= 3A, DF, FE Packages  
310  
240  
510  
420  
mV  
mV  
LOAD  
LOAD  
l
l
l
V
Pin Current (Note 5)  
I
I
I
= 100mA  
= 1A  
= 3A  
5.5  
18  
40  
10  
35  
80  
mA  
mA  
mA  
CONTROL  
LOAD  
LOAD  
LOAD  
l
Current Limit  
V
= 5V, V  
= 5V, V = 0V, V = 0.1V  
OUT  
3
3.7  
40  
1
A
IN  
CONTROL  
SET  
Error Amplifier RMS Output Noise (Note 6)  
Reference Current RMS Output Noise (Note 6)  
Ripple Rejection  
I
= 500mA, 10Hz ≤ f ≤ 100kHz, C  
= 10μF, C = 0.1μF  
μV  
nA  
LOAD  
OUT  
SET  
RMS  
RMS  
10Hz ≤ f ≤ 100kHz  
f = 120Hz  
f = 10kHz  
f = 1MHz  
85  
75  
20  
dB  
dB  
dB  
V
C
= 0.5V , I = 0.1A, C = 0.1μF,  
P-P L SET  
RIPPLE  
OUT  
= 10μF  
Thermal Regulation, I  
10ms Pulse  
0.003  
%/W  
SET  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: The V  
pin current is the drive current required for the  
CONTROL  
output transistor. This current will track output current with roughly a 1:60  
ratio. The minimum value is equal to the quiescent current of the device.  
Note 6: Output noise is lowered by adding a small capacitor across the  
voltage setting resistor. Adding this capacitor bypasses the voltage setting  
resistor shot noise and reference current noise; output noise is then equal  
to error amplifier noise (see the Applications Information section).  
Note 2: Unless otherwise specified, all voltages are with respect to V  
OUT.  
The LT3083 is tested and specified under pulse load conditions such that  
T T . The LT3083E is 100% tested at T = 25°C. Performance of the  
J
A
A
LT3083E over the full –40°C to 125°C operating junction temperature  
range is assured by design, characterization, and correlation with  
statistical process controls. The LT3083I regulators are guaranteed  
over the full –40°C to 125°C operating junction temperature range. The  
LT3083MP is 100% tested and guaranteed over the –55°C to 125°C  
operating junction temperature range.  
Note 3: Minimum load current is equivalent to the quiescent current of  
the part. Since all quiescent and drive current is delivered to the output  
of the part, the minimum load current is the minimum current required to  
maintain regulation.  
Note 7: The SET pin is clamped to the output with diodes through 1k  
resistors. These resistors and diodes will only carry current under  
transient overloads.  
Note 8: Load regulation is Kelvin sensed at the package.  
Note 9: Current limit includes foldback protection circuitry. Current limit  
decreases at higher input-to-output differential voltages.  
Note 10: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed the maximum operating junction temperature  
when overtemperature protection is active. Overtemperature protection  
(thermal limit) is typically active at junction temperatures of 165°C.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 4: For the LT3083, dropout is caused by either minimum control  
voltage (V  
) or minimum input voltage (V ). Both parameters are  
CONTROL  
IN  
specified with respect to the output voltage. The specifications represent  
the minimum input-to-output differential voltage required to maintain  
regulation.  
3083f  
4
LT3083  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
SET Pin Current  
Set Pin Current Distribution  
Offset Voltage (VOUT – VSET  
)
1.0  
50.5  
50.4  
50.3  
50.2  
50.1  
50.0  
49.9  
49.8  
49.7  
49.6  
49.5  
N = 1052  
I
= 5mA  
LOAD  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
49  
49.5  
50  
50.5  
51  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
SET PIN CURRENT DISTRIBUTION (μA)  
3083 G02  
3083 G03  
3083 G01  
Offset Voltage Distribution  
Offset Voltage (VOUT – VSET  
)
Offset Voltage (VOUT – VSET)  
1.00  
0.75  
0.50  
0.25  
0
0.25  
0
N = 1052  
I
= 5mA  
LOAD  
T
= 25°C  
J
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
–1.75  
T
= 125°C  
J
–0.25  
–0.50  
–0.75  
–1.00  
–3  
–2  
–1  
0
1
2
3
0
5
10  
15  
20  
25  
0
0.5  
1
1.5  
2
2.5  
3
V
DISTRIBUTION (mV)  
INPUT-TO-OUTPUT VOLTAGE (V)  
LOAD CURRENT (A)  
OS  
3083 G04  
3083 G05  
3083 G06  
Dropout Voltage, T/Q Packages  
(Minimum IN Voltage)  
Load Regulation  
Minimum Load Current  
1.4  
400  
350  
300  
250  
200  
150  
100  
50  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
100  
50  
V
= V  
CONTROL  
IN  
CHANGE IN OFFSET VOLTAGE (V  
– V  
)
SET  
OUT  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 125°C  
J
0
V
– V  
= 23V  
OUT  
IN,CONTROL  
CHANGE IN REFERENCE CURRENT  
–50  
–100  
–150  
–200  
–250  
–300  
T
= 25°C  
J
T
= –50°C  
J
V
– V  
= 1.5V  
OUT  
IN,CONTROL  
ΔI  
IN  
= 5mA TO 3A  
LOAD  
V
= V  
= V  
+ 2V  
CONTROL  
OUT  
0
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
0
0.5  
1
1.5  
2
2.5  
3
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
LOAD CURRENT (A)  
3083 G08  
3083 G09  
3083 G07  
3083f  
5
LT3083  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Dropout Voltage, T/Q Packages  
(Minimum IN Voltage)  
Dropout Voltage, FE/DF Packages  
(Minimum IN Voltage)  
Dropout Voltage, FE/DF Packages  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 125°C  
J
I
= 3A  
LOAD  
I
= 3A  
LOAD  
T
= 25°C  
J
I
= 1.5A  
LOAD  
I
= 1.5A  
LOAD  
T
= –50°C  
J
I
= 500mA  
I
= 500mA  
LOAD  
LOAD  
I = 100mA  
LOAD  
I
= 100mA  
LOAD  
0
0
0
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
0
0.5  
1
1.5  
2
2.5  
3
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
LOAD CURRENT (A)  
3083 G12  
3083 G10  
3083 G11  
Dropout Voltage (Minimum  
VCONTROL Pin Voltage)  
Dropout Voltage (Minimum  
VCONTROL Pin Voltage)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
= 3A  
LOAD  
T
= –50°C  
J
T
= 25°C  
J
T
= 125°C  
J
0
0.5  
1
1.5  
2
2.5  
3
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
LOAD CURRENT (A)  
3083 G13  
3083 G14  
Current Limit  
Current Limit  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
J
V
V
= V  
= 7V  
IN  
OUT  
CONTROL  
0
= 0V  
–50 –25  
25 50 75 100 125 150  
0
5
10  
15  
IN OUT  
20  
TEMPERATURE (°C)  
IN-TO-OUT DIFFERENTIAL (V – V ) (V)  
3083 G15  
3083 G16  
3083f  
6
LT3083  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Load Transient Response  
Load Transient Response  
250  
150  
50  
150  
100  
50  
V
V
V
C
= 2V  
IN  
CONTROL  
V
V
V
C
= 2V  
IN  
CONTROL  
= 3V  
= 3V  
= 1V  
OUT  
SET  
= 1V  
OUT  
SET  
= 0.1μF  
C
OUT  
= 22μF CERAMIC  
= 0.1μF  
C
= 22μF CERAMIC  
OUT  
–50  
–150  
0
–50  
–100  
1.0  
0.5  
0
C
= 10μF CERAMIC  
OUT  
4
2
0
ΔI  
= 500mA TO 3A  
LOAD  
ΔI  
= 100mA TO 1A  
LOAD  
0
20 40 60 80 100 120 140 160 180 200  
TIME (μs)  
0
20 40 60 80 100 120 140 160 180 200  
TIME (μs)  
3083 G18  
3083 G17  
Line Transient Response  
Turn-On Response  
Turn-On Response  
7
6
6
5
4
V
= 1V  
= 10mA  
OUT  
I
LOAD  
C
C
3
2
= 10μF CERAMIC  
= 0.1μF  
OUT  
SET  
4
5
3
4
1
2
3
1
0
0
10  
0
1.0  
1.0  
0.5  
0
0.5  
R
SET  
= 20k  
= 0  
R
= 20k  
= 0.1μF  
= 1Ω  
SET  
SET  
C
C
SET  
–10  
–20  
0
R
C
= 0.33Ω  
R
C
LOAD  
OUT  
LOAD  
= 10μF CERAMIC  
= 10μF CERAMIC  
OUT  
–0.5  
–0.5  
0
20 40 60 80 100 120 140 160 180 200  
TIME (μs)  
0
5
10 15 20 25 30 35 40 45 50  
TIME (μs)  
0
2
4
6
8
10 12 14 16 18 20  
TIME (ms)  
3083 G19  
3083 G20  
3083 G21  
Residual Output Voltage with  
Less Than Minimum Load  
VCONTROL Pin Current  
VCONTROL Pin Current  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
600  
500  
400  
300  
200  
100  
0
V
V
– V  
= 2V  
OUT  
CONTROL  
– V  
V
= 20V  
= 1V  
OUT  
IN  
IN  
V
= 10V  
IN  
T
= –50°C  
J
V
= 5V  
IN  
ADD 1N4148 FOR  
< 1k  
I
= 3A  
LOAD  
R
TEST  
T
= 25°C  
J
SET PIN = 0V  
DEVICE IN  
CURRENT LIMIT  
V
V
OUT  
IN  
T
= 125°C  
J
R
TEST  
I
= 1.5A  
LOAD  
2
0
0.5  
1
1.5  
2
2.5  
3
0
4
6
8
10 12 14 16 18  
0
500  
1000  
R (Ω)  
SET  
1500  
2000  
LOAD CURRENT (A)  
IN-TO-OUT DIFFERENTIAL (V – V ) (V)  
IN  
OUT  
3083 G23  
3083 G22  
3083 G24  
3083f  
7
LT3083  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Ripple Rejection, Dual Supply,  
VCONTROL Pin  
Ripple Rejection, Dual Supply,  
IN Pin  
Ripple Rejection, Single Supply  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
105  
90  
75  
60  
45  
30  
15  
0
120  
105  
90  
75  
60  
45  
30  
15  
0
I
= 0.1A  
LOAD  
I
= 0.1A  
LOAD  
I
= 0.5A  
LOAD  
I
= 0.1A  
LOAD  
I
= 1.5A  
LOAD  
I
= 0.5A  
I
= 1.5A  
LOAD  
LOAD  
I
= 1.5A  
LOAD  
C
C
= 10μF CERAMIC  
= 0.1μF CERAMIC  
C
C
V
V
= 10μF CERAMIC  
= 0.1μF  
C
C
V
V
= 10μF CERAMIC  
= 0.1μF  
OUT  
SET  
OUT  
OUT  
SET  
IN  
SET  
RIPPLE = 50mV  
= V  
+ 1V  
OUT(NOMINAL)  
= V  
+ 1V  
OUT(NOMINAL)  
P-P  
= V  
IN  
OUT(NOMINAL)  
= V  
OUT(NOMINAL)  
= V  
V
– V  
+ 2V  
+ 2V  
+ 2V  
IN  
CONTROL  
OUT(NOMINAL)  
10k 100k  
CONTROL  
CONTROL  
10  
100  
1k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
3083 G25  
3083 G26  
3083 G27  
Ripple Rejection (120Hz)  
Noise Spectral Density  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
1000  
100  
10  
100  
V
= V  
= V  
P-P  
+ 2V  
OUT(NOMINAL)  
IN  
CONTROL  
RIPPLE = 500mV , ƒ = 120Hz  
I
= 0.5A  
LOAD  
C
= 0.1μF, C  
= 10μF  
OUT  
SET  
1
100k  
10  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
3083 G28  
3083 G29  
Output Voltage Noise  
Error Amplifier Gain and Phase  
21  
18  
15  
12  
9
36  
0
PHASE  
–36  
–72  
–108  
–144  
–180  
–216  
–252  
–288  
–324  
–360  
6
V
OUT  
3
100μV/DIV  
0
GAIN  
–3  
–6  
–9  
–12  
–15  
I
I
I
= 0.5A  
= 1.5A  
= 3A  
LOAD  
LOAD  
LOAD  
–396  
1M  
3083 G30  
TIME 1ms/DIV  
10  
100  
1k  
10k  
100k  
V
C
LOAD  
= 1V, R  
= 0.1μF, C  
= 3A  
= 20k  
OUT  
FREQUENCY (Hz)  
OUT  
SET  
SET  
= 10μF  
3083 G31  
I
3083f  
8
LT3083  
PIN FUNCTIONS (DF/FE/Q/T Packages)  
OUT (Pins 1-5,13/Pins 1-6,8,9,16,17/Pin 3, Tab/Pin 3,  
Tab): Output. The exposed pad of the DF package (Pin 13)  
and the FE package (Pin 17) and the Tab of the DD-PAK  
and TO-220 packages is an electrical connection to OUT.  
Connect the exposed pad of the DF and FE packages and  
the Tab of the DD-PAK package directly to OUT on the  
PCB and the respective OUT pins for each package. There  
must be a minimum load current of 1mA or the output  
may not regulate.  
V
(Pins 7,8/Pins 10,11/Pin 4/Pin 4): Bias Sup-  
CONTROL  
ply. This is the supply pin for the control circuitry of the  
device. Minimum input capacitance is 2.2μF (see Input  
Capacitance and Stability in the Applications Information  
section). The current flow into this pin is about 1.7% of  
the output current. For the device to regulate, this voltage  
must be more than 1.2V to 1.4V greater than the output  
voltage (see dropout specifications in the Electrical Char-  
acteristics section).  
SET (Pin 6/Pin 7/Pin 2/Pin 2): Set Point. This pin is the  
non-inverting input to the error amplifier and the regula-  
tion set point. A fixed current of 50ꢀA flows out of this  
pin through a single external resistor, which programs  
the output voltage of the device. Output voltage range is  
IN (Pins 9-12/Pins 12-15/Pin 5/Pin 5): Power Input. This  
is the collector to the power device of the LT3083. The  
output load current is supplied through this pin. Minimum  
IN capacitance is 10μF (see Input Capacitance and Stabil-  
ity in Applications Information section). For the device to  
regulate, the voltage at this pin must be more than 0.1V  
to 0.5V greater than the output voltage (see dropout  
specifications in the Electrical Characteristics section).  
zero to the V  
– V  
. Transient performance  
IN(MAX)  
DROPOUT  
can be improved by adding a small capacitor from the  
SET pin to ground.  
NC(NA/NA/Pin1/Pin1):NoConnection.NoConnectpins  
have no connection to internal circuitry and may be tied  
to V , V  
, V , GND, or floated.  
IN CONTROL OUT  
3083f  
9
LT3083  
BLOCK DIAGRAM  
IN  
V
CONTROL  
50μA  
+
3083 BD  
SET  
OUT  
3083f  
10  
LT3083  
APPLICATIONS INFORMATION  
The LT3083 has the collector of the output transistor con-  
nected to a separate pin from the control input. Since the  
dropout on the collector (IN pin) is typically only 310mV,  
two supplies can be used to power the LT3083 to reduce  
dissipation:ahighervoltagesupplyforthecontrolcircuitry  
and a lower voltage supply for the collector. This increases  
efficiency and reduces dissipation. To further spread the  
heat, a resistor inserted in series with the collector moves  
some of the heat out of the IC to spread it on the PC board  
(see the section Reducing Power Dissipation).  
TheLT3083regulatoriseasytouseandhasalltheprotection  
featuresexpectedinhighperformanceregulators.Included  
areshort-circuitprotectionandsafeoperatingareaprotec-  
tion, as well as thermal shutdown with hysteresis.  
The LT3083 fits well in applications needing multiple rails.  
This new architecture adjusts down to zero with a single  
resistor,handlingmodernlowvoltagedigitalIC’saswellas  
allowing easy parallel operation and thermal management  
withoutheatsinks.Adjustingtozerooutputallowsshutting  
off the powered circuitry. When the input is pre-regulated,  
such as with a 5V or 3.3V input supply, external resistors  
can help spread the heat.  
The LT3083 can be operated in two modes. Three termi-  
nal mode has the V  
pin connected to the IN pin  
CONTROL  
and gives a limitation of 1.25V dropout. Alternatively, the  
pin is separately tied to a higher voltage and the  
IN pin to a lower voltage giving 310mV dropout on the IN  
pin, minimizing total power dissipation. This allows for a  
Aprecision0TC50ꢀAreferencecurrentsourceconnects  
to the noninverting input of a power operational amplifier.  
Thepoweroperationalamplifierprovidesalowimpedance  
buffered output to the voltage on the noninverting input.  
A single resistor from the noninverting input to ground  
sets the output voltage. If this resistor is set to 0Ω, zero  
output voltage results. Therefore, any output voltage can  
be obtained between zero and the maximum defined by  
the input power supply.  
V
CONTROL  
3A supply regulating from 2.5V to 1.8V  
or 1.8V to  
IN  
OUT  
IN  
1.2V  
with low power dissipation.  
OUT  
Programming Output Voltage  
The LT3083 sources a 50ꢀA reference current that flows  
out of the SET pin. Connecting a resistor from SET to  
ground generates a voltage that becomes the reference  
point for the error amplifier (see Figure 1). The refer-  
ence voltage equals 50μA multiplied by the value of  
the SET pin resistor. Any voltage can be generated and  
there is no minimum output voltage for the regulator.  
The benefit of using a true internal current source as the  
reference,asopposedtoabootstrappedreferenceinolder  
regulators, is not so obvious in this architecture. A true  
reference current source allows the regulator to have gain  
and frequency response independent of the impedance on  
the positive input. On older adjustable regulators, such as  
the LT1086, loop gain changes with output voltage and  
bandwidth changes if the adjustment pin is bypassed to  
ground. For the LT3083, the loop gain is unchanged with  
output voltage changes or bypassing. Output regulation  
is not a fixed percentage of output voltage, but is a fixed  
fraction of millivolts. Use of a true current source allows  
all of the gain in the buffer amplifier to provide regulation,  
and none of that gain is needed to amplify up the reference  
to a higher output voltage.  
IN  
LT3083  
V
CONTROL  
50μA  
+
+
+
V
V
CONTROL  
IN  
OUT  
V
C
OUT  
SET  
R
OUT  
C
SET  
SET  
3083 F01  
V
OUT  
= 50μA • R  
SET  
Figure 1. Basic Adjustable Regulator  
3083f  
11  
LT3083  
APPLICATIONS INFORMATION  
Table 1 lists many common output voltages and the clos-  
est standard 1% resistor values used to generate that  
output voltage.  
OUT  
Regulation of the output voltage requires a minimum  
load current of 1mA. For a true zero voltage output  
operation, return this 1mA load current to a negative  
supply voltage.  
Table 1. 1% Resistors for Common Output Voltages  
V
(V)  
R
(k)  
SET  
OUT  
GND  
SET PIN  
3083 F02  
1
20  
1.2  
24.3  
30.1  
35.7  
49.9  
66.5  
100  
Figure 2. Guard Ring Layout Example  
for DF Package  
1.5  
1.8  
2.5  
3.3  
5
to remedy this is to bypass the SET pin with a small  
amount of capacitance from SET to ground, 10pF to  
20pF is sufficient.  
With the lower level current used to generate the refer-  
ence voltage, leakage paths to or from the SET pin can  
create errors in the reference and output voltages. High  
quality insulation should be used (e.g., Teflon, Kel-F);  
cleaning of all insulating surfaces to remove fluxes and  
other residues will probably be required. Surface coating  
may be necessary to provide a moisture barrier in high  
humidity environments.  
Stability and Input Capacitance  
Typical minimum input capacitance is 10μF for IN and  
2.2μF for V  
. These amounts of capacitance work  
CONTROL  
well using low ESR ceramic capacitors when placed close  
to the LT3083 and the circuit is located in close proximity  
to the power source. Higher values of input capacitance  
may be necessary to maintain stability depending on the  
application.  
Minimize board leakage by encircling the SET pin and  
circuitry with a guard ring operated at a potential close  
to itself. Tie the guard ring to the OUT pin. Guard rings  
on both sides of the circuit board are required. Bulk leak-  
age reduction depends on the guard ring width. 50nA  
of leakage into or out of the SET pin and its associated  
circuitry creates a 0.1% reference voltage error. Leakages  
of this magnitude, coupled with other sources of leakage,  
can cause significant offset voltage and reference drift,  
especially over the possible operating temperature range.  
Figure 2 depicts an example of a guard ring layout.  
Oscillatingregulatorcircuitsareoftenviewedasaproblem  
of phase margin and inadequate stability with the output  
capacitor used. More and more frequently, the problem  
is not the regulator operating without sufficient output  
capacitance, but instead with too little input capacitance.  
The entire circuit must be analyzed and debugged as a  
whole; conditions relating to the input of the regulator  
cannot be ignored.  
The LT3083 input presents a high impedance to its power  
source:theoutputvoltageandloadcurrentareindependent  
of input voltage variations. To maintain stability of the  
regulator circuit as a whole, the LT3083 must be powered  
from a low impedance supply. When using short supply  
lines or powering directly from a large switching supply,  
there is no issue—hundreds or thousands of microfarads  
of capacitance are available through a low impedance.  
If guard ring techniques are used, this bootstraps any  
stray capacitance at the SET pin. Since the SET pin is  
a high impedance node, unwanted signals may couple  
into the SET pin and cause erratic behavior. This will  
be most noticeable when operating with minimum  
output capacitors at full load current. The easiest way  
3083f  
12  
LT3083  
APPLICATIONS INFORMATION  
When longer supply lines, filters, current sense resistors,  
or other impedances exist between the supply and the  
input to the LT3083, input bypassing should be reviewed  
if stability concerns are seen. Just as output capacitance  
supplies the instantaneous changes in load current for  
output transients until the regulator is able to respond,  
inputcapacitancesupplieslocalpowertotheregulatoruntil  
themainsupplyresponds.Whenimpedanceseparatesthe  
LT3083 from its main supply, the local input can droop  
so that the output follows. The entire circuit may break  
intooscillations,usuallycharacterizedbylargeramplitude  
oscillations on the input and coupling to the output.  
to reduce overall inductance is to place both forward and  
return current conductors (the input and GND wires) in  
verycloseproximity.Two30-AWGwiresseparatedbyonly  
0.02", used as forward- and return- current conductors,  
reduce the overall self-inductance to approximately one-  
fifth that of a single isolated wire.  
If wiring modifications are not permissible for the applica-  
tions,includingseriesresistancebetweenthepowersupply  
and the input of the LT3083 also stabilizes the application.  
Aslittleas0.1Ωto0.5Ω, oftenless, iseffectiveindamping  
the LC resonance. If the added impedance between the  
powersupplyandtheinputisunacceptable,addingESRto  
theinputcapacitoralsoprovidesthenecessarydampingof  
the LC resonance. However, the required ESR is generally  
higher than the series impedance required.  
Low ESR, ceramic input bypass capacitors are acceptable  
forapplicationswithoutlonginputleads.However,applica-  
tions connecting a power supply to an LT3083 circuit’s IN  
and GND pins with long input wires combined with low  
ESR, ceramicinputcapacitorsarepronetovoltagespikes,  
reliability concerns and application-specific board oscil-  
lations. The input wire inductance found in many battery  
poweredapplications,combinedwiththelowESRceramic  
inputcapacitor, formsahigh-QLCresonanttankcircuit. In  
some instances this resonant frequency beats against the  
output current dependent LDO bandwidth and interferes  
with proper operation. Simple circuit modifications/solu-  
tions are then required. This behavior is not indicative of  
LT3083 instability, but is a common ceramic input bypass  
capacitor application issue.  
Stability and Output Capacitance  
The LT3083 requires an output capacitor for stability. It  
is designed to be stable with most low ESR capacitors  
(typically ceramic, tantalum or low ESR electrolytic). A  
minimum output capacitor of 10ꢀF with an ESR of 0.5ꢁ  
or less is recommended to prevent oscillations. Larger  
values of output capacitance decrease peak deviations  
and provide improved transient response for larger load  
current changes. Bypass capacitors, used to decouple  
individual components powered by the LT3083, increase  
the effective output capacitor value. For improvement in  
transient performance, place a capacitor across the volt-  
age setting resistor. Capacitors up to 1ꢀF can be used.  
This bypass capacitor reduces system noise as well, but  
start-up time is proportional to the time constant of the  
The self-inductance, or isolated inductance, of a wire is  
directly proportional to its length. Wire diameter is not a  
major factor on its self-inductance. For example, the self-  
inductance of a 2-AWG isolated wire (diameter = 0.26") is  
about half the self-inductance of a 30-AWG wire (diameter  
= 0.01"). One foot of 30-AWG wire has about 465nH of  
self-inductance.  
voltage setting resistor (R  
bypass capacitor.  
in Figure 1) and SET pin  
SET  
Give extra consideration to the use of ceramic capacitors.  
Ceramic capacitors are manufactured with a variety of di-  
electrics, each with different behavior across temperature  
and applied voltage. The most common dielectrics used  
are specified with EIA temperature characteristic codes of  
Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics are  
good for providing high capacitances in a small package,  
but they tend to have strong voltage and temperature  
coefficients as shown in Figures 3 and 4. When used with  
a 5V regulator, a 16V 10ꢀF Y5V capacitor can exhibit an  
One of two ways reduces a wire’s self-inductance. One  
method divides the current flowing towards the LT3083  
between two parallel conductors. In this case, the farther  
apart the wires are from each other, the more the self-in-  
ductance is reduced; up to a 50% reduction when placed  
a few inches apart. Splitting the wires basically connects  
two equal inductors in parallel, but placing them in close  
proximity gives the wires mutual inductance adding to  
the self-inductance. The second and most effective way  
3083f  
13  
LT3083  
APPLICATIONS INFORMATION  
20  
effective value as low as 1ꢀF to 2ꢀF for the DC bias voltage  
appliedandovertheoperatingtemperaturerange.TheX5R  
and X7R dielectrics result in more stable characteristics  
and are more suitable for use as the output capacitor.  
The X7R type has better stability across temperature,  
while the X5R is less expensive and is available in higher  
values. Care still must be exercised when using X5R and  
X7R capacitors. The X5R and X7R codes only specify  
operating temperature range and maximum capacitance  
change over temperature. Capacitance change due to DC  
bias with X5R and X7R capacitors is better than Y5V and  
Z5U capacitors, but can still be significant enough to drop  
capacitor values below appropriate levels. Capacitor DC  
bias characteristics tend to improve as component case  
size increases, but expected capacitance at operating  
voltage should be verified.  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
0
X5R  
–20  
–40  
–60  
Y5V  
–80  
–100  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3083 F03  
Figure 3. Ceramic Capacitor DC Bias Characteristics  
40  
20  
X5R  
0
–20  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress. In a  
ceramic capacitor, the stress can be induced by vibrations  
in the system or thermal transients.  
–40  
Y5V  
–60  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
Paralleling Devices  
3083 F04  
Higher output current is obtained by paralleling multiple  
LT3083s together. Tie the individual SET pins together and  
tie the individual IN pins together. Connect the outputs in  
commonusingsmallpiecesofPCtraceasballastresistors  
to promote equal current sharing. PC trace resistance in  
mꢁ/inch is shown in Table 2. Ballasting requires only a  
tiny area on the PCB.  
Figure 4. Ceramic Capacitor Temperature Characteristics  
V
LT3083  
IN  
V
CONTROL  
+
10mꢁ  
OUT  
Table 2. PC Board Trace Resistance  
SET  
WEIGHT (oz)  
10mil WIDTH  
54.3  
20mil WIDTH  
27.1  
V
IN  
V
LT3083  
IN  
1
2
4.8V  
TO 20V  
27.1  
13.6  
V
CONTROL  
Trace resistance is measured in mΩ/in  
+
10μF  
The worst-case room temperature offset, only 4mV  
(DD-PAK, T Packages) between the SET pin and the OUT  
pin, allows the use of very small ballast resistors.  
10mꢁ  
V
3.3V  
6A  
OUT  
OUT  
SET  
33k  
10μF  
As shown in Figure 5, each LT3083 has a small 10mΩ  
ballast resistor, which at full output current gives better  
than 80% equalized sharing of the current. The external  
3083 F05  
Figure 5. Parallel Devices  
3083f  
14  
LT3083  
APPLICATIONS INFORMATION  
resistance of 10mΩ (5mΩ for the two devices in paral-  
lel) only adds about 30mV of output regulation drop at  
an output of 6A. With an output voltage of 3.3V, this only  
adds 1% to the regulation. Of course, paralleling more  
than two LT3083s yields even higher output current.  
Spreading the devices on the PC board also spreads the  
heat. Series input resistors can further spread the heat if  
the input-to-output difference is high.  
TheLT3083’snoiseadvantageisthattheunitygainfollower  
presents no noise gain whatsoever from the SET pin to the  
output. Thus, noise figures do not increase accordingly.  
Error amplifier noise is typically 126.5nV/√Hz (40μV  
)
RMS  
over the 10Hz to 100kHz bandwidth). The error amplifier’s  
noise is RMS summed with the other noise terms to give  
a final noise figure for the regulator.  
Curves in the Typical Performance Characteristics sec-  
tion show noise spectral density and peak-to-peak noise  
characteristics for both the reference current and error  
amplifier over the 10Hz to 100kHz bandwidth.  
Quieting the Noise  
The LT3083 offers numerous noise performance advan-  
tages. Every linear regulator has its sources of noise. In  
general, a linear regulator’s critical noise source is the  
reference. In addition, consider the error amplifier’s noise  
contribution along with the resistor divider’s noise gain.  
Load Regulation  
The LT3083 is a floating device. No ground pin exists on  
the packages. Thus, the IC delivers all quiescent current  
and drive current to the load. Therefore, it is not possible  
toprovidetrueremoteloadsensing.Theconnectionresis-  
tance between the regulator and the load determines load  
regulation performance. The data sheet’s load regulation  
specification is Kelvin sensed at the package’s pins. Nega-  
tive-side sensing is a true Kelvin connection by returning  
the bottom of the voltage setting resistor to the negative  
side of the load (see Figure 6).  
Manytraditionallownoiseregulatorsbondoutthevoltage  
reference to an external pin (usually through a large value  
resistor) to allow for bypassing and noise reduction. The  
LT3083 does not use a traditional voltage reference like  
other linear regulators. Instead, it uses a 50μA reference  
current. The 50μA current source generates noise current  
levels of 3.16pA/√Hz (1nA  
) over the 10Hz to 100kHz  
RMS  
bandwidth). The equivalent voltage noise equals the RMS  
noise current multiplied by the resistor value.  
Connected as shown, system load regulation is the sum  
of the LT3083’s load regulation and the parasitic line  
resistance multiplied by the output current. To minimize  
load regulation, keep the positive connection between the  
regulator and load as short as possible. If possible, use  
large diameter wire or wide PC board traces.  
The SET pin resistor generates spot noise equal to √4kTR  
–23  
(k=Boltzmann’sconstant,1.3810 J/°K,andTisabso-  
lute temperature) which is RMS summed with the voltage  
noise.Iftheapplicationrequireslowernoiseperformance,  
bypassthevoltagesettingresistorwithacapacitortoGND.  
Notethatthisnoise-reductioncapacitorincreasesstart-up  
time as a factor of the RC time constant.  
IN  
LT3083  
V
CONTROL  
The LT3083 uses a unity-gain follower from the SET pin  
to the OUT pin. Therefore, multiple possibilities exist  
(besides a SET pin resistor) to set output voltage. For  
example, using a high accuracy voltage reference from  
SET to GND removes the errors in output voltage due to  
reference current tolerance and resistor tolerance. Active  
driving of the SET pin is acceptable.  
PARASITIC  
+
RESISTANCE  
R
P
OUT  
LOAD  
R
SET  
R
P
SET  
R
P
3080 F06  
The typical noise scenario for a linear regulator is that the  
output voltage setting resistor divider gains up the noise  
Figure 6. Connections for Best Load Regulation  
reference, especially if V  
is much greater than V  
.
OUT  
REF  
3083f  
15  
LT3083  
APPLICATIONS INFORMATION  
Thermal Considerations  
Table 4. FE Package, 16-Lead TSSOP  
COPPER AREA  
THERMAL RESISTANCE  
The LT3083’s internal power and thermal limiting circuitry  
protects itself under overload conditions. For continuous  
normalloadconditions,donotexceedthe125°Cmaximum  
junction temperature. Carefully consider all sources of  
thermalresistancefromjunction-to-ambient.Thisincludes  
(but is not limited to) junction-to-case, case-to-heat sink  
interface, heat sink resistance or circuit board-to-ambient  
astheapplicationdictates.Consideralladditional,adjacent  
heat generating sources in proximity on the PCB.  
TOPSIDE*  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2
2
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
16°C/W  
20°C/W  
26°C/W  
32°C/W  
2
1000mm  
2
225mm  
2
100mm  
*Device is mounted on topside.  
Table 5. Q Package, 5-Lead DD-PAK  
COPPER AREA  
THERMAL RESISTANCE  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
Surface mount packages provide the necessary heat  
sinking by using the heat spreading capabilities of the  
PC board, copper traces, and planes. Surface mount heat  
sinks, plated through-holes and solder-filled vias can also  
spread the heat generated by power devices.  
TOPSIDE*  
2
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
13°C/W  
14°C/W  
16°C/W  
2
1000mm  
2
125mm  
*Device is mounted on topside.  
Junction-to-case thermal resistance is specified from the  
ICjunctiontothebottomofthecasedirectly, orthebottom  
of the pin most directly in the heat path. This is the lowest  
thermal resistance path for heat flow. Only proper device  
mountingensuresthebestpossiblethermalowfromthis  
area of the packages to the heat sinking material.  
T Package, 5-Lead TO-220  
Thermal Resistance (Junction-to-Case) = 3°C/W  
For further information on thermal resistance and using  
thermal information, refer to JEDEC standard JESD51,  
notably JESD51-12.  
Note that the exposed pad of the DFN and TSSOP pack-  
ages and the tab of the DD-PAK and TO-220 packages  
PCB layers, copper weight, board layout and thermal vias  
affect the resultant thermal resistance. Tables 3 through 5  
provide thermal resistance numbers for best-case 4-layer  
boards with 1oz internal and 2oz external copper. Modern,  
multilayer PCBs may not be able to achieve quite the same  
level performance as found in these tables.  
are electrically connected to the output (V ).  
OUT  
Tables 3 through 5 list thermal resistance as a function  
of copper areas on a fixed board size. All measurements  
were taken in still air on a 4-layer FR-4 board with 1oz  
solid internal planes and 2oz external trace planes with a  
total finished board thickness of 1.6mm. Layers are not  
connected electrically or thermally.  
Calculating Junction Temperature  
Example: Given an output voltage of 0.9V, a V  
CONTROL  
voltage of 3.3V 10%, an IN voltage of 1.5V 5%, output  
current range from 10mA to 3A and a maximum ambient  
temperature of 50°C, what will the maximum junction  
Table 3. DF Package, 12-Lead DFN  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2
2
2
2
2
2
2
2
2
2
temperature be for the DD-PAK on a 2500mm board with  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
18°C/W  
22°C/W  
29°C/W  
35°C/W  
2
2
topside copper of 1000mm ?  
1000mm  
2
225mm  
2
100mm  
*Device is mounted on topside.  
3083f  
16  
LT3083  
APPLICATIONS INFORMATION  
The power in the drive circuit equals:  
As an example, assume: V = V  
= 5V, V  
= 3.3V  
IN  
CONTROL  
OUT  
and I  
= 2A. Use the formulas from the Calculating  
OUT(MAX)  
P
= (V  
– V )(I  
OUT CONTROL  
)
DRIVE  
CONTROL  
Junction Temperature section previously discussed.  
where I  
is equal to I /60. I  
is a function  
canbefound  
CONTROL  
ofoutputcurrent. AcurveofI  
OUT  
CONTROL  
WithoutseriesresistorR ,powerdissipationintheLT3083  
S
vsI  
CONTROL  
OUT  
equals:  
in the Typical Performance Characteristics curves.  
2A  
60  
The total power equals:  
PTOTAL = 5V 3.3V •  
+ 5V 3.3V • 2A  
(
)
(
)
P
= P  
+ P  
TOTAL  
DRIVE OUTPUT  
= 3.46W  
The current delivered to the SET pin is negligible and can  
be ignored.  
If the voltage differential (V ) across the NPN pass  
transistor is chosen as 0.5V, then RS equals:  
DIFF  
V
V
V
= 3.630V (3.3V + 10%)  
CONTROL(MAX_CONTINUOUS)  
5V 3.3V 0.5V  
= 1.575V (1.5V + 5%)  
RS =  
= 0.6Ω  
IN(MAX_CONTINUOUS)  
2A  
= 0.9V, I  
= 3A, T = 50°C  
A
OUT  
OUT  
Power dissipation in the LT3083 now equals:  
Power dissipation under these conditions is equal to:  
= (V – V )(I  
2A  
60  
PTOTAL = 5V 3.3V •  
+ 0.5V • 2A = 1.06W  
P
)
OUT CONTROL  
(
)
DRIVE  
CONTROL  
IOUT  
3A  
ICONTROL  
=
=
= 50mA  
TheLT3083’spowerdissipationisnowonly30%compared  
60 60  
= (3.630V – 0.9V)(50mA) = 137mW  
to no series resistor. R dissipates 2.4W of power. Choose  
S
P
P
P
appropriate wattage resistors or use multiple resistors in  
DRIVE  
parallel to handle and dissipate the power properly.  
= (V – V )(I )  
OUT OUT  
OUTPUT  
OUTPUT  
IN  
= (1.575V – 0.9V)(3A) = 2.03W  
V
V
IN  
IN  
V
C1  
CONTROL  
LT3083  
R
S
Total Power Dissipation = 2.16W  
IN  
a
Junction Temperature will be equal to:  
T = T + P  
θ (using tables)  
JA  
J
A
TOTAL  
+
T = 50°C + 2.16W • 16°C/W = 84.6°C  
J
OUT  
V
OUT  
In this case, the junction temperature is below the maxi-  
mum rating, ensuring reliable operation.  
3083 F07  
C2  
SET  
R
SET  
Reducing Power Dissipation  
Figure 7. Reducing Power Dissipation Using a Series Resistor  
In some applications it may be necessary to reduce the  
power dissipation in the LT3083 package without sacrific-  
ingoutputcurrentcapability.Twotechniquesareavailable.  
The first technique, illustrated in Figure 7, employs a  
resistor in series with the regulator’s input. The voltage  
drop across RS decreases the LT3083’s input-to-output  
differential voltage and correspondingly decreases the  
LT3083’s power dissipation.  
3083f  
17  
LT3083  
APPLICATIONS INFORMATION  
The second technique for reducing power dissipation,  
shown in Figure 8, uses a resistor in parallel with the  
LT3083. This resistor provides a parallel path for current  
flow, reducing the current flowing through the LT3083.  
This technique works well if input voltage is reasonably  
constant and output load current changes are small. This  
technique also increases the maximum available output  
current at the expense of minimum load requirements.  
As an example, assume: V = V  
= 5V, V  
OUT(MAX)  
=
IN(MAX)  
IN  
CONTROL  
= 3.2V, I  
5.5V, V  
= 3.3V, V  
= 2A and  
OUT  
OUT(MIN)  
I
= 0.7A. Also, assuming that R carries no more  
OUT(MIN)  
P
than 90% of I  
= 630mA.  
OUT(MIN)  
Calculating R yields:  
P
5.5V 3.2V  
RP =  
= 3.65Ω  
0.63A  
(5% Standard Value = 3.6Ω)  
V
IN  
V
C1  
CONTROL  
LT3083  
The maximum total power dissipation is (5.5V – 3.2V) •  
2A = 4.6W. However, the LT3083 supplies only:  
IN  
5.5V 3.2V  
R
P
2A −  
= 1.36A  
+
3.6Ω  
Therefore, the LT3083’s power dissipation is only:  
= (5.5V – 3.2V) • 1.36A = 3.13W  
OUT  
V
OUT  
3083 F08  
C2  
SET  
P
DISS  
R
SET  
R dissipates 1.47W of power. As with the first technique,  
P
choose appropriate wattage resistors to handle and dis-  
sipate the power properly. With this configuration, the  
LT3083 supplies only 1.36A. Therefore, load current can  
increase by 1.64A to a total output current of 3.64A while  
keeping the LT3083 in its normal operating range.  
Figure 8. Reducing Power Dissipation Using a Parallel Resistor  
3083f  
18  
LT3083  
TYPICAL APPLICATIONS  
Adding Shutdown  
Current Source  
IN  
LT3083  
IN  
LT3083  
V
IN  
V
IN  
10V  
V
CONTROL  
V
CONTROL  
+
+
10μF  
0.33ꢁ  
OUT  
OUT  
I
OUT  
V
OUT  
0A TO 3A  
SET  
R1  
SET  
10μF  
Q1  
VN2222LL  
Q2*  
VN2222LL  
ON OFF  
20k  
3083 TA03  
SHUTDOWN  
3083 TA02  
*Q2 INSURES ZERO OUTPUT  
IN THE ABSENCE OF ANY  
OUTPUT LOAD.  
Low Dropout Voltage LED Driver  
V
IN  
V
C1  
CONTROL  
1A  
D1  
LT3083  
IN  
+
OUT  
SET  
R1  
20k  
R2  
1ꢁ  
3083 TA04  
DAC-Controlled Regulator  
IN  
LT3083  
V
IN  
V
CONTROL  
+
OUT  
150k  
450k  
V
OUT  
SET  
10μF  
150k  
SPI  
+
3083 TA05  
LTC2641  
LT1991  
GAIN = 4  
3083f  
19  
LT3083  
TYPICAL APPLICATIONS  
Coincident Tracking  
IN  
LT3083  
V
CONTROL  
IN  
LT3083  
+
V
CONTROL  
OUT  
V
OUT3  
5V  
IN  
LT3083  
V
IN  
+
SET  
34k  
10μF  
7V TO 20V  
3083 TA06  
V
CONTROL  
OUT  
V
OUT2  
3.3V  
+
SET  
R2  
16.2k  
C3  
10μF  
C1  
10μF  
OUT  
V
OUT1  
2.5V  
SET  
R1  
49.9k  
C2  
10μF  
Adding Soft-Start  
IN  
LT3083  
V
IN  
4.8V to 20V  
V
CONTROL  
+
D1  
1N4148  
V
3.3V  
3A  
C1  
10μF  
OUT  
OUT  
SET  
R1  
C
OUT  
C2  
0.01μF  
10μF  
66.5k  
3083 TA07  
Lab Supply  
IN  
LT3083  
IN  
LT3083  
V
IN  
12V TO 18V  
V
V
CONTROL  
CONTROL  
+
+
+
15μF  
0.33ꢁ  
OUT  
OUT  
V
OUT  
0V TO 10V  
SET  
SET  
R4  
+
+
15μF  
10μF  
100μF  
20k  
0A TO 3A  
200k  
3083 TA08  
3083f  
20  
LT3083  
TYPICAL APPLICATIONS  
High Voltage Regulator  
6.1V  
10k  
V
IN  
50V  
1N4148  
IN  
LT3083  
BUZ11  
V
CONTROL  
+
+
10μF  
V
OUT  
OUT  
3A  
V
OUT  
V
OUT  
= 20V  
= 50μA • R  
SET  
+
10μF  
SET  
R
SET  
15μF  
402k  
3083 TA09  
Ramp Generator  
Reference Buffer  
IN  
LT3083  
IN  
LT3083  
V
IN  
V
IN  
5V  
V
CONTROL  
V
CONTROL  
+
+
10μF  
OUT  
OUT  
V
V
*
OUT  
OUT  
INPUT  
OUTPUT  
C2  
SET  
SET  
10μF  
3083 TA11  
LT1019  
10μF  
C1  
1μF  
VN2222LL  
VN2222LL  
10nF  
GND  
*MIN LOAD 0.5mA  
3083 TA10  
Boosting Fixed Output Regulators  
LT3083  
IN  
V
CONTROL  
+
OUT  
10mꢁ  
SET  
20mꢁ  
42ꢁ*  
3.3V  
4.5A  
OUT  
LT1963-3.3  
5V  
10μF  
47μF  
3083 TA12  
33k  
*4mV DROP ENSURES LT3083 IS  
OFF WITH NO LOAD  
MULTIPLE LT3083’S CAN BE USED  
3083f  
21  
LT3083  
TYPICAL APPLICATIONS  
Low Voltage, High Current Adjustable High Efficiency Regulator*  
0.47μH  
10k  
PV  
SV  
SW  
IN  
+
2×  
2.7V TO 5.5V  
I
TH  
LT3083  
100μF  
IN  
IN  
+
12.1k  
294k  
2×  
100μF  
470pF  
LTC3610  
R
T
2.2MEG 100k  
1000pF  
2N3906  
V
CONTROL  
PGOOD  
RUN/SS  
+
V
FB  
OUT  
10mꢁ  
78.7k  
124k  
SYNC/MODE  
SGND PGND  
SET  
IN  
LT3083  
V
CONTROL  
+
*DIFFERENTIAL VOLTAGE ON LT3083  
IS 0.6V SET BY THE V OF THE 2N3906 PNP.  
BE  
OUT  
10mꢁ  
0V TO 4V  
12A  
MAXIMUM OUTPUT VOLTAGE IS 1.5V  
BELOW INPUT VOLTAGE  
SET  
IN  
LT3083  
V
CONTROL  
+
OUT  
10mꢁ  
SET  
IN  
LT3083  
V
CONTROL  
+
OUT  
10mꢁ  
3083 TA13  
SET  
+
100μF  
100k  
3083f  
22  
LT3083  
TYPICAL APPLICATIONS  
Adjustable High Efficiency Regulator*  
V
IN  
BOOST  
4.5V TO 25V  
0.47μF  
4.7μH  
BD  
10μF  
1μF  
LT3680  
100k  
IN  
LT3083  
RUN/SS  
SW  
FB  
0.1μF  
68μF  
V
CONTROL  
B340A  
V
TP0610L  
200k  
CONTROL  
+
15.4k  
RT  
63.4k  
600kHz  
GND  
OUT  
0V TO 10V  
3A  
10k  
680pF  
3083 TA14  
SET  
4.7μF  
200k  
*DIFFERENTIAL VOLTAGE ON LT3083  
10k  
≈ 1.4V SET BY THE TPO610L P-CHANNEL THRESHOLD.  
MAXIMUM OUTPUT VOLTAGE IS 2V  
BELOW INPUT VOLTAGE  
2 Terminal Current Source  
C
*
COMP  
IN  
LT3083  
V
CONTROL  
+
R1  
SET  
20k  
3083 TA15  
1V  
R1  
I
=
*C  
OUT  
COMP  
R1 ≤ 10ꢁ 10μF  
R1 ≥ 10ꢁ 2.2μF  
3083f  
23  
LT3083  
PACKAGE DESCRIPTION  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663 Rev H)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 p0.10  
2.94  
(.116)  
4.50 p0.10  
6.40  
(.252)  
BSC  
SEE NOTE 4  
2.94  
(.116)  
0.45 p0.05  
1.05 p0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0o – 8o  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE16 (BB) TSSOP REV G 0910  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3083f  
24  
LT3083  
PACKAGE DESCRIPTION  
DF Package  
12-Lead Plastic DFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1733 Rev Ø)  
2.50 REF  
0.70 p0.05  
3.38 p0.05  
4.50 p 0.05  
2.65 p 0.05  
3.10 p 0.05  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
4.00 p 0.10  
(4 SIDES)  
2.50 REF  
7
12  
0.40 p 0.10  
3.38 p0.10  
2.65 p 0.10  
PIN 1 NOTCH  
R = 0.20 TYP OR  
0.35 s 45o  
PIN 1  
TOP MARK  
(NOTE 6)  
CHAMFER  
(DF12) DFN 0806 REV Ø  
6
R = 0.115  
TYP  
1
0.25 p 0.05  
0.50 BSC  
0.200 REF  
0.75 p 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING IS PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220  
VARIATION (WGGD-X)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3083f  
25  
LT3083  
PACKAGE DESCRIPTION  
Q Package  
5-Lead Plastic DD-PAK  
(Reference LTC DWG # 05-08-1461 Rev E)  
.060  
(1.524)  
TYP  
.390 – .415  
(9.906 – 10.541)  
.060  
(1.524)  
.165 – .180  
(4.191 – 4.572)  
.256  
(6.502)  
.045 – .055  
(1.143 – 1.397)  
15o TYP  
+.008  
.004  
–.004  
.060  
(1.524)  
.059  
(1.499)  
TYP  
.183  
(4.648)  
.330 – .370  
(8.382 – 9.398)  
+0.203  
–0.102  
0.102  
.095 – .115  
(2.413 – 2.921)  
.075  
(1.905)  
.067  
(1.702)  
BSC  
.050 p .012  
(1.270 p 0.305)  
.300  
(7.620)  
.013 – .023  
(0.330 – 0.584)  
+.012  
.143  
–.020  
.028 – .038  
(0.711 – 0.965)  
TYP  
+0.305  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
3.632  
–0.508  
.420  
.276  
.080  
.420  
.350  
.325  
.205  
.585  
.585  
.320  
.090  
.042  
.090  
.042  
.067  
.067  
RECOMMENDED SOLDER PAD LAYOUT  
NOTE:  
1. DIMENSIONS IN INCH/(MILLIMETER)  
2. DRAWING NOT TO SCALE  
RECOMMENDED SOLDER PAD LAYOUT  
FOR THICKER SOLDER PASTE APPLICATIONS  
Q(DD5) 0610 REV E  
3083f  
26  
LT3083  
PACKAGE DESCRIPTION  
T Package  
5-Lead Plastic TO-220 (Standard)  
(Reference LTC DWG # 05-08-1421)  
.165 – .180  
(4.191 – 4.572)  
.147 – .155  
(3.734 – 3.937)  
DIA  
.390 – .415  
(9.906 – 10.541)  
.045 – .055  
(1.143 – 1.397)  
.230 – .270  
(5.842 – 6.858)  
.570 – .620  
(14.478 – 15.748)  
.620  
(15.75)  
TYP  
.460 – .500  
(11.684 – 12.700)  
.330 – .370  
(8.382 – 9.398)  
.700 – .728  
(17.78 – 18.491)  
.095 – .115  
(2.413 – 2.921)  
SEATING PLANE  
.152 – .202  
(3.861 – 5.131)  
.155 – .195*  
(3.937 – 4.953)  
.260 – .320  
(6.60 – 8.13)  
.013 – .023  
(0.330 – 0.584)  
.067  
BSC  
.135 – .165  
(3.429 – 4.191)  
.028 – .038  
(0.711 – 0.965)  
(1.70)  
* MEASURED AT THE SEATING PLANE  
T5 (TO-220) 0801  
3083f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT3083  
TYPICAL APPLICATION  
Paralleling Regulators  
IN  
LT3083  
V
CONTROL  
+
10mꢁ  
OUT  
SET  
IN  
LT3083  
V
IN  
4.8V TO 28V  
V
CONTROL  
+
10mꢁ  
V
3.3V  
6A  
OUT  
OUT  
10μF  
SET  
22μF  
33.2k  
3083 TA16  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1185  
3A Negative Low Dropout Regulator V : –4.5V to –35V, 0.8V Dropout Voltage, DD-PAK and TO-220 Packages  
IN  
LT1764/  
LT1764A  
3A, Fast Transient Response,  
Low Noise LDO  
1.5A Low Noise, Fast Transient  
Response LDO  
1.1A, Low Noise, Low Dropout  
Linear Regulator  
1A, Low Voltage, VLDO Linear  
Regulator  
340mV Dropout Voltage, Low Noise: 40μV  
, V = 2.7V to 20V, TO-220 and DD Packages.  
RMS IN  
“A” Version Stable Also with Ceramic Capacitors  
340mV Dropout Voltage, Low Noise: 40μV , V = 2.5V to 20V, A” Version Stable with  
LT1963/A  
LT1965  
LT3022  
RMS IN  
Ceramic Capacitors, TO-220, DD, SOT-223 and SO-8 Packages  
290mV Dropout Voltage, Low Noise: 40μV , V : 1.8V to 20V, V : 1.2V to 19.5V,  
RMS IN  
OUT  
Stable with Ceramic Capacitors, TO-220, DD-PAK, MSOP and 3mm × 3mm DFN Packages  
V : 0.9V to 10V, Dropout Voltage: 145mV Typical, Adjustable Output (V = V  
= 200mV),  
OUT(MIN)  
IN  
REF  
Stable with Low ESR, Ceramic Output Capacitors, 16-Pin DFN (5mm × 3mm) and  
16-Lead MSOP Packages  
LT3070  
LT3071  
5A, Low Noise, Programmable V  
, Dropout Voltage: 85mV, Digitally Programmable V : 0.8V to 1.8V, Digital Output Margining:  
OUT OUT  
85mV Dropout Linear Regulator with 1%, 3% or 5%, Low Output Noise: 25ꢀV  
(10Hz to 100kHz), Parallelable: Use Two for a  
RMS  
Digital Margining  
10A Output, Stable with Low ESR Ceramic Output Capacitors (15ꢀF Minimum),  
28-Lead 4mm × 5mm QFN Package  
5A, Low Noise, Programmable Vout, Dropout Voltage: 85mV, Digitally Programmable V : 0.8V to 1.8V, Analog Margining: 10%,  
OUT  
85mV Dropout Linear Regulator with Low Output Noise: 25ꢀV  
(10Hz to 100kHz), Parallelable: Use Two for a 10A Output, I  
MON  
RMS  
Analog Margining  
Output Current Monitor, Stable with Low ESR Ceramic Output Capacitors (15ꢀF Minimum),  
28-Lead 4mm × 5mm QFN Package  
LT3080/  
LT3080-1  
1.1A, Parallelable, Low Noise, Low  
Dropout Linear Regulator  
300mV Dropout Voltage (2-Supply Operation), Low Noise: 40μV  
, V : 1.2V to 36V, V : 0V  
RMS IN OUT  
to 35.7V, Current-Based Reference with 1-Resistor V  
Set; Directly Parallelable (No Op Amp  
OUT  
Required), Stable with Ceramic Capacitors, TO-220, DD-PAK, SOT-223, MS8E and 3mm × 3mm  
DFN-8 Packages; “-1” Version Has Integrated Internal Ballast Resistor  
LT3082  
LT3085  
LTC3026  
200mA, Parallelable, Single Resistor, Outputs May Be Paralleled for Higher Output, Current or Heat Spreading, Wide Input Voltage  
Low Dropout Linear Regulator  
Range: 1.2V to 40V, Low Value Input/Output Capacitors Required: 0.22ꢀF, Single Resistor Sets  
Output Voltage, 8-Lead SOT-23, 3-Lead SOT-223 and 8-Lead 3mm × 3mm DFN Packages  
500mA, Parallelable, Low Noise,  
Low Dropout Linear Regulator  
275mV Dropout Voltage (2-Supply Operation), Low Noise: 40μV  
, V : 1.2V to 36V, V : 0V  
RMS IN OUT  
to 35.7V, Current-Based Reference with 1-Resistor V  
Set; Directly Parallelable (No Op Amp  
OUT  
Required), Stable with Ceramic Capacitors, MS8E and 2mm × 3mm DFN-6 Packages  
V : 1.14V to 3.5V (Boost Enabled), 1.14V to 5.5V (with External 5V), V = 0.1V, I = 950μA,  
1.5A, Low Input Voltage VLDO  
Linear Regulator  
IN  
DO  
Q
Stable with 10μF Ceramic Capacitors, 10-Lead MSOP-E and DFN-10 Packages  
3083f  
LT 0111 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY