LT3436EFE#TR [Linear]

LT3436 - 3A, 800kHz Step-Up Switching Regulator; Package: TSSOP; Pins: 16; Temperature Range: -40°C to 85°C;
LT3436EFE#TR
型号: LT3436EFE#TR
厂家: Linear    Linear
描述:

LT3436 - 3A, 800kHz Step-Up Switching Regulator; Package: TSSOP; Pins: 16; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总16页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3436  
3A, 800kHz Step-Up  
Switching Regulator  
U
DESCRIPTIO  
FEATURES  
The LT®3436 is an 800kHz monolithic boost switching  
regulator. A high efficiency 3A, 0.1switch is included on  
the die together with all the control circuitry required to  
complete a high frequency, current-mode switching regu-  
lator. Current-mode control provides fast transient re-  
sponse and excellent loop stability.  
Constant 800kHz Switching Frequency  
Wide Operating Voltage Range: 3V to 25V  
High Efficiency 0.1/3A Switch  
1.2V Feedback Reference Voltage  
±2% Overall Output Voltage Tolerance  
Uses Low Profile Surface Mount External  
Components  
New design techniques achieve high efficiency at high  
switching frequencies over a wide operating range. A low  
dropout internal regulator maintains consistent perfor-  
manceoverawiderangeofinputsfrom24VsystemstoLi-  
Ion batteries. An operating supply current of 1mA main-  
tains high efficiency, especially at lower output currents.  
Shutdown reduces quiescent current to 11µA. Maximum  
switch current remains constant at all duty cycles. Syn-  
chronizationcapabilityallowsanexternallogiclevelsignal  
to increase the internal oscillator from 1MHz to 1.4MHz.  
Low Shutdown Current: 11µA  
Synchronizable from 1MHz to 1.4MHz  
Current-Mode Control  
Constant Maximum Switch Current Rating  
at All Duty Cycles*  
Available in a Small Thermally Enhanced  
TSSOP-16 Package  
U
APPLICATIO S  
DSL Modems  
Full cycle-by-cycle switch current limit protection and ther-  
mal shutdown are provided. High frequency operation al-  
lows the reduction of input and output filtering components  
and permits the use of tiny chip inductors. The LT3436 is  
available in an exposed pad, 16-pin TSSOP package.  
Portable Computers  
Battery-Powered Systems  
Distributed Power  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
*Protectd by U.S. Patents including 6535042, 6611131, 6498466  
U
TYPICAL APPLICATIO  
Efficiency vs Load Current  
5V to 12V Boost Converter  
90  
V
V
= 5V  
IN  
OUT  
3.9µH  
= 12V  
85  
80  
75  
70  
65  
60  
B220A  
OUTPUT  
12V  
INPUT  
5V  
4.7µF  
CERAMIC  
V
V
IN  
SW  
0.9A  
OPEN  
OR  
HIGH  
= ON  
LT3436  
90.9k  
SHDN  
SYNC GND  
FB  
V
C
22µF  
CERAMIC  
10k  
1%  
10nF  
4.7k  
MAXIMUM OUTPUT CURRENT IS SUBJECT TO THERMAL DERATING.  
470pF  
0
0.4  
0.6 0.7  
0.1 0.2 0.3  
0.5  
0.8  
3436 TA01  
LOAD CURRENT (A)  
3436 TA01b  
3436fa  
1
LT3436  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
ORDER PART NUMBER  
Input Voltage .......................................................... 25V  
Switch Voltage......................................................... 35V  
SHDN Pin ............................................................... 25V  
FB Pin Current ....................................................... 1mA  
SYNC Pin Current .................................................. 1mA  
Operating Junction Temperature Range (Note 2)  
LT3436E .......................................... 40°C to 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
GND  
1
2
3
4
5
6
7
8
16 GND  
15 NC  
V
IN  
LT3436EFE  
SW  
SW  
14 SYNC  
13  
V
C
17  
GND  
GND  
NC  
12 FB  
11 SHDN  
10 NC  
FE PART MARKING  
3436EFE  
GND  
9
GND  
FE PACKAGE  
16-LEAD PLASTIC TSSOP  
EXPOSED PAD IS GND (PIN 17),  
MUST BE SOLDERED TO PCB  
TJMAX = 125°C, θJA = 45°C/W,  
θ
JC(PAD) = 10°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS Thedenotesthespecificationswhichapplyoverthefulloperatingtemperature  
range, otherwise specifications are at TA = 25°C. VIN = 15V, VC = 0.8V, SHDN, SYNC and switch open unless otherwise noted.  
PARAMETER  
CONDITION  
MIN  
3
TYP  
MAX  
25  
UNITS  
V
Recommended Operating Voltage  
Maximum Switch Current Limit  
Oscillator Frequency  
3
4
6
A
3.3V < V < 25V  
640  
800  
330  
2.6  
1
960  
550  
2.73  
1.3  
kHz  
mV  
V
IN  
Switch On Voltage Drop  
I
= 3A  
SW  
V
V
V
Undervoltage Lockout  
Supply Current  
(Note 3)  
2.47  
IN  
IN  
IN  
I
I
= 0A  
= 3A  
mA  
mA/A  
SW  
SW  
Supply Current/I  
15  
SW  
Shutdown Supply Current  
V
= 0V, V = 25V, V = 25V  
11  
25  
45  
µA  
µA  
SHDN  
IN  
SW  
Feedback Voltage  
3V < V < 25V, 0.4V < V < 0.9V  
1.182  
1.176  
1.2  
1.218  
1.224  
V
V
IN  
C
FB Input Current  
0
0.2  
350  
850  
120  
110  
4.8  
0.4  
µA  
FB to V Voltage Gain  
0.4V < V < 0.9V  
150  
500  
85  
70  
C
C
FB to V Transconductance  
I = ±10µA  
VC  
1300  
165  
165  
µMho  
µA  
µA  
A/V  
V
C
V Pin Source Current  
C
V
V
= 1V  
FB  
FB  
V Pin Sink Current  
C
= 1.4V  
V Pin to Switch Current Transconductance  
C
V Pin Minimum Switching Threshold  
C
Duty Cycle = 0%  
0.3  
V Pin 3A I Threshold  
0.9  
V
C
SW  
Maximum Switch Duty Cycle  
V = 1.2V, I = 350mA  
85  
80  
90  
%
%
C
SW  
V = 1.2V, I = 1A  
C
SW  
SHDN Threshold Voltage  
1.28  
–7  
4
1.35  
–10  
7
1.42  
–13  
10  
V
µA  
SHDN Input Current (Shutting Down)  
SHDN Threshold Current Hysteresis  
SYNC Threshold Voltage  
SHDN = 60mV Above Threshold  
SHDN = 100mV Below Threshold  
µA  
1.5  
2.2  
1.4  
V
SYNC Input Frequency  
1
MHz  
SYNC Pin Resistance  
I
= 1mA  
20  
kΩ  
SYNC  
3436fa  
2
LT3436  
ELECTRICAL CHARACTERISTICS  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 3: Minimum input voltage is defined as the voltage where the internal  
regulator enters lockout. Actual minimum input voltage to maintain a  
regulated output will depend on output voltage and load current. See  
Applications Information.  
of a device may be impaired.  
Note 2: The LT3436E is guaranteed to meet performance specifications  
from 0°C to 125°C. Specifications over the 40°C to 125°C operating  
junction temperature range are assured by design, characterization and  
correlation with statistical process controls.  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
FB Voltage  
Switch On Voltage Drop  
Oscillator Frequency  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
920  
890  
860  
830  
800  
770  
740  
710  
680  
T
= 125°C  
A
T
A
= 25°C  
T
A
= –40°C  
0
–25  
0
25  
50  
75  
125  
0
0.5  
1.5  
2.0  
2.5  
3.0  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
1.0  
SWITCH CURRENT (A)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3436 G01  
3436 G02  
3436 G03  
SHDN Threshold  
SHDN Supply Current  
SHDN Input Current  
–12  
–10  
–8  
–6  
–4  
–2  
0
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
14  
12  
10  
8
T
= 25°C  
A
SHDN = 0V  
SHUTTING DOWN  
6
STARTING UP  
4
2
0
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–25  
0
25  
50  
75  
125  
–50  
100  
0
10  
15  
20  
25  
30  
5
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
3436 G06  
3436 G05  
3436 G04  
3436fa  
3
LT3436  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Current Limit Foldback  
SHDN Supply Current  
Input Supply Current  
300  
250  
200  
150  
100  
50  
1200  
1000  
800  
600  
400  
200  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
40  
30  
20  
10  
0
T
= 25°C  
IN  
T = 25°C  
A
A
T
A
= 25°C  
V
= 15V  
SWITCH CURRENT  
MINIMUM  
INPUT  
VOLTAGE  
0
0.8  
1.2 1.4  
0
10  
5
15  
20  
25  
30  
0
0.2  
0.4 0.6  
1.0  
1.2  
1.0  
0
0.2  
0.4  
0.6  
0.8  
INPUT VOLTAGE (V)  
SHDN VOLTAGE (V)  
FEEDBACK VOLTAGE (V)  
3436 G07  
3436 G08  
3436 G09  
U
U
U
PIN FUNCTIONS  
GND (Pins 1, 5, 6, 8, 9, 16, 17): Short GND pins 1, 5, 6,8,  
9, 16 and the exposed pad (pin 17) on the PCB. The GND  
isthereferencefortheregulatedoutput,soloadregulation  
will suffer if the “ground” end of the load is not at the same  
voltage as the GND of the IC. This condition occurs when  
the load current flows through the metal path between the  
GNDpinsandtheloadgroundpoint. Keepthegroundpath  
shortbetweentheGNDpinsandtheloadanduseaground  
plane when possible. Keep the path between the input  
bypass and the GND pins short. The exposed pad should  
be attached to a large copper area to improve thermal  
performance.  
a predetermined level. Float or pull high to put the regula-  
tor in the operating mode.  
FB (Pin 12): The feedback pin is used to set output voltage  
usinganexternalvoltagedividerthatgenerates1.2Vatthe  
pinwiththedesiredoutputvoltage. Ifrequired, thecurrent  
limit can be reduced during start up when the FB pin is  
below 0.5V (see the Current Limit Foldback graph in the  
Typical Performance Characteristics section). An imped-  
ance of less than 5kat the FB pin is needed for this  
feature to operate.  
VC (Pin 13): The VC pin is the output of the error amplifier  
and the input of the peak switch current comparator. It is  
normally used for frequency compensation, but can do  
double duty as a current clamp or control loop override.  
This pin sits at about 0.3V for very light loads and 0.9V at  
maximum load.  
VIN (Pin 2): This pin powers the internal circuitry and  
internal regulator. Keep the external bypass capacitor  
close to this pin.  
SW (Pins 3, 4): The switch pin is the collector of the on-  
chip power NPN switch and has large currents flowing  
throughit.Keepthetracestotheswitchingcomponentsas  
shortaspossibletominimizeradiationandvoltagespikes.  
SYNC (Pin 14): The sync pin is used to synchronize the  
internal oscillator to an external signal. It is directly logic  
compatible and can be driven with any signal between  
20% and 80% duty cycle. The synchronizing range is  
equal to initial operating frequency, up to 1.4MHz. See  
Synchronization section in Applications Information for  
details. When not in use, this pin should be grounded.  
SHDN (Pin 11): The shutdown pin is used to turn off the  
regulator and to reduce input drain current to a few  
microamperes. The 1.35V threshold can function as an  
accurate undervoltage lockout (UVLO), preventing the  
regulatorfromoperatinguntiltheinputvoltagehasreached  
3436fa  
4
LT3436  
W
BLOCK DIAGRAM  
The LT3436 is a constant frequency, current-mode boost  
converter. This means that there is an internal clock and  
twofeedbackloopsthatcontrolthedutycycleofthepower  
switch. In addition to the normal error amplifier, there is a  
current sense amplifier that monitors switch current on a  
cycle-by-cycle basis. A switch cycle starts with an oscilla-  
tor pulse which sets the RS flip-flop to turn the switch on.  
When switch current reaches a level set by the inverting  
input of the comparator, the flip-flop is reset and the  
switch turns off. Output voltage control is obtained by  
using the output of the error amplifier to set the switch  
current trip point. This technique means that the error  
amplifier commands current to be delivered to the output  
rather than voltage. A voltage fed system will have low  
phase shift up to the resonant frequency of the inductor  
and output capacitor, then an abrupt 180° shift will occur.  
The current fed system will have 90° phase shift at a much  
lower frequency, but will not have the additional 90° shift  
until well beyond the LC resonant frequency. This makes  
itmucheasiertofrequencycompensatethefeedbackloop  
and also gives much quicker transient response.  
A comparator connected to the shutdown pin disables the  
internal regulator, reducing supply current.  
INPUT  
INTERNAL  
CC  
2.5V BIAS  
REGULATOR  
V
SLOPE COMP  
Σ
0.3V  
SW  
800kHz  
S
SYNC  
Q1  
POWER  
SWITCH  
OSCILLATOR  
R
DRIVER  
CURRENT  
COMPARATOR  
S
FLIP-FLOP  
CIRCUITRY  
R
+
CURRENT SENSE  
SHUTDOWN  
COMPARATOR  
AMPLIFIER VOLTAGE  
GAIN = 40  
7µA  
+
+
0.005  
1.35V  
SHDN  
FB  
A  
+
ERROR  
V
C
AMPLIFIER  
1.2V  
g
= 850µMho  
m
GND  
3436 F01  
Figure 1. Block Diagram  
3436fa  
5
LT3436  
U
W U U  
APPLICATIONS INFORMATION  
FB RESISTOR NETWORK  
to 22µF range. Since the absolute value of capacitance  
defines the pole frequency of the output stage, an X7R or  
X5R type ceramic, which have good temperature stability,  
is recommended.  
The suggested resistance (R2) from FB to ground is 10k  
1%. This reduces the contribution of FB input bias current  
to output voltage to less than 0.2%. The formula for the  
resistor (R1) from VOUT to FB is:  
Tantalum capacitors are usually chosen for their bulk  
capacitance properties, useful in high transient load appli-  
cations. ESR rather than absolute value defines output  
ripple at 800kHz. Values in the 22µF to 100µF range are  
generally needed to minimize ESR and meet ripple current  
ratings. Care should be taken to ensure the ripple ratings  
are not exceeded.  
R2 V  
1.2 R2(0.2µA)  
1.2  
(
)
OUT  
R1=  
V
LT3436  
SW  
Table 1. Surface Mount Solid Tantalum Capacitor ESR and  
Ripple Current  
OUTPUT  
ERROR  
AMPLIFIER  
E Case Size  
ESR (Max,  
)
Ripple Current (A)  
1.2V  
+
AVX TPS, Sprague 593D  
D Case Size  
0.1 to 0.3  
0.1 to 0.3  
0.2 (typ)  
0.7 to 1.1  
R1  
+
FB  
AVX TPS, Sprague 593D  
C Case Size  
0.7 to 1.1  
0.5 (typ)  
R2  
10k  
3436 F02  
AVX TPS  
V
C
GND  
Figure 2. Feedback Network  
INPUT CAPACITOR  
Unlike the output capacitor, RMS ripple current in the  
input capacitor is normally low enough that ripple current  
rating is not an issue. The current waveform is triangular,  
with an RMS value given by:  
OUTPUT CAPACITOR  
Step-up regulators supply current to the output in pulses.  
The rise and fall times of these pulses are very fast. The  
output capacitor is required to reduce the voltage ripple  
this causes. The RMS ripple current can be calculated  
from:  
0.29 V  
IN)(  
=
V
V  
(
)
OUT IN  
IRIPPLE RMS  
(
)
L f V  
( )( )(  
)
OUT  
IRIPPLE RMS = IOUT  
V
OUT  
V  
/
V
IN  
(
)
IN  
Athigherswitchingfrequency,theenergystoragerequire-  
ment of the input capacitor is reduced so values in the  
range of 2.2µF to 10µF are suitable for most applications.  
Y5V or similar type ceramics can be used since the  
absolute value of capacitance is less important and has no  
significant effect on loop stability. If operation is required  
close to the minimum input voltage required by either the  
output or the LT3436, a larger value may be necessary.  
This is to prevent excessive ripple causing dips below the  
minimum operating voltage resulting in erratic operation.  
(
)
The LT3436 will operate with both ceramic and tantalum  
output capacitors. Ceramic capacitors are generally cho-  
sen for their small size, very low ESR (effective series  
resistance), and good high frequency operation, reducing  
outputripplevoltage. TheirlowESRremovesausefulzero  
in the loop frequency response, common to tantalum  
capacitors. To compensate for this, the VC loop compen-  
sationpolefrequencymusttypicallybereducedbyafactor  
of 10. Typical ceramic output capacitors are in the 4.7µF  
3436fa  
6
LT3436  
U
W U U  
APPLICATIONS INFORMATION  
The recommended minimum inductance is:  
(V )2(VOUT – V )  
INDUCTOR CHOICE AND MAXIMUM OUTPUT  
CURRENT  
IN  
IN  
LMIN  
=
When choosing an inductor, there are 2 conditions that  
limit the minimum inductance; required output current,  
and avoidance of subharmonic oscillation. The maximum  
output current for the LT3436 in a standard boost con-  
verter configuration with an infinitely large inductor is:  
0.4(VOUT )2(IOUT )(f)  
The inductor value may need further adjustment for other  
factors such as output voltage ripple and filtering require-  
ments. Remember also, inductance can drop significantly  
with DC current and manufacturing tolerance.  
V • η  
VOUT  
IN  
IOUT(MAX) = 3A  
The inductor must have a rating greater than its peak  
operating current to prevent saturation resulting in effi-  
ciency loss. Peak inductor current is given by:  
Where η = converter efficiency (typically 0.87 at high  
current).  
(VOUT )(IOUT ) V (VOUT V )  
IN  
IN  
ILPEAK  
=
+
As the value of inductance is reduced, ripple current  
increases and IOUT(MAX) is reduced. The minimum induc-  
tance for a required output current is given by:  
V • η  
IN  
2VOUT (L)(f)  
Also, consideration should be given to the DC resistance  
of the inductor. Inductor resistance contributes directly to  
the efficiency losses in the overall converter.  
V (VOUT – V )  
IN  
IN  
LMIN  
=
SuitableinductorsareavailablefromCoilcraft,Coiltronics,  
Dale, Sumida, Toko, Murata, Panasonic and other manu-  
factures.  
(VOUT )(IOUT  
)
2VOUT (f) 3 –  
V • η  
IN  
The second condition, avoidance of subharmonic oscilla-  
tion, mustbemetiftheoperatingdutycycleisgreaterthan  
50%. The slope compensation circuit within the LT3436  
prevents subharmonic oscillation for inductor ripple cur-  
rents of up to 1.4AP-P, defining the minimum inductor  
value to be:  
Table 2  
PART  
NUMBER  
VALUE  
(µH)  
I
DCR  
()  
HEIGHT  
(mm)  
SAT(DC)  
(Amps)  
Coilcraft  
DO1608C-222  
Sumida  
2.2  
2.4  
0.07  
2.9  
CDRH3D16-1R5  
CDRH4D18-1R0  
CDC5D23-2R2  
CR43-1R4  
1.5  
1.0  
2.2  
1.4  
2.6  
3.3  
3.0  
1.6  
1.7  
2.2  
2.5  
2.6  
3.5  
3.0  
0.043  
0.035  
0.03  
1.8  
2.0  
2.5  
3.5  
3.0  
4.0  
3.0  
V (VOUT – V )  
1.4VOUT (f)  
IN  
IN  
LMIN  
=
0.056  
0.013  
0.02  
These conditions define the absolute minimum induc-  
tance. However, it is generally recommended that to  
prevent excessive output noise, and difficulty in obtaining  
stability, the ripple current is no more than 40% of the  
average inductor current. Since inductor ripple is:  
CDRH5D28-2R6  
CDRH6D38-3R3  
CDRH6D28-3R0  
Toko  
0.024  
(D62F)847FY-2R4M  
(D73LF)817FY-2R2M  
2.4  
2.2  
2.5  
2.7  
0.037  
0.03  
2.7  
3.0  
V (VOUT – V )  
IN  
IN  
IPP RIPPLE  
=
VOUT (L)(f)  
3436fa  
7
LT3436  
U
W U U  
APPLICATIONS INFORMATION  
CATCH DIODE  
shutdown pin can be used. The threshold voltage of the  
shutdown pin comparator is 1.35V. A 3µA internal current  
sourcedefaultstheopenpinconditiontobeoperating(see  
TypicalPerformanceGraphs). Currenthysteresisisadded  
above the SHDN threshold. This can be used to set voltage  
hysteresis of the UVLO using the following:  
The suggested catch diode (D1) is a B220A Schottky. It is  
rated at 2A average forward current and 20V reverse  
voltage. Typical forward voltage is 0.5V at 2A. The diode  
conductscurrentonlyduringswitchofftime.Peakreverse  
voltage is equal to regulator output voltage. Average  
forward current in normal operation is equal to output  
current.  
VH VL  
R1=  
7µA  
1.35V  
SHUTDOWN AND UNDERVOLTAGE LOCKOUT  
R2 =  
V 1.35V  
(
)
+ 3µA  
H
Figure 4 shows how to add undervoltage lockout (UVLO)  
to the LT3436. Typically, UVLO is used in situations where  
the input supply is current limited, or has a relatively high  
source resistance. A switching regulator draws constant  
power from the source, so source current increases as  
source voltage drops. This looks like a negative resistance  
loadtothesourceandcancausethesourcetocurrentlimit  
or latch low under low source voltage conditions. UVLO  
prevents the regulator from operating at source voltages  
where these problems might occur.  
R1  
VH – Turn-on threshold  
VL – Turn-off threshold  
Example: switching should not start until the input is  
above 4.75V and is to stop if the input falls below 3.75V.  
VH = 4.75V  
VL = 3.75V  
4.75V 3.75V  
LT3436  
R1=  
= 143k  
7µA  
1.35V  
7µA  
IN  
INPUT  
1.35V  
R1  
R2  
3µA  
R2 =  
= 50.4k  
V
CC  
4.75V 1.35V  
(
)
+ 3µA  
SHDN  
143k  
C1  
GND  
3436 F04  
Keep the connections from the resistors to the SHDN pin  
short and make sure that the interplane or surface capaci-  
tance to the switching nodes are minimized. If high resis-  
torvaluesareused,theSHDNpinshouldbebypassedwith  
a 1nF capacitor to prevent coupling problems from the  
switch node.  
Figure 4. Undervoltage Lockout  
An internal comparator will force the part into shutdown  
below the minimum VIN of 2.6V. This feature can be used  
to prevent excessive discharge of battery-operated sys-  
tems. If an adjustable UVLO threshold is required, the  
3436fa  
8
LT3436  
U
W U U  
APPLICATIONS INFORMATION  
SYNCHRONIZATION  
high speed switching current path, shown in Figure 5,  
must be kept as short as possible. This is implemented in  
the suggested layout of Figure 6. Shortening this path will  
also reduce the parasitic trace inductance of approxi-  
mately 25nH/inch. At switch off, this parasitic inductance  
produces a flyback spike across the LT3436 switch. When  
operating at higher currents and output voltages, with  
poor layout, this spike can generate voltages across the  
LT3436 that may exceed its absolute maximum rating. A  
ground plane should always be used under the switcher  
circuitry to prevent interplane coupling and overall noise.  
The SYNC pin, is used to synchronize the internal oscilla-  
tor to an external signal. The SYNC input must pass from  
a logic level low, through the maximum synchronization  
threshold with a duty cycle between 20% and 80%. The  
input can be driven directly from a logic level output. The  
synchronizing range is equal to initial operating frequency  
up to 1.4MHz. This means that minimum practical sync  
frequency is equal to the worst-case high self-oscillating  
frequency(960kHz),notthetypicaloperatingfrequencyof  
800kHz. Caution should be used when synchronizing  
above 1.1MHz because at higher sync frequencies the  
amplitude of the internal slope compensation used to  
prevent subharmonic switching is reduced. Higher induc-  
tor values will tend to eliminate this problem. See Fre-  
quency Compensation section for a discussion of an  
entirely different cause of subharmonic switching before  
assuming that the cause is insufficient slope compensa-  
tion. Application Note 19 has more details on the theory  
of slope compensation.  
The VC and FB components should be kept as far away as  
possible from the switch node. The LT3436 pinout has  
been designed to aid in this. The ground for these compo-  
nents should be separated from the switch current path.  
Failure to do so will result in poor stability or subharmonic  
like oscillation.  
Board layout also has a significant effect on thermal  
resistance. The exposed pad is the copper plate that runs  
undertheLT3436die.Thisisthebestthermalpathforheat  
out of the package. Soldering the pad onto the board will  
reduce die temperature and increase the power capability  
of the LT3436. Provide as much copper area as possible  
aroundthispad.Addingmultiplesolderfilledfeedthroughs  
under and around the pad to the ground plane will also  
help. Similar treatment to the catch diode and inductor  
terminations will reduce any additional heating effects.  
LAYOUT CONSIDERATIONS  
As with all high frequency switchers, when considering  
layout, care must be taken to achieve optimal electrical,  
thermal and noise performance. For maximum efficiency,  
switch rise and fall times are typically in the nanosecond  
range. To prevent noise both radiated and conducted, the  
L1  
D1  
C3  
V
OUT  
SW  
LT3436  
HIGH  
FREQUENCY  
SWITCHING  
PATH  
V
IN  
C1 LOAD  
GND  
3436 F05  
Figure 5. High Speed Switching Path  
3436fa  
9
LT3436  
U
W U U  
APPLICATIONS INFORMATION  
L1  
3.9µH  
D1  
B220A  
OUTPUT  
12V  
INPUT  
V
V
IN  
SW  
FB  
5V  
C3  
0.8A  
OPEN  
OR  
HIGH  
= ON  
LT3436  
R1  
90.9k  
4.7µF  
CERAMIC  
SHDN  
SYNC GND  
V
C
C1  
R2  
10k  
1%  
C2  
10nF  
R3  
4.7k  
22µF  
C4  
470pF  
CERAMIC  
MAXIMUM OUTPUT CURRENT IS SUBJECT TO THERMAL DERATING.  
INPUT  
L1  
GND  
R3  
C3  
C2  
C4  
KEEP FB AND V  
COMPONENTS  
AWAY FROM  
C
HIGH FREQUENCY,  
HIGH INPUT  
COMPONENTS  
D1  
U1  
R2  
R1  
MINIMIZE  
LT3436,  
C1, D1 LOOP  
GND  
C1  
V
OUT  
PLACE FEEDTHROUGHS  
AROUND GROUND PIN FOR  
GOOD THERMAL CONDUCTIVITY  
SOLDER EXPOSED  
GROUND PAD  
TO BOARD  
KELVIN SENSE  
V
OUT  
Figure 6. Typical Application and Suggested Layout (Topside Only Shown)  
3436fa  
10  
LT3436  
U
W U U  
APPLICATIONS INFORMATION  
The inductor must have a rating greater than its peak  
operating current to prevent saturation resulting in effi-  
ciency loss. Peak inductor current is given by:  
thermalresistancenumberandaddinworst-caseambient  
temperature:  
TJ = TA + θJA (PTOT  
)
If a true die temperature is required, a measurement of  
the SYNC to GND pin resistance can be used. The SYNC  
pin resistance across temperature must first be cali-  
brated, with no device power, in an oven. The same  
measurementcanthenbeusedinoperationtoindicatethe  
die temperature.  
(VOUT )(IOUT ) V (VOUT V )  
IN  
IN  
ILPEAK  
=
+
V • η  
IN  
2VOUT (L)(f)  
Also, consideration should be given to the DC resistance  
of the inductor. Inductor resistance contributes directly to  
the efficiency losses in the overall converter.  
FREQUENCY COMPENSATION  
THERMAL CALCULATIONS  
Loop frequency compensation is performed on the output  
of the error amplifier (VC pin) with a series RC network.  
The main pole is formed by the series capacitor and the  
output impedance (500k) of the error amplifier. The  
pole falls in the range of 2Hz to 20Hz. The series resistor  
creates a “zero” at 1kHz to 5kHz, which improves loop  
stability and transient response. A second capacitor, typi-  
cally one-tenth the size of the main compensation capaci-  
tor, is sometimes used to reduce the switching frequency  
ripple on the VC pin. VC pin ripple is caused by output  
voltage ripple attenuated by the output divider and multi-  
plied by the error amplifier. Without the second capacitor,  
VC pin ripple is:  
Power dissipation in the LT3436 chip comes from four  
sources:switchDCloss,switchACloss,drivecurrent,and  
inputquiescentcurrent.Thefollowingformulasshowhow  
to calculate each of these losses. These formulas assume  
continuous mode operation, so they should not be used  
for calculating efficiency at light load currents.  
(VOUT V )  
IN  
DC, duty cycle =  
VOUT  
(VOUT )(IOUT  
)
ISW  
=
V
IN  
Switch loss:  
P
= (DC)(ISW)2(RSW)+ 17n I  
V
OUT  
f
( )  
(
)
(
)
SW  
SW  
1.2(V  
)(g )(R )  
m C  
RIPPLE  
(V  
V Pin Ripple =  
C
VIN loss:  
)
OUT  
(V )(ISW)(DC)  
V
m
= Output ripple (V  
)
IN  
RIPPLE  
P–P  
PVIN  
=
+ 1mA(V )  
IN  
g = Error amplifier transconductance  
50  
(850µmho)  
RSW = Switch resistance (0.16hot)  
R = Series resistor on V pin  
C
C
V
OUT  
= DC output voltage  
Example: VIN = 5V, VOUT = 12V and IOUT = 0.8A  
Total power dissipation = 0.34 + 0.31 + 0.11 + 0.005 =  
0.77W  
To prevent irregular switching, VC pin ripple should be  
kept below 50mVP–P. Worst-case VC pin ripple occurs at  
maximum output load current and will also be increased if  
poor quality (high ESR) output capacitors are used. The  
addition of a 150pF capacitor on the VC pin reduces  
switching frequency ripple to only a few millivolts. A low  
value for RC will also reduce VC pin ripple, but loop phase  
margin may be inadequate.  
Thermal resistance for LT3436 package is influenced by  
the presence of internal or backside planes. With a full  
plane under the package, thermal resistance will be about  
40°C/W. Tocalculatedietemperature, usetheappropriate  
3436fa  
11  
LT3436  
TYPICAL APPLICATIO S  
U
Load Disconnects in Shutdown  
D3  
1N4148  
C6  
0.1µF  
L1  
3.9µH  
D2  
1N4148  
C5  
0.1µF  
D1  
B220A  
R4  
1M  
V
OUT  
V
IN  
5V  
V
IN  
V
SW  
12V  
Q1  
Si2306DS  
C3  
4.7µF  
0.8A  
C7  
22µF  
C1  
4.7µF  
LT3436  
R1  
90.9k  
SHDN  
SYNC GND  
FB  
OFF ON  
V
C
R2  
10k  
1%  
C2  
10nF  
R3  
4.7k  
C4  
470pF  
LT3436 • TA02  
3V to 20VIN 5VOUT SEPIC with Either Two Inductors or a Transformer  
D1  
B220A  
L1  
CDRH6D28-100  
V
V
OUT  
IN  
3V TO 20V  
5V  
+
C1  
OPT  
C6  
C7  
C5  
R1  
OPT  
1µF, X5R, 25V  
CERAMIC  
OPT  
31.6K  
1%  
V
SW  
FB  
IN  
SHDN  
SYNC  
SHDN  
LT3436  
C3  
10nF  
C2  
L2  
SYNC  
V
C
22µF  
X5R  
10V  
CDRH6D28-100  
GND GND  
R2  
10K  
1%  
CERAMIC  
C1  
C4  
470pF  
R3  
2.2k  
4.7µF  
X5R  
25V  
CERAMIC  
GND  
GND  
OPTION: REPLACE L1, L2 WITH TRANSFORMER CTX5-1A, CTX8-1A, CTX10-2A  
3436 TA02b  
Maximum Load Current  
Increases with Input Voltage  
Efficiency  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
12V  
IN  
5V  
IN  
3.3V  
IN  
0
0
2
4
6
8
10 12 14 16 18 20  
(V)  
0
500  
1.0k  
1.5k  
2.0k  
V
LOAD CURRENT (mA)  
IN  
3436 TA02c  
3436 TA02d  
3436fa  
12  
LT3436  
U
TYPICAL APPLICATIO S  
4V-9VIN to 5VOUT SEPIC Converter**  
**  
4V TO 9V  
V
IN  
L1A*  
15µH  
D1  
B220A  
V
IN  
V
OUT  
ON  
V
V
SHDN  
GND  
SW  
OFF  
C1  
5V  
R2  
31.6k  
1%  
C2  
LT3436  
4.7µF  
+
FB  
C
4.7µF  
20V  
+
C3  
L1B*  
15µH  
47µF  
10V  
R3  
10k  
1%  
R1  
2.2k  
C4  
C5  
470pF  
15nF  
LT3436 • TA03  
MAX I  
OUT  
*
**  
COILTRONICS CTX15-4  
INPUT VOLTAGE MAY BE GREATER OR  
LESS THAN OUTPUT VOLTAGE  
I
V
IN  
OUT  
0.84A 4V  
1.03A 5V  
1.18A 6V  
1.29A 7V  
1.50A 9V  
Boost Converter Drives Luxeon III 1A 3.6V White LED with 70% Efficiency  
0.05  
1%  
1A CONSTANT CURRENT  
LXHL-PW09 EMITTER  
V
IN  
3.3V TO 4.2V  
V
OUT  
= V + V  
IN  
LED  
49.9Ω  
1%  
UPS120  
L1  
V
IN  
+
V
SW  
FB  
IN  
LT1783  
SHDN  
LED ON  
LT3436  
Q2  
SYNC  
V
C
V
OUT  
GND GND  
4.7µF  
X5R  
Q1  
78.7k  
6.3V  
22µF  
X5R  
10V  
0.1µF  
CERAMIC  
1.21k  
1%  
CERAMIC  
8.2k  
4.99k  
GND  
3436 TA03b  
Q1: MMBT2222A  
Q2: FMMT3906  
L1: CDRH6D28-3R0  
3436fa  
13  
LT3436  
U
TYPICAL APPLICATIO S  
Single Li-Ion Cell to 5V  
D1  
B220A  
L1  
4.7µH  
V
OUT  
5V  
R1  
31.6k  
1%  
V
IN  
ON  
V
SHDN  
GND  
SW  
OFF  
LT3436  
SINGLE  
Li-Ion  
CELL  
+
+
+
C4  
FB  
C
C1  
10µF  
47µF  
V
10V  
R2  
10k  
1%  
C2  
3.3nF  
C3  
470pF  
R3  
1.5k  
LT3436 • TA04  
I
V
IN  
OUT  
1.5A 2.7V  
1.86A 3.3V  
2.0A 3.6V  
SEPIC Converter Drives 5W LumiLEDs Luxeon V White LEDs at 70% Efficiency  
D1  
B130A  
V
OUT  
C
COUP  
2.2µF, X5R, 25V  
D2  
L1  
L2  
CERAMIC  
V
IN  
3.6V TO 17V  
V
IN  
LED ON  
700mA  
+
V
SW  
FB  
IN  
LT1783  
SHDN  
LT3436  
R5  
23.7k  
SYNC  
V
C
C1  
4.7µF  
GND GND  
X5R  
R7  
124k  
Q1  
25V  
C4  
0.1µF  
C2  
CERAMIC  
22µF  
X5R  
V
OUT  
R4  
1k  
1%  
R2  
0.068Ω  
1%  
R6  
4.99k  
16V  
CERAMIC  
8.2k  
GND  
3436 TA04b  
Q1: DIODES, INC. MMBT2222A  
L1: CDRH6D28 10µH 1.7A  
L2: CDRH4D28 10µH 1A  
D2: LUMILEDS LXHL-PW03 EMITTER OR LXHL-LW6C STAR  
3436fa  
14  
LT3436  
U
PACKAGE DESCRIPTION  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 ±0.10  
4.50 ±0.10  
2.94  
(.116)  
6.40  
(.252)  
BSC  
SEE NOTE 4  
2.94  
(.116)  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE16 (BB) TSSOP 0204  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3436fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT3436  
U
TYPICAL APPLICATIO  
High Voltage Laser Power Supply  
0.01µF  
5kV  
1800pF  
10kV  
47k  
5W  
1800pF  
10kV  
8
11  
HV DIODES  
L1  
3
1
5
4
LASER  
2
+
2.2µF  
0.47µF  
Q1  
Q2  
150  
L2  
10µH  
MUR405  
V
10k  
SW  
LT3436  
GND  
10k  
V
IN  
12V TO 25V  
V
FB  
IN  
V
1N4002  
(ALL)  
+
V
L1 =  
Q1, Q2 =  
TBD  
0.1µF  
IN  
190Ω  
1%  
2.2µF  
ZETEX ZTX849  
0.47µF =  
WIMA 3X 0.15µF TYPE MKP-20  
SEMTECH-FM-50  
HUGHES 3121H-P  
C
HV DIODES =  
LASER =  
+
10µF  
LT3436 • TA05  
COILTRONICS (407) 241-7876  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1310  
1.5A (I ), 4.5 MHz, High Efficiency  
Step-Up DC/DC Converter with PLL  
V
= 2.75V to 18V, V  
= <1µA, MSE Package  
= 35V, I = 12mA,  
SW  
IN  
OUT(MAX) Q  
I
SD  
LT1370/LT1370HV  
LT1371/LT1371HV  
LT1613  
6A (ISW), 500kHz, High Efficiency  
Step-Up DC/DC Converter  
V
= 2.7V to 30V, V  
= <12µA, DD, TO220-7 Packages  
= 35V/42V, I = 4.5mA,  
IN  
OUT(MAX) Q  
I
SD  
3A (I ), 500kHz, High Efficiency  
V
= 2.7V to 30V, V  
= 35V/42V, I = 4mA,  
SW  
IN  
OUT(MAX) Q  
Step-Up DC/DC Converter  
I
= <12µA, DD,TO220-7,S20 Packages  
SD  
550mA (I ), 1.4MHz, High Efficiency  
90% Efficiency, V = 0.9V to 10V, V  
= 34V, I = 3mA,  
Q
SW  
IN  
OUT(MAX)  
Step-Up DC/DC Converter  
I
= <1µA, ThinSOT Package  
SD  
LT1618  
1.5A (I ), 1.25MHz, High Efficiency  
Step-Up DC/DC Converter  
90% Efficiency, V = 1.6V to 18V, V  
= 35V, I = 1.8mA,  
Q
SW  
IN  
OUT(MAX)  
I
= <1µA, MS Package  
SD  
LT1946/LT1946A  
LT1961  
1.5A (I ), 1.2MHz/2.7MHz, High Efficiency  
Step-Up DC/DC Converter  
V
= 2.45V to 16V, V  
= <1µA, MS8 Package  
= 34V, I = 3.2mA,  
SW  
IN  
OUT(MAX) Q  
I
SD  
1.5A (I ), 1.25MHz, High Efficiency  
90% Efficiency, V = 3V to 25V, V  
= 35V, I = 0.9mA,  
OUT(MAX) Q  
SW  
IN  
Step-Up DC/DC Converter  
I
= 6µA, MS8E Package  
SD  
LTC3400/LTC3400B  
LTC3401  
600mA (I ), 1.2MHz, Synchronous  
Step-Up DC/DC Converter  
92% Efficiency, V = 0.85V to 5V, V  
I = 19µA/300µA, I = <1µA, ThinSOT Package  
Q SD  
= 5V,  
SW  
IN  
OUT(MAX)  
1A (I ), 3MHz, Synchronous  
97% Efficiency, V = 0.5V to 5V, V  
= 6V, I = 38µA,  
Q
SW  
IN  
OUT(MAX)  
Step-Up DC/DC Converter  
I
= <1µA, MS Package  
SD  
LTC3402  
2A (I ), 3MHz, Synchronous  
Step-Up DC/DC Converter  
97% Efficiency, V = 0.5V to 5V, V  
= 6V, I = 38µA,  
Q
SW  
IN  
OUT(MAX)  
I
= <1µA, MS Package  
SD  
3436fa  
LT/LWI/LT 0505 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LT3437

High Voltage 500mA, 200kHz Step-Down Switching Regulator with 100?A Quiescent Current
Linear

LT3437EDD

High Voltage 500mA, 200kHz Step-Down Switching Regulator with 100?A Quiescent Current
Linear

LT3437EDD#PBF

LT3437 - High Voltage 500mA, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3437EDD#TR

LT3437 - High Voltage 500mA, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3437EDD#TRPBF

High Voltage 500mA, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current
Linear

LT3437EFE

High Voltage 500mA, 200kHz Step-Down Switching Regulator with 100?A Quiescent Current
Linear

LT3437EFE#PBF

LT3437 - High Voltage 500mA, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3437EFE#TR

Switching Regulator, Current-mode, 0.9A, 240kHz Switching Freq-Max, PDSO16
Linear

LT3437EFE#TRPBF

LT3437 - High Voltage 500mA, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3437HFE

High Voltage 500mA, 200kHz Step-Down Switching Regulator with 100μA Quiescent Current
Linear

LT3437HFE#PBF

LT3437 - High Voltage 500mA, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3437HFE#TR

IC 0.9 A SWITCHING REGULATOR, 240 kHz SWITCHING FREQ-MAX, PDSO16, 4.40 MM, PLASTIC, TSSOP-16, Switching Regulator or Controller
Linear