LT3466EDD-1#PBF [Linear]

LT3466-1 - White LED Driver and Boost Converter in 3mm x 3mm DFN Package; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C;
LT3466EDD-1#PBF
型号: LT3466EDD-1#PBF
厂家: Linear    Linear
描述:

LT3466-1 - White LED Driver and Boost Converter in 3mm x 3mm DFN Package; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总20页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3466-1  
White LED Driver and Boost  
Converter in 3mm × 3mm  
DFN Package  
U
FEATURES  
DESCRIPTIO  
LT®3466-1 is a dual switching regulator that combines a  
white LED driver and a boost converter in a low profile,  
small footprint (3mm × 3mm × 0.75mm) DFN package.  
The LED driver can be configured to drive up to 10 White  
LEDs in series and the boost converter can be used for  
generating the LCD bias voltages or driving a secondary  
OLED display. Series connection of the LEDs provides  
identical LED currents resulting in uniform brightness and  
eliminating the need for ballast resistors and expensive  
factory calibration.  
Drives Up to 10 White LEDs from a 3.6V Supply  
Two Independent Step-Up DC/DC Converters  
Independent Dimming and Shutdown Control  
of the Outputs  
±1.5% Output Voltage Accuracy (Boost Converter)  
±4% LED Current Programming Accuracy  
Internal Schottky Diodes  
Internal Soft-Start Eliminates Inrush Current  
Output Overvoltage Protection (39.5V Max VOUT  
Fixed Frequency Operation Up to 2MHz  
83% Efficiency Driving 8 White LEDs at 15mA  
from a 3.6V Supply  
)
The LT3466-1 provides independent dimming and shut-  
down control of the two converters. The operating fre-  
quency can be set with an external resistor over a 200kHz  
to2MHzrange.ThewhiteLEDdriverfeaturesalow200mV  
reference, thereby minimizing power loss in the current  
setting resistor for better efficiency. The boost converter  
achieves ±1.5% output voltage accuracy by the use of a  
precision 0.8V reference. Protection features include out-  
put overvoltage protection and internal soft-start. Wide  
input supply range allows operation from 2.7V to 24V.  
Wide Input Voltage Range: 2.7V to 24V  
Tiny (3mm × 3mm) 10-Lead DFN Package  
U
APPLICATIO S  
White LED and OLED Displays  
Digital Cameras, Sub-Notebook PCs  
PDAs, Handheld Computers  
TFT - LCD Bias Supply  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Automotive  
U
TYPICAL APPLICATIO  
3V TO 5V  
Conversion Efficiency  
1µF  
90  
33µH  
33µH  
V
IN  
= 3.6V  
85  
80  
75  
70  
65  
60  
55  
50  
LED DRIVER  
SW1  
V
SW2  
IN  
BOOST CONVERTER  
16V  
6 LEDs  
V
V
OUT2  
LT3466-1  
OUT1  
30mA  
1µF  
1µF  
475k  
FB1  
FB2  
R
CTRL1  
GND  
CTRL2  
T
63.4k  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
10  
24.9k  
0
5
10  
15  
20  
25  
30  
OUTPUT CURRENT (mA)  
34661 F01a  
34661 F01b  
Figure 1. Li-Ion Powered Driver for 6 White LEDs and OLED Display  
34661f  
1
LT3466-1  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Input Voltage (VIN) ................................................... 24V  
SW1, SW2 Voltages ................................................ 44V  
ORDER PART  
NUMBER  
V
1
2
3
4
5
10 FB1  
OUT1  
SW1  
V
OUT1, VOUT2 Voltages ............................................. 44V  
9
8
7
6
CTRL1  
LT3466EDD-1  
11  
V
R
T
CTRL1, CTRL2 Voltages ........................................... 24V  
FB1, FB2 Voltages ...................................................... 2V  
Operating Temperature Range (Note 2) ... –40°C to 85°C  
Storage Temperature Range .................. –65°C to 125°C  
Junction Temperature .......................................... 125°C  
IN  
SW2  
OUT2  
CTRL2  
FB2  
V
DD PART MARKING  
LBRX  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 43°C/W, θJC = 3°C/W  
EXPOSED PAD (PIN 11) IS GND  
MUST BE SOLDERED TO PCB  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
CTRL1  
denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. V = 3V, V  
= 3V, V  
= 3V, unless otherwise specified.  
A
IN  
CTRL2  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Minimum Operating Voltage  
Maximum Operating Voltage  
FB1 Voltage  
2.7  
22  
208  
812  
50  
V
192  
788  
200  
800  
10  
mV  
mV  
nA  
FB2 Voltage  
FB1 Pin Bias Current  
FB2 Pin Bias Current  
Quiescent Current  
V
FB1  
V
FB2  
V
FB1  
= 0.2V (Note 3)  
= 0.8V (Note 3)  
10  
50  
nA  
= V = 1V  
5
16  
7.5  
25  
mA  
µA  
FB2  
CTRL1 = CTRL2 = 0V  
Switching Frequency  
R = 48.7k  
0.75  
200  
1
1.25  
MHz  
kHz  
V
T
Oscillator Frequency Range  
(Note 4)  
2000  
Nominal R Pin Voltage  
R = 48.7k  
T
0.54  
T
Maximum Duty Cycle  
R = 48.7k  
T
R = 267k  
T
90  
96  
92  
99  
%
%
%
T
R = 20.5k  
Converter 1 Current Limit  
Converter 2 Current Limit  
310  
310  
400  
400  
320  
320  
0.01  
0.01  
mA  
mA  
mV  
mV  
µA  
µA  
V
Converter 1 V  
Converter 2 V  
I
I
= 300mA  
= 300mA  
= 10V  
CESAT  
CESAT  
SW1  
SW2  
Switch 1 Leakage Current  
V
V
5
5
SW1  
Switch 2 Leakage Current  
= 10V  
SW2  
CTRL1 Voltage for Full LED Current  
CTRL2 Voltage for Full Feedback Voltage  
CTRL1 or CTRL2 Voltage to Turn On the IC  
1.8  
1
V
150  
mV  
mV  
µA  
nA  
CTRL1 and CTRL2 Voltages to Shut Down Chip  
CTRL1 Pin Bias Current  
70  
V
V
= 1V  
6
9
12.5  
120  
CTRL1  
CTRL2 Pin Bias Current  
= 1V (Note 3)  
10  
CTRL2  
34661f  
2
LT3466-1  
ELECTRICAL CHARACTERISTICS  
The  
CTRL1  
denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. V = 3V, V  
= 3V, V  
= 3V, unless otherwise specified.  
A
IN  
CTRL2  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
OUT1  
V
OUT2  
Overvoltage Threshold  
Overvoltage Threshold  
39.5  
39.5  
0.85  
0.85  
V
Schottky 1 Forward Drop  
Schottky 2 Forward Drop  
Schottky 1 Reverse Leakage  
Schottky 2 Reverse Leakage  
Soft-Start Time (Switcher 1)  
Soft-Start Time (Switcher 2)  
I
I
= 300mA  
= 300mA  
V
SCHOTTKY1  
SCHOTTKY2  
V
V
V
= 20V  
5
5
µA  
µA  
µs  
µs  
OUT1  
= 20V  
OUT2  
600  
600  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: Current flows out of the pin.  
Note 4: Guaranteed by design and test correlation, not production tested.  
Note 2: The LTC3466-1E is guaranteed to meet specified performance  
from 0°C to 70°C. Specifications over the –40°C to 85°C operating range  
are assured by design, characterization and correlation with statistical  
process controls.  
U W  
T = 25°C unless otherwise specified  
A
TYPICAL PERFOR A CE CHARACTERISTICS  
Switching Waveforms  
(LED Driver)  
Switching Waveforms  
(Boost Converter)  
VOUT2  
VOUT1  
100mV/DIV  
(AC-COUPLED)  
100mV/DIV  
(AC-COUPLED)  
VSW1  
20V/DIV  
VSW2  
20V/DIV  
IL2  
IL1  
100mA/DIV  
100mA/DIV  
V
IN = 3.6V  
6 LEDs AT 20mA  
CIRCUIT OF FIGURE 1  
0.5µs/DIV  
34661 G01  
VIN = 3.6V  
VOUT2 = 16V/30mA  
CIRCUIT OF FIGURE 1  
0.5µs/DIV  
34661 G02  
V
FB1  
vs V  
V
FB2  
vs V  
CTRL2  
CTRL1  
250  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 3.6V  
V
V
= 3.6V  
OUT2  
IN  
6 LEDs  
IN  
= 16V  
200  
150  
100  
50  
0
1
1.5  
0
0.5  
2
1
1.5  
0
0.5  
2
V
(V)  
V
(V)  
CTRL1  
CTRL2  
34661 G03  
34661 G16  
34661f  
3
LT3466-1  
TYPICAL PERFOR A CE CHARACTERISTICS T = 25°C unless otherwise specified  
U W  
A
Quiescent Current  
(CTRL1 = CTRL2 = 3V)  
Shutdown Current  
(CTRL1 = CTRL2 = 0V)  
Switch Current Limit vs Duty Cycle  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
7
6
5
4
3
2
1
0
70  
60  
T
= –50°C  
T
= 25°C  
A
A
T
= –50°C  
A
UVLO  
T
= 85°C  
A
50  
T
= 25°C  
A
40  
30  
20  
10  
T
= 100°C  
A
0
0
16  
24  
0
4
8
12  
(V)  
20  
0
20  
40  
60  
80  
100  
2
8
10  
12  
V
14  
16  
22 24  
18 20  
4
6
(V)  
V
DUTY CYCLE (%)  
IN  
IN  
34661 G04  
34661 G05  
34661 G06  
Open-Circuit Output Clamp  
Voltage  
Open-Circuit Output Clamp  
Voltage  
Input Current with Output 1 and  
Output 2 Open Circuit  
42  
41  
40  
39  
38  
37  
41.00  
40.50  
20  
16  
12  
R
= 63.4k  
R
= 63.4k  
T
R = 63.4k  
T
T
V
OUT2  
40.00  
39.50  
V
V
OUT2  
OUT1  
V
OUT1  
8
4
0
39.00  
38.50  
38.00  
2
4
6
8
10 12 14 16 18 20 22 24  
(V)  
50  
125  
–50 –25  
0
25  
75 100  
2
4
6
8
10 12 14 16 18 20 22 24  
(V)  
V
TEMPERATURE (°C)  
IN  
V
IN  
34661 G07  
34661 G08  
34661 G09  
Oscillator Frequency vs V  
R vs Oscillator Frequency  
IN  
T
1000  
100  
10  
1100  
1000  
900  
R
T
= 48.7k  
800  
600  
1000  
1400  
1800  
200  
2
4
6
8
10 12 14 16 18 20 22 24  
(V)  
V
IN  
OSCILLATOR FREQUENCY (kHz)  
34661 G10  
34661 G11  
34661f  
4
LT3466-1  
TYPICAL PERFOR A CE CHARACTERISTICS T = 25°C unless otherwise specified  
U W  
A
Oscillator Frequency  
vs Temperature  
CTRL Voltages to Shut Down  
the IC  
1100  
1000  
900  
150  
125  
100  
75  
V
= 3.6V  
IN  
= 48.7k  
V
IN  
= 3.6V  
R
T
CTRL1  
CTRL2  
50  
25  
800  
0
–50  
–25  
0
25  
50  
75  
–50  
0
25  
50  
75  
100  
–25  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
34661 G12  
34661 G13  
Schottky Forward Voltage Drop  
Schottky Leakage Current  
8
6
4
2
400  
350  
300  
250  
200  
150  
V
= 36V  
R
V
= 20V  
R
100  
50  
0
0
–50  
–25  
0
25  
50  
75  
100  
200  
400  
800  
0
1000  
600  
TEMPERATURE (°C)  
SCHOTTKY FORWARD DROP (mV)  
34661 G015  
34661 G14  
FB2 Pin Load Regulation  
FB2 Pin Voltage vs Temperature  
0
–0.20  
–0.40  
–0.60  
0.810  
0.805  
0.800  
0.795  
0.790  
0.785  
0.780  
V
V
= 3V  
V
V
= 3V  
OUT2  
IN  
OUT2  
IN  
= 16V/30mA  
= 16V  
–0.80  
–1.00  
0
10  
20  
30  
–50  
0
25  
50  
75 100 125  
–25  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
34661 G18  
34661 G17  
34661f  
5
LT3466-1  
U
U
U
PI FU CTIO S  
VOUT1 (Pin1):OutputofConverter1.Thispinisconnected  
to the cathode of the internal Schottky diode. Connect an  
output capacitor from this pin to ground.  
CTRL2 (Pin 7): Dimming and Shutdown Pin for Con-  
verter 2. As the pin voltage is ramped from 0V to 1V, the  
FB2 pin voltage tracks the CTRL2 voltage and ramps up to  
0.8V. Any voltage above 1V does not affect the feedback  
voltage. Donotleavethepinfloating. Itmustbeconnected  
to ground to disable converter 2.  
SW1 (Pin 2): Switch Pin for Converter 1. Connect the  
inductor at this pin.  
VIN (Pin 3): Input Supply Pin. Must be locally bypassed  
with a 1µF, X5R or X7R type ceramic capacitor.  
RT (Pin 8): Timing Resistor to Program the Switching  
Frequency. The switching frequency can be programmed  
from 200KHz to 2MHz.  
SW2 (Pin 4): Switch Pin for Converter 2. Connect the  
inductor at this pin.  
CTRL1 (Pin 9): Dimming and Shutdown Pin for Con-  
verter 1. Connect this pin to ground to disable the con-  
verter. As the pin voltage is ramped from 0V to 1.8V, the  
LED current ramps from 0 to ILED1 (= 200mV/RFB1). Any  
voltage above 1.8V does not affect the LED current.  
V
OUT2 (Pin5):OutputofConverter2.Thispinisconnected  
to the cathode of the internal Schottky diode. Connect an  
output capacitor from this pin to ground.  
FB2 (Pin 6): Feedback Pin for Converter 2. The nominal  
voltage at this pin is 800mV. Connect the resistor divider  
to this pin. The feedback voltage can be programmed  
as:  
FB1 (Pin 10): Feedback Pin for Converter 1. The nominal  
voltageatthispinis200mV.Connectcathodeofthelowest  
LED and the feedback resistor at this pin. The LED current  
can be programmed by :  
VFB2 VCTRL2, when VCTRL2 < 0.8V  
ILED1 (VCTRL1/5 • RFB1), when VCTRL1 < 1V  
ILED1 (200mV/RFB1), when VCTRL1 > 1.8V  
VFB2 = 0.8V, when VCTRL2 > 1V  
ExposedPad(Pin11):TheExposedPadmustbesoldered  
to the PCB system ground.  
34661f  
6
LT3466-1  
W
BLOCK DIAGRA  
34661f  
7
LT3466-1  
U
OPERATIO  
Main Control Loop  
Minimum Output Current  
The LT3466-1 uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion.Itincorporatestwosimilar,butfullyindependentPWM  
converters. Operationcanbebestunderstoodbyreferring  
to the Block Diagram in Figure 2. The oscillator, start-up  
bias and the bandgap reference are shared between the  
twoconverters.Thecontrolcircuitry,powerswitch,Schot-  
tky diode etc., are similar for both converters.  
TheLT3466-1candrivea6-LEDstringat3mALEDcurrent  
without pulse skipping. As current is further reduced, the  
device may begin skipping pulses. This will result in some  
low frequency ripple, although the LED current remains  
regulated on an average basis down to zero. The photo in  
Figure 3showscircuitoperationwith6whiteLEDsat3mA  
current driven from 3.6V supply. Peak inductor current is  
less than 50mA and the regulator operates in discontinu-  
ous mode implying that the inductor current reached zero  
during the discharge phase. After the inductor current  
reaches zero, the switch pin exhibits ringing due to the LC  
tank circuit formed by the inductor in combination with  
switch and diode capacitance. This ringing is not harmful;  
far less spectral energy is contained in the ringing than in  
the switch transitions. The ringing can be damped by  
application of a 300resistor across the inductors, al-  
though this will degrade efficiency.  
At power-up, the output voltages VOUT1 and VOUT2 are  
charged up to VIN (input supply voltage) via their respec-  
tive inductor and the internal Schottky diode. If either  
CTRL1 and CTRL2 or both are pulled high, the bandgap  
reference, start-up bias and the oscillator are turned on.  
Working of the main control loop can be understood by  
following the operation of converter 1. At the start of each  
oscillator cycle, the power switch Q1 is turned on. A  
voltage proportional to the switch current is added to a  
stabilizing ramp and the resulting sum is fed into the  
positive terminal of the PWM comparator A2. When this  
voltage exceeds the level at the negative input of A2, the  
PWM logic turns off the power switch. The level at the  
negative input of A2 is set by the error amplifier A1, and is  
simply an amplified version of the difference between the  
feedback voltage and the 200mV reference voltage. In this  
manner, the error amplifier A1 regulates the voltage at the  
FB1pinto200mV.TheoutputoftheerroramplifierA1sets  
the correct peak current level in inductor L1 to keep the  
output in regulation. The CTRL1 pin voltage is used to  
adjust the feedback voltage.  
VOUT1  
20mV/DIV  
(AC-COUPLED)  
VSW1  
20V/DIV  
IL1  
50mA/DIV  
VIN = 3.6V  
0.5µs/DIV  
34661 F03  
ILED1 = 3mA  
CIRCUIT OF FIGURE 1  
Figure 3. Switching Waveforms  
Overvoltage Protection  
The LT3466-1 has internal overvoltage protection for both  
converters. In the event the white LEDs are disconnected  
from the circuit or fail open, the converter 1 output voltage  
is clamped at 39.5V (typ). Figure 4(a) shows the transient  
responseofthecircuitinFigure1withLED1disconnected.  
With the white LEDs disconnected, the converter 1 starts  
switchingatthepeakcurrentlimit. Theoutputofconverter  
1startsrampingupandfinallygetsclampedat39.5V(typ).  
The converter 1 will then switch at low inductor current to  
regulate the output voltage. Output voltage and input  
currentduringoutputopencircuitareshownintheTypical  
Performance Characteristics graphs.  
The working of converter 2 is similar to converter 1 with  
the exception that the feedback 2 reference voltage is  
800mV. The error amplifier A1 in converter 2 regulates the  
voltage at the FB2 pin to 800mV. If only one of the  
converters is turned on, the other converter will stay off  
and its output will remain charged up to VIN (input supply  
voltage). The LT3466-1 enters into shutdown, when both  
CTRL1andCTRL2arepulledlowerthan70mV.TheCTRL1  
and CTRL2 pins perform independent dimming and shut-  
down control for the two converters.  
34661f  
8
LT3466-1  
U
OPERATIO  
In the event one of the converters has an output open-circuit,  
its output voltage will be clamped at 39.5V. However, the  
otherconverterwillcontinuefunctioningproperly. Thephoto  
in Figure 4b shows circuit operation with converter 1 output  
open-circuit and converter 2 driving the OLED display. Con-  
verter 1 starts switching at a lower inductor current and  
begins skipping pulses, thereby reducing its input current.  
Converter 2 continues functioning properly.  
Soft-Start  
The LT3466-1 has a separate internal soft-start circuitry  
for each converter. Soft-start helps to limit the inrush  
currentduringstart-up. Soft-startisachievedbyclamping  
the output of the error amplifier during the soft-start  
period. This limits the peak inductor current and ramps up  
the output voltage in a controlled manner.  
The converter enters into soft-start mode whenever the  
respective CTRL pin is pulled from low to high. Figure 5  
showsthestart-upwaveformswithconverter1drivingsix  
LEDs at 20mA. The filtered input current, as shown in  
Figure 5, is well controlled. The soft-start circuitry is less  
effective when driving a higher number of LEDs.  
V
OUT1  
10V/DIV  
I
L1  
200mA/DIV  
Undervoltage Lockout  
34661 F04a  
200µs/DIV  
LED1 DISCONNECTED AT THIS POINT  
= 3.3V  
The LT3466-1 has an undervoltage lockout circuit which  
shuts down both converters when the input voltage drops  
below2.1V(typ).Thispreventstheconverterfromswitch-  
ing in an erratic mode when powered from low supply  
voltages.  
V
IN  
CIRCUIT OF FIGURE 1  
Figure 4a. Transient Response of Switcher 1 with LED1  
Disconnected from the Output  
V
I
SW1  
IN  
50V/DIV  
200mA/DIV  
I
L1  
100mA/DIV  
V
OUT1  
20V/DIV  
V
FB1  
V
SW2  
50V/DIV  
200mV/DIV  
CTRL1  
5V/DIV  
I
L2  
100mA/DIV  
34661 F05  
V
= 3.6V  
200µs/DIV  
IN  
34661 F04b  
V
= 3.6V  
6 LEDs, 20mA  
1µs/DIV  
IN  
CIRCUIT OF FIGURE 1  
CIRCUIT OF FIGURE 1  
Figure 4b. Output 1 Open-Circuit Waveforms  
Figure 5. Start-Up Waveforms  
34661f  
9
LT3466-1  
W U U  
U
APPLICATIO S I FOR ATIO  
DUTY CYCLE  
OPERATING FREQUENCY SELECTION  
The choice of operating frequency is determined by sev-  
eral factors. There is a tradeoff between efficiency and  
component size. Higher switching frequency allows the  
use of smaller inductors albeit at the cost of increased  
switching losses and decreased efficiency.  
The duty cycle for a step-up converter is given by:  
VOUT + VD – V  
VOUT + VD VCESAT  
IN  
D =  
where:  
Another consideration is the maximum duty cycle achiev-  
able. In certain applications, the converter needs to oper-  
ate at the maximum duty cycle in order to light up the  
maximum number of LEDs. The LT3466-1 has a fixed  
oscillator off-time and a variable on-time. As a result, the  
maximumdutycycleincreasesastheswitchingfrequency  
is decreased.  
VOUT = Output voltage  
VD = Schottky forward voltage drop  
V
CESAT = Saturation voltage of the switch  
VIN = Input battery voltage  
The maximum duty cycle achievable for LT3466-1 is 96%  
(typ) when running at 1MHz switching frequency. It in-  
creases to 99% (typ) when run at 200kHz and drops to  
92%(typ)at2MHz.Alwaysensurethattheconverterisnot  
duty-cycle limited when powering the LEDs or OLED at a  
given switching frequency.  
The circuit of Figure 1 is operated with different values of  
timing resistor (RT). RT is chosen so as to run the  
converters at 800kHz (RT = 63.4k), 1.25MHz (RT = 38.3k)  
and 2MHz (RT = 20.5k). The efficiency comparison for  
different RT values is shown in Figure 7.  
SETTING THE SWITCHING FREQUENCY  
INDUCTOR SELECTION  
TheLT3466-1usesaconstantfrequencyarchitecturethat  
can be programmed over a 200KHz to 2MHz range with a  
single external timing resistor from the RT pin to ground.  
The nominal voltage on the RT pin is 0.54V, and the  
current that flows into the timing resistor is used to  
charge and discharge an internal oscillator capacitor. A  
graph for selecting the value of RT for a given operating  
frequency is shown in the Figure 6.  
The choice of the inductor will depend on the selection of  
switching frequency of LT3466-1. The switching fre-  
quencycanbeprogrammedfrom200kHzto2MHz.Higher  
switching frequency allows the use of smaller inductors  
albeit at the cost of increased switching losses.  
90  
1000  
100  
10  
CIRCUIT OF FIGURE 1  
IN  
6 LEDs  
V
= 3.6V  
R
= 63.4k  
T
80  
70  
60  
50  
40  
R
= 20.5k  
T
R
= 38.3k  
T
600  
1000  
1400  
1800  
200  
0
5
10  
LED CURRENT (mA)  
15  
20  
OSCILLATOR FREQUENCY (kHz)  
34661 F06  
34661 F07  
Figure 7. Efficiency Comparison for Different R Resistors  
Figure 6. Timing Resistor (R ) Value  
T
T
34661f  
10  
LT3466-1  
W U U  
APPLICATIO S I FOR ATIO  
U
The inductor current ripple (IL), neglecting the drop  
across the Schottky diode and the switch, is given by :  
Z5U. A 1µF input capacitor is sufficient for most applica-  
tions.Alwaysuseacapacitorwithsufficientvoltagerating.  
Table2showsalistofseveralceramiccapacitormanufac-  
turers. Consultthemanufacturersfordetailedinformation  
on their entire selection of ceramic parts.  
V
VOUT(MAX) – V  
(
)
IN(MIN)  
IN(MIN)  
IL  
=
VOUT(MAX) • f L  
where:  
Table 2. Ceramic Capacitor Manufacturers  
Taiyo Yuden  
(408) 573-4150  
www.t-yuden.com  
L = Inductor  
f = Operating frequency  
AVX  
(803) 448-9411  
www.avxcorp.com  
V
V
IN(MIN) = Minimum input voltage  
OUT(MAX) = Maximum output voltage  
Murata  
(714) 852-2001  
www.murata.com  
The IL is typically set to 20% to 40% of the maximum  
inductor current.  
INRUSH CURRENT  
The inductor should have a saturation current rating  
greater than the peak inductor current required for the  
application. Also, ensure that the inductor has a low DCR  
(copper wire resistance) to minimize I2R power losses.  
Recommendedinductorvaluesrangefrom10µHto68µH.  
The LT3466-1 has built-in Schottky diodes. When supply  
voltage is applied to the VIN pin, an inrush current flows  
through the inductor and the Schottky diode and charges  
up the output capacitor. Both Schottky diodes in the  
LT3466-1 can sustain a maximum of 1A current. The  
selection of inductor and capacitor value should ensure  
the peak of the inrush current to be below 1A.  
SeveralinductorsthatworkwellwiththeLT3466-1arelisted  
in Table 1. Consult each manufacturer for more detailed  
information and for their entire selection of related parts.  
For low DCR inductors, which is usually the case for this  
application, the peak inrush current can be simplified as  
follows:  
Table 1. Recommended Inductors  
MAX CURRENT  
L
(µH)  
DCR  
()  
RATING  
(mA)  
PART  
VENDOR  
V – 0.6  
IN  
IPK  
=
LQH32CN100  
LQH32CN150  
LQH43CN330  
10  
15  
33  
0.44  
0.58  
1.00  
300  
300  
310  
Murata  
(814) 237-1431  
www.murata.com  
ωL  
where:  
ELL6RH330M  
ELL6SH680M  
33  
68  
0.38  
0.52  
600  
500  
Panasonic  
(714) 373-7939  
www.panasonic.com  
1
ω =  
LCOUT  
A914BYW330M  
A914BYW470M  
A920CY680M  
33  
47  
68  
0.45  
0.73  
0.40  
440  
360  
400  
Toko  
www.toko.com  
Table 3 gives inrush peak current for some component  
selections.  
CDRH2D18150NC  
CDRH4D18-330  
CDRH5D18-680  
15  
33  
68  
0.22  
0.51  
0.84  
0.35A  
0.31A  
0.43A  
Sumida  
(847) 956-0666  
www.sumida.com  
Table 3. Inrush Peak Current  
V
(V)  
L (µH)  
15  
C
OUT  
(µF)  
I (A)  
IN  
P
5
0.47  
0.78  
0.77  
0.95  
0.53  
0.84  
0.93  
5
5
33  
1.00  
2.2  
CAPACITOR SELECTION  
47  
The small size of ceramic capacitors make them ideal for  
LT3466-1 applications. Use only X5R and X7R types  
because they retain their capacitance over wider voltage  
and temperature ranges than other types such as Y5V or  
5
68  
1.00  
0.47  
0.22  
9
47  
12  
33  
34661f  
11  
LT3466-1  
W U U  
U
APPLICATIO S I FOR ATIO  
Typically peak inrush current will be less than the value  
calculated above. This is due to the fact that the DC  
resistance in the inductor provides some damping result-  
ing in a lower peak inrush current.  
Feedback voltage variation versus control voltage is given  
in the Typical Performance Characteristics graphs.  
Using a Filtered PWM Signal  
A variable duty cycle PWM can be used to control the  
brightness of the LED string. The PWM signal is filtered  
(Figure 8) by an RC network and fed to the CTRL1 pin.  
SETTING THE LED CURRENT  
ThecurrentintheLEDstringcanbesetbythechoiceofthe  
resistorRFB1 (Figure1).Thefeedbackreferenceis200mV.  
In order to have accurate LED current, precision resistors  
are preferred (1% is recommended).  
ThecornerfrequencyofR1,C1shouldbemuchlowerthan  
the frequency of the PWM signal. R1 needs to be much  
smallerthantheinternalimpedanceintheCTRLpin,which  
is 100k.  
200mV  
ILED1  
RFB1  
=
LT3466-1  
R1  
10k  
PWM  
10kHz TYP  
Table 4. R Value Selection  
CTRL1  
FB1  
C1  
1µF  
I
(mA)  
R
FB1  
()  
34661 F08  
LED1  
5
40.2  
20.0  
13.3  
10.0  
8.06  
10  
15  
20  
25  
Figure 8. Dimming Control Using a Filtered PWM Signal  
SETTING THE BOOST OUTPUT VOLTAGE  
The LT3466-1 regulates the voltage at the FB2 pin to 0.8V.  
The output voltage of the boost converter (VOUT2) is set by  
a resistor divider according to the formula:  
Most White LEDs are driven at maximum currents of  
15mA to 20mA.  
R1  
R2  
DIMMING WHITE LEDS  
VOUT2 = 0.8V 1+  
TheLEDcurrentinthedrivercanbesetbymodulatingthe  
CTRL1 pin. There are two different ways to control the  
intensity of white LEDs.  
Choose 1% resistors for better accuracy. The FB2 input  
bias current is quite low, on the order of 10nA (typ). Large  
resistor values (R1 ~ 1M) can be used in the divider  
network maximizing efficiency.  
Using a DC Voltage  
Forsomeapplications,thepreferredmethodofbrightness  
control is a variable DC voltage to adjust the LED current.  
The CTRL1 pin voltage can be modulated to set the  
dimming of the LED string. As the voltage on the CTRL1  
pin increases from 0V to 1.8V, the LED current increases  
from 0 to ILED1. As the CTRL1 pin voltage increases  
beyond 1.8V, it has no effect on the LED current.  
PROGRAMMING THE BOOST OUTPUT VOLTAGE  
The output voltage of the boost converter can be modu-  
lated by applying a variable DC voltage at the CTRL2 pin  
The nominal voltage at the FB2 pin is 800mV. As the  
voltageontheCTRL2pinisrampedfrom0Vto1V, theFB2  
pin voltage ramps up to 0.8V. The feedback voltage can be  
programmed as:  
The LED current can be set by:  
VFB2 VCTRL2, when VCTRL2 < 0.8V  
VFB2 0.8V, when VCTRL2 > 1V  
ILED1 (VCTRL1/5 • RFB1), when VCTRL1 < 1V  
ILED1 (200mV/RFB1), when VCTRL1 > 1.8V  
34661f  
12  
LT3466-1  
W U U  
APPLICATIO S I FOR ATIO  
U
Figure 9 shows the feedback voltage variation versus the  
control voltage. As seen in Figure 9, the linearity of the  
graph allows the feedback voltage to be set accurately via  
the control voltage.  
3V TO 5V  
C
1µF  
IN  
I
R
BASE  
BASE  
Q1  
16V  
L1  
L2  
+
30mA  
33µH  
33µH  
V
The boost converter output voltage (VOUT2) is given by:  
CE(SAT)  
C
OUT3  
0.47µF  
SW1  
V
SW2  
R1  
475k  
OUT2  
0.47µF  
IN  
R1  
R2  
V
V
OUT2  
OUT1  
C
C
VOUT2 = VFB2 1+  
OUT1  
1µF  
LT3466-1  
FB1  
FB2  
CTRL2  
Thus a linear change in the feedback (FB2) voltage results  
in a linear change in the boost output voltage (VOUT2).  
R
R
R2  
CTRL1  
FB1  
10  
T
24.9k  
OFF ON  
OFF ON  
34661 F10  
63.4k  
1%  
Connect the CTRL2 pin to ground to disable converter 2.  
Do not leave the pin floating. Unlike the CTRL1 pin, which  
has an internal 100k pull-down resistor, the CTRL2 pin  
input impedance is very high (>100M). A small amount  
of board leakage current is sufficient to turn on the  
converter 2.  
C
C
C
: TAIYO YUDEN JMK107BJ105  
IN  
OUT1  
: TAIYO YUDEN GMK316BJ105  
, C  
: TAIYO YUDEN TMK316BJ474  
OUT2 OUT3  
L1, L2: TOKO D52LC  
Q1: PHILIPS BC807  
Figure 10. Li-Ion Powered Driver for 6 White LEDs and a  
Secondary OLED Display with Output Disconnect  
900  
V
V
= 3.6V  
IN  
OUT2  
The RBASE resistor can be calculated as:  
ILOAD = 30mA  
= 16V  
800  
700  
600  
500  
400  
300  
200  
100  
0
ILOAD  
0.4hFE(MIN)  
IBASE  
=
IBASE must be chosen such that Q1 is in saturation under  
all conditions. The hFE(MIN) can be obtained from the  
Philips BC807 data sheet as:  
0.8  
1.2  
(V)  
1.6  
0
0.4  
2
hFE(MIN) 100  
V
CTRL2  
34661 F09  
This yields worst case IBASE as:  
Figure 9. V vs V  
FB2  
CTRL2  
30mA  
OUTPUT DISCONNECT  
IBASE  
=
0.75mA  
0.4(100)  
RBASE is given by:  
The LT3466-1 can be used for powering white LEDs  
(Channel1)andanOLEDdisplayor, LCDbias(Channel2).  
Some OLED displays require load isolation in order to  
reduce the current drained from the battery in shutdown.  
The LT3466-1 output can be configured to provide output  
disconnect by the use of only one resistor, RBASE, and a  
PNP transistor, Q1, as shown in Figure 10.  
V
IN(MAX) + IBASE RBASE + VBE(Q1) = VOUT2 + VCE(Q1)  
VOUT2 VIN(MAX) + VCE(Q1) VBE(Q1)  
Thus;RBASE  
=
IBASE  
As a design example, we target a Li-Ion powered driver for  
6 white LEDs and an OLED display (16V at 30mA). We can  
choose a general purpose PNP switching transistor like  
Philips BC807 (Q1) to provide isolation.  
34661f  
13  
LT3466-1  
W U U  
U
APPLICATIO S I FOR ATIO  
The VCE(SAT) and VBE(SAT) values for the transistor Q1 can  
ground plane and not shared with any other component,  
except the RT resistor, ensuring a clean, noise-free con-  
nection. Recommended component placement is shown  
in the Figure 11.  
be obtained from the Philips BC807 data sheet:  
16V – 5V + 0.1– 0.9  
RBASE  
=
0.75mA  
RBASE = 13.6k  
Picking the closest 1% resistor value yields:  
BASE = 14k  
GND  
C
R
OUT1  
R
FB1  
C
IN  
CTRL1  
CTRL2  
BOARD LAYOUT CONSIDERATION  
10  
9
1
2
3
4
5
R
T
L1  
L2  
As with all switching regulators, careful attention must be  
paid to the PCB board layout and component placement.  
To prevent electromagnetic interference (EMI) problems,  
proper layout of high frequency switching paths is essen-  
tial. Minimizethelengthandareaofalltracesconnectedto  
the switching node pins (SW1 and SW2). Keep the feed-  
back pins (FB1 and FB2) away from the switching nodes.  
V
IN  
11  
8
7
6
R2  
R1  
C
OUT2  
34661 F10  
GND  
The DFN package has an exposed paddle that must be  
connected to the system ground. The ground connection  
for the feedback resistors should be tied directly to the  
Figure 11. Recommended Component Placement  
34661f  
14  
LT3466-1  
U
TYPICAL APPLICATIO S  
Li-Ion Powered 4 White LEDs Driver and 12V Boost Converter  
3V TO 5V  
Efficiency vs Load Current  
C
IN  
1µF  
90  
85  
80  
75  
70  
65  
60  
4 LEDs/20mA  
= 12V  
12V  
V
OUT2  
L1  
L2  
30mA AT V = 3V  
IN  
V
= 5V  
IN  
15µH  
15µH  
60mA AT V = 5V  
IN  
R1  
4 LEDs  
909k  
SW1  
V
SW2  
IN  
V
= 3V  
IN  
V
V
OUT2  
OUT1  
C
C
OUT2  
OUT1  
0.47µF  
1µF  
LT3466-1  
FB1  
FB2  
R
R
R2  
CTRL1  
CTRL2  
FB1  
10  
T
64.9k  
OFF ON  
OFF ON  
34661 TA01a  
38.3k  
1%  
0
20  
30  
40  
50  
60  
10  
C
C
C
: TAIYO YUDEN JMK107BJ105  
IN  
OUT1  
OUT2  
LOAD CURRENT (mA)  
: TAIYO YUDEN EMK212BJ474  
: TAIYO YUDEN EMK212BJ105  
34661 TA01b  
L1, L2: MURATA LQH32CN150K53  
Li-Ion Powered Driver for 6 White LEDs and OLED Display  
3V TO 5V  
Conversion Efficiency  
L1  
33µH  
L2  
33µH  
1µF  
90  
85  
80  
75  
70  
65  
60  
SW1  
V
SW2  
IN  
LED DRIVER  
BOOST CONVERTER  
16V  
6 LEDs  
V
V
OUT2  
LT3466-1  
OUT1  
C
30mA  
OUT1  
1µF  
C
OUT2  
1µF  
R1  
475k  
FB1  
FB2  
R
CTRL1  
GND  
CTRL2  
V
= 3.6V  
IN  
T
55 6 LEDs  
= 16V  
50  
R
FB1  
R2  
24.9k  
V
63.4k  
OUT2  
10Ω  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
0
5
10  
15  
20  
25  
30  
34661 TA02a  
OUTPUT CURRENT (mA)  
C
C
: TAIYO YUDEN JMK107BJ105  
34661 TA02b  
IN  
OUT1 OUT2  
, C  
: TAIYO YUDEN GMK316BJ105  
L1, L2: 33µH TOKO D52LC  
34661f  
15  
LT3466-1  
TYPICAL APPLICATIO S  
U
Li-Ion Powered Driver for 6 White LEDs and OLED with Output Disconnect  
3V TO 5V  
14k  
C
IN  
1µF  
Q1  
16V  
30mA  
L1  
33µH  
L2  
33µH  
C
OUT3  
0.47µF  
6 LEDs  
R1  
475k  
SW1  
V
SW2  
IN  
V
OUT1  
V
OUT2  
C
OUT1  
1µF  
C
OUT2  
0.47µF  
LT3466-1  
FB1  
FB2  
R
R
T
R2  
24.9k  
CTRL1  
CTRL2  
FB1  
10  
OFF ON  
OFF ON  
34661 TA03a  
63.4k  
1%  
C
C
C
: TAIYO YUDEN JMK107BJ105  
IN  
: TAIYO YUDEN GMK316BJ105  
OUT1  
, C  
: TAIYO YUDEN TMK316BJ474  
OUT2 OUT3  
L1, L2: 33µH TOKO D52LC  
Q1: PHILIPS BC807  
Conversion Efficiency  
90  
V
V
= 3.6V  
OUT2  
IN  
= 16V  
V
OUT2  
80  
20V/DIV  
I
L2  
70  
60  
200mA/DIV  
CTRL2  
5V/DIV  
50  
40  
34661 TA03c  
V
V
= 3.6V  
2ms/DIV  
IN  
OUT2  
= 16V  
0
10  
15  
20  
25  
30  
5
LOAD CURRENT (mA)  
34661 TA03b  
34661f  
16  
LT3466-1  
U
TYPICAL APPLICATIO S  
Li-Ion Powered Driver for 6 White LEDs and OLED with Output Disconnect  
3V TO 5V  
C
IN  
1µF  
16V  
30mA  
Q1  
L1  
L2  
33µH  
C
OUT3  
33µH  
0.47µF  
6 LEDs  
R1  
475k  
SW1  
V
SW2  
IN  
V
OUT1  
V
OUT2  
C
OUT1  
1µF  
C
OUT2  
0.47µF  
LT3466-1  
FB1  
FB2  
R
FB1  
10  
R
T
R2  
24.9k  
CTRL1  
CTRL2  
OFF ON  
OFF ON  
34661 TA04a  
63.4k  
1%  
C
C
C
: TAIYO YUDEN JMK107BJ105  
NOTE: ENSURE THAT V  
> V + 5V  
IN(MAX)  
IN  
OUT2  
: TAIYO YUDEN GMK316BJ105  
OUT1  
, C  
: TAIYO YUDEN TMK316BJ474  
OUT2 OUT3  
L1, L2: 33µH TOKO D52LC  
Q1: SILICONIX TPO610  
Conversion Efficiency  
90  
V
V
= 3.6V  
IN  
OUT2  
= 16V  
85  
80  
75  
V
OUT2  
20V/DIV  
I
L2  
200mA/DIV  
70  
65  
CTRL2  
5V/DIV  
60  
55  
50  
34661 TA04c  
V
V
= 3.6V  
2ms/DIV  
IN  
OUT2  
= 16V  
5
10  
20  
0
25  
30  
15  
LOAD CURRENT (mA)  
34661 TA04b  
34661f  
17  
LT3466-1  
TYPICAL APPLICATIO S  
U
Li-Ion to 10 White LEDs and LCD Bias (±8V) with Output Disconnect  
3V TO 5V  
C
IN  
C1  
0.1µF  
1µF  
D1  
–8V  
L1  
L2  
10mA  
68µH  
33µH  
C
OUT2  
1µF  
10 LEDs  
C2  
0.1µF  
SW1  
V
SW2  
IN  
D2  
8V  
10mA  
V
V
OUT2  
OUT1  
C
OUT1  
1µF  
LT3466-1  
909k  
10k  
C
OUT3  
FB1  
FB2  
1µF  
R
R
T
CTRL1  
CTRL2  
FB1  
16.5Ω  
OFF ON  
OFF ON  
147k  
C
C
C
: TAIYO YUDEN JMK107BJ105  
IN  
34661 TA05a  
: TAIYO YUDEN UMK325BJ105  
OUT1  
, C  
: TAIYO YUDEN GMK316BJ105  
OUT2 OUT3  
C1, C2: TAIYO YUDEN UMK212BJ104  
D1, D2: PHILIPS BAT54S  
L1: 68µH TOKO D52LC  
L2: 33µF TOKO D52LC  
Conversion Efficiency  
84  
82  
80  
78  
76  
74  
72  
V
= 3.6V  
IN  
10 LEDs  
+8V OUTPUT  
10V/DIV  
+8V/10mA  
–8V/10mA  
–8V OUTPUT  
10V/DIV  
CTRL2  
5V/DIV  
34661 TA05c  
V
= 3.6V  
2ms/DIV  
IN  
+8V/10mA  
–8V/10mA  
0
4
6
8
10  
12  
2
LED CURRENT (mA)  
34661 TA05b  
34661f  
18  
LT3466-1  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
6
0.38 ± 0.10  
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
34661f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT3466-1  
U
TYPICAL APPLICATIO  
Li-Ion to 8 White LEDs and ±15V TFT LCD Bias Supply  
3V TO 5V  
Conversion Efficiency  
C
C1  
IN  
D1  
1µF  
0.1µF  
86  
84  
82  
80  
78  
76  
74  
V
= 3.6V  
8 LEDs  
+15V/10mA  
–15V/10mA  
IN  
–15V  
10mA  
L2  
33µH  
L1  
33µH  
C
OUT3  
1µF  
SW1  
V
SW2  
IN  
8 LEDs  
V
OUT1  
15V  
10mA  
V
OUT2  
C
OUT1  
1µF  
LT3466-1  
475k  
C
OUT2  
FB1  
FB2  
1µF  
R
T
26.7k  
CTRL1  
CTRL2  
OFF ON  
OFF ON  
R
63.4k  
FB1  
13.3Ω  
0
5
7.5  
10  
12.5  
15  
2.5  
34661 TA06a  
LED CURRENT (mA)  
C
C
: TAIYO YUDEN JMK107BJ105  
IN  
: TAIYO YUDEN GMK316BJ105  
OUT1 OUT2 OUT3  
34661 TA06b  
, C  
, C  
C1: TAIYO YUDEN UMK212BJ104  
L1, L2: 33µH TOKO D52LC  
D1: PHILIPS BAT54S  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1618  
Constant Current, Constant Voltage 1.4MHz, High Efficiency  
Boost Regulator  
V : 1.6V to 18V, V  
MS/EDD Packages  
= 34V, I = 1.8mA, I < 1µA,  
OUT(MAX) Q SD  
IN  
LT1932  
Constant Current, 1.2MHz, High Efficiency White LED Boost  
Regulator  
V : 1V to 10V, V  
= 34V, I = 1.2mA, I < 1µA,  
IN  
OUT(MAX) Q SD  
ThinSOTTM Package  
V : 2.5V to 10V, V  
LT1937  
Constant Current, 1.2MHz, High Efficiency White LED Boost  
Regulator  
= 34V, I = 1.9mA, I < 1µA,  
OUT(MAX) Q SD  
IN  
ThinSOT, SC70 Packages  
LTC®3200-5  
LTC3202  
LTC3205  
LTC3216  
LTC3453  
LT3465/LT3465A  
LT3466  
Low Noise, 2MHz, Regulated Charge Pump White LED Driver  
Low Noise, 1.5MHz, Regulated Charge Pump White LED Driver  
High Efficiency, Multidisplay LED Controller  
V : 2.7V to 4.5V, V  
ThinSOT Package  
= 5V, I = 8mA, I < 1µA,  
OUT(MAX) Q SD  
IN  
V : 2.7V to 4.5V, V  
= 5.5V, I = 5mA, I < 1µA,  
Q SD  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
MS/EDD Packages  
V : 2.8V to 4.5V, V  
= 6V, I = 50µA, I < 1µA,  
Q SD  
IN  
QFN-24 Package  
1A Low Noise High Current LED Charge Pump with Independent V : 2.9V to 4.4V, V  
Flash/Torch Current Control  
= 5.5V, I = 300µA, I < 2.5µA,  
Q SD  
IN  
DFN Package  
500mA Synchronous Buck-Boost High Current LED Driver  
in Q FN  
V : 2.7V to 5.5V, V  
= 5.5V, I = 0.6mA, I < 6µA,  
Q SD  
IN  
QFN Package  
Constant Current, 1.2MHz/2.7MHz, High Efficiency White LED  
Boost Regulator with Integrated Schottky Diode  
V : 2.7V to 16V, V  
= 34V, I = 1.9mA, I < 1µA,  
Q SD  
IN  
ThinSOT Package  
Dual Constant Current, 2MHz High Efficiency White LED Boost  
Regulator with Integrated Schottky Diode  
V : 2.7V to 24V, V  
= 40V, I = 5mA, I < 16µA,  
Q SD  
IN  
DFN Package  
LT3479  
3A, Full Featured DC/DC Converter with Soft-Start and Inrush  
Current Protection  
V : 2.5V to 24V, V  
IN  
= 40V, I = 6.5mA, I < 1µA,  
Q SD  
DFN/TSSOP Packages  
ThinSOT is a trademark of Linear Technology Corporation.  
34661f  
LT/TP 0705 500 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY