LT3466EDD [Linear]

Dual Full Function White LED Step-Up Converter with Built-In Schottky Diodes; 双路全功能的白光LED升压型转换器,带有内置肖特基二极管
LT3466EDD
型号: LT3466EDD
厂家: Linear    Linear
描述:

Dual Full Function White LED Step-Up Converter with Built-In Schottky Diodes
双路全功能的白光LED升压型转换器,带有内置肖特基二极管

转换器 稳压器 开关式稳压器或控制器 电源电路 肖特基二极管 开关式控制器 光电二极管
文件: 总20页 (文件大小:325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3466  
Dual Full Function White LED  
Step-Up Converter with  
Built-In Schottky Diodes  
U
FEATURES  
DESCRIPTIO  
LT®3466 is a dual full function step-up DC/DC converter  
specifically designed to drive up to 20 White LEDs (10 in  
series per converter) with a constant current. Series  
connection of the LEDs provides identical LED currents  
resulting in uniform brightness and eliminating the need  
for ballast resistors and expensive factory calibration.  
Drives Up to 20 White LEDs (10 in Series  
per Converter) from a 3.6V Supply  
Two Independent Step-Up Converters Capable of  
Driving Asymmetric LED Strings  
Independent Dimming and Shutdown Control  
of the Two LED Strings  
Internal Schottky Diodes  
Internal Soft-Start Eliminates Inrush Current  
Open LED Protection (42V Max VOUT  
Fixed Frequency Operation Up to 2MHz  
81% Efficiency Driving 16 White LEDs at 15mA  
(Eight per Driver) from a 3.6V Supply  
Wide Input Voltage Range: 2.7V to 24V  
Tiny (3mm × 3mm) 10-Lead DFN Package  
The two independent converters are capable of driving  
asymmetric LED strings. The dimming of the two LED  
strings can also be controlled independently. The LT3466  
is ideal for providing backlight for main and sub-displays  
in cell phones and other handheld devices.  
)
The LT3466 operating frequency can be set with an  
external resistor over a 200kHz to 2MHz range. A low  
200mV feedback voltage minimizes power loss in the  
current setting resistor for better efficiency. Additional  
features include output voltage limiting when LEDs are  
disconnected and internal soft-start.  
U
APPLICATIO S  
Main/Sub Displays  
Digital Cameras, Sub-Notebook PCs  
The LT3466 is available in a low profile, small footprint  
(3mm × 3mm × 0.75mm) DFN package.  
PDAs, Handheld Computers  
Automotive  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
3V TO 5V  
Conversion Efficiency  
85  
1µF  
V
= 3.6V  
IN  
8/8 LEDs  
80  
75  
70  
65  
60  
55  
50  
47µH  
SW2  
47µH  
SW1  
V
IN  
LED1  
LED2  
V
V
OUT2  
OUT1  
2.2µF  
2.2µF  
LT3466  
FB1  
FB2  
R
T
CTRL1  
GND CTRL2  
63.4k  
SHUTDOWN  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
10Ω  
10Ω  
AND DIMMING  
CONTROL 1  
0
5
10  
15  
20  
LED CURRENT (mA)  
3466 F01a  
3466 F01b  
Figure 1. Li-Ion Powered Driver for 8/8 White LEDs  
3466f  
1
LT3466  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
Input Voltage (VIN) ................................................... 24V  
SW1, SW2 Voltages ................................................ 44V  
ORDER PART  
TOP VIEW  
NUMBER  
V
1
2
3
4
5
10 FB1  
OUT1  
SW1  
V
OUT1, VOUT2 Voltages ............................................. 44V  
9
8
7
6
CTRL1  
LT3466EDD  
CTRL1, CTRL2 Voltages ........................................... 24V  
FB1, FB2, RT Voltages ................................................ 2V  
Operating Temperature Range ................ –40°C to 85°C  
Storage Temperature Range .................. –65°C to 125°C  
Junction Temperature .......................................... 125°C  
11  
V
IN  
R
T
SW2  
OUT2  
CTRL2  
FB2  
V
DD PART MARKING  
LBBH  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 43°C/W, θJC = 2.96°C/W  
EXPOSED PAD (PIN 11) IS GND  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VIN = 3V, VCTRL1 = 3V, VCTRL2 = 3V, unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Minimum Operating Voltage  
Maximum Operating Voltage  
FB1 Voltage  
2.7  
24  
208  
208  
50  
V
192  
192  
200  
200  
10  
mV  
mV  
nA  
FB2 Voltage  
FB1 Pin Bias Current  
FB2 Pin Bias Current  
Quiescent Current  
V
FB1  
V
FB2  
V
FB1  
= 0.2V (Note 3)  
= 0.2V (Note 3)  
10  
50  
nA  
= V = 0.3V  
5
6
mA  
FB2  
CTRL1 = CTRL2 = 0V  
16  
25  
µA  
Switching Frequency  
R = 48.7k  
0.8  
1
1.2  
MHz  
kHz  
V
T
Oscillator Frequency Range  
200  
2000  
Nominal R Pin Voltage  
R = 48.7k  
T
0.54  
T
Maximum Duty Cycle  
R = 48.7k  
90  
96  
92  
99  
%
%
%
T
R = 20.5k  
T
R = 267k  
T
Converter 1 Current Limit  
Converter 2 Current Limit  
320  
320  
400  
400  
360  
360  
0.01  
0.01  
mA  
mA  
mV  
mV  
µA  
µA  
V
Converter 1 V  
Converter 2 V  
I
I
= 300mA  
= 300mA  
= 10V  
CESAT  
CESAT  
SW1  
SW2  
Switch 1 Leakage Current  
V
V
5
5
SW1  
SW2  
Switch 2 Leakage Current  
= 10V  
CTRL1 Voltage for Full LED Current  
CTRL2 Voltage for Full LED Current  
CTRL1 and CTRL2 Voltage to Shut Down Chip  
CTRL1, CTRL2 Pin Bias Current  
1.8  
1.8  
V
50  
12  
mV  
µA  
V
V
= V  
= 1V  
CTRL2  
8
10  
42  
42  
CTRL1  
V
OUT1  
V
OUT2  
Overvoltage Threshold  
Overvoltage Threshold  
V
3466f  
2
LT3466  
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VIN = 3V, VCTRL1 = 3V, VCTRL2 = 3V, unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.85  
0.85  
MAX  
UNITS  
V
Schottky 1 Forward Drop  
Schottky 2 Forward Drop  
Schottky 1 Reverse Leakage  
Schottky 2 Reverse Leakage  
Soft-Start Time (Switcher 1)  
Soft-Start Time (Switcher 2)  
I
I
= 300mA  
= 300mA  
SCHOTTKY1  
SCHOTTKY2  
V
V
OUT1  
V
OUT2  
= 20V  
5
5
µA  
µA  
µs  
= 20V  
600  
600  
µs  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 3: Current flows out of the pin.  
of a device may be impaired.  
Note 2: The LTC3466E is guaranteed to meet specified performance from  
0°C to 70°C. Specifications over the –40°C to 85°C operating range are  
assured by design, characterization and correlation with statistical process  
controls.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switching Waveforms  
Transient Response  
VFB1,2 vs VCTRL1,2  
250  
200  
150  
100  
50  
VOUT1  
VOUT1  
V
A
= 3V  
IN  
50mV/DIV  
0.5V/DIV  
T
= 25°C  
VSW1  
20V/DIV  
VCTRL1  
2V/DIV  
IL1  
IL1  
100mA/DIV  
200mA/DIV  
VIN = 3.6V  
0.5µs/DIV  
3466 G01  
VIN = 3.6V  
ILED1 = 20mA TO 10mA  
CIRCUIT OF FIGURE 1  
5µs/DIV  
3466 G02  
CIRCUIT OF FIGURE 1  
0
0
0.5  
1
1.5  
2
CONTROL VOLTAGE (V)  
3466 G03  
3466f  
3
LT3466  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Shutdown Quiescent Current  
(CTRL1 = CTRL2 = 0V)  
Switch Saturation Voltage (VCESAT  
)
Switch Current Limit vs Duty Cycle  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
CE1 CE2  
T
= –50°C  
T
= 25°C  
A
A
A
V
, V  
T
= –50°C  
A
T
A
= 85°C  
T = 25°C  
A
T
= 100°C  
A
0
0
200 250  
20  
60  
0
50 100 150  
300 350 400  
0
40  
80  
100  
2
4
6
8
10 12 14 16 18 20 22 24  
(V)  
SWITCH CURRENT (mA)  
DUTY CYCLE (%)  
V
IN  
3466 G04  
3466 G05  
3466 G06  
Open-Circuit Output Clamp  
Voltage  
Open-Circuit Output Clamp  
Voltage  
Input Current with Output 1 and  
Output 2 Open Circuit  
12  
10  
8
44  
43  
42  
41  
40  
45  
44  
T
= 25°C  
= 48.7k  
T
= 25°C  
= 48.7k  
V
= 3.6V  
= 48.7k  
A
T
A
T
IN  
T
R
R
R
43  
42  
41  
V
V
OUT2  
OUT1  
V
V
OUT2  
OUT1  
6
40  
39  
4
38  
37  
36  
35  
2
0
2
4
6
8
10 12 14 16 18 20 22 24  
(V)  
2
4
6
8
10 12 14 16 18 20 22 24  
(V)  
–50  
50  
0
TEMPERATURE (°C)  
100  
V
IN  
V
IN  
3466 G09  
3466 G07  
3466 G08  
Oscillator Frequency vs VIN  
RT vs Oscillator Frequency  
1000  
100  
10  
1200  
R
T
= 48.7k  
1100  
1000  
900  
800  
600  
1000  
1400  
1800  
200  
2
4
6
8
10 12 14 16 18 20 22 24  
(V)  
OSCILLATOR FREQUENCY (kHz)  
V
IN  
3466 G10  
3466 G11  
3466f  
4
LT3466  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Oscillator Frequency  
vs Temperature  
2500  
Quiescent Current  
(CTRL1 = CTRL2 = 3V)  
6
5
4
3
2
1
0
T
= 25°C  
V
= 3.6V  
A
IN  
2250  
2000  
1750  
1500  
1250  
1000  
750  
R
= 20.5k  
= 48.7k  
T
R
T
500  
0
8
12  
(V)  
16  
20  
24  
4
0
50  
–50  
100  
V
IN  
TEMPERATURE (°C)  
3466 G13  
3466 G12  
Schottky Forward Voltage Drop  
Schottky Leakage Current  
6
5
4
3
2
1
0
400  
350  
300  
250  
T
= 25°C  
A
200  
150  
V
= 40V  
R
V
= 20V  
R
100  
50  
0
–50  
0
50  
100  
200  
400  
800  
0
1000  
600  
TEMPERATURE (°C)  
SCHOTTKY FORWARD DROP (mV)  
3466 G15  
3466 G14  
3466f  
5
LT3466  
U
U
U
PI FU CTIO S  
VOUT1 (Pin1):OutputofConverter1.Thispinisconnected  
to the cathode of the internal Schottky diode. Connect an  
output capacitor from this pin to ground.  
CTRL2 (Pin 7): Dimming and Shutdown Pin for Con-  
verter 2. Connect this pin to ground to disable the con-  
verter. As the pin voltage is ramped from 0V to 1.6V, the  
LED current ramps from 0 to ILED2 (= 200mV/RFB2). Any  
voltage above 1.6V does not affect the LED current.  
SW1 (Pin 2): Switch Pin for Converter 1. Connect the  
inductor at this pin.  
RT (Pin 8): Timing Resistor to Program the Switching  
Frequency. The switching frequency can be programmed  
from 200KHz to 2MHz.  
VIN (Pin 3): Input Supply Pin. Must be locally bypassed  
with a 1µF, X5R or X7R type ceramic capacitor.  
SW2 (Pin 4): Switch Pin for Converter 2. Connect the  
inductor at this pin.  
CTRL1 (Pin 9): Dimming and Shutdown Pin for Con-  
verter 1. Connect this pin to ground to disable the con-  
verter. As the pin voltage is ramped from 0V to 1.6V, the  
LED current ramps from 0 to ILED1 (= 200mV/RFB1). Any  
voltage above 1.6V does not affect the LED current.  
V
OUT2 (Pin5):OutputofConverter2.Thispinisconnected  
to the cathode of the internal Schottky diode. Connect an  
output capacitor from this pin to ground.  
FB2 (Pin 6): Feedback Pin for Converter 2. The nominal  
voltageatthispinis200mV.Connectcathodeofthelowest  
LED and the feedback resisitor at this pin. The LED current  
can be programmed by :  
FB1 (Pin 10): Feedback Pin for Converter 1. The nominal  
voltageatthispinis200mV.Connectcathodeofthelowest  
LED and the feedback resistor at this pin. The LED current  
can be programmed by :  
I
LED2 (200mV/RFB2), when VCTRL2 > 1.6V  
LED2 (VCTRL2/5 • RFB2), when VCTRL2 < 1V  
I
LED1 (200mV/RFB1), when VCTRL1 > 1.6V  
LED1 (VCTRL1/5 • RFB1), when VCTRL1 < 1V  
I
I
ExposedPad(Pin11):TheExposedPadmustbesoldered  
to the PCB system ground.  
3466f  
6
LT3466  
W
BLOCK DIAGRA  
3466f  
7
LT3466  
U
OPERATIO  
Main Control Loop  
Minimum Output Current  
The LT3466 uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion. It incorporates two identical, but fully independent  
PWM converters. Operation can be best understood by  
referring to the Block Diagram in Figure 2. The oscillator,  
start-up bias and the bandgap reference are shared be-  
tween the two converters. The control circuitry, power  
switch, Schottky diode etc., are all identical for both the  
converters.  
The LT3466 can drive an 8-LED string at 2.5mA LED  
current without pulse skipping. As current is further  
reduced, the device may begin skipping pulses. This will  
result in some low frequency ripple, although the LED  
current remains regulated on an average basis down to  
zero.ThephotoinFigure 3showscircuitoperationwith16  
white LEDs (eight per converter) at 2.5mA current driven  
from3.6Vsupply. Peakinductorcurrentislessthan50mA  
and the regulator operates in discontinuous mode imply-  
ing that the inductor current reached zero during the  
discharge phase. After the inductor current reaches zero,  
the switch pin exhibits ringing due to the LC tank circuit  
formed by the inductor in combination with switch and  
diode capacitance. This ringing is not harmful; far less  
spectral energy is contained in the ringing than in the  
switch transitions. The ringing can be damped by applica-  
tion of a 300resistor across the inductors, although this  
will degrade efficiency.  
At power-up, the output voltages VOUT1 and VOUT2 are  
charged up to VIN (input supply voltage) via their respec-  
tive inductor and the internal Schottky diode. If either  
CTRL1 and CTRL2 or both are pulled high, the bandgap  
reference, start-up bias and the oscillator are turned on.  
Working of the main control loop can be understood by  
following the operation of converter 1. At the start of each  
oscillator cycle, the power switch Q1 is turned on. A  
voltage proportional to the switch current is added to a  
stabilizing ramp and the resulting sum is fed into the  
positive terminal of the PWM comparator A2. When this  
voltage exceeds the level at the negative input of A2, the  
PWM logic turns off the power switch. The level at the  
negative input of A2 is set by the error amplifier A1, and is  
simply an amplified version of the difference between the  
feedback voltage and the 200mV reference voltage. In this  
manner, the error amplifier A1 regulates the feedback  
voltage to 200mV reference voltage. The output of the  
error amplifier A1 sets the correct peak current level in  
inductor L1 to keep the output in regulation. The CTRL1  
pin voltage is used to adjust the reference voltage.  
VOUT1  
10mV/DIV  
VSW1  
20V/DIV  
IL1  
50mA/DIV  
VIN = 3.6V  
0.5µs/DIV  
3466 F03  
ILED1 = 2.5mA  
CIRCUIT OF FIGURE 1  
Figure 3. Switching Waveforms  
Open-Circuit Protection  
The LT3466 has internal open-circuit protection for both  
the converters. When the LEDs are disconnected from the  
circuitorfailopen,theconverteroutputvoltageisclamped  
at 42V. The converter will then switch at a very low  
frequency to minimize the input current. Output voltage  
and input current during output open circuit are shown in  
the Typical Performance Characteristics graphs.  
If only one of the converters is turned on, the other con-  
verter will stay off and its output will remain charged up to  
VIN (input supply voltage). The LT3466 enters into shut-  
down, when both CTRL1 and CTRL2 are pulled lower than  
50mV. The CTRL1 and CTRL2 pins perform independent  
dimming and shutdown control for the two converters.  
3466f  
8
LT3466  
U
OPERATIO  
In the event one of the converters has an output open-  
circuit, itsoutputvoltagewillbeclampedat42V. However,  
theotherconverterwillcontinuefunctioningproperly. The  
photo in Figure 4 shows circuit operation with converter 1  
output open-circuit and converter 2 driving eight LEDs at  
20mA. Converter 1 switches at a lower frequency, reduc-  
ing its input current.  
The converter enters into soft-start mode whenever the  
respective CTRL pin is pulled from low to high. Figure 5  
shows the start-up waveforms with converter 1 driving  
four LEDs at 20mA. The filtered input current, as shown in  
Figure 5, is well controlled. The soft-start circuit is less  
effective when driving a higher number of LEDs.  
Undervoltage Lockout  
Soft-Start  
The LT3466 has an undervoltage lockout circuit which  
shuts down both the converters when the input voltage  
drops below 2.1V (typ). This prevents the converter to  
operate in an erratic mode when powered from low supply  
voltages.  
The LT3466 has a separate internal soft-start circuitry for  
each converter. Soft-start helps to limit the inrush current  
during start-up. Soft-start is achieved by clamping the  
output of the error amplifier during the soft-start period.  
This limits the peak inductor current and ramps up the  
output voltage in a controlled manner.  
VSW1  
50V/DIV  
IIN  
100mA/DIV  
IL1  
VOUT1  
500mA/DIV  
5V/DIV  
VSW2  
50V/DIV  
VFB1  
200mV/DIV  
IL2  
CRTL1  
2V/DIV  
200mA/DIV  
VIN = 3.6V  
CIRCUIT OF FIGURE 1  
(8/8 LEDs)  
1µs/DIV  
3466 F04  
VIN = 3.6V  
4 LEDs, 20mA  
L = 15µH  
100µs/DIV  
3466 F05  
C = 0.47µF  
Figure 4. Output 1 Open-Circuit Waveforms  
Figure 5. Start-Up Waveforms  
3466f  
9
LT3466  
W U U  
U
APPLICATIO S I FOR ATIO  
DUTY CYCLE  
current that flows into the timing resistor is used to  
charge and discharge an internal oscillator capacitor. A  
graph for selecting the value of RT for a given operating  
frequency is shown in the Figure 6.  
The duty cycle for a step-up converter is given by:  
V
OUT + VD – V  
IN  
D =  
V
OUT + VD VCESAT  
OPERATING FREQUENCY SELECTION  
where:  
The choice of operating frequency is determined by sev-  
eral factors. There is a tradeoff between efficiency and  
component size. Higher switching frequency allows the  
use of smaller inductors albeit at the cost of increased  
switching losses and decreased efficiency.  
V
OUT = Output voltage  
VD = Schottky forward voltage drop  
VCESAT = Saturation voltage of the switch  
VIN = Input battery voltage  
Another consideration is the maximum duty cycle achiev-  
able. In certain applications, the converter needs to oper-  
ate at the maximum duty cycle in order to light up the  
maximum number of LEDs. The LT3466 has a fixed  
oscillator off-time and a variable on-time. As a result, the  
maximumdutycycleincreasesastheswitchingfrequency  
is decreased.  
The maximum duty cycle achievable for LT3466 is 96%  
(typ) when running at 1MHz switching frequency. It in-  
creases to 99% (typ) when run at 200kHz and drops to  
92%(typ)at2MHz.Alwaysensurethattheconverterisnot  
duty-cycle limited when powering the LEDs at a given  
switching frequency.  
The circuit of Figure 1 is operated with different values of  
timing resistor (RT). RT is chosen so as to run the  
converters at 800kHz (RT = 63.4k), 1.25MHz (RT = 39.1k)  
and 2MHz (RT = 20.5k). The efficiency comparison for  
different RT values is shown in Figure 7.  
SETTING THE SWITCHING FREQUENCY  
The LT3466 uses a constant frequency architecture that  
can be programmed over a 200KHz to 2MHz range with a  
single external timing resistor from the RT pin to ground.  
The nominal voltage on the RT pin is 0.54V, and the  
1000  
100  
10  
85  
CIRCUIT OF FIGURE 1  
R
= 63.4k  
T
V
= 3.6V  
IN  
80  
75  
8/8 LEDs  
R
T
= 39.1k  
70  
65  
60  
55  
50  
R
T
= 20.5k  
600  
1000  
1400  
1800  
200  
5
10  
LED CURRENT (mA)  
20  
0
15  
OSCILLATOR FREQUENCY (kHz)  
3466 F06  
3466 F07  
Figure 6. Timing Resistor (RT) Value  
Figure 7. Efficiency Comparison for Different RT Resistors  
3466f  
10  
LT3466  
W U U  
APPLICATIO S I FOR ATIO  
U
INDUCTOR SELECTION  
CAPACITOR SELECTION  
The choice of the inductor will depend on the selection of  
switching frequency of LT3466. The switching frequency  
canbeprogrammedfrom200kHzto2MHz.Higherswitch-  
ing frequency allows the use of smaller inductors albeit at  
the cost of increased switching losses.  
The small size of ceramic capacitors make them ideal for  
LT3466 applications. Use only X5R and X7R types be-  
cause they retain their capacitance over wider voltage and  
temperature ranges than other types such as Y5V or Z5U.  
A 1µF input capacitor is sufficient for most applications.  
Always use a capacitor with sufficient voltage rating.  
The inductor current ripple (IL), neglecting the drop  
across the Schottky diode and the switch, is given by :  
Table2showsalistofseveralceramiccapacitormanufac-  
turers. Consultthemanufacturersfordetailedinformation  
on their entire selection of ceramic parts.  
V
VOUT(MAX) – V  
IN(MIN)  
(
)
IN(MIN)  
IL =  
VOUT(MAX) • f L  
Table 2. Ceramic Capacitor Manufacturers  
Taiyo Yuden  
(408) 573-4150  
www.t-yuden.com  
where:  
L = Inductor  
f = Operating frequency  
AVX  
(803) 448-9411  
www.avxcorp.com  
Murata  
(714) 852-2001  
www.murata.com  
VIN(MIN) = Minimum input voltage  
VOUT(MAX) = Maximum output voltage  
INRUSH CURRENT  
The IL is typically set to 20% to 40% of the maximum  
inductor current.  
The LT3466 has built-in Schottky diodes. When supply  
voltage is applied to the VIN pin, an inrush current flows  
through the inductor and the Schottky diode and charges  
up the output voltage. Both the Schottky diodes in the  
LT3466 can sustain a maximum of 1A current. The selec-  
tion of inductor and capacitor value should ensure the  
peak of the inrush current to be below 1A.  
The inductor should have a saturation current rating  
greater than the peak inductor current required for the  
application. Also, ensure that the inductor has a low DCR  
(copper wire resistance) to minimize I2R power losses.  
Recommendedinductorvaluesrangefrom10µHto68µH.  
SeveralinductorsthatworkwellwiththeLT3466arelisted  
in Table 1. Consult each manufacturer for more detailed  
information and for their entire selection of related parts.  
For low DCR inductors, which is usually the case for this  
application, the peak inrush current can be simplified as  
follows:  
Table 1. Recommended Inductors  
MAX CURRENT  
V – 0.6  
L
(µH)  
DCR  
()  
RATING  
(mA)  
IN  
IPK  
=
PART  
VENDOR  
ωL  
LQH32CN100  
LQH32CN150  
LQH43CN330  
10  
15  
33  
0.44  
0.58  
1.00  
300  
300  
310  
Murata  
(814) 237-1431  
www.murata.com  
where:  
1
ω =  
ELL6RH330M  
ELL6SH680M  
33  
68  
0.38  
0.52  
600  
500  
Panasonic  
(714) 373-7939  
www.panasonic.com  
LCOUT  
Table 3 gives inrush peak current for some component  
selections.  
A914BYW330M  
A914BYW470M  
A920CY680M  
33  
47  
68  
0.45  
0.73  
0.40  
440  
360  
400  
Toko  
www.toko.com  
CDRH2D18150NC  
CDRH4D18-330  
CDRH5D18-680  
15  
33  
68  
0.22  
0.51  
0.84  
0.35A  
0.31A  
0.43A  
Sumida  
(847) 956-0666  
www.sumida.com  
3466f  
11  
LT3466  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 3. Inrush Peak Current  
Using a DC Voltage  
V
(V)  
L (µH)  
15  
C
(µF)  
I (A)  
P
IN  
OUT  
Forsomeapplications,thepreferredmethodofbrightness  
control is a variable DC voltage to adjust the LED current.  
TheCTRL1,CTRL2pinvoltagecanbemodulatedtosetthe  
dimming of the respective LED string. As the voltage on  
the CTRL1, CTRL2 pin increases from 0V to 1.6V, the LED  
current increases from 0 to ILED1,2. As the CTRL1, CTRL2  
pin voltage increases beyond 1.6V, it has no effect on the  
LED current.  
5
0.47  
0.78  
0.77  
0.95  
0.53  
0.84  
0.93  
5
5
33  
1.00  
2.2  
47  
5
68  
1.00  
0.47  
0.22  
9
47  
12  
33  
Typically peak inrush current will be less than the value  
calculated above. This is due to the fact that the DC  
resistance in the inductor provides some damping result-  
ing in a lower peak inrush current.  
The LED current can be set by:  
I
LED1,2 (200mV/RFB1,2), when VCTRL1,2 > 1.6V  
LED1,2 (VCTRL1,2/5 • RFB1,2), when VCTRL1,2 < 1V  
I
Feedback voltage variation versus control voltage is given  
in the Typical Performance Characteristics graphs.  
PROGRAMMING LED CURRENT  
The LED current of each LED string can set independently  
by the choice of resistors RFB1 and RFB2 respectively  
(Figure 2). The feedback reference is 200mV. In order to  
have accurate LED current, precision resistors are pre-  
ferred (1% is recommended).  
Using a Filtered PWM Signal  
A variable duty cycle PWM can be used to control the  
brightness of the LED string. The PWM signal is filtered  
(Figure 8) by an RC network and fed to the CTRL1, CTRL2  
pins.  
200mV  
RFB1  
RFB2  
=
=
ThecornerfrequencyofR1,C1shouldbemuchlowerthan  
the frequency of the PWM signal. R1 needs to be much  
smaller than the internal impedance in the CTRL pins,  
which is 100k.  
ILED1  
200mV  
ILED2  
Table 4. RFB1,2 Value Selection  
LT3466  
R1  
10k  
I
(mA)  
R
()  
LED1,2  
FB1,2  
PWM  
10kHz TYP  
CTRL1,2  
5
40.2  
C1  
1µF  
3466 F08  
10  
15  
20  
25  
20.0  
13.3  
10.0  
8.06  
Figure 8. Dimming Control Using a Filtered PWM Signal  
LOW INPUT VOLTAGE APPLICATIONS  
Most White LEDs are driven at maximum currents of  
15mA to 20mA.  
The LT3466 can be used in low input voltage applications.  
The input supply voltage to LT3466 must be 2.7V or  
higher. However, the inductors can be run off a lower  
battery voltage. This technique allows the LEDs to be  
powered off two alkaline cells. Most portable devices have  
a3.3Vlogicsupplyvoltagewhichcanbeusedtopowerthe  
LT3466. The LEDs can be driven straight from the battery,  
resulting in higher efficiency.  
DIMMING CONTROL  
Therearetwodifferenttypesofdimmingcontrolcircuits.  
The LED current in the two drivers can be set indepen-  
dently by modulating the CTRL1 and CTRL2 pins  
respectively.  
3466f  
12  
LT3466  
W U U  
APPLICATIO S I FOR ATIO  
U
Figure 9 shows four LEDs being run off two AA cells. The  
battery is connected to the inductors and the chip is  
powered off 3.3V logic supply voltage.  
BOARD LAYOUT CONSIDERATION  
As with all switching regulators, careful attention must be  
paid to the PCB board layout and component placement.  
To prevent electromagnetic interference (EMI) problems,  
proper layout of high frequency switching paths is essen-  
tial. Minimizethelengthandareaofalltracesconnectedto  
the switching node pins (SW1 and SW2). Keep the feed-  
back pins (FB1 and FB2) away from the switching nodes.  
3.3V  
2 AA CELLS  
1.8V to 3V  
0.1µF  
1µF  
15µH  
L1  
L2  
15µH  
SW1  
V
SW2  
IN  
V
V
OUT2  
OUT1  
The DFN package has an exposed paddle that must be  
connected to the system ground. The ground connection  
for the feedback resistors should be tied directly to the  
ground plane and not shared with any other component,  
except the RT resistor, ensuring a clean, noise-free con-  
nection. Recommended component placement is shown  
in the Figure 10.  
1µF  
1µF  
LT3466  
FB1  
FB2  
R
T
CTRL1  
CTRL2  
10Ω  
10Ω  
63.4k  
1%  
3466 F09  
Figure 9. 2 AA Cells to Four White LEDs  
HIGH INPUT VOLTAGE APPLICATIONS  
GND  
The input voltage to LT3466 can be as high as 24V. This  
gives it the flexibility of driving a large number of LEDs  
when being run off a higher voltage. The maximum num-  
ber of LEDs that can be driven is constrained by the  
converter output voltages being clamped at 42V.  
C
OUT1  
R
FB1  
C
IN  
CTRL1  
CTRL2  
10  
9
1
2
3
4
5
R
T
L1  
L2  
V
IN  
11  
8
The LT3466 can be used to power 20 White LEDs (10 per  
converter) at 20mA when running off two Li-Ion cells in  
series.  
7
6
R
FB2  
C
OUT2  
3466 F10  
GND  
Figure 10. Recommended Component Placement  
3466f  
13  
LT3466  
U
TYPICAL APPLICATIO S  
Li-Ion to 2/4 White LEDs  
Conversion Efficiency  
3V TO 5V  
85  
80  
75  
V
= 3.6V  
IN  
2/4 LEDs  
C
IN  
1µF  
L1  
15µH  
L2  
15µH  
70  
65  
60  
55  
50  
SW1  
V
SW2  
IN  
V
OUT1  
V
OUT2  
C
C
OUT2  
0.47µF  
OUT1  
1µF  
LT3466  
FB1  
FB2  
R
R
T
R
FB2  
10Ω  
CTRL1  
CTRL2  
FB1  
10Ω  
5
10  
20  
0
15  
LED CURRENT (mA)  
3466 TA01a  
38.3k  
1%  
3466 TA01b  
C
C
C
: TAIYO YUDEN JMK107BJ105  
IN  
: TAIYO YUDEN LMK212BJ105  
OUT1  
: TAIYO YUDEN EMK212BJ474  
OUT2  
L1, L2: MURATA LQH32CN150  
Li-Ion to 5/5 White LEDs  
Conversion Efficiency  
3V TO 5V  
85  
80  
75  
V
= 3.6V  
IN  
5/5 LEDs  
C
IN  
1µF  
L1  
15µH  
L2  
15µH  
70  
65  
60  
55  
50  
SW1  
V
SW2  
IN  
V
V
OUT2  
OUT1  
C
C
OUT1  
0.47µF  
OUT2  
0.47µF  
LT3466  
FB1  
FB2  
R
R
T
R
CTRL1  
CTRL2  
FB1  
FB2  
10Ω  
10Ω  
0
5
10  
15  
20  
LED CURRENT (mA)  
38.3k  
1%  
3466 TA02a  
3466 TA02b  
C
C
: TAIYO YUDEN JMK107BJ105  
IN  
OUT1 OUT2  
, C  
: TAIYO YUDEN GMK212BJ474  
L1, L2: MURATA LQH32CN150  
3466f  
14  
LT3466  
U
TYPICAL APPLICATIO S  
Li-Ion to 6/6 White LEDs  
Conversion Efficiency  
3V TO 5V  
85  
80  
75  
V
= 3.6V  
IN  
6/6 LEDs  
C
IN  
1µF  
L1  
33µH  
L2  
33µH  
70  
65  
60  
55  
50  
SW1  
V
SW2  
IN  
V
OUT1  
V
OUT2  
C
C
OUT2  
1µF  
OUT1  
1µF  
LT3466  
FB1  
FB2  
R
T
CTRL1  
CTRL2  
5
10  
20  
0
15  
R
R
FB2  
FB1  
10Ω  
10Ω  
LED CURRENT (mA)  
63.4k  
1%  
3466 TA03b  
3466 TA03a  
C
: TAIYO YUDEN JMK107BJ105  
IN  
OUT1 OUT2  
C
, C  
: TAIYO YUDEN GMK316BJ105  
L1, L2: TOKO A914BYW-330M  
Li-Ion to 7/7 White LEDs  
Conversion Efficiency  
3V TO 5V  
85  
80  
75  
V
= 3.6V  
IN  
7/7 LEDs  
C
IN  
1µF  
L1  
33µH  
L2  
33µH  
70  
65  
60  
55  
50  
SW1  
V
SW2  
IN  
V
OUT1  
V
OUT2  
C
C
OUT2  
1µF  
OUT1  
1µF  
LT3466  
FB1  
FB2  
R
T
CTRL1  
CTRL2  
5
10  
20  
0
15  
LED CURRENT (mA)  
63.4k  
1%  
R
R
FB2  
10Ω  
FB1  
3466 TA04b  
10Ω  
3466 TA04a  
C
: TAIYO YUDEN JMK107BJ105  
IN  
OUT1 OUT2  
C
, C  
: TAIYO YUDEN GMK316BJ105  
L1, L2: TOKO A914BYW-330M  
3466f  
15  
LT3466  
U
TYPICAL APPLICATIO S  
Li-Ion to 8/8 White LEDs  
3V TO 5V  
Conversion Efficiency  
85  
80  
75  
V
= 3.6V  
IN  
8/8 LEDs  
C
IN  
1µF  
L1  
47µH  
L2  
47µH  
70  
65  
60  
55  
50  
SW1  
V
SW2  
IN  
V
V
OUT2  
OUT1  
C
C
OUT1  
2.2µF  
OUT2  
2.2µF  
LT3466  
FB1  
FB2  
R
T
CTRL1  
CTRL2  
5
10  
20  
0
15  
LED CURRENT (mA)  
63.4k  
1%  
3466 TA05b  
R
R
FB2  
FB1  
10Ω  
10Ω  
C
C
: TAIYO YUDEN JMK107BJ105  
IN  
OUT1 OUT2  
L1, L2: TOKO A918CE-470M  
3466 TA05a  
, C  
: TAIYO YUDEN GMK325BJ225  
Li-Ion to 9/9 White LEDs  
Conversion Efficiency  
3V TO 5V  
90  
V
= 3.6V  
IN  
9/9 LEDs  
C
IN  
85  
80  
75  
70  
65  
60  
1µF  
L1  
68µH  
L2  
68µH  
SW1  
V
SW2  
IN  
V
V
OUT2  
OUT1  
C
OUT1  
1µF  
C
OUT2  
1µF  
LT3466  
FB1  
FB2  
R
T
CTRL1  
CTRL2  
4
8
0
12  
LED CURRENT (mA)  
147k  
1%  
3466 TA06b  
R
R
C
C
: TAIYO YUDEN JMK107BJ105  
FB1  
FB2  
IN  
OUT1 OUT2  
16.5Ω  
16.5Ω  
, C  
: TAIYO YUDEN UMK325BJ105  
L1, L2: TOKO A920CY-680M  
3466 TA06a  
3466f  
16  
LT3466  
U
TYPICAL APPLICATIO S  
Li-Ion to 10/10 White LEDs  
Conversion Efficiency  
3V TO 5V  
90  
85  
80  
75  
70  
65  
60  
V
= 3.6V  
IN  
10/10 LEDs  
C
IN  
1µF  
L1  
68µH  
L2  
68µH  
SW1  
V
IN  
SW2  
V
V
OUT2  
OUT1  
C
C
OUT2  
1µF  
OUT1  
1µF  
LT3466  
FB1  
FB2  
R
T
CTRL1  
CTRL2  
4
8
0
12  
LED CURRENT (mA)  
147k  
1%  
3466 TA07b  
R
R
FB2  
C
C
: TAIYO YUDEN JMK107BJ105  
IN  
OUT1 OUT2  
L1, L2: TOKO A920CY-680M  
FB1  
16.5Ω  
16.5Ω  
, C  
: TAIYO YUDEN UMK325BJ105  
3466 TA07a  
2 AA Cells to 2/2 White LEDs  
Conversion Efficiency  
3.3V  
75  
70  
65  
60  
55  
50  
V
= 2.4V  
IN  
2/2 LEDs  
C
IN1  
V
CC  
0.1µF  
1.8V TO 3V  
C
IN2  
L1  
15µH  
L2  
1µF  
15µH  
SW1  
V
SW2  
IN  
V
V
OUT2  
OUT1  
C
C
OUT2  
1µF  
OUT1  
1µF  
LT3466  
FB1  
FB2  
R
R
FB2  
10Ω  
FB1  
R
T
CTRL1  
CTRL2  
10Ω  
3466 TA08a  
63.4k  
1%  
0
5
10  
15  
20  
LED CURRENT (mA)  
C
C
C
: TAIYO YUDEN EMK107BJ104  
: TAIYO YUDEN JMK107BJ105  
OUT1 OUT2  
L1, L2: MURATA LQH32CN150  
IN1  
IN2  
3466 TA08b  
, C  
: TAIYO YUDEN GMK316BJ105  
3466f  
17  
LT3466  
U
TYPICAL APPLICATIO S  
2 Li-Ion Cells to 10/10 White LEDs  
Conversion Efficiency  
6V TO 9V  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 7V  
IN  
10/10 LEDs  
C
IN  
1µF  
L1  
L2  
47µH  
47µH  
SW1  
V
SW2  
IN  
V
V
OUT2  
OUT1  
C
C
OUT1  
0.47µF  
OUT2  
0.47µF  
LT3466  
FB1  
FB2  
R
T
CTRL1  
CTRL2  
10  
0
5
15  
20  
LED CURRENT (mA)  
63.4k  
1%  
3466 TA09b  
R
R
FB2  
C
C
: TAIYO YUDEN LMK212BJ105  
FB1  
IN  
OUT1 OUT2  
10Ω  
10Ω  
, C  
: TAIYO YUDEN UMK316BJ474  
L1, L2: TOKO A914BYW-470M  
3466 TA09a  
3466f  
18  
LT3466  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
R = 0.115  
TYP  
6
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.38 ± 0.10  
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 5)  
(DD10) DFN 0403  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3466f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT3466  
U
TYPICAL APPLICATIO  
Conversion Efficiency  
12V to 25/25 White LEDs  
V
IN  
12V  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 12V  
IN  
25/25 LEDs  
C
IN  
1µF  
C2  
C7  
0.1µF  
0.1µF  
D5  
D6  
D1  
D2  
V
V
LED1  
LED2  
L1  
L2  
33µH  
33µH  
C9  
C4  
0.1µF  
C8  
0.1µF  
C3  
0.1µF  
0.1µF  
D3  
D4  
D7  
D8  
25  
LEDs  
25  
LEDs  
C5  
0.1µF  
C10  
0.1µF  
SW1  
V
SW2  
IN  
V
V
OUT2  
OUT1  
C11  
0.22µF  
C6  
0.22µF  
LT3466  
0
5
10  
15  
FB1  
CTRL1  
FB2  
LED CURRENT (mA)  
R
FB2  
13.3Ω  
R
FB1  
13.3Ω  
3466 TA10b  
R
T
CTRL2  
3466 TA10a  
C
: TAIYO YUDEN EMK316BJ105  
IN  
20.5k  
1%  
C3-C5, C8-C10: TAIYO YUDEN UMK212BJ104  
C2, C7: TAIYO YUDEN HMK316BJ104  
C6, C11: TAIYO YUDEN UMK316BJ224  
D1-D8: PHILIPS BAV99  
L1, L2: MURATA LQH32CN330  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Up to 16 White LEDs, V : 1.6V to 18V, V  
LT1618  
Constant Current, Constant Voltage 1.24MHz, High Efficiency  
Boost Regulator  
= 34V,  
OUT(MAX)  
IN  
I = 1.8mA, I < 1µA, MS Package  
Q
SD  
LT1932  
Constant Current, 1.2MHz, High Efficiency White LED Boost  
Regulator  
Up to 8 White LEDs, V : 1V to 10V, V  
= 34V,  
IN  
OUT(MAX)  
I = 1.2mA, I < 1µA, ThinSOTTM Package  
Q
SD  
LT1937  
Constant Current, 1.2MHz, High Efficiency White LED Boost  
Regulator  
Up to 4 White LEDs, V : 2.5V to 10V, V  
= 34V,  
IN  
OUT(MAX)  
I = 1.9mA, I < 1µA, ThinSOT, SC70 Packages  
Q
SD  
LTC3200  
Low Noise, 2MHz, Regulated Charge Pump White LED Driver  
Low Noise, 2MHz, Regulated Charge Pump White LED Driver  
Low Noise, 1.7MHz, Regulated Charge Pump White LED Driver  
Low Noise, 1.5MHz, Regulated Charge Pump White LED Driver  
High Efficiency, Multidisplay LED Controller  
Up to 6 White LEDs, V : 2.7V to 4.5V, I = 8mA, I < 1µA,  
IN Q SD  
MS Package  
LTC3200-5  
LTC3201  
Up to 6 White LEDs, V : 2.7V to 4.5V, I = 8mA, I < 1µA,  
IN  
Q
SD  
ThinSOT Package  
Up to 6 White LEDs, V : 2.7V to 4.5V, I = 6.5mA, I < 1µA,  
IN  
Q
SD  
MS Package  
LTC3202  
Up to 8 White LEDs, V : 2.7V to 4.5V, I = 5mA, I < 1µA,  
IN  
Q
SD  
MS Package  
LTC3205  
Up to 4 (Main), 2 (Sub) and RGB, V : 2.8V to 4.5V,  
IN  
I = 50µA, I < 1µA, QFN-24 Package  
Q
SD  
LT3465/LT3465A  
Constant Current, 1.2MHz/2.7MHz, High Efficiency White LED  
Boost Regulator with Integrated Schottky Diode  
Up to Six White LEDs, V : 2.7V to 16V, V  
= 34V,  
OUT(MAX)  
IN  
I = 1.9mA, I < 1µA, ThinSOT Package  
Q
SD  
ThinSOT is a trademark of Linear Technology Corporation.  
3466f  
LT/TP 0104 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT3466EDD#PBF

LT3466 - Dual Full Function White LED Step-Up Converter with Built-In Schottky Diodes; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3466EDD#TR

LT3466 - Dual Full Function White LED Step-Up Converter with Built-In Schottky Diodes; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3466EDD#TRPBF

暂无描述
Linear

LT3466EDD-1

White LED Driver and Boost Converter in 3mm × 3mm DFN Package
Linear

LT3466EDD-1#PBF

LT3466-1 - White LED Driver and Boost Converter in 3mm x 3mm DFN Package; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3466EDD-1#TR

暂无描述
Linear

LT3466EFE

LT3466 - Dual Full Function White LED Step-Up Converter with Built-In Schottky Diodes; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3466EFE#PBF

LT3466 - Dual Full Function White LED Step-Up Converter with Built-In Schottky Diodes; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467

1A Low Noise High Current LED Charge Pump with Independent Torch/Flash Current Control
Linear

LT3467A

1A Low Noise High Current LED Charge Pump with Independent Torch/Flash Current Control
Linear

LT3467AEDDB

LT3467A - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467AEDDB#PBF

暂无描述
Linear