LT3071MPUFD-TR [Linear]

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator with Analog Margining; 5A ,低噪声,可编程输出,一个85mV压差线性稳压器,具有模拟裕
LT3071MPUFD-TR
型号: LT3071MPUFD-TR
厂家: Linear    Linear
描述:

5A, Low Noise, Programmable Output, 85mV Dropout Linear Regulator with Analog Margining
5A ,低噪声,可编程输出,一个85mV压差线性稳压器,具有模拟裕

稳压器
文件: 总28页 (文件大小:536K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3071  
5A, Low Noise,  
Programmable Output, 85mV  
Dropout Linear Regulator  
with Analog Margining  
FeAtures  
Description  
TheLT®3071isalowvoltage,UltraFast™transientre-  
sponseꢀlinearꢀregulator.ꢀTheꢀdeviceꢀsuppliesꢀupꢀtoꢀ5Aꢀofꢀ  
outputcurrentwithatypicaldropoutvoltageof85mV.ꢀ  
A0.01µFreferencebypasscapacitordecreasesoutputꢀ  
n
Output Current: 5A  
n
Dropout Voltage: 85mV Typical  
n
Digitally Programmable V : 0.8V to 1.8V  
OUT  
n
Analog Output Margining: 10ꢀ Range  
n
Low Output Noise: 25µV  
(10Hz to 100kHz)  
voltageꢀnoiseꢀtoꢀ25µV  
.ꢀTheꢀLT3071’sꢀhighꢀbandwidthꢀ  
RMS  
RMS  
n
n
n
n
n
Parallel Multiple Devices for 10A or More  
permitsꢀtheꢀuseꢀofꢀlowꢀESRꢀceramicꢀcapacitors,ꢀsavingꢀ  
bulkꢀcapacitanceꢀandꢀcost.ꢀTheꢀLT3071’sꢀfeaturesꢀmakeꢀ  
itꢀidealꢀforꢀhighꢀperformanceꢀFPGAs,ꢀmicroprocessorsꢀorꢀ  
sensitiveꢀcommunicationꢀsupplyꢀapplications.ꢀ  
Precision Current Limit: 20ꢀ  
ꢀ OutputꢀCurrentꢀMonitor:ꢀI  
ꢀ=ꢀI /2500  
MON OUT  
ꢀ 1ꢁꢀAccuracyꢀOverꢀLine,ꢀLoadꢀandꢀTemperature  
ꢀ StableꢀwithꢀLowꢀESRꢀCeramicꢀOutputꢀCapacitorsꢀ  
(15µFꢀMinimum)  
Outputꢀvoltageꢀisꢀdigitallyꢀselectableꢀinꢀ50mVꢀincrementsꢀ  
overꢀaꢀ0.8Vꢀtoꢀ1.8Vꢀrange.ꢀAnꢀanalogꢀmarginingꢀfunctionꢀ  
allowstheusertoadjustsystemoutputvoltageoveraꢀ  
continuousꢀ 10ꢁrange.TheICincorporatesauniqueꢀ  
trackingfunctiontocontrolabuckregulatorpoweringꢀ  
theꢀLT3071’sꢀinput.ꢀThisꢀtrackingꢀfunctionꢀdrivesꢀtheꢀbuckꢀ  
n
n
n
ꢀ HighꢀFrequencyꢀPSRR:ꢀ30dBꢀatꢀ1MHzꢀ  
ꢀ EnableꢀFunctionꢀTurnsꢀOutputꢀOn/Off  
ꢀ VIOCꢀPinꢀControlsꢀBuckꢀConverterꢀtoꢀMaintainꢀLowꢀ  
PowerꢀDissipationꢀandꢀOptimizeꢀEfficiency  
ꢀ PWRGD/UVLO/ThermalꢀShutdownꢀFlag  
ꢀ CurrentꢀLimitꢀwithꢀFoldbackꢀProtection  
ꢀ ThermalꢀShutdown  
n
n
n
n
regulatorꢀtoꢀmaintainꢀtheꢀLT3071’sꢀinputꢀvoltageꢀtoꢀV  
+ꢀ300mV,ꢀminimizingꢀpowerꢀdissipation.ꢀ  
OUT  
InternalprotectionincludesUVLO,reverse-currentprotec-  
ꢀ 28-Leadꢀ(4mmꢀ×ꢀ5mmꢀ×ꢀ0.75mm)ꢀQFNꢀPackage  
tion,ꢀprecisionꢀcurrentꢀlimitingꢀwithꢀpowerꢀfoldbackꢀandꢀ  
thermalꢀshutdown.ꢀTheꢀLT3071ꢀregulatorꢀisꢀavailableꢀinꢀaꢀ  
thermallyꢀenhancedꢀ28-lead,ꢀ4mmꢀ×ꢀ5mmꢀQFNꢀpackage.  
ApplicAtions  
n
ꢀ FPGAꢀandꢀDSPꢀSupplies  
L,ꢀLT,LTC,ꢀLTM,ꢀLinearꢀTechnologyꢀandꢀtheꢀLinearꢀlogoꢀareꢀregisteredꢀtrademarksꢀofꢀLinearꢀ  
TechnologyꢀCorporation.ꢀUltraFastꢀandꢀVLDOꢀareꢀtrademarksꢀofꢀLinearꢀTechnologyꢀCorporation.ꢀꢀ  
Allꢀotherꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.ꢀPatentsꢀpending.  
n
ꢀ ASICꢀandꢀMicroprocessorꢀSupplies  
n
ꢀ ServersꢀandꢀStorageꢀDevices  
n
ꢀ PostꢀBuckꢀRegulationꢀandꢀSupplyꢀIsolation  
typicAl ApplicAtion  
Dropout Voltage  
150  
0.9V, 5A Regulator  
V
= V  
OUT(NOMINAL)  
IN  
50k  
V
BIAS  
2.2V TO 3.6V  
PWRGD  
120  
90  
60  
30  
0
2.2µF  
BIAS  
V
IN  
1.2V  
IN  
EN  
V
PWRGD  
SENSE  
V
BIAS  
= 1.8V  
= 3.3V  
330µF  
OUT  
V
0.9V  
5A  
OUT  
V
LT3071  
OUT  
O0  
2.2µF*  
4.7µF*  
10µF*  
V
O1  
V
O2  
V
V
= 0.8V  
= 2.5V  
OUT  
BIAS  
*X5R OR X7R CAPACITORS  
V
MON  
NC  
2V AT 5A  
MARGA  
VIOC  
I
MON  
FULL SCALE  
REF/BYP  
GND  
1k  
0
1
2
3
4
5
1nF  
0.01µF  
OUTPUT CURRENT (A)  
3071 TA01b  
3071 TA01a  
3071f  
MARGAꢀInput............................................... –0.3Vꢀtoꢀ4V  
                
VIOC,ꢀPWRGD,ꢀI  
REF/BYPꢀOutput  
ꢀOutputs  
                          
....................... –0.3Vꢀtoꢀ4V  
........................................... –0.3Vꢀtoꢀ4V  
.......................... Indefinite  
                 
OutputꢀShort-CircuitꢀDuration  
                          
                    
BIAS............................................................. –0.3Vꢀtoꢀ4V  
          
LT3071  
Absolute mAximum rAtings  
pin conFigurAtion  
(Note 1)  
TOP VIEW  
IN,ꢀOUT..................................................... –0.3Vꢀtoꢀ3.3V  
28 27 26 25 24 23  
V ,ꢀV ,ꢀV ꢀInputsꢀ.................................... –0.3Vꢀtoꢀ4V  
O2 O1 O0  
VIOC  
PWRGD  
REF/BYP  
GND  
IN  
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
MARGA  
I
MON  
ENꢀInput....................................................... –0.3Vꢀtoꢀ4V  
SENSEꢀInput................................................. –0.3Vꢀtoꢀ4V  
GND  
SENSE  
OUT  
29  
GND  
MON  
IN  
OUT  
IN  
OUT  
IN  
OUT  
OperatingꢀJunctionꢀTemperatureꢀ(Noteꢀ2)  
ꢀ LT3071E/LT3071I.............................. ꢀ–40°Cꢀtoꢀ125°C  
9
10 11 12 13 14  
UFD PACKAGE  
ꢀ LT3071MPꢀ......................................... –55°Cꢀtoꢀ125°C  
StorageꢀTemperatureꢀRangeꢀ.................. –65°Cꢀtoꢀ150°C  
28-LEAD (4mm s 5mm) PLASTIC QFN  
T
JMAX  
ꢀ=ꢀ125°C,ꢀθ ꢀ=ꢀ30°C/WꢀTOꢀ35°C/Wꢀ  
JA  
EXPOSEDꢀPADꢀ(PINꢀ29)ꢀISꢀGND,ꢀMUSTꢀBEꢀSOLDEREDꢀTOꢀPCB  
orDer inFormAtion  
LEAD FREE FINISH  
LT3071EUFD#PBF  
LT3071IUFD#PBF  
LT3071MPUFD#PBF  
LEAD BASED FINISH  
LT3071EUFD  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3071EUFD#TRPBF  
LT3071IUFD#TRPBF  
LT3071MPUFD#TRPBF  
TAPE AND REEL  
3071  
–40°Cꢀtoꢀ125°C  
–40°Cꢀtoꢀ125°C  
–55°Cꢀtoꢀ125°C  
TEMPERATURE RANGE  
–40°Cꢀtoꢀ125°C  
–40°Cꢀtoꢀ125°C  
–55°Cꢀtoꢀ125°C  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
PACKAGE DESCRIPTION  
3071  
3071  
PART MARKING*  
3071  
LT3071EUFD#TR  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
LT3071IUFD  
LT3071IUFD#TR  
3071  
LT3071MPUFD  
LT3071MPUFD#TR  
3071  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.ꢀ*Theꢀtemperatureꢀgradeꢀisꢀidentifiedꢀbyꢀaꢀlabelꢀonꢀtheꢀshippingꢀcontainer.  
Forꢀmoreꢀinformationꢀonꢀleadꢀfreeꢀpartꢀmarking,ꢀgoꢀto:ꢀhttp://www.linear.com/leadfree/ꢀꢀ  
Forꢀmoreꢀinformationꢀonꢀtapeꢀandꢀreelꢀspecifications,ꢀgoꢀto:ꢀhttp://www.linear.com/tapeandreel/  
3071f  
LT3071  
electricAl chArActeristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COUT = 15µF (Note 9), VIN = VOUT + 0.3V (Note 5), VBIAS = 2.5V unless  
otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
0.95  
2.2  
TYP  
MAX  
3.0  
UNITS  
l
l
INꢀPinꢀVoltageꢀRange  
BIASꢀPinꢀVoltageꢀRangeꢀ(Noteꢀ3)  
RegulatedꢀOutputꢀVoltage  
V ꢀ≥ꢀV ꢀ+ꢀ150mV,ꢀI =ꢀ5A  
V
V
IN  
OUT  
OUT  
3.6  
l
l
l
l
l
l
l
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
ꢀ=ꢀ0.8V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ1.05Vꢀ≤ꢀV ꢀ≤ꢀ1.25Vꢀ  
0.792ꢀ  
0.891ꢀ  
0.990ꢀ  
1.089ꢀ  
1.188ꢀ  
1.485ꢀ  
1.782  
0.800ꢀ  
0.900ꢀ  
1.000ꢀ  
1.100ꢀ  
1.200ꢀ  
1.500ꢀ  
1.800  
0.808ꢀ  
0.909ꢀ  
1.010ꢀ  
1.111ꢀ  
1.212ꢀ  
1.515ꢀ  
1.818  
Vꢀ  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
ꢀ=ꢀ0.9V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ1.15Vꢀ≤ꢀV ꢀ≤ꢀ1.35Vꢀ  
Vꢀ  
Vꢀ  
Vꢀ  
Vꢀ  
Vꢀ  
V
ꢀ=ꢀ1V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ1.25Vꢀ≤ꢀV ꢀ≤ꢀ1.45Vꢀ  
IN  
ꢀ=ꢀ1.1V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ1.35Vꢀ≤ꢀV ꢀ≤ꢀ1.55Vꢀ  
IN  
IN  
IN  
IN  
ꢀ=ꢀ1.2V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ1.45Vꢀ≤ꢀV ꢀ≤ꢀ1.65V,ꢀV  
ꢀ=ꢀ3.3Vꢀ  
ꢀ=ꢀ3.3Vꢀ  
ꢀ=ꢀ3.3V  
BIAS  
BIAS  
BIAS  
ꢀ=ꢀ1.5V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ1.75Vꢀ≤ꢀV ꢀ≤ꢀ1.95V,ꢀV  
ꢀ=ꢀ1.8V,ꢀ10mAꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀ2.05Vꢀ≤ꢀV ꢀ≤ꢀ2.25V,ꢀV  
l
l
RegulatedꢀOutputꢀVoltageꢀMarginingꢀ MARGAꢀ=ꢀ1.2Vꢀ  
9.5ꢀ  
–10.5  
ꢀꢀ10ꢀ  
–10  
10.5ꢀ  
–9.5  
ꢁꢀ  
(Noteꢀ3)  
MARGAꢀ=ꢀ0V  
l
l
LineꢀRegulationꢀtoꢀV  
1.0ꢀ  
1.0  
mVꢀ  
mV  
V
OUT  
V
OUT  
ꢀ=ꢀ0.8V,V ꢀ=ꢀ1.05Vꢀtoꢀ2.7V,ꢀV  
ꢀ=ꢀ3.3V,ꢀI ꢀ=ꢀ10mAꢀ  
OUT  
IN  
IN  
BIAS  
BIAS  
ꢀ=ꢀ1.8V,V ꢀ=ꢀ2.05Vꢀtoꢀ2.7V,ꢀV  
ꢀ=ꢀ3.3V,ꢀI ꢀ=ꢀ10mA  
OUT  
IN  
l
l
LineꢀRegulationꢀtoꢀV  
2.0ꢀ  
1.0  
mVꢀ  
mV  
V ꢀ=ꢀ0.8V,V  
OUT  
V ꢀ=ꢀ1.8V,V  
OUT  
ꢀ=ꢀ2.2Vꢀtoꢀ3.6V,ꢀV ꢀ=ꢀ1.1V,ꢀI ꢀ=ꢀ10mAꢀꢀ  
IN OUT  
BIAS  
BIAS  
BIAS  
ꢀ=ꢀ3.25Vꢀtoꢀ3.6V,ꢀV ꢀ=ꢀ2.1V,ꢀI ꢀ=ꢀ10mA  
IN  
OUT  
LoadꢀRegulation,ꢀꢀ  
OUT  
V
V
V
V
V
ꢀ=ꢀ2.5V,ꢀV ꢀ=ꢀ1.05V,ꢀV ꢀ=ꢀ0.8V  
–1.5  
–2  
–3.0ꢀ  
–5.5  
mVꢀ  
mV  
BIAS  
BIAS  
BIAS  
BIAS  
BIAS  
IN  
OUT  
l
l
l
l
I ꢀ=ꢀ10mAꢀtoꢀ5A  
ꢀ=ꢀ2.5V,ꢀV ꢀ=ꢀ1.25V,ꢀV ꢀ=ꢀ1.0V  
–4.0ꢀ  
–7.5  
mVꢀ  
mV  
IN  
OUT  
ꢀ=ꢀ3.3V,ꢀV ꢀ=ꢀ1.45V,ꢀV ꢀ=ꢀ1.2V  
–2  
–4.0ꢀ  
–7.5  
mVꢀ  
mV  
IN  
OUT  
ꢀ=ꢀ3.3V,ꢀV ꢀ=ꢀ1.75V,ꢀV ꢀ=ꢀ1.5V  
–2.5  
–3  
–5.0ꢀ  
–9.0  
mVꢀ  
mV  
IN  
OUT  
ꢀ=ꢀ3.3V,ꢀV ꢀ=ꢀ2.05V,ꢀV ꢀ=ꢀ1.8V  
–7.0ꢀ  
–13  
mVꢀ  
mV  
IN  
OUT  
l
l
DropoutꢀVoltage,ꢀꢀ  
I
I
ꢀ=ꢀ1A,ꢀV ꢀ=ꢀ1V  
20  
50  
35  
mV  
OUT  
OUT  
V ꢀ=ꢀV  
IN  
ꢀ(Noteꢀ6)  
OUT(NOMINAL)  
ꢀ=ꢀ2.5A,ꢀV ꢀ=ꢀ1V  
65ꢀ  
85  
mVꢀ  
mV  
OUT  
OUT  
l
l
I
ꢀ=ꢀ5A,ꢀV ꢀ=ꢀ1V  
85  
120ꢀ  
150  
mVꢀ  
mV  
OUT  
OUT  
l
l
SENSEꢀPinꢀCurrent  
V ꢀ=ꢀ1.1V,ꢀV  
BIAS  
ꢀ=ꢀ0.8Vꢀ  
SENSE  
IN  
35ꢀ  
200  
50ꢀ  
300  
65ꢀ  
400  
µAꢀ  
µA  
IN  
V
ꢀ=ꢀ3.3V,ꢀV ꢀ=ꢀ2.1V,ꢀV  
ꢀ=ꢀ1.8V  
SENSE  
l
l
GroundꢀPinꢀCurrent,ꢀꢀ  
V ꢀ=ꢀ1.3V,ꢀV ꢀ=ꢀ1V  
I
I
ꢀ=ꢀ10mAꢀ  
OUT  
ꢀ=ꢀ5A  
OUT  
0.65ꢀ  
0.9  
1.1ꢀ  
1.35  
1.8ꢀ  
2.3  
mAꢀ  
mA  
IN  
OUT  
l
BIASꢀPinꢀCurrentꢀinꢀNapꢀModeꢀ  
ENꢀ=ꢀLowꢀ(AfterꢀPORꢀCompleted)  
120  
200  
320  
µA  
l
l
l
l
l
l
BIASꢀPinꢀCurrent,ꢀꢀ  
I
I
I
I
I
I
ꢀ=ꢀ10mAꢀ  
ꢀ=ꢀ100mAꢀ  
ꢀ=ꢀ500mAꢀ  
ꢀ=ꢀ1Aꢀ  
0.75ꢀ  
1.25ꢀ  
2.0ꢀ  
2.6ꢀ  
3.5ꢀ  
4.5  
1.08ꢀ  
1.8ꢀ  
3.0ꢀ  
3.8ꢀ  
5.2ꢀ  
6.9  
1.5ꢀ  
2.4ꢀ  
4.0ꢀ  
5.0ꢀ  
7.0ꢀ  
10.0  
mAꢀ  
mAꢀ  
mAꢀ  
mAꢀ  
mAꢀ  
mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V ꢀ=ꢀ1.3V,ꢀV ꢀ=ꢀ1Vꢀ  
IN  
OUT  
ꢀ=ꢀ2.5Aꢀ  
ꢀ=ꢀ5A  
l
l
l
CurrentꢀLimitꢀ(Noteꢀ5)  
V ꢀ–ꢀV ꢀ<ꢀ0.3V,ꢀV  
ꢀ=ꢀ3.3Vꢀ  
ꢀ=ꢀ3.3Vꢀ  
ꢀ=ꢀ3.3V  
5.1ꢀ  
3.2ꢀ  
1.2  
6.4ꢀ  
4.5ꢀ  
2.5  
7.7ꢀ  
5.8ꢀ  
4.3  
Aꢀ  
Aꢀ  
A
IN  
OUT  
BIAS  
BIAS  
BIAS  
V ꢀ–ꢀV ꢀ=ꢀ1.0V,ꢀV  
IN  
OUT  
V ꢀ–ꢀV ꢀ=ꢀ1.7V,ꢀV  
IN  
OUT  
l
l
l
I
I
ꢀFull-ScaleꢀOutputꢀCurrent  
I
ꢀ=ꢀ5A,ꢀV ꢀ–ꢀV ꢀ=ꢀ0.3V,ꢀV ꢀ=ꢀ0.8V,ꢀ1.8V  
1.6  
2.0  
400  
300  
2.4  
460  
450  
mA  
µA/A  
µA  
MON  
OUT  
IN  
OUT  
OUT  
/I ꢀScale  
MON OUT  
1Aꢀ≤ꢀI ꢀ≤ꢀ5A,ꢀV ꢀ–ꢀV ꢀ=ꢀ0.3V,ꢀV ꢀ=ꢀ0.8V,ꢀ1.8V  
340  
OUT  
IN  
OUT  
OUT  
ReverseꢀOutputꢀCurrentꢀ(Noteꢀ8)  
PWRGDꢀV ꢀThreshold  
V ꢀ=ꢀ0V,ꢀV ꢀ=ꢀ1.8V  
IN OUT  
l
l
PercentageꢀofꢀV  
PercentageꢀofꢀV  
,ꢀV ꢀRisingꢀ  
OUT(NOMINAL) OUT  
87ꢀ  
82  
90ꢀ  
85  
93ꢀ  
88  
ꢁꢀ  
OUT  
,ꢀV ꢀFalling  
OUT(NOMINAL) OUT  
l
PWRGDꢀV  
I
ꢀ=ꢀ200µAꢀ(FaultꢀCondition)  
PWRGD  
50  
150  
mV  
OL  
3071f  
LT3071  
electricAl chArActeristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. COUT = 15µF (Note 9), VIN = VOUT + 0.3V (Note 5), VBIAS = 2.5V unless  
otherwise noted.  
PARAMETER  
ꢀUndervoltageꢀLockoutꢀ  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
V
V
ꢀRisingꢀ  
BIAS  
ꢀFalling  
BIAS  
1.1ꢀ  
0.9  
1.55ꢀ  
1.4  
2.1ꢀ  
1.7  
Vꢀ  
V
BIAS  
l
V -V ꢀServoꢀVoltageꢀbyꢀVIOC  
IN OUT  
250  
300  
350  
mV  
l
l
VIOCꢀOutputꢀCurrent  
V ꢀ=ꢀV  
IN  
ꢀ+ꢀ150mV,ꢀSourcingꢀOutꢀofꢀtheꢀPinꢀ  
OUT(NOMINAL)  
ꢀ+ꢀ450mV,ꢀSinkingꢀIntoꢀtheꢀPin  
OUT(NOMINAL)  
160ꢀ  
170  
235ꢀ  
255  
310ꢀ  
340  
µAꢀ  
µA  
IN  
V ꢀ=ꢀV  
l
l
l
V ꢀInputꢀThresholdꢀ(Logic-0ꢀState),ꢀ InputꢀFalling  
O2 O1 O0  
0.25  
V
IL  
V
,ꢀV ,ꢀV ,ꢀMARGSEL,ꢀMARGTOL  
V ꢀInputꢀRangeꢀ(Logic-ZꢀState),ꢀ  
0.75  
V
ꢀ–ꢀ0.9  
BIAS  
V
IZ  
V
,ꢀV ,ꢀV ,ꢀMARGSEL,ꢀMARGTOL  
O2 O1 O0  
V ꢀInputꢀThresholdꢀ(Logic-1ꢀState),ꢀ InputꢀRising  
V
ꢀ–ꢀ0.25  
BIAS  
V
IH  
V
,ꢀV ,ꢀV ,ꢀMARGSEL,ꢀMARGTOL  
O2 O1 O0  
InputꢀHysteresisꢀ(BothꢀThresholds),ꢀ  
,ꢀV ,ꢀV ,ꢀMARGSEL,ꢀMARGTOL  
60  
25  
25  
mV  
µA  
µA  
V
O2 O1 O0  
l
l
InputꢀCurrentꢀHigh,ꢀꢀ  
,ꢀV ,ꢀV ,ꢀMARGSEL,ꢀMARGTOLꢀ  
V ꢀ=ꢀV  
ꢀ=ꢀ2.5V,ꢀCurrentꢀFlowsꢀIntoꢀPin  
BIAS  
40  
40  
IH  
V
O2 O1 O0  
InputꢀCurrentꢀLow,ꢀꢀ  
,ꢀV ,ꢀV ,ꢀMARGSEL,ꢀMARGTOLꢀ  
V ꢀ=ꢀ0V,ꢀV  
IL  
ꢀ=ꢀ2.5V,ꢀCurrentꢀFlowsꢀOutꢀofꢀPin  
BIAS  
V
O2 O1 O0  
l
l
ENꢀPinꢀThreshold  
V
V
ꢀ=ꢀOffꢀtoꢀOnꢀ  
OUT  
ꢀ=ꢀOnꢀtoꢀOff  
OUT  
1.4  
Vꢀ  
V
0.9  
l
l
ENꢀPinꢀLogicꢀHighꢀCurrent  
ENꢀPinꢀLogicꢀLowꢀCurrent  
V
V
V
ꢀ=ꢀV  
ꢀ=ꢀ2.5V  
BIAS  
2.5  
4.0  
6.5  
0.1  
µA  
µA  
dB  
EN  
ꢀ=ꢀ0V  
EN  
V
ꢀRippleꢀRejection  
BIAS  
=ꢀV ꢀ+ꢀ1.5V ,ꢀV  
OUT  
ꢀ=0.5V ꢀ,ꢀf ꢀ=ꢀ120Hz,ꢀꢀ  
P-P RIPPLE  
75  
66  
10  
25  
BIASꢀ  
OUT  
AVG RIPPLE  
OUT  
V ꢀ–ꢀV ꢀ=ꢀ300mV,ꢀI ꢀ=ꢀ2.5A  
IN  
V ꢀRippleꢀRejectionꢀꢀ  
V
ꢀ=ꢀ2.5V,ꢀV  
BIAS  
ꢀ=ꢀ50mV ,ꢀf ꢀ=ꢀ120Hz,ꢀꢀ  
P-Pꢀ RIPPLE  
dB  
IN  
RIPPLE  
(Notesꢀ3,ꢀ4,ꢀ5)  
V ꢀ–ꢀV ꢀ=ꢀ300mV,ꢀI ꢀ=ꢀ2.5Aꢀ  
IN  
OUT  
OUT  
ReferenceꢀVoltageꢀNoiseꢀꢀ  
(REF/BYPꢀPin)  
C
ꢀ=ꢀ10nF,ꢀBWꢀ=ꢀ10Hzꢀtoꢀ100kHz  
µV  
µV  
REF/BYP  
RMS  
OutputꢀVoltageꢀNoise  
V
ꢀ=ꢀ1V,ꢀI ꢀ=ꢀ5A,ꢀC  
OUT  
=ꢀ10nF,ꢀC =ꢀ15µF,ꢀꢀ  
OUTꢀ  
OUT  
REF/BYPꢀ  
RMS  
BWꢀ=ꢀ10Hzꢀtoꢀ100kHzꢀ  
Note 5:ꢀTheꢀLT3071ꢀincorporatesꢀsafeꢀoperatingꢀareaꢀprotectionꢀcircuitry.ꢀ  
Note 1:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingꢀconditionꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀ  
reliabilityꢀandꢀlifetime.  
CurrentꢀlimitꢀdecreasesꢀasꢀtheꢀV -V ꢀvoltageꢀincreases.ꢀCurrentꢀlimitꢀ  
IN OUT  
foldbackꢀstartsꢀatꢀV ꢀ–ꢀV ꢀ>ꢀ500mV.ꢀSeeꢀtheꢀTypicalꢀPerformanceꢀ  
IN  
OUT  
CharacteristicsꢀforꢀaꢀgraphꢀofꢀCurrentꢀLimitꢀvsꢀV ꢀ–ꢀV ꢀvoltage.ꢀTheꢀ  
IN  
OUT  
currentꢀlimitꢀfoldbackꢀfeatureꢀisꢀindependentꢀofꢀtheꢀthermalꢀshutdownꢀ  
circuity.  
Note 2:ꢀTheꢀLT3071ꢀregulatorsꢀareꢀtestedꢀandꢀspecifiedꢀunderꢀpulseꢀloadꢀ  
conditionsꢀsuchꢀthatꢀT ꢀꢀT .ꢀTheꢀLT3071Eꢀisꢀ100ꢁꢀtestedꢀatꢀT ꢀ=ꢀ25°C.ꢀ  
J
A
A
Note 6:ꢀDropoutꢀvoltage,ꢀV ,ꢀisꢀtheꢀminimumꢀinputꢀtoꢀoutputꢀvoltageꢀ  
Performanceꢀatꢀ–40°Cꢀandꢀ125°Cꢀisꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀ  
andꢀcorrelationꢀwithꢀstatisticalꢀprocessꢀcontrols.ꢀTheꢀLT3071Iꢀisꢀ  
guaranteedꢀoverꢀtheꢀ–40°Cꢀtoꢀ125°Cꢀoperatingꢀjunctionꢀtemperatureꢀrange.ꢀ  
TheꢀLT3071MPꢀisꢀ100ꢁꢀtestedꢀandꢀguaranteedꢀoverꢀtheꢀ–55°Cꢀtoꢀ125°Cꢀ  
operatingꢀjunctionꢀtemperatureꢀrange.ꢀ  
DO  
differentialꢀatꢀaꢀspecifiedꢀoutputꢀcurrent.ꢀInꢀdropout,ꢀtheꢀoutputꢀvoltageꢀ  
equalsꢀV ꢀ–ꢀV .ꢀ  
IN  
DO  
Note 7:ꢀGNDꢀpinꢀcurrentꢀisꢀtestedꢀwithꢀV ꢀ=ꢀV  
ꢀ+ꢀ300mVꢀandꢀaꢀ  
OUT(NOMINAL)  
IN  
currentꢀsourceꢀload.ꢀVIOCꢀisꢀaꢀbufferedꢀoutputꢀdeterminedꢀbyꢀtheꢀvalueꢀofꢀ  
ꢀasꢀprogrammedꢀbyꢀtheꢀV -V ꢀpins.ꢀVIOC’sꢀoutputꢀisꢀindependentꢀofꢀ  
V
OUT  
Note 3:ꢀToꢀmaintainꢀproperꢀperformanceꢀandꢀregulation,ꢀtheꢀBIASꢀsupplyꢀ  
O2 O0  
theꢀmarginingꢀfunction.  
voltageꢀmustꢀbeꢀhigherꢀthanꢀtheꢀINꢀsupplyꢀvoltage.ꢀForꢀaꢀgivenꢀV ,ꢀtheꢀ  
OUTꢀ  
BIASꢀvoltageꢀmustꢀsatisfyꢀtheꢀfollowingꢀconditions:ꢀ2.2Vꢀ≤ꢀV  
ꢀ≤ꢀ3.6Vꢀ  
Note 8:ꢀReverseꢀoutputꢀcurrentꢀisꢀtestedꢀwithꢀtheꢀINꢀpinsꢀgroundedꢀandꢀtheꢀ  
OUTꢀ+ꢀSENSEꢀpinsꢀforcedꢀtoꢀtheꢀratedꢀoutputꢀvoltage.ꢀThisꢀisꢀmeasuredꢀasꢀ  
currentꢀintoꢀtheꢀOUTꢀ+ꢀSENSEꢀpins.  
BIAS  
andꢀV  
ꢀ≥ꢀ(1.25ꢀ•ꢀV ꢀ+ꢀ1V).ꢀForꢀV ꢀ≤ꢀ0.95V,ꢀtheꢀminimumꢀBIASꢀ  
BIAS  
OUT OUT  
voltageꢀisꢀlimitedꢀtoꢀ2.2V.  
Note 4:ꢀOperatingꢀconditionsꢀareꢀlimitedꢀbyꢀmaximumꢀjunctionꢀ  
Note 9:ꢀFrequencyꢀCompensation:ꢀTheꢀLT3071ꢀmustꢀbeꢀfrequencyꢀ  
temperature.ꢀTheꢀregulatedꢀoutputꢀvoltageꢀspecificationꢀdoesꢀnotꢀapplyꢀ  
forꢀallꢀpossibleꢀcombinationsꢀofꢀinputꢀvoltageꢀandꢀoutputꢀcurrent.ꢀWhenꢀ  
operatingꢀatꢀmaximumꢀoutputꢀcurrent,ꢀlimitꢀtheꢀinputꢀvoltageꢀrangeꢀtoꢀ  
V ꢀ<ꢀV ꢀ+ꢀ500mV.  
compensatedꢀatꢀitsꢀOUTꢀpinsꢀwithꢀaꢀminimumꢀC ꢀofꢀ15µFꢀconfiguredꢀ  
OUT  
asꢀaꢀclusterꢀofꢀ(15×)ꢀ1µFꢀceramicꢀcapacitorsꢀorꢀasꢀaꢀgraduatedꢀclusterꢀ  
ofꢀ10µF/4.7µF/2.2µFꢀceramicꢀcapacitorsꢀofꢀtheꢀsameꢀcaseꢀsize.ꢀLinearꢀ  
TechnologyꢀonlyꢀrecommendsꢀX5RꢀorꢀX7Rꢀdielectricꢀcapacitors.ꢀ  
IN  
OUT  
3071f  
LT3071  
typicAl perFormAnce chArActeristics  
Dropout Voltage vs IOUT  
Dropout Voltage vs Temperature  
Dropout Voltage vs Temperature  
30  
25  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
150  
120  
90  
V
I
= V  
OUT(NOMINAL)  
OUT  
V
= V  
OUT(NOMINAL)  
V
I
= V  
OUT(NOMINAL)  
OUT  
IN  
IN  
IN  
= 1A  
T = 25°C  
J
= 2.5A  
20  
15  
V
BIAS  
= 1.8V  
= 3.3V  
OUT  
V
60  
30  
0
10  
5
V
V
= 0.8V  
= 2.5V  
OUT  
BIAS  
V
V
V
= 1.8V, V  
= 0.8V, V  
= 1.2V, V  
= 3.3V  
= 2.5V  
= 3.3V  
V
V
V
= 1.8V, V  
= 0.8V, V  
= 1.2V, V  
= 3.3V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
1
2
3
4
5
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
3071 G02  
3071 G03  
3071 G01  
Output Voltage (0.8V)  
vs Temperature  
Dropout Voltage vs Temperature  
Dropout Voltage vs VBIAS  
200  
180  
160  
140  
120  
100  
80  
0.808  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.792  
150  
120  
90  
V
OUT  
= V  
I
= 5A  
OUT  
I
= 10mA  
IN  
OUT(NOMINAL)  
LOAD  
I
= 5A  
T = 25°C  
J
60  
30  
0
60  
40  
V
V
V
= 1.8V, V  
= 0.8V, V  
= 1.2V, V  
= 3.3V  
= 2.5V  
= 3.3V  
OUT = 1.8V  
OUT = 1.5V  
OUT = 0.8V  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
20  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
2.2  
2.6 2.8 3.0  
3.2  
3.6  
–75 –50 –25  
0
25 50 75 100 125 150 175  
2.4  
3.4  
BIAS VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3071 G04  
3071 G05  
3071 G06  
Output Voltage (1V)  
vs Temperature  
Output Voltage (1.2V)  
vs Temperature  
Output Voltage (1.5V)  
vs Temperature  
1.010  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
1.212  
1.208  
1.515  
1.510  
I
= 10mA  
I
= 10mA  
I
= 10mA  
LOAD  
LOAD  
LOAD  
1.204  
1.200  
1.505  
1.500  
1.196  
1.192  
1.188  
1.495  
1.490  
1.485  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3071 G07  
3071 G08  
3071 G09  
3071f  
LT3071  
typicAl perFormAnce chArActeristics  
Output Voltage (1.8V)  
REF/BYP Pin Voltage  
vs Temperature  
vs Temperature  
GND Pin Current vs IOUT  
606  
604  
3.0  
2.5  
1.818  
1.814  
1.810  
1.806  
1.802  
1.798  
1.794  
1.790  
1.786  
1.782  
V
= V  
+ 300mV  
OUT  
C
= 0.01µF  
I
= 10mA  
IN  
REF/BYP  
LOAD  
T = 25°C  
J
602  
600  
2.0  
1.5  
598  
596  
594  
1.0  
0.5  
0
V
V
V
= 1.8V, V  
= 1.2V, V  
= 0.8V, V  
= 3.3V  
= 3.3V  
= 2.5V  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
1
2
3
4
5
–75 –50 –25  
0
25 50  
175  
75 100 125 150  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
3071 G10  
3071 G12  
3071 G11  
BIAS Pin Undervoltage Lockout  
Threshold  
BIAS Pin Current in Nap Mode  
BIAS Pin Current vs IOUT  
400  
350  
300  
250  
200  
150  
100  
50  
10  
9
8
7
6
5
4
3
2
1
0
2.5  
2.0  
1.5  
V
J
= V  
+ 300mV  
OUT  
V
V
= 2.5V  
IN  
BIAS  
EN  
T = 25°C  
= 0V  
V
RISING  
BIAS  
V
BIAS  
= 1.8V  
= 3.3V  
OUT  
V
V
V
= 0.8V  
OUT  
BIAS  
V
FALLING  
= 2.5V  
BIAS  
1.0  
0.5  
0
0
0
1
2
3
4
5
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
75 100 125 150 175  
25 50  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3071 G14  
3071 G13  
3071 G15  
IMON vs IOUT  
PWRGD Threshold Voltage  
PWRGD V  
OL vs Temperature  
2.5  
2.0  
1.5  
1.0  
1.00  
0.95  
0.90  
0.85  
0.80  
100  
80  
V
I
= 2.5V  
PWRGD  
V
V
V
= 3.3V  
BIAS  
V
V
= 2.5V  
= 1V  
BIAS  
OUT  
IN  
BIAS  
OUT  
= 200µA  
= 0.8V TO 1.8V  
– V  
= 300mV  
OUT  
T
= –55°C TO 125°C  
J
60  
V
RISING  
OUT  
40  
20  
0
V
FALLING  
OUT  
0.5  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
2
1
3
4
5
6
–75 –50 –25  
0 25 50 75 100 125 150 175  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
3071 G52  
3071 G17  
3071 G50  
3071f  
LT3071  
typicAl perFormAnce chArActeristics  
Logic Input Threshold Voltages  
Logic Low to Hi-Z State Transitions  
Logic Input Threshold Voltages  
Logic Hi-Z to High State Transitions  
EN Pin Thresholds  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.0  
2.9  
2.8  
0.8  
0.7  
0.6  
V
= 2.5V  
V
= 3.3V  
BIAS  
SEE APPLICATIONS INFORMATION  
FOR MORE DETAILS  
BIAS  
LOGIC Hi-Z TO HIGH THRESHOLD IS  
RELATIVE TO V VOLTAGE  
BIAS  
SEE APPLICATIONS INFORMATION  
FOR MORE DETAILS  
INPUT RISING  
LOGIC LOW TO Hi-Z  
EN PIN RISING  
INPUT RISING  
LOGIC Hi-Z TO HIGH  
EN PIN FALLING  
INPUT FALLING  
LOGIC Hi-Z TO LOW  
2.7  
2.6  
2.5  
0.5  
0.4  
0.3  
INPUT FALLING  
LOGIC HIGH TO Hi-Z  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3071 G16  
3071 G19  
3071 G18  
Logic Pin Input Current,  
High State  
Logic Pin Input Current,  
Low State  
EN Pin Logic High Current  
40  
35  
30  
25  
20  
15  
10  
5
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
40  
35  
30  
25  
20  
15  
10  
5
V
= V  
= 2.5V  
V
V
= 2.5V  
= 0V  
V
= V  
= 2.5V  
EN  
BIAS  
BIAS  
LOGIC  
LOGIC  
BIAS  
CURRENT FLOWS INTO THE PIN  
CURRENT FLOWS OUT OF THE PIN  
0
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3071 G20  
3071 G22  
3071 G21  
SENSE Pin Current  
SENSE Pin Current  
Current Limit vs Temperature  
7.50  
7.25  
7.00  
6.75  
6.50  
6.25  
6.00  
5.75  
5.50  
5.25  
5.00  
65  
60  
55  
50  
45  
40  
35  
30  
25  
400  
375  
350  
325  
300  
275  
250  
225  
200  
V
= V  
+ 300mV  
OUT(NOMINAL)  
V
V
= 2.5V  
= 0.8V  
V
V
= 3.3V  
= 1.8V  
IN  
BIAS  
OUT  
BIAS  
OUT  
CURRENT FLOWS INTO SENSE  
CURRENT FLOWS INTO SENSE  
V
V
V
= 1.8V, V  
= 1.2V, V  
= 0.8V, V  
= 3.3V  
= 3.3V  
= 2.5V  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3071 G25  
3071 G23  
3071 G24  
3071f  
LT3071  
typicAl perFormAnce chArActeristics  
Current Limit vs VIN – VOUT  
BIAS Pin Ripple Rejection  
IN Pin Ripple Rejection  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
7
6
5
4
3
2
1
0
100  
90  
V
V
= 1.3V  
= 1V  
V
= 3.3V  
IN  
OUT  
OUT  
BIAS  
T = 25°C  
J
I
= 5A  
80  
C
OUT  
= 10µF + 4.7µF + 2.2µF  
70  
60  
50  
40  
30  
20  
10  
0
C
C
= 117µF  
= 16.9µF  
OUT  
OUT  
V
V
V
I
= 1V  
OUT  
V
V
V
= 1.8V  
= 1.2V  
= 0.8V  
V
V
V
= 2.5V + 500mV  
= 2.7V + 500mV  
= 3.3V + 500mV  
= 1.3V + 50mV RIPPLE  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
P-P  
P-P  
P-P  
IN P-P  
= 2.5V  
= 1A  
BIAS  
OUT  
1.00 1.25  
1.50 1.75 2.00  
0
0.25 0.50 0.75  
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
IN-TO-OUT VOLTAGE DIFFERENTIAL (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
3071 G28  
3071 G27  
3071 G26  
Minimum BIAS Voltage  
vs Temperature  
Minimum BIAS Voltage vs IOUT  
IN Pin Ripple Rejection  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
V
= V  
+ 300mV  
OUT(NOMINAL)  
IN  
V
V
V
= 1.8V  
= 1.2V  
= 0.8V  
I
= 5A  
OUT  
OUT  
OUT  
OUT  
$V  
= –1%, T = 25°C  
J
OUT  
V
= 1.8V  
OUT  
V
= 1.5V  
OUT  
OUT  
OUT  
V
= 1.2V  
V
= 0.8V TO 1V  
C
C
= 117µF  
= 16.9µF  
OUT  
OUT  
V
V
V
= 1V  
OUT  
IN  
BIAS  
= 1.3V + 50mV RIPPLE  
P-P  
= 2.5V  
= 5A  
I
OUT  
1
2
4
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
5
10  
100  
1k  
10k 100k  
1M  
10M  
3
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
FREQUENCY (Hz)  
3071 G29  
3071 G30  
3071 G31  
Minimum BIAS Voltage vs VOUT  
Load Regulation  
Bias Voltage Line Regulation  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
–2  
–4  
I
= 5A  
V
V
V
= 2.2V TO 3.6V  
OUT  
J
BIAS  
IN  
OUT  
OUT  
T
= 25°C  
= 1.1V  
= 0.8V  
= 10mA  
I
–6  
–8  
V
V
= V  
+ 300mV  
OUT(NOMINAL)  
IN  
= 3.3V  
BIAS  
$I  
= 100mA TO 5A  
OUT  
V
V
V
= 0.8V  
= 1.2V  
= 1.8V  
OUT  
OUT  
OUT  
–10  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3071 G51  
3071 G32  
3071 G33  
3071f  
LT3071  
typicAl perFormAnce chArActeristics  
Input Voltage Line Regulation  
Bias Voltage Line Regulation  
Input Voltage Line Regulation  
400  
300  
300  
250  
300  
250  
V
V
V
I
= 3.25V TO 3.6V  
V
V
V
I
= 3.3V  
V
V
V
I
= 3.3V  
BIAS  
IN  
BIAS  
IN  
OUT  
BIAS  
IN  
OUT  
= 2.1V  
= 1.05V TO 2.7V  
= 0.8V  
= 2.05V TO 2.7V  
= 1.8V  
OUT  
= 1.8V  
= 10mA  
= 10mA  
= 10mA  
OUT  
200  
OUT  
OUT  
200  
150  
200  
150  
100  
0
–100  
–200  
–300  
–400  
100  
50  
0
100  
50  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3071 G34  
3071 G35  
3071 G36  
Output Voltage Start-Up Time  
vs CREF/BYP  
Nap Mode Recovery Time vs IOUT  
Output Noise Spectral Density  
1.0  
0.1  
20  
18  
16  
14  
12  
10  
8
400  
350  
300  
250  
V
V
= 3.3V  
OUT(NOM)  
EN = LOW TO HIGH  
BIAS  
IN  
V
OUT  
C
= 2.5V TO 3.3V  
V
V
OUT  
C
C
= 2.5V  
= 1V  
BIAS  
BIAS  
OUT  
= V  
+ 300mV  
I
= 10mA  
= 10µF + 4.7µF + 2.2µF  
I
= 5A  
OUT  
I
= 5A (SET BY A RESISTOR LOAD)  
OUT  
T = 25°C  
J
= 16.9µF  
OUT  
REF/BYP  
T = 25°C  
J
SEE APPLICATIONS  
INFORMATION FOR  
START-UP DETAILS  
= 0.01µF  
V
C
V
C
V
C
= 1.8V,  
= 117µF  
= 1.2V,  
= 117µF  
= 0.8V,  
= 117µF  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
200  
150  
0.01  
0.001  
6
100  
50  
0
4
2
0
1
2
4
0
5
0
0.1  
0.2  
0.3  
0.4  
0.5  
3
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT CURRENT (A)  
REF/BYP CAPACITANCE (µF)  
3071 G39  
3071 G38  
3071 G37  
Input Voltage Line Transient  
Response  
RMS Output Noise  
vs Output Current  
Output Noise (10Hz to 100kHz)  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
C
= V  
+ 300mV  
OUT(NOMINAL)  
IN  
= 3.3V  
BIAS  
OUT  
= 16.9µF  
V
OUT  
1mV/DIV  
V
OUT  
100µV/DIV  
V
IN  
50mV/DIV  
V
V
V
= 1.8V  
= 1.2V  
= 0.8V  
3071 G42  
OUT  
OUT  
OUT  
3071 G41  
V
V
I
= 1.3V  
= 1V  
20µs/DIV  
V
I
= 1V  
1ms/DIV  
IN  
OUT  
OUT  
OUT  
= 5A  
= 5A  
C
= 16.9µF  
OUT  
OUT  
C
= 16.9µF  
0.01  
0.1  
1
10  
OUT  
OUTPUT CURRENT (A)  
3071 G40  
3071f  
LT3071  
typicAl perFormAnce chArActeristics  
Bias Voltage Line Transient  
Response  
VIOC Amplifier IN-to-OUT Servo  
Voltage  
VIOC Amplifier Output Current  
vs Temperature  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
300  
275  
V
= 2.5V  
BIAS  
V
OUT  
10mV/DIV  
I
SOURCING  
VIOC  
250  
225  
I
SINKING  
VIOC  
V
BIAS  
200mV/DIV  
200  
175  
150  
3071 G43  
V
V
V
I
= 1.3V  
20µs/DIV  
IN  
= 2.5V  
= 1V  
BIAS  
OUT  
OUT  
= 5A  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
C
= 16.9µF  
OUT  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3071 G44  
3071 G45  
Transient Load Response  
Transient Load Response  
V
V
OUT  
OUT  
50mV/DIV  
50mV/DIV  
AC-COUPLED  
AC-COUPLED  
I
I
OUT  
OUT  
2A/DIV  
∆I = 500mA  
TO 5A  
2A/DIV  
∆I = 500mA  
TO 5A  
3071 G46  
3071 G47  
V
C
I
= 1V  
20µs/DIV  
= 10µF + 4.7µF + 2.2µF  
/t = 100ns  
V
C
I
= 1V  
= 117µF  
/t  
20µs/DIV  
= 100ns  
OUT  
OUT  
OUT  
OUT  
t
t
OUT RISE FALL  
OUT RISE FALL  
Transient Load Response  
Transient Load Response  
V
V
OUT  
OUT  
50mV/DIV  
50mV/DIV  
AC-COUPLED  
AC-COUPLED  
I
I
OUT  
OUT  
2A/DIV  
∆I = 500mA  
TO 5A  
2A/DIV  
∆I = 500mA  
TO 5A  
3071 G48  
3071 G49  
V
C
= 1V  
20µs/DIV  
= 10µF + 4.7µF + 2.2µF  
/t = 1µs  
V
C
= 1V  
20µs/DIV  
= 1µs  
OUT  
OUT  
OUT  
OUT  
= 117µF  
I
t
I
t
/t  
OUT RISE FALL  
OUT RISE FALL  
3071f  
ꢀ0  
LT3071  
pin Functions  
VIOC (Pin 1):VoltageforIn-to-OutControl.TheICin-  
GND(Pins4, 9-14, 20, 26, ExposedPadPin29):Ground.ꢀ  
corporatesꢀaꢀuniqueꢀtrackingꢀfunctionꢀtoꢀcontrolꢀaꢀbuckꢀ TheꢀexposedꢀpadꢀofꢀtheꢀQFNꢀpackageꢀisꢀanꢀelectricalꢀcon-  
regulatorꢀpoweringꢀtheꢀLT3071’sꢀinput.ꢀTheꢀVIOCꢀpinꢀisꢀ nectionꢀtoꢀGND.ꢀToꢀensureꢀproperꢀelectricalꢀandꢀthermalꢀ  
theꢀoutputꢀofꢀthisꢀtrackingꢀfunctionꢀthatꢀdrivesꢀtheꢀbuckꢀ performance,ꢀsolderꢀPinꢀ29ꢀtoꢀtheꢀPCBꢀgroundꢀandꢀtieꢀtoꢀ  
regulatorꢀtoꢀmaintainꢀtheꢀLT3071’sꢀinputꢀvoltageꢀatꢀV ꢀ+ꢀ allꢀGNDꢀpinsꢀofꢀtheꢀpackage.ꢀTheseꢀGNDꢀpinsꢀareꢀfusedꢀ  
OUT  
300mV.ꢀThisꢀfunctionꢀmaximizesꢀefficiencyꢀandꢀminimizesꢀ toꢀtheꢀinternalꢀdieꢀattachꢀpaddleꢀandꢀtheꢀexposedꢀpadꢀtoꢀ  
powerꢀdissipation.ꢀSeeꢀtheꢀApplicationsꢀInformationꢀsec-  
optimizeꢀheatꢀsinkingꢀandꢀthermalꢀresistanceꢀcharacteris-  
tionꢀforꢀmoreꢀinformationꢀonꢀproperꢀcontrolꢀofꢀtheꢀbuckꢀ tics.ꢀSeeꢀtheꢀApplicationsꢀInformationꢀsectionꢀforꢀthermalꢀ  
regulator.  
considerationsꢀandꢀcalculatingꢀjunctionꢀtemperature.ꢀ  
PWRGD (Pin 2):PowerGood.ThePWRGDꢀpinꢀisꢀanꢀopen-  
IN (Pins 5, 6, 7, 8):InputSupply.Thesepinssupplyꢀ  
drainꢀNMOSꢀoutputꢀthatꢀactivelyꢀpullsꢀlowꢀifꢀanyꢀoneꢀofꢀ powerꢀtoꢀtheꢀhighꢀcurrentꢀpassꢀtransistor.ꢀTieꢀallꢀINꢀpinsꢀ  
theseꢀfaultꢀmodesꢀisꢀdetected:  
togetherꢀforꢀproperꢀperformance.ꢀTheꢀLT3071ꢀrequiresꢀaꢀ  
bypassꢀcapacitorꢀatꢀINꢀtoꢀmaintainꢀstabilityꢀandꢀlowꢀinputꢀ  
impedanceꢀoverꢀfrequency.ꢀAꢀ47µFꢀinputꢀbypassꢀcapacitorꢀ  
sufficesꢀforꢀmostꢀbatteryꢀandꢀpowerꢀplaneꢀimpedances.ꢀ  
Minimizinginputtraceinductanceoptimizesperformance.ꢀ  
•ꢀ V ꢀisꢀlessꢀthanꢀ90ꢁꢀofꢀV  
ꢀonꢀtheꢀrisingꢀ  
OUT  
edgeꢀofꢀV  
OUT(NOMINAL)  
OUT(NOMINAL)  
.
OUTꢀ  
•ꢀ V ꢀdropsꢀbelowꢀ85ꢁꢀofꢀV  
ꢀforꢀmoreꢀthanꢀ  
OUT  
25µs.  
ApplicationsthatoperatewithlowV -V differentialꢀ  
IN OUT  
voltagesandthathavelarge,fastloadtransientsmayrequireꢀ  
muchꢀhigherꢀinputꢀcapacitorꢀrequirementsꢀtoꢀpreventꢀtheꢀ  
inputꢀsupplyꢀfromꢀdroopingꢀandꢀallowingꢀtheꢀregulatorꢀtoꢀ  
enterꢀdropout.ꢀSeeꢀtheꢀApplicationsꢀInformationꢀsectionꢀ  
forꢀmoreꢀinformationꢀonꢀinputꢀcapacitorꢀrequirements.ꢀ  
•ꢀ Junctionꢀtemperatureꢀtypicallyꢀexceedsꢀ145°C.  
•ꢀ V ꢀisꢀlessꢀthanꢀitsꢀundervoltageꢀlockoutꢀthreshold.  
BIAS  
•ꢀ TheꢀOUT-to-INꢀreverse-currentꢀdetectorꢀactivates.  
SeeꢀtheꢀApplicationsꢀInformationꢀsectionꢀforꢀmoreꢀinfor-  
mationꢀonꢀPWRGDꢀfaultꢀmodes.  
OUT (Pins 15, 16, 17, 18):Output.Thesepinssupplyꢀ  
powerꢀtoꢀtheꢀload.ꢀTieꢀallꢀOUTꢀpinsꢀtogetherꢀforꢀproperꢀ  
performance.ꢀAꢀminimumꢀoutputꢀcapacitanceꢀofꢀ15µFꢀisꢀ  
requiredꢀforꢀstability.ꢀLTCꢀrecommendsꢀlowꢀESR,ꢀX5Rꢀorꢀ  
X7Rꢀdielectricꢀceramicꢀcapacitorsꢀforꢀbestꢀperformance.ꢀ  
Aꢀparallelꢀceramicꢀcapacitorꢀcombinationꢀofꢀ10µFꢀ+ꢀ4.7µFꢀ  
+ꢀ2.2µFꢀorꢀ15ꢀ1µFꢀceramicꢀcapacitorsꢀinꢀparallelꢀprovideꢀ  
excellentꢀstabilityꢀandꢀloadꢀtransientꢀresponse.ꢀLargeꢀloadꢀ  
transientꢀapplicationsꢀrequireꢀlargerꢀoutputꢀcapacitorsꢀtoꢀ  
limitꢀpeakꢀvoltageꢀtransients.ꢀSeeꢀtheꢀApplicationsꢀInfor-  
mationꢀsectionꢀforꢀmoreꢀinformationꢀonꢀoutputꢀcapacitorꢀ  
requirements.ꢀ  
REF/BYP (Pin 3):ꢀReferenceꢀFilter.ꢀTheꢀpinꢀisꢀtheꢀoutputꢀ  
ofꢀtheꢀbandgapꢀreferenceꢀandꢀhasꢀanꢀimpedanceꢀofꢀap-  
proximatelyꢀ19kΩ.ꢀThisꢀpinꢀmustꢀnotꢀbeꢀexternallyꢀloaded.ꢀ  
BypassingꢀtheꢀREF/BYPꢀpinꢀtoꢀGNDꢀwithꢀaꢀ10nFꢀcapacitorꢀ  
decreasesꢀoutputꢀvoltageꢀnoiseꢀandꢀprovidesꢀaꢀsoft-startꢀ  
functionꢀtoꢀtheꢀreference.ꢀLTCꢀrecommendsꢀtheꢀuseꢀofꢀaꢀ  
highꢀquality,ꢀlowꢀleakageꢀcapacitor.ꢀSeeꢀtheꢀApplicationsꢀ  
Informationsectionformoreinformationonnoiseandꢀ  
outputꢀvoltageꢀmarginingꢀconsiderations.  
3071f  
ꢀꢀ  
LT3071  
pin Functions  
SENSE (Pin 19):ꢀKelvinꢀSenseꢀforꢀOUT.ꢀTheꢀSENSEꢀpinꢀisꢀ V , V and V (Pins 23, 24, 25):ꢀOutputꢀVoltageꢀSe-  
O0 O1 O2  
                               
theinvertinginputtotheerroramplifier.Optimumregulationꢀ lect.ꢀTheseꢀthree-stateꢀpinsꢀcombineꢀtoꢀselectꢀaꢀnominalꢀ  
isꢀobtainedꢀwhenꢀtheꢀSENSEꢀpinꢀisꢀconnectedꢀtoꢀtheꢀOUTꢀ outputꢀvoltageꢀfromꢀ0.8Vꢀtoꢀ1.8Vꢀinꢀincrementsꢀofꢀ50mV.ꢀ  
pinsoftheregulator.Incriticalapplications,theresistanceꢀ Outputꢀvoltageꢀisꢀlimitedꢀtoꢀ1.8Vꢀmaximumꢀbyꢀanꢀinternalꢀ  
(R )ofPCBtracesbetweentheregulatorandtheloadcauseꢀ overrideofV ꢀwhenV ꢀ=high.Theinputlogiclowꢀ  
P
O1  
O2  
smallꢀvoltageꢀdrops,ꢀcreatingꢀaꢀloadꢀregulationꢀerrorꢀatꢀtheꢀ thresholdꢀisꢀlessꢀthanꢀ250mVꢀreferencedꢀtoꢀGNDꢀandꢀtheꢀ  
pointofload.ConnectingtheSENSEpinattheloadinsteadꢀ logicꢀhighꢀthresholdꢀisꢀgreaterꢀthanꢀV  
ꢀ–ꢀ250mV.ꢀTheꢀ  
BIAS  
ofꢀdirectlyꢀtoꢀOUTꢀeliminatesꢀthisꢀvoltageꢀerror.ꢀFigureꢀ1ꢀ rangeꢀbetweenꢀtheseꢀtwoꢀthresholdsꢀasꢀsetꢀbyꢀaꢀwindowꢀ  
illustratesthisKelvin-Senseconnectionmethod.Notethatꢀ comparatorꢀdefinesꢀtheꢀlogicꢀHi-Zꢀstate.ꢀSeeꢀTableꢀ1ꢀinꢀtheꢀ  
thevoltagedropacrosstheexternalPCBtracesaddstotheꢀ ApplicationsꢀInformationꢀsectionꢀthatꢀdefinesꢀtheꢀV ,ꢀV ꢀ  
O2 O1  
dropoutꢀvoltageꢀofꢀtheꢀregulator.ꢀTheꢀSENSEꢀpinꢀinputꢀbiasꢀ andꢀV ꢀsettingsꢀversusꢀV  
.
O0  
OUTꢀ  
currentꢀdependsꢀonꢀtheꢀselectedꢀoutputꢀvoltage.ꢀSENSEꢀ  
BIAS (Pin 27):ꢀBiasꢀSupply.ꢀThisꢀpinꢀsuppliesꢀcurrentꢀtoꢀ  
theꢀinternalꢀcontrolꢀcircuitryꢀandꢀtheꢀoutputꢀstageꢀdrivingꢀ  
thepasstransistor.TheLT3071requiresaminimum2.2µFꢀ  
ꢀ pinꢀ bypasscapacitorforstabilityandproperoperation.Toꢀ  
pininputcurrentvariesfrom50µAtypicallyatV ꢀ=0.8Vꢀ  
OUT  
toꢀ300µAꢀtypicallyꢀatꢀV ꢀ=ꢀ1.8V.  
OUT  
I
(Pin 21):ꢀ Outputꢀ Currentꢀ Monitor.ꢀ Theꢀ I  
MON  
MON  
sourcesꢀaꢀcurrentꢀtypicallyꢀequalꢀtoꢀI /2500ꢀorꢀ400µAꢀ ensureꢀproperꢀoperation,ꢀtheꢀBIASꢀvoltageꢀmustꢀsatisfyꢀ  
OUT  
perampofoutputcurrent.Terminatingthispinwithaꢀ theꢀfollowingꢀconditions:ꢀ2.2Vꢀ≤ꢀV  
ꢀ≤ꢀ3.6VꢀandꢀV  
BIAS  
ꢀ≥ꢀ  
BIAS  
resistorꢀtoꢀGNDꢀproducesꢀaꢀvoltageꢀproportionalꢀtoꢀI .ꢀ (1.25ꢀ•ꢀV ꢀ+ꢀ1V).ꢀForꢀV ꢀ≤ꢀ0.95V,ꢀtheꢀminimumꢀBIASꢀ  
OUTꢀ  
OUT  
OUT  
Forꢀexample,ꢀatꢀI ꢀ=ꢀ5A,ꢀI  
ꢀtypicallyꢀsourcesꢀ2mA.ꢀ voltageꢀisꢀlimitedꢀtoꢀ2.2V.  
OUT  
MON  
Withꢀaꢀ1kꢀresistorꢀtoꢀGND,ꢀthisꢀproducesꢀ2V.ꢀIfꢀI  
ꢀisꢀ  
MON  
EN (Pin 28):ꢀEnable.ꢀThisꢀpinꢀenables/disablesꢀtheꢀoutputꢀ  
unused,ꢀtieꢀthisꢀpinꢀtoꢀV  
.ꢀ  
BIAS  
deviceonly.Theinternalreferenceandallsupportfunctionsꢀ  
MARGA (Pin 22):ꢀAnalogꢀMargining:ꢀThisꢀpinꢀmarginsꢀtheꢀ areactiveifV  
isaboveitsUVLOthreshold.Pullingꢀ  
BIAS  
outputꢀvoltageꢀoverꢀaꢀcontinuousꢀanalogꢀrangeꢀofꢀ 10ꢁ.ꢀ ENlowkeepsthereferencecircuitactive,butdisablesꢀ  
TyingthisꢀpinꢀtoꢀGNDꢀadjustsꢀoutputꢀvoltageꢀbyꢀ–10ꢁ.ꢀ theꢀoutputꢀpassꢀtransistorꢀandꢀputsꢀtheꢀLT3071ꢀintoꢀaꢀlowꢀ  
Drivingꢀthisꢀpinꢀtoꢀ1.2Vꢀadjustsꢀoutputꢀvoltageꢀbyꢀ+10ꢁ.ꢀAꢀ powernapmode.DrivetheENpinwitheitheradigitallogicꢀ  
voltageꢀsourceꢀorꢀaꢀvoltageꢀoutputꢀDACꢀisꢀidealꢀforꢀdrivingꢀ portorꢀanꢀopen-collectorꢀNPNꢀorꢀanꢀopen-drainꢀNMOSꢀ  
thisꢀpin.ꢀIfꢀtheꢀMARGAꢀfunctionꢀisꢀnotꢀused,ꢀeitherꢀfloatꢀ terminatedꢀwithꢀaꢀpull-upꢀresistorꢀtoꢀV  
.ꢀTheꢀpull-upꢀ  
IH  
BIAS  
thisꢀpinꢀorꢀterminateꢀwithꢀaꢀ1nFꢀcapacitorꢀtoꢀGND.  
resistorꢀmustꢀbeꢀlessꢀthanꢀ35kꢀtoꢀmeetꢀtheꢀV ꢀconditionꢀ  
ofꢀtheꢀENꢀpin.ꢀIfꢀunused,ꢀconnectꢀENꢀtoꢀBIAS.  
+
V
BIAS  
BIAS  
EN  
IN  
PWRGD  
SENSE  
LT3071  
OUT  
V
O0  
V
O1  
V
O2  
R
P
+
V
IN  
I
LOAD  
MARGA  
VIOC  
MON  
REF/BYP  
GND  
R
P
3071 F01  
Figure 1. Kelvin Sense Connection  
3071f  
ꢀꢁ  
LT3071  
block DiAgrAm  
UVLO AND  
BIAS  
27  
THERMAL  
SHUTDOWN  
IN  
5-8  
+
+
I
MON  
I
21  
SENSE  
REF/BYP  
+
EAMP  
BUF  
OUT  
15-18  
LDO CORE  
SENSE  
19  
2
PWRGD  
DETECT  
+
VIOC  
GND  
V
+ 300mV  
1
OUT(NOM)  
REF/BYP  
600mV  
V
3
REF  
4,9-14,20,26,29  
PROGRAM CONTROL  
EN  
28  
V
V
V
O0  
MARGA  
22  
O2  
O1  
25  
24  
23  
3070 BD  
LOGIC HIGH STATE  
V
– 0.25V  
BIAS  
+
LOGIC Hi-Z STATE  
V
BIAS  
HIGH IF IN > V  
HIGH IF IN < V  
– 0.25V  
– 0.9V  
BIAS  
V
– 0.9V  
+
+
BIAS  
100k  
V
, V , VO0  
O2 O1  
BIAS  
AND IN > 0.75V  
TO LOGIC  
MARGSEL OR  
MARGTOL  
0.75V  
100k  
HIGH IF IN < 0.25V  
LOGIC LOW STATE  
+
0.25V  
3071f  
ꢀꢂ  
LT3071  
ApplicAtions inFormAtion  
Introduction  
outputꢀcurrent.ꢀThisꢀpermitsꢀaꢀuserꢀtoꢀmeasureꢀsystemꢀ  
performanceꢀsuchꢀasꢀoutputꢀpowerꢀorꢀifꢀoutputꢀcurrentꢀ  
exceedsꢀorꢀfallsꢀbelowꢀsomeꢀthreshold.  
Currentꢀ generationꢀ FPGAꢀ andꢀ ASICꢀ processorsꢀ placeꢀ  
stringentꢀdemandsꢀonꢀtheꢀpowerꢀsuppliesꢀthatꢀpowerꢀtheꢀ  
core,I/Oandtransceiverchannels.Thesemicroprocessorsꢀ TheꢀICꢀincorporatesꢀaꢀuniqueꢀtrackingꢀfunction,ꢀwhichꢀifꢀ  
mayꢀcycleꢀloadꢀcurrentꢀfromꢀnearꢀzeroꢀtoꢀampsꢀinꢀtensꢀofꢀ enabledꢀbyꢀtheꢀuser,controlsanupsteamregulatorpower-  
nanoseconds.ꢀOutputꢀvoltageꢀspecifications,ꢀespeciallyꢀinꢀ ingtheLT3071’sinput(seeFigure8).Thistrackingfunctionꢀ  
theꢀ1Vꢀrange,ꢀrequireꢀtightꢀtolerancesꢀincludingꢀtransientꢀ drivesꢀtheꢀbuckꢀregulatorꢀtoꢀmaintainꢀtheꢀLT3071’sꢀinputꢀ  
responseaspartoftherequirement.SomeASICprocessorsꢀ voltagetoV ꢀ+300mV.Thisinput-to-outputvoltageꢀ  
OUT  
requireꢀonlyꢀaꢀsingleꢀoutputꢀvoltageꢀfromꢀwhichꢀtheꢀcoreꢀ controlallowstheusertochangetheregulatoroutputꢀ  
andꢀI/Oꢀcircuitryꢀoperate.ꢀSomeꢀhighꢀperformanceꢀFPGAꢀ voltage,ꢀandꢀhaveꢀtheꢀswitchingꢀregulatorꢀpoweringꢀtheꢀ  
processorsrequireseparatepowersupplyvoltagesfortheꢀ LT3071’sꢀinputꢀtoꢀtrackꢀtoꢀtheꢀoptimumꢀinputꢀvoltageꢀwithꢀ  
processorꢀcore,ꢀtheꢀI/O,ꢀandꢀtheꢀtransceivers.ꢀOften,ꢀtheseꢀ noꢀcomponentꢀchanges.  
supplyꢀvoltagesꢀmustꢀbeꢀlowꢀnoiseꢀandꢀhighꢀbandwidthꢀ  
Thisꢀ combinesꢀ theꢀ efficiencyꢀ ofꢀ aꢀ switchingꢀ regulatorꢀ  
toꢀachieveꢀtheꢀlowestꢀbit-errorꢀrates.ꢀTheseꢀrequirementsꢀ  
withsuperiorlinearregulatorresponse.Italsopermitsꢀ  
mandateꢀtheꢀneedꢀforꢀveryꢀaccurate,ꢀlowꢀnoise,ꢀhighꢀcur-  
thermalꢀmanagementꢀofꢀtheꢀsystemꢀevenꢀwithꢀaꢀmaximumꢀ  
rent,ꢀveryꢀhighꢀspeedꢀregulatorꢀcircuitsꢀthatꢀoperateꢀatꢀlowꢀ  
5Aꢀoutputꢀload.ꢀ  
inputꢀandꢀoutputꢀvoltages.  
LT3071internalprotectionincludesinputundervoltageꢀ  
TheꢀLT3071ꢀisꢀaꢀlowꢀvoltage,ꢀUltraFastꢀtransientꢀresponseꢀ  
lockout(UVLO),reverse-currentprotection,precisioncur-  
linearꢀregulator.ꢀTheꢀdeviceꢀsuppliesꢀupꢀtoꢀ5Aꢀofꢀoutputꢀ  
rentꢀlimitingꢀwithꢀpowerꢀfoldbackꢀandꢀthermalꢀshutdown.ꢀ  
currentꢀwithꢀaꢀtypicalꢀdropoutꢀvoltageꢀofꢀ85mV.ꢀAꢀ0.01µFꢀ  
TheꢀLT3071ꢀregulatorꢀisꢀavailableꢀinꢀaꢀthermallyꢀenhancedꢀ  
referencebypasscapacitordecreasesoutputvoltagenoiseꢀ  
28-lead,ꢀ4mmꢀ×ꢀ5mmꢀQFNꢀpackage.  
toꢀ25µV  
ꢀ(BWꢀ=ꢀ10Hzꢀtoꢀ100kHz).ꢀTheꢀLT3071’sꢀhighꢀ  
RMS  
TheLT3071’sarchitecturedrivesaninternalN-channelꢀ  
powerꢀMOSFETꢀasꢀaꢀsourceꢀfollower.ꢀThisꢀconfigurationꢀ  
permitsꢀaꢀuserꢀtoꢀobtainꢀanꢀextremelyꢀlowꢀdropout,ꢀUltra-  
Fastꢀtransientꢀresponseꢀregulatorꢀwithꢀexcellentꢀhighꢀfre-  
quencyPSRRperformance.TheLT3071achievessuperiorꢀ  
regulatorꢀbandwidthꢀandꢀtransientꢀloadꢀperformanceꢀbyꢀ  
eliminatingexpensivebulktantalumorelectrolyticcapaci-  
torsꢀinꢀtheꢀmostꢀmodernꢀandꢀdemandingꢀmicroprocessorꢀ  
applications.ꢀUsersꢀrealizeꢀsignificantꢀcostꢀsavingsꢀasꢀallꢀ  
bandwidthprovidesUltraFasttransientresponseusinglowꢀ  
ESRꢀceramicꢀoutputꢀcapacitorsꢀ(15µFꢀminimum),ꢀsavingꢀ  
bulkꢀcapacitance,ꢀPCBꢀareaꢀandꢀcost.ꢀ  
TheLT3071’sfeaturespermitstate-of-the-artꢀlinearregula-  
torperformance.TheLT3071isidealforhighperformanceꢀ  
FPGAs,ꢀmicroprocessors,ꢀsensitiveꢀcommunicationꢀsup-  
plies,ꢀandꢀhighꢀcurrentꢀlogicꢀapplicationsꢀthatꢀalsoꢀoperateꢀ  
overꢀlowꢀinputꢀandꢀoutputꢀvoltages.ꢀ  
OutputvoltagefortheLT3071isdigitallyselectableinꢀ additionalbulkcapacitanceisremoved.Theadditionalꢀ  
50mVꢀincrementsꢀoverꢀaꢀ0.8Vꢀtoꢀ1.8Vꢀrange.ꢀAnꢀanalogꢀ savingsꢀofꢀinsertionꢀcost,ꢀpurchasing/inventoryꢀcostꢀandꢀ  
marginingfunctionallowstheusertoadjustsystemoutputꢀ boardꢀspaceꢀareꢀreadilyꢀapparent.ꢀPrecisionꢀincrementalꢀ  
voltageꢀoverꢀaꢀcontinuousꢀ 10ꢁꢀrange.ꢀ  
outputꢀvoltageꢀcontrolꢀaccommodatesꢀlegacyꢀandꢀfutureꢀ  
microprocessorꢀpowerꢀsupplyꢀvoltages.ꢀ  
Theꢀ LT3071ꢀ providesꢀ anꢀ outputꢀ currentꢀ monitorꢀ thatꢀ  
typicallysourcesacurrentofI /2500or400µAperꢀ Outputꢀcapacitorꢀnetworksꢀsimplifyꢀtoꢀdirectꢀparallelꢀcom-  
OUT  
ampꢀofꢀI ꢀatꢀitsꢀI  
ꢀpin.ꢀTerminatingꢀtheꢀI  
ꢀpinꢀtoꢀ binationsofceramiccapacitors.Often,thehighfrequencyꢀ  
OUT  
MON  
MON  
GNDꢀwithꢀaꢀresistorꢀproducesꢀaꢀvoltageꢀproportionalꢀtoꢀ ceramicꢀdecouplingꢀcapacitorsꢀrequiredꢀbyꢀtheseꢀvariousꢀ  
3071f  
ꢀꢃ  
LT3071  
ApplicAtions inFormAtion  
FPGAꢀandꢀASICꢀprocessorsꢀareꢀsufficientꢀtoꢀstabilizeꢀtheꢀ Outputꢀvoltageꢀisꢀlimitedꢀtoꢀ1.8Vꢀmaximumꢀbyꢀanꢀinternalꢀ  
system(seeStabilityandOutputCapacitancesection).Thisꢀ overrideꢀofꢀV ꢀ(defaultꢀtoꢀlow)ꢀwhenꢀV ꢀ=ꢀhigh.ꢀ  
O1  
O2  
regulatordesignprovidesamplebandwidthandrespondsꢀ  
toꢀtransientꢀloadꢀchangesꢀinꢀaꢀfewꢀhundredꢀnanosecondsꢀ  
versusꢀregulatorsꢀthatꢀrespondꢀinꢀmanyꢀmicroseconds.ꢀ  
Table 1: VO2 to VO0 Settings vs Output Voltage  
V
V
V
V
V
V
V
V
OUT(NOM)  
O2  
O1  
O0  
OUT(NOM)  
O2  
O1  
O0  
0
0
0
0
0
0
0
0
0
Z
Z
0
0
0
Z
Z
Z
1
1
1
0
0
0
Z
1
0
Z
1
0
Z
1
0
Z
0.80V  
Z
Z
Z
Z
Z
Z
Z
1
1
1
0
Z
Z
Z
1
1
1
X
X
X
1
0
Z
1
0
Z
1
0
Z
1
1.35V  
TheꢀLT3071ꢀalsoꢀincorporatesꢀprecisionꢀcurrentꢀlimiting,ꢀ  
enable/disablecontrolofoutputvoltageandintegratedꢀ  
overvoltageꢀ andꢀ thermalꢀ shutdownꢀ protection.ꢀ Theꢀ  
LT3071’sꢀ uniqueꢀ designꢀ combinesꢀ theꢀ benefitsꢀ ofꢀ lowꢀ  
dropoutꢀ voltage,ꢀ highꢀ functionalꢀ integration,ꢀ precisionꢀ  
performanceꢀandꢀUltraFastꢀtransientꢀresponse,ꢀasꢀwellꢀasꢀ  
providingsignificantcostsavingsontheoutputcapacitanceꢀ  
neededꢀinꢀfastꢀloadꢀtransientꢀapplications.ꢀ  
0.85V  
0.90V  
0.95V  
1.00V  
1.05V  
1.10V  
1.15V  
1.20V  
1.25V  
1.30V  
1.40V  
1.45V  
1.50V  
1.55V  
1.60V  
1.65V  
1.70V  
1.75V  
1.80V  
Asꢀlowerꢀvoltageꢀapplicationsꢀbecomeꢀincreasinglyꢀpreva-  
lentꢀwithꢀhigherꢀfrequencyꢀswitchingꢀpowerꢀsupplies,ꢀtheꢀ  
LT3071ꢀ offersꢀ superiorꢀ regulationꢀ andꢀ anꢀ appreciableꢀ  
componentꢀcostꢀsavings.ꢀTheꢀLT3071ꢀstepsꢀtoꢀtheꢀnextꢀ  
levelofperformanceforthelatestgenerationFPGAs,DSPsꢀ  
andꢀmicroprocessors.ꢀTheꢀsimpleꢀversatilityꢀandꢀbenefitsꢀ  
derivedfromthesecircuitsexceedthepowersupplyneedsꢀ  
ofꢀtoday’sꢀhighꢀperformanceꢀmicroprocessors.  
Xꢀ=ꢀDon’tꢀCare,ꢀ0ꢀ=ꢀLow,ꢀZꢀ=ꢀFloat,ꢀ1ꢀ=ꢀHigh  
Theꢀinputꢀlogicꢀlowꢀthresholdꢀisꢀlessꢀthanꢀ250mVꢀrefer-  
encedꢀtoꢀGNDꢀandꢀtheꢀlogicꢀhighꢀthresholdꢀisꢀgreaterꢀthanꢀ  
–ꢀ250mV.ꢀTheꢀrangeꢀbetweenꢀtheseꢀtwoꢀthresholdsꢀ  
assetbyawindowcomparatordefinesthelogicHi-Zꢀ  
V
BIASꢀ  
state.  
Programming Output Voltage  
REF/BYP—Voltage Reference  
Threetri-levelinputpins,V ,V ꢀandV ,selecttheꢀ  
O2 O1  
O0  
Thispinisthebufferedoutputoftheinternalbandgapꢀ  
valueꢀofꢀoutputꢀvoltage.ꢀTableꢀ1ꢀillustratesꢀtheꢀ3-bitꢀdigitalꢀ  
wordꢀtoꢀoutputꢀvoltageꢀresultingꢀfromꢀsettingꢀtheseꢀpinsꢀ  
high,ꢀlowꢀorꢀallowingꢀthemꢀtoꢀfloat.ꢀ  
referenceꢀandꢀhasꢀanꢀoutputꢀimpedanceꢀofꢀ19kΩ.ꢀTheꢀ  
designincludesaninternalcompensationpoleatf ꢀ=4kHz.ꢀ  
C
Aꢀ10nFꢀREF/BYPꢀcapacitorꢀtoꢀGNDꢀcreatesꢀaꢀlowpassꢀpoleꢀ  
Theseꢀpinsꢀmayꢀbeꢀtiedꢀhighꢀorꢀlowꢀbyꢀeitherꢀpin-strappingꢀ  
atꢀf ꢀ=ꢀ840Hz.ꢀTheꢀ10nFꢀcapacitorꢀdecreasesꢀreferenceꢀ  
LP  
themꢀtoꢀV ꢀorꢀdrivingꢀthemꢀwithꢀdigitalꢀports.ꢀPinsꢀthatꢀ  
BIAS  
voltageꢀnoiseꢀtoꢀaboutꢀ10µV  
ꢀandꢀsoft-startsꢀtheꢀrefer-  
RMS  
floatmayeitheractuallyfloatorrequirelogicthathasꢀ  
Hi-Zꢀoutputꢀcapability.ꢀThisꢀallowsꢀoutputꢀvoltageꢀtoꢀbeꢀ  
dynamicallyꢀchangedꢀifꢀnecessary.  
ence.ꢀTheꢀLT3071ꢀonlyꢀsoft-startsꢀtheꢀreferenceꢀvoltageꢀ  
duringꢀanꢀinitialꢀturn-onꢀsequence.ꢀIfꢀtheꢀENꢀpinꢀisꢀtoggledꢀ  
lowafterinitialturn-on,thereferenceremainspowered-up.ꢀ  
Therefore,ꢀtogglingꢀtheꢀENꢀpinꢀfromꢀlowꢀtoꢀhighꢀdoesꢀnotꢀ  
soft-startꢀtheꢀreference.ꢀOnlyꢀbyꢀturningꢀtheꢀBIASꢀsupplyꢀ  
voltageonandoffwillthereferencebesoft-started.Outputꢀ  
voltagenoiseistheRMSsumofthereferencevoltageꢀ  
noiseꢀinꢀadditionꢀtoꢀtheꢀamplifierꢀnoise.ꢀ  
Outputꢀvoltageꢀisꢀselectableꢀfromꢀaꢀminimumꢀofꢀ0.8Vꢀtoꢀ  
amaximumof1.8Vinincrementsof50mV.TheMSB,ꢀ  
V ,setsthepedestalvoltage,andtheLSB’s,V andꢀ  
O2  
O1ꢀ  
V ꢀincrementꢀV .ꢀ  
O0  
OUTꢀ  
3071f  
ꢀꢄ  
LT3071  
ApplicAtions inFormAtion  
TheREF/BYPpinmustnotbeDCloadedbyanythingexceptꢀ High Efficiency Linear Regulator—Input-to-Output  
forꢀapplicationsꢀthatꢀparallelꢀotherꢀLT3071ꢀregulatorsꢀforꢀ Voltage Control  
higherꢀoutputꢀcurrents.ꢀConsultꢀtheꢀApplicationsꢀSectionꢀ  
TheVIOC(voltageinput-to-outputcontrol)pinisafunctionꢀ  
onꢀParallelingꢀforꢀfurtherꢀdetails.ꢀ  
tocontrolaswitchingregulatorandfacilitateadesignsolu-  
tionthatmaximizessystemefficiencyathighloadcurrentsꢀ  
Output Voltage Margining  
andꢀstillꢀprovidesꢀlowꢀdropoutꢀvoltageꢀperformance.  
TheꢀLT3071’sꢀanalogꢀmarginingꢀpin,ꢀMARGA,ꢀprovidesꢀaꢀ  
TheVIOCpinistheoutputofanintegratedtranscon-  
continuousꢀoutputꢀvoltageꢀadjustmentꢀrangeꢀofꢀ 10ꢁ.ꢀItꢀ  
ductanceꢀamplifierꢀthatꢀsourcesꢀandꢀsinksꢀaboutꢀ250µAꢀ  
marginsꢀV ꢀbyꢀadjustingꢀtheꢀinternalꢀ600mVꢀreferenceꢀ  
OUT  
ofꢀcurrent.ꢀItꢀtypicallyꢀregulatesꢀtheꢀoutputꢀofꢀmostꢀLTC®ꢀ  
switchingꢀregulatorsꢀorꢀLTM®ꢀpowerꢀmodules,ꢀbyꢀsinkingꢀ  
currentfromtheITHcompensationnode.TheVIOCfunctionꢀ  
controlsꢀaꢀbuckꢀregulatorꢀpoweringꢀtheꢀLT3071’sꢀinputꢀbyꢀ  
voltageꢀ upꢀ andꢀ down.ꢀ Theꢀ MARGAꢀ pin’sꢀ typicalꢀ inputꢀ  
impedanceis190kΩbetweenMARGAandtheinternalꢀ  
V ꢀnode.ꢀDrivingꢀMARGAꢀwithꢀ600mVꢀtoꢀ1.2Vꢀprovidesꢀ  
REF  
0ꢁꢀtoꢀ10ꢁꢀofꢀadjustment.ꢀDrivingꢀMARGAꢀwithꢀ600mVꢀtoꢀ  
0Vꢀprovidesꢀ0ꢁꢀtoꢀ–10ꢁꢀofꢀadjustment.ꢀIfꢀunused,ꢀallowꢀ  
MARGAꢀtoꢀfloatꢀorꢀbypassꢀthisꢀpinꢀwithꢀaꢀ1nFꢀcapacitorꢀ  
toꢀGND.ꢀNoteꢀthatꢀtheꢀanalogꢀmarginingꢀfunctionꢀdoesꢀnotꢀ  
adjustꢀtheꢀPWRGDꢀthreshold.ꢀTherefore,ꢀnegativeꢀanalogꢀ  
marginingꢀmayꢀtripꢀtheꢀPWRGDꢀcomparatorꢀandꢀtoggleꢀ  
theꢀPWRGDꢀflag.  
maintainingꢀtheꢀLT3071’sꢀinputꢀvoltageꢀtoꢀV ꢀ+ꢀ300mV.ꢀ  
OUT  
This300mVꢀ V -V differentialvoltageischosentoꢀ  
IN OUT  
provideꢀfastꢀtransientꢀresponseꢀandꢀgoodꢀhighꢀfrequencyꢀ  
PSRRwhileminimizingpowerdissipationandmaximizingꢀ  
efficiency.ꢀForꢀexample,ꢀ1.5Vꢀtoꢀ1.2Vꢀconversionꢀandꢀ1.3Vꢀ  
toꢀ1Vꢀconversionꢀyieldꢀ1.5Wꢀmaximumꢀpowerꢀdissipationꢀ  
atꢀ5Aꢀfullꢀoutputꢀcurrent.  
Figureꢀ2ꢀdepictsꢀthatꢀtheꢀswitcher’sꢀfeedbackꢀresistorꢀnet-  
worksetsthemaximumswitchingregulatoroutputvoltageꢀ  
ifthelinearregulatorisdisabled.However,oncetheLT3071ꢀ  
isenabled,theVIOCfeedbackloopdecreasestheswitchingꢀ  
Enable Function—Turning On and Off  
TheꢀENꢀpinꢀenables/disablesꢀtheꢀoutputꢀdeviceꢀonly.ꢀTheꢀ  
LT3071ꢀreferenceꢀandꢀallꢀsupportꢀfunctionsꢀremainꢀactiveꢀ  
ifꢀV  
ꢀisꢀaboveꢀitsꢀUVLOꢀthreshold.ꢀPullingꢀtheꢀENꢀpinꢀ  
BIAS  
regulatorꢀoutputꢀvoltageꢀbackꢀtoꢀV ꢀ+ꢀ300mV.  
OUT  
lowputstheLT3071intonapmode.Innapmode,theꢀ  
referenceꢀcircuitꢀisꢀactive,ꢀbutꢀtheꢀoutputꢀisꢀdisabledꢀandꢀ  
quiescentꢀcurrentꢀdecreases.  
UsingꢀtheꢀVIOCꢀfunctionꢀcreatesꢀaꢀfeedbackꢀloopꢀbetweenꢀ  
theꢀLT3071ꢀandꢀtheꢀswitchingꢀregulator.ꢀAsꢀsuch,ꢀtheꢀfeed-  
backꢀloopꢀmustꢀbeꢀfrequencyꢀcompensatedꢀforꢀstability.ꢀ  
Fortunately,theconnectionofVIOCtomanyLTCswitchingꢀ  
regulatorꢀITHꢀpinsꢀrepresentsꢀaꢀhighꢀimpedanceꢀcharac-  
teristicꢀwhichꢀisꢀtheꢀoptimumꢀcircuitꢀnodeꢀtoꢀfrequencyꢀ  
compensatethefeedbackloop.Figure2illustratestheꢀ  
typicalfrequencycompensationnetworkusedattheVIOCꢀ  
nodeꢀtoꢀGND.  
DriveꢀtheꢀENꢀpinꢀwithꢀeitherꢀaꢀdigitalꢀlogicꢀportꢀorꢀanꢀopen-  
collectorNPNoranopen-drainNMOSterminatedwithꢀ  
aꢀpull-upꢀresistorꢀtoꢀV  
.ꢀTheꢀpull-upꢀresistorꢀmustꢀbeꢀ  
IH  
BIAS  
lessꢀthanꢀ35kꢀtoꢀmeetꢀtheꢀV ꢀconditionꢀofꢀtheꢀENꢀpin.ꢀIfꢀ  
unused,ꢀconnectꢀENꢀtoꢀBIAS.  
Input Undervoltage Lockout on BIAS Pin  
TheꢀVIOCꢀamplifierꢀcharacteristicsꢀare:  
Anꢀ internalꢀ undervoltageꢀ lockoutꢀ (UVLO)ꢀ comparatorꢀ  
monitorsꢀtheꢀBIASꢀsupplyꢀvoltage.ꢀIfꢀV  
ꢀ g ꢀ=ꢀ3.2mS,ꢀI  
=ꢀ 250µA,ꢀBWꢀ=ꢀ10MHz.  
OUTꢀ  
ꢀdropsꢀbelowꢀ  
BIAS  
m
theUVLOthreshold,allfunctionsshutdown,thepassꢀ  
transistorꢀisꢀgatedꢀoffꢀandꢀoutputꢀcurrentꢀfallsꢀtoꢀzero.ꢀTheꢀ  
typicalꢀBIASꢀpinꢀUVLOꢀthresholdꢀisꢀ1.55Vꢀonꢀtheꢀrisingꢀ  
Ifꢀ theꢀ VIOCꢀ functionꢀ isꢀ notꢀ used,ꢀ terminateꢀ theꢀ VIOCꢀ  
pintoGNDwithasmallcapacitor(1000pF)topreventꢀ  
oscillations.  
edgeofV  
.TheUVLOcircuitincorporatesabout150mVꢀ  
BIAS  
ofꢀhysteresisꢀonꢀtheꢀfallingꢀedgeꢀofꢀV  
.ꢀ  
BIAS  
3071f  
ꢀꢅ  
LT3071  
ApplicAtions inFormAtion  
LT3071  
IN  
OUT  
LOAD  
SWITCHING REGULATOR  
REF  
+
PWM  
FB  
VIOC  
V
+
OUT  
V
300mV  
REF  
REFERENCE  
I
TH  
3071 F02  
Figure 2. VIOC Control Block Diagram  
PWRGD—Power Good  
LowESR,X5RorX7Rceramicchipcapacitorsaretheꢀ  
LTCꢀrecommendedꢀchoiceꢀforꢀstabilizingꢀtheꢀLT3071.ꢀAd-  
ditionalꢀbulkꢀcapacitorsꢀdistributedꢀbeyondꢀtheꢀimmediateꢀ  
decouplingcapacitorsareacceptableastheirparasiticESLꢀ  
andꢀESR,ꢀcombinedꢀwithꢀtheꢀdistributedꢀPCBꢀinductanceꢀ  
isolatesthemfromtheprimarycompensationpoleprovidedꢀ  
byꢀtheꢀlocalꢀsurfaceꢀmountꢀceramicꢀcapacitors.ꢀ  
PWRGDpinisanopen-drainNMOSdigitaloutputthatꢀ  
activelyꢀpullsꢀlowꢀifꢀanyꢀoneꢀofꢀtheseꢀfaultꢀmodesꢀisꢀde-  
tected:  
•ꢀ V ꢀisꢀlessꢀthanꢀ90ꢁꢀofꢀV  
ꢀonꢀtheꢀrisingꢀ  
OUT  
edgeꢀofꢀV  
OUT(NOMINAL)  
.
OUTꢀ  
•ꢀ V ꢀdropsꢀbelowꢀ85ꢁꢀofꢀV  
ꢀforꢀmoreꢀthanꢀ  
TheLT3071requiresaminimumoutputcapacitanceofꢀ  
15µFforstability.LTCstronglyrecommendsthattheoutputꢀ  
capacitornetworkconsistofseverallowvalueceramicꢀ  
capacitorsꢀinꢀparallel.ꢀ  
OUT  
25µs.  
OUT(NOMINAL)  
•ꢀ V ꢀisꢀlessꢀthanꢀitsꢀundervoltageꢀlockoutꢀthreshold.  
BIAS  
•ꢀ TheꢀOUT-to-INꢀreverse-currentꢀdetectorꢀactivates.  
•ꢀ Junctionꢀtemperatureꢀexceedsꢀ145°Cꢀtypically.*  
Why Do Multiple, Small-Value Output Capacitors  
Connected in Parallel Work Better?  
ꢀ *Theꢀjunctionꢀtemperatureꢀdetectorꢀisꢀanꢀearlyꢀwarningꢀ  
indicatorꢀthatꢀtripsꢀapproximatelyꢀ20°Cꢀbeforeꢀthermalꢀ  
shutdownꢀengages.ꢀ  
TheꢀLT3071’sꢀunity-gainꢀbandwidthꢀwithꢀC ꢀofꢀ15µFꢀisꢀ  
OUT  
about1MHzatitsfull-loadcurrentof5A.Surfacemountedꢀ  
MLCCꢀ capacitorsꢀ haveꢀ aꢀ self-resonanceꢀ frequencyꢀ ofꢀ  
f =1/(2π√LC),whichmustbepushedtoafrequencyhigherꢀ  
Stability and Output Capacitance  
R
thanꢀtheꢀregulatorꢀbandwidth.ꢀStandardꢀMLCCꢀcapacitorsꢀ  
areacceptable.Tokeeptheresonantfrequencygreaterꢀ  
thanꢀ1MHz,ꢀtheꢀproductꢀ1/(2π√LC)ꢀmustꢀbeꢀgreaterꢀthanꢀ  
1MHz.Atthisbandwidth,PCBviascanaddsignificantꢀ  
inductance,ꢀthusꢀtheꢀfundamentalꢀdecouplingꢀcapacitorsꢀ  
mustꢀbeꢀmountedꢀonꢀtheꢀsameꢀplaneꢀasꢀtheꢀLT3071.  
TheꢀLT3071’sꢀfeedbackꢀloopꢀrequiresꢀanꢀoutputꢀcapacitorꢀ  
forꢀstability.ꢀChooseꢀC ꢀcarefullyꢀandꢀmountꢀitꢀinꢀcloseꢀ  
OUT  
proximitytotheLT3071’sOUTandGNDpins.Includewideꢀ  
routingꢀplanesꢀforꢀOUTꢀandꢀGNDꢀtoꢀminimizeꢀinductance.ꢀ  
Ifꢀpossible,ꢀmountꢀtheꢀregulatorꢀimmediatelyꢀadjacentꢀtoꢀ  
theapplicationloadtominimizedistributedinductanceꢀ  
forꢀ optimalꢀ loadꢀ transientꢀ performance.ꢀ Point-of-Loadꢀ  
applicationsꢀ presentꢀ theꢀ bestꢀ caseꢀ layoutꢀ scenarioꢀ forꢀ  
extractingꢀfullꢀLT3071ꢀperformance.ꢀ  
3071f  
ꢀꢆ  
LT3071  
ApplicAtions inFormAtion  
Typical0603or0805case-sizecapacitorshaveanESLofꢀ ManyoftheapplicationsinwhichtheLT3071excels,ꢀ  
~800pHandPCBmountingcancontributeupto~200pH.ꢀ suchꢀasꢀFPGA,ꢀASICꢀprocessorꢀorꢀDSPꢀsupplies,ꢀtypicallyꢀ  
Thus,ꢀ itꢀ becomesꢀ necessaryꢀ toꢀ reduceꢀ theꢀ parasiticꢀ requireahighfrequencydecouplingcapacitornetworkforꢀ  
inductancebyusingaparallelcapacitorcombination.ꢀ thedevicebeingpowered.Thisnetworkgenerallyconsistsꢀ  
Aꢀsuitableꢀmethodologyꢀmustꢀcontrolꢀthisꢀparallelingꢀasꢀ ofꢀmanyꢀlowꢀvalueꢀceramicꢀcapacitorsꢀinꢀparallel.ꢀInꢀsomeꢀ  
capacitorswiththesameself-resonantfrequency,f ,willꢀ applications,ꢀthisꢀtotalꢀvalueꢀofꢀcapacitanceꢀmayꢀbeꢀcloseꢀ  
R
formꢀaꢀtankꢀcircuitꢀthatꢀcanꢀinduceꢀringingꢀofꢀtheirꢀownꢀ toꢀtheꢀLT3071’sꢀminimumꢀ15µFꢀcapacitanceꢀrequirement.ꢀ  
accord.SmallamountsofESR(5mΩto20mΩ)havesomeꢀ Thismayreducetherequiredvalueofcapacitancedirectlyꢀ  
benefitꢀinꢀdampeningꢀtheꢀresonantꢀloop,ꢀbutꢀhigherꢀESRsꢀ atꢀtheꢀLT3071’sꢀoutput.ꢀMultipleꢀlowꢀvalueꢀcapacitorsꢀinꢀ  
degradeꢀtheꢀcapacitorꢀresponseꢀtoꢀtransientꢀloadꢀstepsꢀ parallelꢀpresentꢀaꢀfavorableꢀfrequencyꢀcharacteristicꢀthatꢀ  
withꢀrise/fallꢀtimesꢀlessꢀthanꢀ1µs.ꢀTheꢀmostꢀareaꢀefficientꢀ pushesmanyoftheparasiticpoles/zeroesbeyondtheꢀ  
parallelꢀcapacitorꢀcombinationꢀisꢀaꢀgraduatedꢀ4/2/1ꢀscaleꢀ LT3071’sꢀunity-gainꢀcrossoverꢀfrequency.ꢀThisꢀtechniqueꢀ  
ofꢀf ꢀofꢀtheꢀsameꢀcaseꢀsize.ꢀUnderꢀtheseꢀconditions,ꢀtheꢀ illustratesthemethodthatextractsthefullbandwidthꢀ  
R
individualESLsarerelativelyuniform,andtheresonanceꢀ performanceꢀofꢀtheꢀLT3071.  
peaksꢀareꢀdeconstructivelyꢀspreadꢀbeyondꢀtheꢀregulatorꢀ  
Giveadditionalconsiderationtotheuseofceramiccapaci-  
bandwidth.ꢀTheꢀrecommendedꢀparallelꢀcombinationꢀthatꢀ  
tors.Ceramiccapacitorsaremanufacturedwithavarietyofꢀ  
approximatesꢀ15µFꢀisꢀ10µFꢀ+ꢀ4.7µFꢀ+ꢀ2.2µF.ꢀCapacitorsꢀ  
dielectrics,eachwithdifferentbehavioracrosstemperatureꢀ  
withꢀcaseꢀsizesꢀlargerꢀthanꢀ0805ꢀhaveꢀhigherꢀESLꢀandꢀ  
andꢀappliedꢀvoltage.ꢀTheꢀmostꢀcommonꢀdielectricsꢀusedꢀ  
lowerꢀ ESRꢀ (<5mΩ).ꢀ Therefore,ꢀ moreꢀ capacitorsꢀ withꢀ  
arespecifiedwithEIAtemperaturecharacteristiccodesofꢀ  
smallerꢀvaluesꢀ(<10µF)ꢀmustꢀbeꢀchosen.ꢀUsersꢀshouldꢀ  
Z5U,ꢀY5V,ꢀX5RꢀandꢀX7R.ꢀTheꢀZ5UꢀandꢀY5Vꢀdielectricsꢀareꢀ  
considerꢀnewꢀgeneration,ꢀlowꢀinductanceꢀcapacitorsꢀtoꢀ  
goodꢀforꢀprovidingꢀhighꢀcapacitancesꢀinꢀaꢀsmallꢀpackage,ꢀ  
pushꢀoutꢀf ꢀandꢀmaximizeꢀstability.ꢀReferꢀtoꢀtheꢀsurfaceꢀ  
R
buttheytendtohavestrongvoltageandtemperatureꢀ  
coefficientsꢀasꢀshownꢀinꢀFiguresꢀ4ꢀandꢀ5.ꢀWhenꢀusedꢀwithꢀ  
aꢀ5Vꢀregulator,ꢀaꢀ16Vꢀ10µFꢀY5Vꢀcapacitorꢀcanꢀexhibitꢀanꢀ  
effectivevalueaslowas1µFꢀtoꢀ2µFꢀforꢀtheꢀDCꢀbiasꢀvoltageꢀ  
appliedandovertheoperatingtemperaturerange.TheX5Rꢀ  
andꢀX7Rꢀdielectricsꢀresultꢀinꢀmoreꢀstableꢀcharacteristicsꢀ  
andaremoresuitableforuseastheoutputcapacitor.ꢀ  
mountꢀceramicꢀcapacitorꢀmanufacturer’sꢀdataꢀsheetsꢀforꢀ  
capacitorꢀspecifications.ꢀFigureꢀ3ꢀillustratesꢀanꢀoptimumꢀ  
PCBꢀlayoutꢀforꢀtheꢀparallelꢀoutputꢀcapacitorꢀcombination,ꢀ  
butꢀalsoꢀillustratesꢀtheꢀGNDꢀconnectionꢀbetweenꢀtheꢀINꢀ  
capacitorandtheOUTcapacitorstominimizetheACꢀ  
GNDꢀloopꢀforꢀfastꢀloadꢀtransients.ꢀThisꢀtightꢀbypassingꢀ  
connectionꢀminimizesꢀEMIꢀandꢀoptimizesꢀbypassing.ꢀ  
LT3071  
SENSE  
IN OUT  
GND  
Lo-Z  
INPUT  
47µF  
LOAD PLANE  
2.2µF  
4.7µF  
10µF  
3071 F03  
Figure 3. Example PCB Layout  
3071f  
ꢀꢇ  
LT3071  
ApplicAtions inFormAtion  
20  
coefficientsꢀareꢀnotꢀtheꢀonlyꢀsourcesꢀofꢀproblems.ꢀSomeꢀ  
ceramiccapacitorshaveapiezoelectricresponse.Apiezo-  
electricꢀdeviceꢀgeneratesꢀvoltageꢀacrossꢀitsꢀterminalsꢀdueꢀ  
toꢀmechanicalꢀstress,ꢀsimilarꢀtoꢀtheꢀwayꢀaꢀpiezoelectricꢀ  
microphoneworks.Foraceramiccapacitorthestressꢀ  
canꢀbeꢀinducedꢀbyꢀvibrationsꢀinꢀtheꢀsystemꢀorꢀthermalꢀ  
transients.ꢀ  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
–20  
–40  
–60  
Y5V  
–80  
Stability and Input Capacitance  
–100  
Theꢀ LT3071ꢀ isꢀ stableꢀ withꢀ aꢀ minimumꢀ capacitanceꢀ ofꢀ  
47µFꢀconnectedꢀtoꢀitsꢀINꢀpins.ꢀUseꢀlowꢀESRꢀcapacitorsꢀtoꢀ  
minimizeinstantaneousvoltagedropsunderlargeloadꢀ  
10 12  
DC BIAS VOLTAGE (V)  
0
2
4
6
8
14 16  
3071 F04  
transientꢀconditions.ꢀLargeꢀV ꢀdroopsꢀduringꢀlargeꢀloadꢀ  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
IN  
transientsꢀmayꢀcauseꢀtheꢀregulatorꢀtoꢀenterꢀdropoutꢀwithꢀ  
correspondingꢀ degradationꢀ inꢀ loadꢀ transientꢀ response.ꢀ  
Increasedꢀvaluesꢀofꢀinputꢀandꢀoutputꢀcapacitanceꢀmayꢀbeꢀ  
necessarydependingonanapplication’srequirements.ꢀ  
Sufficientꢀ inputꢀ capacitanceꢀ isꢀ criticalꢀ asꢀ theꢀ circuitꢀ isꢀ  
intentionallyoperatedclosetodropouttominimizepower.ꢀ  
Ideally,ꢀtheꢀoutputꢀimpedanceꢀofꢀtheꢀsupplyꢀthatꢀpowersꢀ  
INꢀshouldꢀbeꢀlessꢀthanꢀ10mΩꢀtoꢀsupportꢀaꢀ5Aꢀloadꢀwithꢀ  
largeꢀtransients.  
40  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
20  
X5R  
0
–20  
Y5V  
–40  
–60  
–80  
Inꢀcasesꢀwhereꢀwireꢀisꢀusedꢀtoꢀconnectꢀaꢀpowerꢀsupplyꢀ  
toꢀtheꢀinputꢀofꢀtheꢀLT3071ꢀ(andꢀalsoꢀfromꢀtheꢀgroundꢀofꢀ  
theꢀLT3071ꢀbackꢀtoꢀtheꢀpowerꢀsupplyꢀground),ꢀlargeꢀinputꢀ  
capacitorsꢀareꢀrequiredꢀtoꢀavoidꢀanꢀunstableꢀapplication.ꢀ  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
3071 F05  
Figure 5. Ceramic Capacitor Temperature Characteristics  
ThisꢀisꢀdueꢀtoꢀtheꢀinductanceꢀofꢀtheꢀwireꢀformingꢀanꢀLCꢀ  
tankꢀcircuitꢀwithꢀtheꢀinputꢀcapacitorꢀandꢀnotꢀaꢀresultꢀofꢀtheꢀ  
LT3071ꢀbeingꢀunstable.ꢀTheꢀselfꢀinductance,ꢀorꢀisolatedꢀ  
inductance,ꢀofꢀaꢀwireꢀisꢀdirectlyꢀproportionalꢀtoꢀitsꢀlength.ꢀ  
However,ꢀtheꢀdiameterꢀofꢀaꢀwireꢀdoesꢀnotꢀhaveꢀaꢀmajorꢀ  
influenceꢀonꢀitsꢀselfꢀinductance.ꢀForꢀexample,ꢀoneꢀinchꢀofꢀ  
18-AWG,ꢀ0.04ꢀinchꢀdiameterꢀwireꢀhasꢀ28nHꢀofꢀselfꢀinduc-  
tance.ꢀTheꢀselfꢀinductanceꢀofꢀaꢀ2-AWGꢀisolatedꢀwireꢀwithꢀ  
aꢀdiameterꢀofꢀ0.26ꢀinchꢀisꢀaboutꢀhalfꢀtheꢀinductanceꢀofꢀaꢀ  
18-AWGꢀwire.ꢀTheꢀoverallꢀselfꢀinductanceꢀofꢀaꢀwireꢀcanꢀ  
beꢀreducedꢀinꢀtwoꢀways.ꢀOneꢀisꢀtoꢀdivideꢀtheꢀcurrentꢀflow-  
ingꢀtowardsꢀtheꢀLT3071ꢀbetweenꢀtwoꢀparallelꢀconductorsꢀ  
whichꢀflowsꢀinꢀtheꢀsameꢀdirectionꢀinꢀeach.ꢀInꢀthisꢀcase,ꢀ  
TheX7Rtypehasbetterstabilityacrosstemperature,ꢀ  
whileꢀtheꢀX5Rꢀisꢀlessꢀexpensiveꢀandꢀisꢀavailableꢀinꢀhigherꢀ  
values.ꢀCareꢀstillꢀmustꢀbeꢀexercisedꢀwhenꢀusingꢀX5Rꢀandꢀ  
X7Rcapacitors;theX5RandX7Rcodesonlyspecifyꢀ  
operatingꢀtemperatureꢀrangeꢀandꢀmaximumꢀcapacitanceꢀ  
changeꢀ overꢀ temperature.ꢀ Capacitanceꢀ changeꢀ dueꢀ toꢀ  
DCꢀbiasꢀwithꢀX5RꢀandꢀX7RꢀcapacitorsꢀisꢀbetterꢀthanꢀY5Vꢀ  
andꢀZ5Uꢀcapacitors,ꢀbutꢀcanꢀstillꢀbeꢀsignificantꢀenoughꢀtoꢀ  
dropcapacitorvaluesbelowappropriatelevels.Capacitorꢀ  
DCꢀbiasꢀcharacteristicsꢀtendꢀtoꢀimproveꢀasꢀcomponentꢀ  
caseꢀsizeꢀincreases,ꢀbutꢀexpectedꢀcapacitanceꢀatꢀoperat-  
ingꢀvoltageꢀshouldꢀbeꢀverified.ꢀVoltageꢀandꢀtemperatureꢀ  
3071f  
ꢀꢈ  
TheꢀLT3071ꢀprovidesꢀaꢀKelvinꢀsenseꢀpinꢀforꢀV  
                                     
,ꢀallowingꢀ  
LT3071  
ApplicAtions inFormAtion  
theꢀfartherꢀtheꢀwiresꢀareꢀplacedꢀapartꢀfromꢀeachꢀother,ꢀtheꢀ Figureꢀ1ꢀinꢀtheꢀPinꢀFunctionsꢀsectionꢀillustratesꢀtheꢀKelvin-  
moreꢀinductanceꢀwillꢀbeꢀreduced,ꢀupꢀtoꢀaꢀ50ꢁꢀreductionꢀ Senseꢀconnectionꢀmethodꢀthatꢀeliminatesꢀvoltageꢀdropsꢀ  
whenꢀplacedꢀaꢀfewꢀinchesꢀapart.ꢀSplittingꢀtheꢀwiresꢀbasi-  
duetoPCBtraceresistance.However,notethatthevoltageꢀ  
callyꢀconnectsꢀtwoꢀequalꢀinductorsꢀinꢀparallel.ꢀHowever,ꢀ dropꢀacrossꢀtheꢀexternalꢀPCBꢀtracesꢀaddsꢀtoꢀtheꢀdropoutꢀ  
whenꢀplacedꢀinꢀcloseꢀproximityꢀfromꢀeachꢀother,ꢀmutualꢀ voltageꢀofꢀtheꢀregulator.ꢀTheꢀSENSEꢀpinꢀinputꢀbiasꢀcurrentꢀ  
inductanceꢀisꢀaddedꢀtoꢀtheꢀoverallꢀselfꢀinductanceꢀofꢀtheꢀ dependsꢀonꢀtheꢀselectedꢀoutputꢀvoltage.ꢀSENSEꢀpinꢀinputꢀ  
wires.Themosteffectivewaytoreduceoverallinductanceꢀ currentvariesfrom50µAtypicallyatV ꢀ=0.8Vto300µAꢀ  
OUT  
isꢀtoꢀplaceꢀtheꢀforwardꢀandꢀreturn-currentꢀconductorsꢀ(theꢀ typicallyꢀatꢀV ꢀ=ꢀ1.8V.  
OUT  
wireꢀforꢀtheꢀinputꢀandꢀtheꢀwireꢀforꢀtheꢀreturnꢀground)ꢀinꢀ  
Short-Circuit and Overload Recovery  
verycloseproximity.Two18-AWGwiresseparatedbyꢀ  
0.05ꢀinchꢀreduceꢀtheꢀoverallꢀselfꢀinductanceꢀtoꢀaboutꢀone-  
fourthꢀofꢀaꢀsingleꢀisolatedꢀwire.ꢀIfꢀtheꢀLT3071ꢀisꢀpoweredꢀ  
byꢀaꢀbatteryꢀmountedꢀinꢀcloseꢀproximityꢀwithꢀgroundꢀandꢀ  
powerplanesonthesamecircuitboard,a47µFinputꢀ  
capacitorꢀisꢀsufficientꢀforꢀstability.ꢀHowever,ꢀifꢀtheꢀLT3071ꢀ  
isꢀpoweredꢀbyꢀaꢀdistantꢀsupply,ꢀuseꢀaꢀlowꢀESR,ꢀlargeꢀvalueꢀ  
inputꢀcapacitorꢀonꢀtheꢀorderꢀofꢀ330µF.ꢀAsꢀpowerꢀsupplyꢀ  
outputꢀimpedanceꢀvaries,ꢀtheꢀminimumꢀinputꢀcapacitanceꢀ  
neededꢀforꢀapplicationꢀstabilityꢀalsoꢀvaries.  
LikeꢀmanyꢀICꢀpowerꢀregulators,ꢀtheꢀLT3071ꢀhasꢀsafeꢀop-  
eratingꢀareaꢀ(SOA)ꢀprotection.ꢀTheꢀsafeꢀareaꢀprotectionꢀ  
decreasescurrentlimitasinput-to-outputvoltageincreasesꢀ  
andkeepsthepowertransistorinsideasafeoperatingꢀ  
regionꢀforꢀallꢀvaluesꢀofꢀinput-to-outputꢀvoltageꢀupꢀtoꢀtheꢀ  
absoluteꢀmaximumꢀvoltageꢀrating.ꢀV  
ꢀmustꢀbeꢀaboveꢀ  
BIAS  
theꢀUVLOꢀthresholdꢀforꢀanyꢀfunction.ꢀTheꢀLT3071ꢀhasꢀaꢀ  
precisionꢀcurrentꢀlimitꢀspecifiedꢀatꢀ 20ꢁꢀthatꢀisꢀactiveꢀifꢀ  
V
BIAS  
ꢀisꢀaboveꢀUVLO.ꢀ  
Underꢀ conditionsꢀ ofꢀ maximumꢀ I  
IN OUT  
ꢀ andꢀ maximumꢀ  
Bias Pin Capacitance Requirements  
LOAD  
V -V ꢀtheꢀdevice’sꢀpowerꢀdissipationꢀpeaksꢀatꢀaboutꢀ  
TheBIASpinsuppliescurrenttomostoftheinternalꢀ  
controlꢀcircuitryꢀandꢀtheꢀoutputꢀstageꢀdrivingꢀtheꢀpassꢀ  
transistor.TheLT3071requiresaminimum2.2µFby-  
passꢀ capacitorꢀ forꢀ stabilityꢀ andꢀ properꢀ operation.ꢀ Toꢀ  
ensureꢀ properꢀ operation,ꢀ theꢀ BIASꢀ voltageꢀ mustꢀ sat-  
3W.ꢀIfꢀambientꢀtemperatureꢀisꢀhighꢀenough,ꢀdieꢀjunctionꢀ  
temperatureꢀwillꢀexceedꢀtheꢀ125°Cꢀmaximumꢀoperatingꢀ  
temperature.ꢀ Ifꢀ thisꢀ occurs,ꢀ theꢀ LT3071ꢀ reliesꢀ onꢀ twoꢀ  
additionalthermalsafetyfeatures.Atabout145°C,theꢀ  
PWRGDꢀoutputꢀpullsꢀlowꢀprovidingꢀanꢀearlyꢀwarningꢀofꢀanꢀ  
impendingthermalshutdowncondition.At165°Ctypically,ꢀ  
theꢀLT3071’sꢀthermalꢀshutdownꢀengagesꢀandꢀtheꢀoutputꢀisꢀ  
shutꢀdownꢀuntilꢀtheꢀICꢀtemperatureꢀfallsꢀbelowꢀtheꢀthermalꢀ  
hysteresislimit.TheSOAprotectiondecreasescurrentlimitꢀ  
asꢀtheꢀIN-to-OUTꢀvoltageꢀincreasesꢀandꢀkeepsꢀtheꢀpowerꢀ  
dissipationꢀatꢀsafeꢀlevelsꢀforꢀallꢀvaluesꢀofꢀinput-to-outputꢀ  
voltage.ꢀTheꢀLT3071ꢀprovidesꢀsomeꢀoutputꢀcurrentꢀatꢀallꢀ  
valuesꢀofꢀinput-to-outputꢀvoltageꢀupꢀtoꢀtheꢀabsoluteꢀmaxi-  
isfyꢀtheꢀfollowingꢀconditions:ꢀ2.2Vꢀ≤ꢀV  
ꢀ≤ꢀ3.6Vꢀandꢀ  
BIAS  
V
ꢀ ≥ꢀ (1.25ꢀ •ꢀ V ꢀ +ꢀ 1V).ꢀ Forꢀ V ꢀ ≤ꢀ 0.95V,ꢀ theꢀ  
BIAS  
OUT OUT  
minimumꢀBIASꢀvoltageꢀisꢀlimitedꢀtoꢀ2.2V.ꢀ  
Load Regulation  
OUT  
theꢀapplicationꢀtoꢀcorrectꢀforꢀparasiticꢀpackageꢀandꢀPCBꢀ  
I-Rꢀdrops.ꢀHowever,LTCꢀrecommendsꢀthatꢀtheꢀSENSEꢀpinꢀ  
terminateincloseproximitytotheLT3071’sOUTpins.ꢀ  
Thisminimizesparasiticinductanceandoptimizesregula-  
tion.ꢀTheꢀLT3071ꢀhandlesꢀmoderateꢀlevelsꢀofꢀoutputꢀlineꢀ  
mumꢀvoltageꢀrating.ꢀSeeꢀtheꢀCurrentꢀLimitꢀvsꢀV ꢀcurveꢀinꢀ  
theꢀTypicalꢀPerformanceꢀCharacteristics.ꢀ  
IN  
Duringstart-up,aftertheBIASvoltagehascleareditsUVLOꢀ  
impedance,ꢀbutꢀexcessiveꢀimpedanceꢀbetweenꢀV ꢀandꢀ  
OUT  
thresholdꢀandꢀV ꢀisꢀincreasing,ꢀoutputꢀvoltageꢀincreasesꢀ  
IN  
C
ꢀcausesꢀexcessiveꢀphaseꢀshiftꢀinꢀtheꢀfeedbackꢀloopꢀ  
OUT  
atꢀtheꢀrateꢀofꢀcurrentꢀlimitꢀchargingꢀC .ꢀ  
OUTꢀ  
andꢀadverselyꢀaffectsꢀstability.  
3071f  
ꢁ0  
LT3071  
ApplicAtions inFormAtion  
Withꢀaꢀhighꢀinputꢀvoltage,ꢀaꢀproblemꢀcanꢀoccurꢀwhereꢀtheꢀ Thisincludesjunctiontocase,case-to-heatsinkinterface,ꢀ  
removalꢀofꢀanꢀoutputꢀshortꢀwillꢀnotꢀallowꢀtheꢀoutputꢀvolt- heatsinkresistanceorcircuitboardtoambientastheꢀ  
agetorecover.Otherregulatorswithcurrentlimitfoldbackꢀ applicationdictates.Also,consideradditionalheatsourcesꢀ  
alsoꢀexhibitꢀthisꢀphenomenon,ꢀsoꢀitꢀisꢀnotꢀuniqueꢀtoꢀtheꢀ mountedinproximitytotheLT3071.TheLT3071isasurfaceꢀ  
LT3071.ꢀTheꢀloadꢀlineꢀforꢀsuchꢀaꢀloadꢀmayꢀintersectꢀtheꢀ mountꢀdeviceꢀandꢀasꢀsuch,ꢀheatꢀsinkingꢀisꢀaccomplishedꢀ  
outputꢀcurrentꢀcurveꢀatꢀtwoꢀpoints:ꢀnormalꢀoperationꢀandꢀ byꢀusingꢀtheꢀheatꢀspreadingꢀcapabilitiesꢀofꢀtheꢀPCꢀboardꢀ  
theꢀSOAꢀrestrictedꢀloadꢀcurrentꢀsettings.ꢀAꢀcommonꢀsitu-  
andꢀ itsꢀ copperꢀ traces.ꢀ Surfaceꢀ mountꢀ heatꢀ sinksꢀ andꢀ  
ationꢀisꢀimmediatelyꢀafterꢀtheꢀremovalꢀofꢀaꢀshortꢀcircuit,ꢀ platedꢀthrough-holesꢀcanꢀalsoꢀbeꢀusedꢀtoꢀspreadꢀtheꢀheatꢀ  
butꢀwithꢀaꢀstaticꢀloadꢀ≥ꢀ1A.ꢀInꢀthisꢀsituation,ꢀremovalꢀofꢀtheꢀ generatedꢀ byꢀ powerꢀ devices.ꢀ Junction-to-caseꢀ thermalꢀ  
loadꢀorꢀreductionꢀofꢀI ꢀtoꢀ<1Aꢀwillꢀclearꢀthisꢀconditionꢀ resistanceꢀisꢀspecifiedꢀfromꢀtheꢀICꢀjunctionꢀtoꢀtheꢀbottomꢀ  
OUT  
andꢀallowꢀV ꢀtoꢀreturnꢀtoꢀnormalꢀregulation.  
ofꢀtheꢀcaseꢀdirectlyꢀbelowꢀtheꢀdie.ꢀThisꢀisꢀtheꢀlowestꢀresis-  
tanceꢀpathꢀforꢀheatꢀflow.ꢀProperꢀmountingꢀisꢀrequiredꢀtoꢀ  
ensureꢀtheꢀbestꢀpossibleꢀthermalꢀflowꢀfromꢀthisꢀareaꢀofꢀtheꢀ  
packagetotheheatsinkingmaterial.Notethattheexposedꢀ  
padꢀisꢀelectricallyꢀconnectedꢀtoꢀGND.ꢀ  
OUT  
Reverse Voltage  
TheꢀLT3071ꢀincorporatesꢀaꢀcircuitꢀthatꢀdetectsꢀifꢀV ꢀde-  
IN  
creasesbelowV .Thisreverse-voltagedetectorhasꢀ  
OUTꢀ  
aꢀtypicalꢀthresholdꢀofꢀaboutꢀ(V ꢀ–ꢀV )ꢀ=ꢀ–6mV.ꢀIfꢀtheꢀ  
Tableꢀ3ꢀlistsꢀthermalꢀresistanceꢀasꢀaꢀfunctionꢀofꢀcopperꢀ  
areaꢀinꢀaꢀfixedꢀboardꢀsize.ꢀAllꢀmeasurementsꢀwereꢀtakenꢀ  
inꢀstillꢀairꢀonꢀaꢀ4-layerꢀFR-4ꢀboardꢀwithꢀ1ꢀozꢀsolidꢀinternalꢀ  
planesꢀandꢀ2ꢀozꢀtop/bottomꢀexternalꢀtraceꢀplanesꢀwithꢀaꢀ  
totalboardthicknessof1.6mm.PCBlayers,copperweight,ꢀ  
boardꢀlayoutꢀandꢀthermalꢀviasꢀaffectꢀtheꢀresultantꢀthermalꢀ  
resistance.ꢀForꢀfurtherꢀinformationꢀonꢀthermalꢀresistanceꢀ  
andꢀhighꢀthermalꢀꢀconductivityꢀtestꢀboards,ꢀreferꢀtoꢀJEDECꢀ  
standardꢀ JESD51,ꢀ notablyꢀ JESD51-12ꢀ andꢀ JESD51-7.ꢀ  
Achievingꢀlowꢀthermalꢀresistanceꢀnecessitatesꢀattentionꢀ  
toꢀdetailꢀandꢀcarefulꢀPCBꢀlayout.  
IN  
OUT  
thresholdꢀisꢀexceeded,ꢀthisꢀdetectorꢀcircuitꢀturnsꢀoffꢀtheꢀ  
drivetotheinternalNMOSpasstransistor,therebyturningꢀ  
offꢀtheꢀoutput.ꢀTheꢀoutputꢀpullsꢀlowꢀwithꢀtheꢀloadꢀcurrentꢀ  
dischargingꢀtheꢀoutputꢀcapacitance.ꢀThisꢀcircuit’sꢀintentꢀ  
isꢀtoꢀlimitꢀandꢀpreventꢀback-feedꢀcurrentꢀfromꢀOUTꢀtoꢀINꢀ  
ifꢀtheꢀinputꢀvoltageꢀcollapsesꢀdueꢀtoꢀaꢀfaultꢀorꢀoverloadꢀ  
condition.  
Thermal Considerations  
Theꢀ LT3071’sꢀ maximumꢀ ratedꢀ junctionꢀ temperatureꢀ ofꢀ  
125°Cꢀlimitsꢀitsꢀpowerꢀhandlingꢀcapabilityꢀandꢀisꢀdomi-  
natedꢀbyꢀtheꢀoutputꢀcurrentꢀmultipliedꢀbyꢀtheꢀinput/outputꢀ  
voltageꢀdifferential:ꢀ  
Table 3, UFD Plastic Package, 28-Lead QFN  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE* BACK SIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2
2
2
2
2
2
2
2
2
ꢀ I ꢀ•ꢀ(V ꢀ–ꢀV )ꢀ  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
30°C/W  
32°C/W  
33°C/W  
35°C/W  
OUT  
IN  
OUT  
2
1000mm  
TheꢀLT3071’sꢀinternalꢀpowerꢀandꢀthermalꢀlimitingꢀcircuitryꢀ  
protectꢀitꢀunderꢀoverloadꢀconditions.ꢀForꢀcontinuousꢀnor-  
malꢀloadꢀconditions,ꢀdoꢀnotꢀexceedꢀtheꢀmaximumꢀjunctionꢀ  
temperatureof125°C.Givecarefulconsiderationtoallꢀ  
sourcesꢀofꢀthermalꢀresistanceꢀfromꢀjunctionꢀtoꢀambient.ꢀ  
2
225mm  
100mm  
2
*Deviceꢀisꢀmountedꢀonꢀtopside  
3071f  
ꢁꢀ  
LT3071  
ApplicAtions inFormAtion  
Calculating Junction Temperature  
Paralleling Devices for Higher I  
OUT  
Example:ꢀGivenꢀanꢀoutputꢀvoltageꢀofꢀ0.9V,ꢀanꢀinputꢀvoltageꢀ MultipleLT3071smaybeparalleledtoobtainhigheroutputꢀ  
rangeof1.2Vꢀ 5ꢁ,aBIASvoltageof2.5V,amaximumout- current.Thisparallelingconceptborrowsfromtheschemeꢀ  
putꢀcurrentꢀofꢀ4Aꢀandꢀaꢀmaximumꢀambientꢀtemperatureꢀofꢀ employedꢀbyꢀtheꢀLT3080.  
50°C,ꢀwhatꢀwillꢀtheꢀmaximumꢀjunctionꢀtemperatureꢀbe?  
Toaccomplishthisparalleling,tietheREF/BYPpinsofꢀ  
Theꢀpowerꢀdissipatedꢀbyꢀtheꢀdeviceꢀequals:  
ꢀ•ꢀ(V ꢀ–ꢀV )ꢀ+ꢀ(I –ꢀI )ꢀ•ꢀV ꢀ  
OUT  
theparalleledregulatorstogether.Thiseffectivelygivesꢀ  
anꢀaveragedꢀvalueꢀofꢀmultipleꢀ600mVꢀreferenceꢀvoltageꢀ  
sources.ꢀTieꢀtheꢀOUTꢀpinsꢀofꢀtheꢀparalleledꢀregulatorsꢀtoꢀ  
theꢀcommonꢀloadꢀplaneꢀthroughꢀaꢀsmallꢀpieceꢀofꢀPCꢀtraceꢀ  
ballastꢀorꢀanꢀactualꢀsurfaceꢀmountꢀsenseꢀresistorꢀbeyondꢀ  
theꢀprimaryꢀoutputꢀcapacitorsꢀofꢀeachꢀregulator.ꢀTheꢀre-  
quiredꢀballastꢀisꢀdependentꢀuponꢀtheꢀapplicationꢀoutputꢀ  
voltageꢀandꢀpeakꢀloadꢀcurrent.ꢀTheꢀrecommendedꢀballastꢀ  
isꢀthatꢀvalueꢀwhichꢀcontributesꢀ1ꢁꢀtoꢀloadꢀregulation.ꢀForꢀ  
example,ꢀtwoꢀLT3071ꢀregulatorsꢀconfiguredꢀtoꢀoutputꢀ1V,ꢀ  
sharingꢀaꢀ10Aꢀloadꢀrequireꢀ2mΩꢀofꢀballastꢀatꢀeachꢀoutput.ꢀ  
TheꢀKelvinꢀSENSEꢀpinsꢀconnectꢀtoꢀtheꢀregulatorꢀsideꢀofꢀ  
theꢀballastꢀresistorsꢀtoꢀkeepꢀtheꢀindividualꢀcontrolꢀloopsꢀ  
fromꢀconflictingꢀwithꢀeachꢀotherꢀ(seeꢀFiguresꢀ8ꢀandꢀ9).ꢀ  
Keepꢀthisꢀballastꢀtraceꢀareaꢀfreeꢀofꢀsolderꢀtoꢀmaintainꢀaꢀ  
controlledꢀresistance.ꢀ  
I
OUT(MAX)  
+ꢀI ꢀ•ꢀV  
IN(MAX)  
OUT  
BIASꢀ GND  
GND  
BIAS  
where:  
ꢀ I  
ꢀ=ꢀ4A  
OUT(MAX)  
ꢀ V ꢀ=ꢀ1.26V  
IN(MAX)  
ꢀ I  
ꢀatꢀ(I ꢀ=ꢀ4A,ꢀV  
ꢀ=ꢀ2.5V)ꢀ=ꢀ6.91mA  
BIAS  
BIAS  
OUT  
ꢀ I ꢀatꢀ(I ꢀ=ꢀ4A,ꢀV ꢀ=ꢀ2.5V)ꢀ=ꢀ0.87mA  
BIAS  
GND  
OUT  
thus:  
Pꢀ=ꢀ4Aꢀ•ꢀ(1.26Vꢀ–ꢀ0.9V)ꢀ+ꢀ(6.91mAꢀ–ꢀ0.87mA)ꢀ•ꢀ0.9Vꢀ  
+ꢀ0.87mAꢀ•ꢀ2.5Vꢀ=ꢀ1.448W  
Withꢀ theꢀ QFNꢀ packageꢀ solderedꢀ toꢀ maximumꢀ copperꢀ  
area,ꢀtheꢀthermalꢀresistanceꢀisꢀ30°C/W.ꢀSoꢀtheꢀjunctionꢀ  
temperatureꢀriseꢀaboveꢀambientꢀequals:  
Tableꢀ4ꢀshowsꢀaꢀsimpleꢀguidelineꢀforꢀPCBꢀtraceꢀresistanceꢀ  
asꢀaꢀfunctionꢀofꢀweightꢀandꢀtraceꢀwidth.  
ꢀ 1.448Wꢀatꢀ30°C/Wꢀ=ꢀ43.44°C  
Table 4. PC Board Trace Resistance  
Theꢀmaximumꢀjunctionꢀtemperatureꢀequalsꢀtheꢀmaximumꢀ  
ambienttemperatureplusthemaximumjunctiontempera-  
tureꢀriseꢀaboveꢀambientꢀor:ꢀ  
WEIGHT (Oz)  
100 MIL WIDTH*  
200 MIL WIDTH*  
1
2
5.43  
2.71  
2.71  
1.36  
*Traceꢀresistanceꢀisꢀmeasuredꢀinꢀmilliohms/in  
ꢀ T ꢀ=ꢀ50°Cꢀ+ꢀ43.44°Cꢀ=ꢀ93.44°C  
JMAX  
Applicationsꢀ thatꢀ cannotꢀ supportꢀ extensiveꢀ PCBꢀ spaceꢀ  
forꢀheatꢀsinkingꢀtheꢀLT3071ꢀrequireꢀaꢀderatingꢀofꢀoutputꢀ  
currentꢀorꢀincreasedꢀairflow.ꢀ  
3071f  
ꢁꢁ  
LT3071  
ApplicAtions inFormAtion  
Quieting the Noise  
capacitorꢀminimizesꢀreferenceꢀnoiseꢀtoꢀ10µV  
ꢀatꢀtheꢀ  
RMS  
600mVꢀREF/BYPꢀpin,ꢀequivalentlyꢀaꢀ17µVꢀcontributionꢀtoꢀ  
TheꢀLT3071ꢀoffersꢀnumerousꢀnoiseꢀperformanceꢀadvan-  
tages.ꢀEachꢀLDOꢀhasꢀseveralꢀsourcesꢀofꢀnoise.ꢀAnꢀLDO’sꢀ  
mostꢀcriticalꢀnoiseꢀsourceꢀisꢀtheꢀreference,ꢀfollowedꢀbyꢀ  
theꢀLDOꢀerrorꢀamplifier.Traditionalꢀlowꢀnoiseꢀregulatorsꢀ  
outputꢀnoiseꢀatꢀV ꢀ=ꢀ1V.ꢀSeeꢀtheꢀTypicalꢀPerformanceꢀ  
OUT  
CharacteristicsꢀforꢀNoiseꢀvsꢀOutputꢀVoltageꢀperformanceꢀ  
asꢀaꢀfunctionꢀofꢀC  
.
REF/BYPꢀ  
bufferthevoltagereferenceouttoanexternalpin(usuallyꢀ Thisꢀ approachꢀ alsoꢀ accommodatesꢀ referenceꢀ sharingꢀ  
throughalargevalueresistor)toallowforbypassingandꢀ betweenꢀLT3071ꢀregulatorsꢀthatꢀareꢀhookedꢀupꢀinꢀcur-  
noiseꢀreductionꢀofꢀreferenceꢀnoise.ꢀTheꢀLT3071ꢀdeviatesꢀ rentꢀsharingꢀapplications.ꢀTheꢀREF/BYPꢀfilterꢀcapacitorꢀ  
fromthetraditionalvoltagereferencebygeneratingaꢀ delaysꢀtheꢀinitialꢀpower-upꢀtimeꢀbyꢀaꢀfactorꢀofꢀtheꢀRCꢀtimeꢀ  
lowꢀvoltageꢀV ꢀfromꢀaꢀreferenceꢀcurrentꢀintoꢀanꢀinter-  
constant.ꢀV ꢀremainsꢀactiveꢀinꢀnapꢀmode,ꢀthusꢀstart-upꢀ  
REF  
REF  
nalꢀ resistorꢀ 19k.ꢀ Thisꢀ intermediateꢀ impedanceꢀ nodeꢀ timeꢀisꢀsignificantlyꢀreducedꢀandꢀwellꢀcontrolledꢀcomingꢀ  
(REF/BYP)facilitatesexternalfilteringdirectly.A10nFfilterꢀ outꢀofꢀnapꢀmodeꢀ(EN:LOHI).  
50k  
V
BIAS  
PWRGD  
2.2V TO 3.6V  
2.2µF  
BIAS  
V
IN  
IN  
PWRGD  
SENSE  
1.5V  
EN  
330µF  
V
1.2V  
5A  
OUT  
LT3071  
OUT  
V
O0  
V
O1  
V
O2  
2.2µF*  
4.7µF*  
10µF*  
*X5R OR X7R CAPACITORS  
V
MON  
NC  
I
2V AT 5A  
MARGA  
VIOC  
MON  
FULL SCALE  
REF/BYP  
GND  
1k  
1nF  
0.01µF  
3071 F06  
Figure 6. 1.5V to 1.2V Linear Regulator  
3071f  
ꢁꢂ  
LT3071  
typicAl ApplicAtions  
V
BIAS  
3.3V  
47µF  
6.3V  
s3  
1Ω  
50k  
SV  
IN  
PWRGD  
2.2µF*  
NC  
2.2µF  
0.1µF  
BIAS  
PGOOD RUN PV  
PV  
SV  
TRACK  
IN  
IN  
IN  
0.2µH  
IN  
PWRGD  
SENSE  
OUT  
1.3V/5A  
SGND  
SW  
SW  
SW  
SW  
EN  
V
1V  
5A  
OUT  
47µF  
PV  
IN  
PV  
IN  
LT3071  
NC  
NC  
V
O0  
V
O1  
V
O2  
4.7µF*  
10µF*  
20k  
PLLLPF  
*X5R OR X7R CAPACITORS  
I
TH  
LTC3415EUHF  
V
MON  
MGN  
BSEL  
2V AT 5A  
FULL SCALE  
NC  
MARGA  
VIOC  
I
100µF  
6.3V  
s2  
MON  
REF/BYP  
GND  
NC  
SV  
NC  
NC  
CLKOUT  
PHMODE  
CLKIN  
V
FB  
1k  
IN  
10k 2k  
4.7nF  
PGND  
I
THM  
SGND  
PGND PGND  
0.01µF  
1nF  
MODE  
3070 F07  
PGND PGND PGND PGND  
NOTES: LTC3415 SWITCHER, 2MHz INTERNAL OSCILLATOR  
LTC3415 AND LT3071 ON SAME PCB POWER PLANE  
Figure 7. Regulator with VIOC Buck Control  
3071f  
ꢁꢃ  
LT3071  
typicAl ApplicAtions  
V
BIAS  
3.3V  
50k  
47µF  
6.3V  
s3  
PWRGD  
1Ω  
SV  
IN  
2.2µF  
NC  
BIAS  
0.1µF  
PGOOD RUN PV  
PV  
IN  
SV TRACK  
IN  
IN  
0.2µH  
EN  
IN  
PWRGD  
SENSE  
OUT  
1.3V/7A  
SGND  
SW  
SW  
SW  
SW  
V
OUT  
47µF  
1V  
PV  
IN  
PV  
IN  
LT3071  
3.5A  
2.2µF*  
4.7µF*  
10µF*  
NC  
NC  
V
O0  
V
O1  
V
O2  
R
TRACE  
PLLLPF  
3mΩ  
*X5R OR X7R CAPACITORS  
CONTROLLED  
I
TH  
MGN  
BSEL  
I
NC  
MARGA  
VIOC  
MON  
REF/BYP  
GND  
P.O.L. 1  
LTC3415EUHF  
NC  
NC  
NC  
CLKOUT  
PHMODE  
CLKIN  
POWER  
PLANE  
1V/7A  
1nF  
17.5k  
0.01µF  
1%  
100µF  
6.3V  
s2  
V
FB  
15k  
1%  
MODE  
P.O.L. 2  
PGND  
2.2µF  
I
THM  
SGND  
PGND PGND  
R
TRACE  
3mΩ  
BIAS  
PGND PGND PGND PGND  
CONTROLLED  
EN  
IN  
PWRGD  
SENSE  
OUT  
V
OUT  
47µF  
1V  
NOTES: LTC3415 SWITCHER, 2MHz INTERNAL OSCILLATOR  
LTC3415 AND LT3071 (s2) ON SAME PCB POWER PLANE  
LT3071  
3.5A  
2.2µF*  
4.7µF*  
10µF*  
NC  
NC  
V
O0  
V
O1  
V
O2  
*X5R OR X7R CAPACITORS  
V
MON  
2V AT 7A  
NC  
MARGA  
VIOC  
I
MON  
REF/BYP  
GND  
FULL SCALE  
715Ω  
1nF  
0.01µF  
3071 F08  
Figure 8. 1V, 7A Point-of-Load Current Sharing Regulators  
3071f  
ꢁꢄ  
LT3071  
typicAl ApplicAtions  
50k  
V
IN  
3.3V  
PWRGD  
2.2µF  
BIAS  
EN  
IN  
PWRGD  
SENSE  
V
1V  
4A  
OUT  
47µF  
LT3071  
NC  
NC  
V
V
V
OUT  
O0  
O1  
O2  
2.2µF*  
4.7µF*  
10µF*  
R
TRACE  
2.5mΩ  
CONTROLLED  
*X5R OR X7R CAPACITORS  
I
NC  
MARGA  
VIOC  
MON  
REF/BYP  
P.O.L. 1  
1nF  
GND  
0.01µF  
POWER  
PLANE  
1V/7A  
V
IN  
3.3V  
P.O.L. 2  
2.2µF  
V
IN  
3.3V  
R
TRACE  
NC  
NC  
NC  
NC  
NC  
2.5mΩ  
BIAS  
CONTROLLED  
EN  
IN  
PWRGD  
SENSE  
SW1 CLKIN1 CLKOUT1 CLKIN2 CLKOUT2  
V
= 1.3V/8A  
BUCK1  
V
V
OUT1  
MGN1  
FB1  
IN1  
SV  
V
OUT  
100µF  
6.3V  
X5R  
10µF  
47µF  
LT3071  
1V  
4A  
IN1  
NC  
NC  
V
V
V
OUT  
O0  
20k  
RUN1  
2.2µF*  
4.7µF*  
10µF*  
O1  
O2  
PLLLPF1  
MODE1  
PHMODE1  
TRACK1  
ITH1  
ITHM1  
BSEL1  
PGOOD1  
10k  
2k  
4.7nF  
*X5R OR X7R CAPACITORS  
V
MON  
NC  
NC  
2V AT 8A  
I
NC  
MARGA  
MON  
FULL SCALE  
V
IOC  
REF/BYP  
GND  
LTM4616  
620Ω  
V
= 2.1V/8A  
BUCK2  
1nF  
0.01µF  
V
V
OUT2  
MGN2  
FB2  
IN2  
SV  
100µF  
6.3V  
X5R  
10µF  
IN2  
RUN2  
V
IN  
3.3V  
PLLLPF2  
MODE2  
PHMODE2  
TRACK2  
ITH2  
2.2µF  
ITHM2  
BSEL2  
PGOOD2  
NC  
NC  
BIAS  
SW2 SGND1 GND1 SGND2 GND2  
EN  
IN  
PWRGD  
SENSE  
OUT  
V
OUT  
NC  
NC  
NC  
1.8V  
47µF  
V
O0  
V
O1  
V
O2  
5A  
2.2µF*  
4.7µF*  
10µF*  
LT3071  
NOTE:  
THE TWO LTM4616 MODULE CHANNELS ARE  
INDEPENDENTLY CONTROLLED BY THE VIOC  
CONTROLS FROM THE LINEAR REGULATORS  
*X5R OR X7R CAPACITORS  
NC  
MARGA  
V
MON  
20k  
I
2V AT 5A  
MON  
REF/BYP  
GND  
FULL SCALE  
V
IOC  
1k  
1nF  
0.01µF  
10k  
2k  
4.7nF  
V
IN  
3.3V  
2.2µF  
BIAS  
EN  
IN  
V
PWRGD  
SENSE  
OUT  
V
1.5V  
3A  
OUT  
47µF  
O0  
2.2µF*  
4.7µF*  
10µF*  
NC  
NC  
NC  
V
V
O1  
O2  
LT3071  
*X5R OR X7R CAPACITORS  
MARGA  
V
MON  
2V AT 3A  
I
MON  
REF/BYP  
GND  
FULL SCALE  
VIOC  
1.67k  
1nF  
0.01µF  
3071 F09  
Figure 9. Triple Output Supply Providing 1V, 8A and 1.8V, 5A and 1.5V, 3A  
3071f  
ꢁꢅ  
LT3071  
pAckAge Description  
UFD Package  
28-Lead Plastic QFN (4mm × 5mm)  
(ReferenceꢀLTCꢀDWGꢀ#ꢀ05-08-1712ꢀRevꢀB)  
0.70 p0.05  
4.50 p 0.05  
3.10 p 0.05  
2.50 REF  
2.65 p 0.05  
3.65 p 0.05  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
3.50 REF  
4.10 p 0.05  
5.50 p 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.35  
s 45o CHAMFER  
2.50 REF  
R = 0.115  
TYP  
R = 0.05  
TYP  
0.75 p 0.05  
4.00 p 0.10  
(2 SIDES)  
27  
28  
0.40 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 p 0.10  
(2 SIDES)  
3.50 REF  
3.65 p 0.10  
2.65 p 0.10  
(UFD28) QFN 0506 REV B  
0.25 p 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3071f  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.ꢀ  
However,ꢀnoꢀresponsibilityꢀisꢀassumedꢀforꢀitsꢀuse.ꢀLinearꢀTechnologyꢀCorporationꢀmakesꢀnoꢀrepresenta-  
tionꢀthatꢀtheꢀinterconnectionꢀofꢀitsꢀcircuitsꢀasꢀdescribedꢀhereinꢀwillꢀnotꢀinfringeꢀonꢀexistingꢀpatentꢀrights.  
ꢁꢆ  
LT3071  
typicAl ApplicAtion  
1.5V to 1.2V Linear Regulator  
50k  
V
BIAS  
PWRGD  
2.2V TO 3.6V  
2.2µF  
BIAS  
V
IN  
IN  
PWRGD  
SENSE  
1.5V  
EN  
330µF  
V
1.2V  
5A  
OUT  
LT3071  
OUT  
V
O0  
V
O1  
V
O2  
2.2µF*  
4.7µF*  
10µF*  
*X5R OR X7R CAPACITORS  
V
MON  
NC  
I
2V AT 5A  
MARGA  
VIOC  
MON  
FULL SCALE  
REF/BYP  
GND  
1k  
1nF  
0.01µF  
3071 TA02  
relAteD pArts  
PART  
DESCRIPTION  
COMMENTS  
LT1764/LT1764A  
3A,ꢀFastꢀTransientꢀResponse,ꢀLowꢀNoiseꢀLDO  
340mVꢀDropoutꢀVoltage,ꢀLowꢀNoise:ꢀ40µV ,ꢀV :ꢀ2.7Vꢀtoꢀ20V,ꢀꢀ  
RMS IN  
TO-220ꢀandꢀDDꢀPackagesꢀ“A”ꢀVersionꢀStableꢀAlsoꢀwithꢀCeramicꢀCaps  
LT1963/LT1963A  
LT1965  
1.5AꢀLowꢀNoise,ꢀFastꢀTransientꢀResponseꢀLDO  
340mVꢀDropoutꢀVoltage,ꢀLowꢀNoise:ꢀ40µV ,ꢀV :ꢀ2.5Vꢀtoꢀ20V,ꢀꢀ  
RMS IN  
“A”ꢀVersionꢀStableꢀwithꢀCeramicꢀCaps,ꢀTO-220,ꢀDD,ꢀSOT-223ꢀandꢀꢀ  
SO-8ꢀPackages  
1.1A,ꢀLowꢀNoise,ꢀLowꢀDropoutꢀLinearꢀRegulator  
500mA,ꢀLowꢀVoltage,ꢀVLDO™ꢀLinearꢀRegulator  
290mVꢀDropoutꢀVoltage,ꢀLowꢀNoise:ꢀ40µV ,ꢀV :ꢀ1.8Vꢀtoꢀ20V,ꢀV :ꢀ1.2Vꢀ  
RMS IN OUTꢀ  
toꢀ19.5V,ꢀStableꢀwithꢀCeramicꢀCaps,ꢀTO-220,ꢀDD-Pak,ꢀMSOPꢀandꢀꢀ  
3mmꢀ×ꢀ3mmꢀDFNꢀPackages  
LT3021  
V :ꢀ0.9Vꢀtoꢀ10V,ꢀDropoutꢀVoltageꢀ=ꢀ160mVꢀ(Typ),ꢀAdjustableꢀOutputꢀ(V  
IN  
REF  
=ꢀV  
ꢀ=ꢀ200mV),ꢀFixedꢀOutputꢀVoltages:ꢀ1.2V,ꢀ1.5V,ꢀ1.8V,ꢀStableꢀwithꢀ  
OUT(MIN)  
LowꢀESR,ꢀCeramicꢀOutputꢀCapacitorsꢀ16-PinꢀDFNꢀꢀ  
(5mmꢀ×ꢀ5mm)ꢀandꢀ8-LeadꢀSOꢀPackages  
LT3080/LT3080-1  
LT3085  
1.1A,ꢀParallelable,ꢀLowꢀNoise,ꢀLowꢀDropoutꢀLinearꢀ 300mVꢀDropoutꢀVoltageꢀ(2-SupplyꢀOperation),ꢀLowꢀNoise:ꢀ40µV ,ꢀV :ꢀ  
RMS IN  
Regulator  
1.2Vꢀtoꢀ36V,ꢀV :ꢀ0Vꢀtoꢀ35.7V,ꢀCurrent-BasedꢀReferenceꢀwithꢀ1ꢀResistorꢀ  
OUTꢀ  
V
ꢀSet;ꢀDirectlyꢀParallelableꢀ(NoꢀOpꢀAmpꢀRequired),ꢀStableꢀwithꢀCeramicꢀ  
OUT  
Caps,ꢀTO-220,ꢀSOT-223,ꢀMSOP-8ꢀandꢀ3mmꢀ×ꢀ3mmꢀDFN-8ꢀPackages;ꢀ  
LT3080-1ꢀhasꢀIntegratedꢀInternalꢀBallastꢀResistor  
500mA,ꢀParallelable,ꢀLowꢀNoise,ꢀLowꢀDropoutꢀꢀ  
LinearꢀRegulator  
275mVꢀDropoutꢀVoltageꢀ(2-SupplyꢀOperation),ꢀLowꢀNoise:ꢀ40µV ,ꢀV :ꢀ  
RMS IN  
1.2Vꢀtoꢀ36V,ꢀV :ꢀ0Vꢀtoꢀ35.7V,ꢀCurrent-BasedꢀReferenceꢀwithꢀ1ꢀResistorꢀ  
OUTꢀ  
V
ꢀSet;ꢀDirectlyꢀParallelableꢀ(NoꢀOpꢀAmpꢀRequired),ꢀStableꢀwithꢀCeramicꢀ  
OUT  
Caps,ꢀMSOP-8ꢀandꢀ2mmꢀ×ꢀ3mmꢀDFN-6ꢀPackages  
LTC3025-1/LTC3025-2/ 500mAꢀMicropowerꢀVLDOꢀLinearꢀRegulatorꢀꢀ  
LTC3025-3/LTC3025-4 inꢀ2mmꢀ×ꢀ2mmꢀDFNꢀ  
V ꢀ=ꢀ0.9Vꢀtoꢀ5.5V,ꢀDropoutꢀVoltage:ꢀ75mV,ꢀLowꢀNoiseꢀ80µV ,ꢀꢀ  
IN RMS  
LowꢀI :ꢀ54µA,ꢀFixedꢀOutput:ꢀ1.2Vꢀ(LTC3025-2),ꢀ1.5Vꢀ(LTC3025-3),ꢀꢀ  
Q
1.8Vꢀ(LTC3025-4);ꢀAdjustableꢀOutputꢀRange:ꢀ0.4Vꢀtoꢀ3.6Vꢀ(LTC3025-1)ꢀꢀ  
2mmꢀ×ꢀ2mmꢀ6-LeadꢀDFNꢀPackage  
LTC3026ꢀ  
LT3070  
1.5A,ꢀLowꢀInputꢀVoltageꢀVLDOꢀRegulatorꢀ  
V :ꢀ1.14Vꢀtoꢀ3.5Vꢀ(BoostꢀEnabled),ꢀ1.14Vꢀtoꢀ5.5Vꢀ(withꢀExternalꢀ5V),ꢀꢀ  
IN  
V
ꢀ=ꢀ0.1V,ꢀI ꢀ=ꢀ950µA,ꢀStableꢀwithꢀ10µFꢀCeramicꢀCapacitors,ꢀꢀ  
Q
DO  
10-LeadꢀMSOPꢀandꢀDFN-10ꢀPackages  
5A,ꢀLowꢀNoise,ꢀProgrammableꢀOutput,ꢀ85mVꢀ  
DropoutꢀLinearꢀRegulator  
V :ꢀ0.95Vꢀtoꢀ3V,ꢀV :ꢀ0.8Vꢀtoꢀ1.8Vꢀinꢀ50mVꢀIncrements,ꢀLowꢀNoise:ꢀ  
IN OUTꢀ  
25µV ,ꢀStableꢀwithꢀCeramicꢀCapacitors,ꢀ4mmꢀ×ꢀ5mmꢀ28-LeadꢀQFNꢀ  
RMS  
Package  
3071f  
LT 0410 • PRINTED IN USA  
Linear Technology Corporation  
1630ꢀ McCarthyꢀ Blvd.,ꢀ Milpitas,ꢀ CAꢀ 95035-7417  
ꢁꢇ  
ꢀ  
LINEAR TECHNOLOGY CORPORATION 2010  
(408)ꢀ432-1900ꢀ FAX:(408)434-0507ꢀ www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY