LT3433EFE [Linear]

High Voltage Step-Up/Step-Down DC/DC Converter; 高电压升压/降压型DC / DC转换器
LT3433EFE
型号: LT3433EFE
厂家: Linear    Linear
描述:

High Voltage Step-Up/Step-Down DC/DC Converter
高电压升压/降压型DC / DC转换器

转换器
文件: 总12页 (文件大小:184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LT3433  
High Voltage  
Step-Up/Step-Down  
DC/DC Converter  
September 2003  
U
FEATURES  
DESCRIPTION  
The LT®3433 is a 200kHz fixed-frequency current mode  
switching regulator that provides both step-up and step-  
down regulation using a single inductor. The IC operates  
over a 4V to 60V input voltage range making it suitable for  
use in various wide input voltage range applications such  
as automotive electronics that must withstand both load  
dump and cold crank conditions.  
Automatic Step-Up and Step-Down Conversion  
Uses a Single Inductor  
Wide 4V to 60V Input Voltage Range  
VOUT from 3.3V to 20V  
Dual Internal 500mA Switches  
100µA No-Load Quiescent Current  
Low Current Shutdown  
±1% Output Voltage Accuracy  
Internal control circuitry monitors system conditions and  
converts from single switch buck operation to dual switch  
bridged operation when required, seamlessly changing  
between step-down and step-up voltage conversion.  
Optional Burst Mode® operation reduces no-load quies-  
cent current to 100µA and maintains high efficiencies with  
light loads.  
200kHz Operating Frequency  
Boosted Supply Pin to Saturate High Side Switch  
Frequency Foldback Protection  
Current Limit Foldback Protection  
Current Limit Unaffected by Duty Cycle  
16-lead Thermally Enhanced TSSOP Package  
U
APPLICATIO S  
Current limit foldback and frequency foldback help pre-  
vent inductor current runaway during start-up. Program-  
mablesoft-starthelpspreventoutputovershootatstart-up.  
12V Automotive Systems  
Wall Adapter Powered Systems  
Battery Power Voltage Buffering  
The LT3433 is available in a 16-lead thermally enhanced  
TSSOP package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
4V to 60V to 5V DC/DC Converter  
with Burst Mode Operation  
V
OUT  
5V  
L1  
100µH  
4V V 8.5V: 125mA  
8.5V V 60V: 350mA  
IN  
B160A  
Maximum Output  
Current vs VIN  
CoEv DU1352-101M  
IN  
Efficiency  
500  
400  
300  
200  
90  
80  
70  
60  
50  
40  
30  
20  
B120A  
1N4148  
47µF  
V
= 5V  
OUT  
V
SW_L  
BST  
BUCK  
0.1µF  
V
V
IN  
= 13.8V  
IN  
SW_H PWRGND  
LT3433  
4V TO 60V  
V
V
OUT  
IN  
+
1N4148  
0.1µF  
2.2µF  
BURST_EN  
V
V
IN  
= 4V  
BIAS  
1nF  
100pF  
BRIDGED  
V
V
SHDN  
SS  
C
68k  
100  
0
FB  
100k  
0.5%  
305k  
0.5%  
SGND  
0.01µF  
0
20  
30  
(V)  
40  
50  
60  
10  
0.1  
1
10  
100  
1000  
V
IN  
OUTPUT CURRENT (mA)  
3433 TA01  
3433 TA01c  
3433 TA01b  
3433ia  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will notinfringe onexisting patent rights.  
1
LT3433  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
Input Supply (VIN) .................................... –0.3V to 60V  
Boosted Supply (VBST) .............. –0.3V to VSW_H + 30V  
(VBST(MAX) = 80V)  
ORDER PART  
SGND  
1
2
3
4
5
6
7
8
16  
SGND  
NUMBER  
V
15 SW_L  
BST  
LT3433EFE  
LT3433IFE  
SW_H  
14  
13  
12  
11  
10  
9
PWRGND  
Internal Supply (VBIAS) ............................. 0.3V to 30V  
SW_H Switch Voltage.................................. 2V to 60V  
SW_L Switch Voltage ............................... 0.3V to 30V  
Feedback Voltage (VFB)............................... 0.3V to 5V  
Operating Junction Temperature Range (Note 5)  
LT3433E (Note 6) ............................ – 40°C to 125°C  
LT3433I ........................................... – 40°C to 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
V
IN  
V
V
OUT  
17  
BURST_EN  
BIAS  
V
C
SHDN  
SS  
V
FB  
FE PART MARKING  
SGND  
SGND  
3433EFE  
3433IFE  
FE PACKAGE  
16-LEAD PLASTIC TSSOP  
TJMAX = 125°C, θJA = 40°C/W, θJC = 10°C/W  
EXPOSED PAD (PIN 17) MUST BE SOLDERED TO SGND  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VIN = 13.8V, VFB = 1.25V, VOUT = 5V, VBURST_EN = 0V, VBST – VIN = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
60  
UNITS  
V
V
Operating Voltage Range  
Undervoltage Lockout  
Undervoltage Lockout Hysteresis  
Operating Voltage Range  
Operating Voltage Range  
4
V
V
IN  
Enable Threshold  
3.4  
3.95  
IN(UVLO)  
160  
mV  
V
V
V
3.3  
3.3  
20  
OUT  
BST  
V
V
< V  
– V  
+ 20V  
75  
20  
V
V
BST  
BST  
SW_H  
SW_H  
I
Normal Operation  
Burst Mode Operation  
Shutdown  
(Notes 2, 3)  
580  
100  
10  
940  
190  
25  
µA  
µA  
µA  
VIN  
V
V
< 0.6V  
< 0.4V  
VC  
SHDN  
V
Internal Supply Output Voltage  
Operating Voltage Range  
2.6  
2.9  
20  
V
V
BIAS  
I
Normal Operation  
Burst Mode Operation  
Shutdown  
660  
0.1  
0.1  
4.5  
990  
µA  
µA  
µA  
VBIAS  
V
V
< 0.6V  
VC  
< 0.4V  
SHDN  
Short-Circuit Current Limit  
mA  
R
R
Boost Supply Switch On-Resistance  
Output Supply Switch On-Resistance  
Shutdown Pin Thresholds  
I
I
= 500mA  
= 500mA  
0.8  
0.6  
1.2  
1
SWH(ON)  
SWL(ON)  
SHDN  
SW  
SW  
V
Disable  
Enable  
0.4  
V
V
1
I
I
I
/I  
Boost Supply Switch Drive Current  
Output Supply Switch Drive Current  
Switch Current Limit  
High Side Switch On, I = 500mA  
30  
30  
50  
50  
0.9  
mA/A  
mA/A  
A
VBST SW  
SW  
/I  
Low Side Switch On, I = 500mA  
SW  
VOUT SW  
0.5  
3
0.7  
LIM  
Foldback Current Limit  
V
= 0V  
0.35  
5
A
FB  
I
Soft-Start Output Current  
9
µA  
SS  
V
Feedback Reference Voltage  
1.224  
1.215  
1.231  
1.238  
1.245  
V
V
FB  
3433ia  
2
LT3433  
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VIN = 13.8V, VFB = 1.25V, VOUT = 5V, VBURST_EN = 0V, VBST – VIN = 5V, unless otherwise noted.  
SYMBOL  
V  
PARAMETER  
CONDITIONS  
5.5V V 60V  
MIN  
TYP  
0.002  
35  
MAX  
0.01  
100  
UNITS  
%/V  
nA  
Feedback Reference Line Regulation  
FB  
IN  
I
V
Pin Input Bias Current  
FB  
FB  
g
Error Amplifier Transconductance  
Error Amplifier Voltage Gain  
200  
270  
66  
330  
umhos  
dB  
m
A
V
I
f
/V  
Control Voltage to Switch Transconductance  
Operating Frequency  
0.55  
200  
A/V  
SW VC  
O
V
V
> 1V  
= 0V  
185  
170  
215  
230  
kHz  
kHz  
FB  
FB  
Foldback Frequency  
50  
kHz  
ns  
t
t
Minimum Switch On Time  
Minimum Switch Off Time  
R = 35(Note 4)  
250  
500  
450  
800  
ON(MIN)  
OFF(MIN)  
L
R = 35(Note 4)  
ns  
L
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: Supply current specification does not include switch drive  
currents. Actual supply currents will be higher.  
Note 5: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 3: “Normal Operation” supply current specification does not include  
Note 6: The LT3433E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the 40°C to  
125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT3433I is guaranteed over the full –40°C to 125°C operating junction  
temperature range.  
I
currents. Powering the V  
pin externally reduces I supply  
BIAS  
BIAS CC  
current.  
Note 4: Minimum times are tested using the high side switch with a 35Ω  
load to ground.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Output Current  
vs VIN  
VBIAS Output Voltage  
vs Temperature  
VIN Supply Current  
vs VIN Supply Voltage  
620  
590  
560  
530  
500  
2.8  
2.6  
2.4  
2.2  
500  
400  
300  
200  
V
= 5V  
OUT  
T
A
= 25°C  
BUCK  
BRIDGED  
100  
0
SEE TYPICAL APPLICATION  
ON THE FIRST PAGE OF  
THIS DATA SHEET  
–50  
0
50  
100 125  
0
15  
30  
(V)  
45  
60  
0
20  
30  
(V)  
40  
50  
60  
10  
TEMPERATURE (°C)  
V
V
IN  
IN  
3433 G01  
3433 G02  
3433 G11  
3433ia  
3
LT3433  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Error Amp Reference  
vs Temperature  
Soft-Start Current vs Temperature  
Switch Current Limit vs VFB  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
1.232  
1.231  
1.230  
1.229  
1.228  
700  
600  
500  
400  
300  
T
= 25°C  
A
–50  
0
50  
100 125  
0.2  
0.6  
(V)  
0.8  
–50  
0
50  
100 125  
0
0.4  
V
1.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FB  
3433 G03  
3433 G04  
3433 G05  
Oscillator Frequency  
vs Temperature  
Switch Current Limit  
vs Temperature  
Oscillator Frequency vs VFB  
210  
205  
200  
195  
190  
750  
725  
700  
675  
650  
200  
150  
100  
50  
T
= 25°C  
A
–50  
0
50  
100 125  
0
–50  
0
50  
100 125  
TEMPERATURE (°C)  
0
0.2  
0.4  
V
0.6  
(V)  
0.8  
1.0  
TEMPERATURE (°C)  
3433 G06  
FB  
3433 G08  
3433 G07  
Maximum Boost Supply Switch  
Drive Current vs Boost Supply  
Voltage  
Maximum Output Supply Switch  
Drive Current vs Output Supply  
Voltage  
70  
65  
60  
55  
50  
45  
70  
65  
60  
55  
50  
45  
8
8
4
5
6
7
9
10 11 12  
4
5
6
7
9
10 11 12  
V
– V  
(V)  
V
(V)  
OUT  
BST  
SW_H  
3433 G09  
3433 G10  
3433ia  
4
LT3433  
U
U
U
PI FU CTIO S  
SGND (Pins 1, 8, 9, 16): Low Noise Ground Reference.  
VFB (Pin7):ErrorAmplifierInvertingInput.Thenoninvert-  
ing input of the error amplifier is connected to an internal  
1.231V reference. The VFB pin is connected to a resistor  
divider from the converter output. Values for the resistor  
connected from VOUT to VFB (RFB1) and the resistor con-  
nectedfromVFB toground(RFB2)canbecalculatedtopro-  
gram converter output voltage (VOUT) via the following  
relation:  
V
BST (Pin 2): Boosted Switch Supply. This “boosted” sup-  
ply rail is referenced to the SW_H pin. Supply voltage is  
maintained by a bootstrap capacitor tied from the VBST pin  
to the SW_H pin. A 1µF capacitor is generally adequate for  
most applications.  
Thechargeonthebootstrapcapacitorisrefreshedthrough  
a diode, typically connected from the converter output  
(VOUT), during the switch-off period. Minimum off-time  
operationassuresthattheboostcapacitorisrefreshedeach  
switch cycle. The LT3433 supports operational VBST sup-  
ply voltages up to 75V (absolute maximum) as referenced  
to ground.  
VOUT = 1.231 • (RFB1 + RFB2)/RFB2  
The VFB pin input bias current is 35nA, so use of extremely  
high value feedback resistors could cause a converter  
output that is slightly higher than expected. Bias current  
error at the output can be estimated as:  
SW_H (Pin 3): Boosted Switch Output. This is the current  
returnfortheboostedswitchandcorrespondstotheemitter  
of the switch transistor. The boosted switch shorts the  
SW_H pin to the VIN supply when enabled. The drive cir-  
cuitry for this switch is boosted above the VIN supply  
through the VBST pin, allowing saturation of the switch for  
maximum efficiency. The “ON” resistance of the boosted  
switch is 0.8.  
VOUT(BIAS) = 35nA • RFB1  
The voltage on VFB also controls the LT3433 oscillator  
frequencythroughafrequency-foldbackfunction.When  
theVFB pinvoltageisbelow0.8V,theoscillatorrunsslower  
than the 200kHz typical operating frequency. The oscilla-  
torfrequencyslowswithreducedvoltageonthepin, down  
to 50kHz when VFB = 0V.  
The VFB pin voltage also controls switch current limit  
throughacurrent-limitfoldbackfunction.AtVFB=0V,the  
maximum switch current is reduced to half of the normal  
value. The current limit value increases linearly until VFB  
reaches 0.6V when the normal maximum switch current  
level is restored. The frequency and current-limit foldback  
functions add robustness to short-circuit protection and  
help prevent inductor current runaway during start-up.  
VIN (Pin 4): Input Power Supply. This pin supplies power  
to the boosted switch and corresponds to the collector of  
the switch transistor.This pin also supplies power to most  
of the IC’s internal circuitry if the VBIAS pin is not driven  
externally. This supply will be subject to high switching  
transientcurrentssothispinrequiresahighqualitybypass  
capacitor that meets whatever application-specific input  
ripple current requirements exist. See Applications Infor-  
mation.  
SS(Pin10):SoftStart. Connectacapacitor(CSS)fromthis  
pin to ground. The output voltage of the LT3433 error  
amplifier corresponds to the peak current sense amplifier  
output detected before resetting the switch output(s). The  
soft-start circuit forces the error amplifier output to a zero  
peak current for start-up. A 5µA current is forced from the  
SS pin onto an external capacitor. As the SS pin voltage  
ramps up, so does the LT3433 internally sensed peak cur-  
rent limit. This forces the converter output current to ramp  
from zero until normal output regulation is achieved. This  
function reduces output overshoot on converter start-up.  
BURST_EN (Pin 5): Burst Mode Enable Pin. Shorting this  
pin to SGND enables Burst Mode operation. If Burst Mode  
operationisnotdesired,connectingthispinto VBIASorVOUT  
will disable the burst function.  
VC (Pin 6): Error Amplifier Output. The voltage on the VC  
pincorrespondstothemaximumswitchcurrentperoscil-  
latorcycle. Theerroramplifieristypicallyconfiguredasan  
integrator circuit by connecting an RC network from this  
pin to ground. This circuit typically creates the dominant  
polefortheconverterregulationfeedbackloop.Specificin-  
tegratorcharacteristicscanbeconfiguredtooptimizetran-  
sient response. See Applications Information.  
3433ia  
5
LT3433  
U
U
U
PI FU CTIO S  
The time from VSS = 0V to maximum available current can  
this pin should be driven above 3V to assure the internal  
supply is completely disabled. This pin is typically diode-  
connectedtotheconverteroutputtomaximizeconversion  
efficiency. This pin must be bypassed with at least a 0.1µF  
ceramic capacitor to SGND.  
be calculated given a capacitor CSS as:  
tSS = (2.7 • 105)CSS or 0.27s/µF  
SHDN (Pin 11): Shutdown. If the SHDN pin is externally  
pulledbelow0.5V,lowcurrentshutdownmodeisinitiated.  
Duringshutdownmode,allinternalfunctionsaredisabled,  
and ICC is reduced to 10µA. This pin is intended to receive  
a digital input, however, there is a small amount of input  
hysteresisbuiltintotheSHDNcircuittohelpassureglitch-  
free mode switching. If shutdown is not desired, connect  
the SHDN pin to VIN.  
V
OUT (Pin 13): Converter Output Pin. This pin voltage is  
compared with the voltage on VIN internally to control  
operation in single or 2-switch mode. When the ratios of  
thetwovoltagesaresuchthata>75%dutycycleisrequired  
forregulation,thelowsideswitchisenabled.Drivebiasfor  
the low side switch is also derived directly from this pin.  
PWRGND (Pin 14): High Current Ground Reference. This  
isthecurrentreturnforthelowsideswitchandcorresponds  
to the emitter of the low side switch transistor.  
VBIAS (Pin 12): Internal Local Supply. Much of the LT3433  
circuitry is powered from this supply, which is internally  
regulated to 2.5V through an on-board linear regulator.  
CurrentdriveforthisregulatorissourcedfromtheVIN pin.  
The VBIAS supply is short-circuit protected to 5mA.  
SW_L(Pin15):GroundReferencedSwitchOutput.Thispin  
is the collector of the low side switch transistor. The low  
sideswitchshortstheSW_LpintoPWRGNDwhenenabled.  
The series impedance of the ground-referenced switch is  
0.6.  
The VBIAS supply only sources current, so forcing this pin  
abovetheregulatedvoltageallowstheuseofexternalpower  
formuchoftheLT3433circuitry.Whenusingexternaldrive,  
3433ia  
6
LT3433  
W
BLOCK DIAGRA  
V
BIAS  
12  
BURST  
CONTROL  
CIRCUITS  
BIAS  
BURST_EN  
5
4
1.25V  
V
IN  
SENSE  
AMPLIFIER  
V
BST  
2
3
COMPARATOR  
BOOSTED  
DRIVER  
SW_H  
SWITCH  
CONTROL  
LOGIC  
SLOPE  
COMP  
OSCILLATOR 200kHz  
SW_L  
GND  
15  
14  
7
FREQUENCY  
CONTROL  
DRIVER  
MODE  
CONTROL  
V
FB  
ERROR  
AMPLIFIER  
30%  
LOAD  
1.231V  
V
C
6
SHDN  
+
11  
Burst Mode  
CONTROL  
SHUTDOWN  
15%  
LOAD  
0.7V  
SS  
10  
13  
5µA  
V
OUT  
+
SGND  
1, 8, 9,16  
3433 BD  
V
OUT  
3433ia  
7
LT3433  
W U U  
U
APPLICATIO S I FOR ATIO  
Overview  
condition as requiring a duty cycle greater than 75%. If  
suchaconditionexists, asecondswitchisenabledduring  
theswitchontime,whichactstopulltheoutputsideofthe  
inductor to ground. This “bridged” operation allows volt-  
age conversion to continue when VOUT approaches or  
exceeds VIN.  
The LT3433 is a high input voltage range, step-up/step-  
down DC/DC converter IC using a 200kHz constant fre-  
quency, currentmodearchitecture. Dualinternalswitches  
allow the full input voltage to be imposed across the  
switched inductor, such that both step-up and step-down  
modes of operation can be realized using the same single  
inductor topology.  
Shutdown  
The LT3433 incorporates a low current shutdown mode  
where all IC functions are disabled and the VIN current is  
reduced to 10µA. Pulling the SHDN pin down to 0.4V or  
less activates shutdown mode.  
The LT3433 has provisions for high efficiency, low load  
operation for battery-powered applications. Burst Mode  
operation reduces average quiescent current to 100µA in  
noloadconditions.Alowcurrentshutdownmodecanalso  
be activated, reducing total quiescent current to 10µA.  
Burst Mode Operation  
Much of the LT3433’s internal circuitry is biased from an  
internal low voltage linear regulator. The output of this  
regulatorisbroughtouttotheVBIAS pin, allowingbypass-  
ing of the internal regulator. The associated internal  
circuitry can be powered directly from the output of the  
converter, increasing overall converter efficiency. Using  
externally derived power also eliminates the IC’s power  
dissipation associated with the internal VIN to VBIAS  
regulator.  
TheLT3433employslowcurrentBurstModefunctionality  
to maximize efficiency during no load and low load condi-  
tions. Burst Mode function is disabled by shorting the  
BURST_EN pin to either VBIAS or VOUT. Burst Mode  
function is enabled by shorting BURST_EN to SGND.  
When the required switch current, sensed via the VC pin  
voltage, is below 30% of maximum, the Burst Mode  
functionisemployed.WhenthevoltageonVC dropsbelow  
the 30% load level, that level of sense current is latched  
intotheIC. Iftheoutputloadrequireslessthanthislatched  
currentlevel,theconverterwilloverdrivetheoutputslightly  
during each switch cycle. This overdrive condition forces  
the voltage on the VC pin to continue to drop. When the  
voltage on VC drops below the 15% load level, switching  
isdisabled,andtheLT3433shutsdownmostofitsinternal  
circuitry, reducing quiescent current to 100µA. When the  
voltage on the VC pin climbs back to 20% load level, the IC  
returns to normal operation and switching resumes.  
Theory of Operation (See Block Diagram)  
The LT3433 senses converter output voltage via the VFB  
pin. The difference between the voltage on this pin and an  
internal 1.231V reference is amplified to generate an error  
voltage on the VC pin which is, in turn, used as a threshold  
for the current sense comparator.  
During normal operation, the LT3433 internal oscillator  
runs at 200kHz. At the beginning of each oscillator cycle,  
the switch drive is enabled. The switch drive stays enabled  
until the sensed switch current exceeds the VC-derived  
threshold for the current sense comparator and, in turn,  
disables the switch driver. If the current comparator  
threshold is not obtained for the entire oscillator cycle, the  
switch driver is disabled at the end of the cycle for 250ns.  
This minimum off-time mode of operation assures regen-  
eration of the VBST bootstrapped supply.  
Antislope Compensation  
Most current mode switching controllers use slope com-  
pensationtopreventcurrentmodeinstability. TheLT3433  
is no exception. A slope compensation circuit imposes an  
artificial ramp on the sensed current to increase the rising  
slope as duty cycle increases. Unfortunately, this addi-  
tional ramp corrupts the sensed current value, reducing  
the achievable current limit value by the same amount as  
the added ramp represents. As such, current limit is  
typically reduced as duty cycles increase.  
If the converter input and output voltages are close  
together, proper operation in normal buck configuration  
would require high duty cycles. The LT3433 senses this  
3433ia  
8
LT3433  
W U U  
APPLICATIO S I FOR ATIO  
U
TheLT3433containscircuitrytoeliminatethecurrentlimit  
reduction associated with slope-compensation, or anti-  
slope compensation. As the slope compensation ramp is  
addedtothesensedcurrent, asimilarrampisaddedtothe  
current limit threshold reference. The end result is that  
current limit is not compromised so the LT3433 can  
provide full power regardless of required duty cycle.  
switch current will be reduced by this required drive  
current.  
IDRIVE = DC • 2 • ISW(MAX) • ISWDRIVE(MAX)  
Using 50mA/A for the required drive current for each  
switch yields the portion of switch current used to drive  
the switches is:  
I
SW(DRIVE) = DC • 2 • ISW(MAX) • 0.05/(1 – DC)  
Mode Switching  
Removing drive currents from the available maximum  
switch current yields:  
The LT3433 senses operational duty cycle by directly  
monitoring VIN and VOUT. Voltage drops associated with  
pass and catch diodes are estimated internally such that  
mode switching occurs when the duty cycle required for  
continuous buck operation is greater than 75%. If such a  
condition exists, a second switch is enabled during the  
switch on time, changing operation to a dual switch  
bridgedconfiguration.Becausethevoltageavailableacross  
the switched inductor is greater in bridged mode, duty  
cycle will decrease.  
ISW(MAX)' = ISW(MAX) • [1 – DC • 2 • ISW(MAX)  
0.05/(1 – DC)]  
where ISW(MAX)' is maximum switch current available to  
the load during bridged operation. The maximum load  
current can then be calculated as:  
ILOAD(MAX) = ISW(MAX)' • (1 – DC)  
which reduces to:  
The output current in bridged mode is not continuous, so  
switch currents are considerably higher than while oper-  
ating in buck mode. In order to maximize available output  
power, continuous operation and low ripple currents are  
recommended. Switch currents will increase by a factor of  
1/(1DC)duringbridgedmode,sothismodeofoperation  
is typically the gating item for converter drive capability.  
ILOAD(MAX) = [0.5A – (IL/2)] • (1 – 1.1 • DC)  
Design Equations  
V
IN  
SW_H  
LT3433  
SW_L  
IOUT(MAX) = ISW(MAX) • (1 – DC)  
= [0.5A – (IL / 2)] • (1 – DC)  
L
V
OUT  
where IL is the ripple current in the inductor.  
It is also important to note that IOUT cannot be considered  
equivalent to ILOAD during bridged operation. Most of the  
converter’s switch drive power is derived from the gener-  
ated output supply, so IOUT must also accommodate this  
current requirement. During single-switch buck opera-  
tional conditions, switch drive current is negligible in  
terms of output current; however, during bridged opera-  
tion, these currents can become significant. These output  
derived switch drive currents will increase the current  
loading on VIN by the same 1/(1 – DC) factor as the switch  
currents. Asmaximumswitchcurrentisreferencedtothat  
coming from the VIN supply, the available maximum  
3433 AI01  
Constants:  
VSWH = voltage drop across boosted switch  
VSWL = voltage drop across grounded switch  
VF = forward drop of external Schottky diodes  
f0 = operating frequency  
Duty Cycle (continuous operation):  
DCBUCK = (VOUT + 2VF)/(VIN – VSWH + VF)  
DCBRIDGED = (VOUT + 2VF)/(VOUT + VIN + 2VF – VSWH  
– VSWL  
)
3433ia  
9
LT3433  
W U U  
U
APPLICATIO S I FOR ATIO  
Discontinuousoperationoccurswhentheripplecurrentin  
Ripple current:  
the inductor is greater than twice the load current (ILOAD  
)
V
OUT  
+ 2V • 1DC  
in buck mode, or greater than ILOAD/(1 – DC) during  
bridged mode. Current mode instability is not a concern  
duringdiscontinuousoperationsoinductorvaluessmaller  
than LMIN can be used. If such a small inductor is used,  
however, it must be assured that the converter never  
enters continuous operation at duty cycles greater than  
50% to prevent current mode instability.  
(
=
F) (  
)
IL(PP)  
L• fO  
Inductor Selection  
TheprimarycriterionforinductorvalueselectioninLT3433  
applications is the ripple current created in that inductor.  
Design considerations for ripple current are the amount of  
output ripple and the ability of the internal slope compen-  
sation waveform to prevent current mode instability.  
Design Example  
V
IN(MIN) = 4V, VOUT = 5V, L = 150µH  
The LT3433 maximizes available dynamic range using a  
slope compensation generator that generates a continu-  
ously increasing slope as duty cycle increases. The slope  
compensationwaveformiscalibratedat80%dutycycleto  
compensate for ripple currents up to 12.5% of IMAX, or  
~60mA.  
Using VF = 0.75V yields:  
DC = (VOUT + 2VF)/(VOUT + VIN + 2VF – VSWH – VSWL  
= (5V + 1.5V)/(4V + 5V + 1.5V – 0.6V – 0.5V)  
= 0.69  
IL = (VOUT + 2VF) • (1 – DC) • (L • f0)–1  
= (5V + 1.5V) • (1 – 0.69) • (150µH • 200kHz)–1  
= 67mA  
)
Ripple current can be calculated as:  
V
OUT  
+ 2V • 1DC  
(
=
F) (  
)
IL(PP)  
L• fO  
ILOAD(MAX) = ISW(MAX) • (1 – 1.1 • DC)  
= [0.5A – (1/2 • 0.07)](1 – 1.1 • 0.69) = 0.112A  
This relation can be used to determine minimum induc-  
tance sizes for various values of VOUT using the DC = 80%  
calibration:  
LMIN = (VOUT + 1.5V) • (1 – 0.8) 60mA • 200kHz)  
V
OUT  
L
MIN  
4V  
5V  
92µH  
108µH  
175µH  
225µH  
9V  
12V  
3433ia  
10  
LT3433  
U
TYPICAL APPLICATIO  
Burst Only Low Noise 5V Maintenance Supply  
D
D
S1  
B160A  
S2  
B160A  
L1  
33µH  
D1  
1N4148  
V
SW_L  
BST  
C1  
0.1µF  
SW_H PWRGND  
LT3433  
V
IN  
4V TO 60V  
V
V
IN  
OUT  
D2  
1N4148  
+
C7  
2.2µF  
BURST_EN  
V
BIAS  
C6 100pF  
C2  
0.1µF  
V
C
SHDN  
SS  
V
FB  
V
OUT  
R2  
510k  
5%  
R1  
5V  
IN  
SHDN  
OUT  
BYP  
SGND  
C4  
0.01µF  
C5  
2.2µF  
2.2M  
LT1761-5  
10mA  
5%  
GND  
C3  
10µF  
3433 TA03  
U
PACKAGE DESCRIPTIO  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 ±0.10  
4.50 ±0.10  
2.94  
(.116)  
SEE NOTE 4  
2.94  
(.116)  
6.40  
BSC  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.45 – 0.75  
0.09 – 0.20  
0.05 – 0.15  
(.018 – .030)  
(.0036 – .0079)  
(.002 – .006)  
0.195 – 0.30  
(.0077 – .0118)  
FE16 (BB) TSSOP 0203  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3433ia  
11  
LT3433  
U
TYPICAL APPLICATIO  
4V-60V to 5V at 100mA DC/DC Converter Burst Disabled  
D
S2  
D
L1  
100µH  
S1  
B160A  
B160A  
V
OUT  
5V  
C6  
47µF  
100mA  
D2  
1N4148  
V
SW_L  
BST  
C1  
0.1µF  
SW_H PWRGND  
LT3433  
V
IN  
V
V
IN  
OUT  
4V TO 60V  
D1  
1N4148  
+
C7  
2.2µF  
BURST_EN  
V
BIAS  
C5 1nF  
C4 100pF  
R1 68k  
C2  
0.1µF  
V
C
SHDN  
SS  
V
FB  
R3  
305k  
0.5%  
R2  
C3  
0.01µF  
SGND  
100k  
0.5%  
3433 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 7.3V to 45V/64V, V  
LT1076/LT1076HV  
1.6A (I ), 100kHz High Efficiency Step-Down DC/DC Converters  
: 2.21V, I : 8.5mA,  
Q
: 10µA, DD5/DD7, TO220-5/TO220-7  
OUT  
IN  
OUT(MIN)  
I
SD  
LT1676  
60V, 440mA (I ), 100kHz High Efficiency Step-Down  
DC/DC Converter  
V : 7.4V to 60V, V  
I : 2.5µA, SO-8  
SD  
: 1.24V, I : 3.2mA,  
OUT(MIN) Q  
OUT  
IN  
LT1765  
25V, 2.75A (I ), 1.25MHz High Efficiency Step-Down  
DC/DC Converter  
V : 3V to 25V, V  
I : 15µA, SO-8, TSSOP16E  
SD  
: 1.20V, I : 1mA,  
OUT(MIN) Q  
OUT  
IN  
LT1766/LT1956  
LT1767  
60V, 1.2A (I ), 200kHz/500kHz High Efficiency Step-Down  
DC/DC Converters  
V : 5.5V to 60V, V  
I : 25µA, TSSOP16/TSSOP16E  
SD  
: 1.20V, I : 2.5mA,  
OUT(MIN) Q  
OUT  
IN  
25V, 1.2A (I ), 1.25MHz High Efficiency Step-Down  
V : 3V to 25V, V  
IN  
: 1.20V, I : 1mA,  
OUT(MIN) Q  
OUT  
DC/DC Converter  
I : 6µA, MS8/MS8E  
SD  
LT1776  
40V, 550mA (I ), 200kHz High Efficiency Step-Down  
DC/DC Converter  
V : 7.4V to 40V, V  
I : 30µA, N8, SO-8  
SD  
: 1.24V, I : 3.2mA,  
Q
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
LT1976  
60V, 1.2A (I ), 200kHz High Efficiency Micropower (I < 100µA)  
V : 3.3V to 60V, V  
: 1.20V, I : 100µA,  
Q
OUT  
Q
IN  
Step-Down DC/DC Converter  
I
: <1µA, TSSOP16E  
SD  
LT3010  
80V, 50mA Low Noise Linear Regulator  
V : 1.5V to 80V, V  
IN  
: 1.28V, I : 30µA,  
Q
I
: <1µA, MS8E  
SD  
LTC3412/LTC3414  
LTC3414  
2.5A (I ), 4MHz Synchronous Step-Down DC/DC Converters  
V : 2.5V to 5.5V, V  
: 0.8V, I : 60µA,  
Q
OUT  
IN  
OUT(MIN)  
I
: <1µA, TSSOP16E  
SD  
4A (I ), 4MHz Synchronous Step-Down DC/DC Converter  
V : 2.3V to 5.5V, V  
: 0.8V, I : 64µA,  
Q
OUT  
IN  
OUT(MIN)  
I
: <1µA, TSSOP20E  
SD  
LTC3727/LTC3727-1 36V, 500kHz High Efficiency Step-Down DC/DC Controllers  
V : 4V to 36V, V  
: 0.8V, I : 670µA,  
IN  
OUT(MIN) Q  
I
: 20µA, QFN32, SSOP28  
SD  
LT3430/LT3431  
LTC3440  
60V, 2.75A (I ), 200kHz/500kHz High Efficiency Step-Down  
DC/DC Converters  
V : 5.5V to 60V, V  
I : 30µA, TSSOP16E  
SD  
: 1.20V, I : 2.5mA,  
OUT(MIN) Q  
OUT  
IN  
600mA (I ), 2MHz Synchronous Buck-Boost DC/DC Converter  
V : 2.5V to 5.5V, V  
: 2.5V, I : 25µA,  
OUT(MIN) Q  
OUT  
IN  
with 95% Efficiency  
I : <1µA, MS10  
SD  
3433ia  
LT/TP 0903 1K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3433EFE#PBF

LT3433 - High Voltage Step-Up/Step-Down DC/DC Converter; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3433EFE#TR

LT3433 - High Voltage Step-Up/Step-Down DC/DC Converter; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3433EFE#TRPBF

LT3433 - High Voltage Step-Up/Step-Down DC/DC Converter; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3433IFE

High Voltage Step-Up/Step-Down DC/DC Converter
Linear

LT3433IFE#TR

LT3433 - High Voltage Step-Up/Step-Down DC/DC Converter; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3433_1

High Voltage Step-Up/Step-Down DC/DC Converter
Linear

LT3434

High Voltage 3A, 200kHz Step-Down Switching Regulator with 100uA Quiescent Current
Linear

LT3434EFE

High Voltage 3A, 200kHz Step-Down Switching Regulator with 100uA Quiescent Current
Linear

LT3434EFE#PBF

暂无描述
Linear

LT3434EFE#TR

LT3434 - High Voltage 3A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3434EFE#TRPBF

LT3434 - High Voltage 3A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3434IFE

High Voltage 3A, 200kHz Step-Down Switching Regulator with 100uA Quiescent Current
Linear