LT3467EDDB#TRM [Linear]

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C;
LT3467EDDB#TRM
型号: LT3467EDDB#TRM
厂家: Linear    Linear
描述:

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C

转换器 软启动
文件: 总16页 (文件大小:262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3467/LT3467A  
1.1A Step-Up DC/DC  
Converter with  
Integrated Soft-Start  
FEATURES  
DESCRIPTION  
The LT®3467/LT3467A switching regulators combine a  
42V, 1.1A switch with a soft-start function. Pin compatible  
n
1.3MHz Switching Frequency (LT3467)  
n
2.1MHz Switching Frequency (LT3467A)  
n
Low V  
Switch: 330mV at 1.1A  
with the LT1930, its low V  
bipolar switch enables the  
CESAT  
CESAT  
n
n
n
n
n
n
n
n
n
n
n
n
High Output Voltage: Up to 40V  
device to deliver high current outputs in a small footprint.  
The LT3467 switches at 1.3MHz, allowing the use of tiny,  
low cost and low height inductors and capacitors. The  
LT3467A switches at 2.1MHz, allowing the use of even  
smaller components. High inrush current at start-up is  
eliminated using the programmable soft-start function.  
A single external capacitor sets the current ramp rate. A  
constantfrequencycurrentmodePWMarchitectureresults  
in low, predictable output noise that is easy to filter.  
Wide Input Range: 2.4V to 16V  
Dedicated Soft-Start Pin  
5V at 540mA from 3.3V Input (LT3467)  
5V at 430mA from 3.3V Input (LT3467A)  
12V at 270mA from 5V Input (LT3467)  
12V at 260mA from 5V Input (LT3467A)  
Uses Small Surface Mount Components  
Low Shutdown Current: <1μA  
Pin-for-Pin Compatible with the LT1930 and LT1613  
The high voltage switch on the LT3467/LT3467A is rated  
at 42V, making the devices ideal for boost converters up  
to 40V as well as SEPIC and flyback designs. The LT3467  
can generate 5V at up to 540mA from a 3.3V supply or  
5V at 450mA from four alkaline cells in a SEPIC design.  
The LT3467A can generate 5V at up to 430mA from a 3.3V  
supply or 15V at 135mA from a 3.3V supply. The LT3467/  
LT3467Aareavailableinalowprofile(1mm)6-leadSOT-23  
package and tiny 3mm × 2mm DFN package.  
Low Profile (1mm) ThinSOT Package  
Low Profile (0.75mm) 8-Lead (3mm × 2mm)  
DFN Package  
APPLICATIONS  
n
Digital Cameras  
n
White LED Power Supplies  
n
Cellular Phones  
n
Medical Diagnostic Equipment  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
Local 5V or 12V Supplies  
n
TFT-LCD Bias Supplies  
n
xDSL Power Supplies  
TYPICAL APPLICATION  
Efficiency  
95  
Single Li-Ion Cell to 5V Boost Converter  
90  
V
= 4.2V  
2.7μH  
IN  
V
85  
80  
75  
70  
65  
60  
55  
50  
IN  
V
OUT  
5V  
2.6V TO  
4.2V  
V
= 3.3V  
IN  
V
= 2.6V  
765mA AT V = 4.2V,  
IN  
IN  
IN  
IN  
4.7μF  
402k  
133k  
540mA AT V = 3.3V,  
V
SW  
IN  
360mA AT V = 2.6V  
SHDN  
OFF ON  
3.3pF  
LT3467  
SS  
FB  
GND  
15μF  
0.047μF  
3467 TA01a  
800  
900  
100  
300 400 500  
700  
200  
600  
I
(mA)  
OUT  
3467 TA01b  
3467afd  
1
LT3467/LT3467A  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
V Voltage................................................................16V  
Operating Temperature Range (Note 2)  
IN  
SW Voltage ................................................ –0.4V to 42V  
FB Voltage................................................................2.5V  
Current Into FB Pin .............................................. 1mA  
SHDN Voltage ......................................................... 16V  
Maximum Junction Temperature ......................... 125°C  
E Grade................................................ –40°C to 85°C  
I Grade............................................... –40°C to 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
TSOT................................................................. 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
FB  
GND  
SW  
1
2
3
4
8
7
6
5
SHDN  
SS  
SW 1  
GND 2  
FB 3  
6 V  
IN  
9
5 SS  
VIN  
4 SHDN  
SW  
GND  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
DDB PACKAGE  
8-LEAD (3mm s 2mm) PLASTIC DFN  
T
= 125°C, θ = 165°C/W, θ = 102°C/W  
JA JC  
JMAX  
T
= 125°C, θ = 80°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3467EDDB#PBF  
LT3467IDDB#PBF  
LT3467AEDDB#PBF  
LT3467AIDDB#PBF  
LT3467IS6#PBF  
LT3467ES6#PBF  
LT3467AES6#PBF  
LT3467AIS6#PBF  
LEAD BASED FINISH  
LT3467EDDB  
TAPE AND REEL  
PART MARKING*  
LCPX  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
LT3467EDDB#TRPBF  
LT3467IDDB#TRPBF  
LT3467AEDDB#TRPBF  
LT3467AIDDB#TRPBF  
LT3467IS6#TRPBF  
LT3467ES6#TRPBF  
LT3467AES6#TRPBF  
LT3467AIS6#TRPBF  
TAPE AND REEL  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
6-Lead Plastic TSOT-23  
LCPX  
–40°C to 125°C  
–40°C to 85°C  
LCKD  
LCKD  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 85°C  
LTACH  
LTACH  
6-Lead Plastic TSOT-23  
LTBCC  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
LTBCC  
6-Lead Plastic TSOT-23  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 85°C  
PART MARKING*  
LCPX  
PACKAGE DESCRIPTION  
LT3467EDDB#TR  
LT3467IDDB#TR  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
8-Lead (3mm × 2mm) Plastic DFN  
6-Lead Plastic TSOT-23  
LT3467IDDB  
LCPX  
–40°C to 125°C  
–40°C to 85°C  
LT3467AEDDB  
LT3467AIDDB  
LT3467AEDDB#TR  
LT3467AIDDB#TR  
LT3467IS6#TR  
LCKD  
LCKD  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 85°C  
LT3467IS6  
LTACH  
LT3467ES6  
LT3467ES6#TR  
LTACH  
6-Lead Plastic TSOT-23  
LT3467AES67  
LT3467AES6#TR  
LTBCC  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
LT3467AIS67  
LT3467AIS67#TR  
LTBCC  
6-Lead Plastic TSOT-23  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3467afd  
2
LT3467/LT3467A  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3V, VSHDN = VIN unless otherwise noted. Specifications are for both  
the LT3467 and LT3467A unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2.4  
UNITS  
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage  
2.2  
V
V
16  
1.230  
1.220  
1.255  
1.270  
1.280  
V
V
l
l
FB Pin Bias Current  
(Note 3)  
10  
50  
2
nA  
mA  
μA  
Quiescent Current  
V
SHDN  
V
SHDN  
= 2.4V, Not Switching  
1.2  
Quiescent Current in Shutdown  
Reference Line Regulation  
Switching Frequency  
= 0.5V, V = 3V  
0.01  
0.01  
1
IN  
2.6V ≤ V ≤ 16V  
0.05  
%/V  
IN  
LT3467  
LT3467A  
LT3467A  
1
1.6  
1.6  
1.3  
2.1  
1.6  
2.7  
MHz  
MHz  
MHz  
l
Maximum Duty Cycle  
LT3467  
LT3467  
LT3467A  
LT3467A  
88  
87  
82  
78  
94  
88  
%
%
%
%
l
l
Minimum Duty Cycle  
Switch Current Limit  
10  
%
At Minimum Duty Cycle  
At Maximum Duty Cycle (Note 4)  
1.4  
0.8  
1.8  
1.2  
2.5  
1.9  
A
A
Switch V  
I
= 1.1A  
= 5V  
330  
500  
1
mV  
μA  
V
CESAT  
SW  
Switch Leakage Current  
SHDN Input Voltage High  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
V
0.01  
SW  
2.4  
0.5  
V
V
V
= 3V  
= 0V  
16  
0
32  
0.1  
μA  
μA  
SHDN  
SHDN  
SS Charging Current  
V
= 0.5V  
2
3
4.5  
μA  
SS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Current flows out of the pin.  
Note 4: See Typical Performance Characteristics for guaranteed current  
limit vs duty cycle.  
Note 2: The LT3467E/LT3467AE are guaranteed to meet performance  
specifications from 0°C to 85°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls. The LT3467IS6 is guaranteed  
and tested over the full –40°C to 125°C operating temperature range.  
3467afd  
3
LT3467/LT3467A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Quiescent Current vs Temperature  
FB Pin Voltage vs Temperature  
SHDN Current vs SHDN Voltage  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
140  
120  
100  
80  
T
= 25°C  
A
60  
40  
20  
0
–25 –10  
5
20 35 50 65 80  
TEMPERATURE (°C)  
125  
95 110  
–25 –10  
5
20 35 50 65 80  
TEMPERATURE (°C)  
125  
95 110  
–40  
–40  
0
2
4
6
12 14 16 18  
8
10  
V
SHDN  
(V)  
3467 G03  
3467 G02  
3467 G01  
Switch Saturation Voltage vs  
Switch Current  
Oscillator Frequency vs  
Temperature  
Current Limit vs Duty Cycle  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
T
= 25°C  
A
LT3467A  
TYPICAL  
T
A
= 25°C  
T
A
= 85°C  
V
CESAT  
LT3467  
GUARANTEED  
100mV/DIV  
T
A
= –40°C  
3467 G05  
–25  
0
25  
50  
75  
10  
50  
70 80  
–50  
100  
20 30 40  
60  
90  
SW CURRENT 200mA/DIV  
DC (%)  
TEMPERATURE (°C)  
3467 G04  
3467 G06  
Soft-Start Current vs Soft-Start  
Voltage  
Peak Switch Current vs Soft-Start  
Voltage  
Start-Up Waveform  
(Figure 2 Circuit)  
6
5
4
3
2
1
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
T = 25°C  
A
A
V
SHDN  
2V/DIV  
V
OUT  
1V/DIV  
I
SUPPLY  
0.5A/DIV  
3467 G09  
0
50 100 150 200 250 300 350 400 450 500  
(mV)  
0
50 100 150 200 250 300 350 400 450 500  
(mV)  
0.5ms/DIV  
V
V
SS  
SS  
3467 G07  
3467 G08  
3467afd  
4
LT3467/LT3467A  
PIN FUNCTIONS (DFN/TSOT)  
FB(Pin1/Pin3):FeedbackPin.Referencevoltageis1.255V.  
V
(Pin 6/Pin 6): Input Supply Pin. Must be locally  
IN  
Connect resistive divider tap here. Minimize trace area at  
bypassed.  
FB. Set V  
= 1.255V(1 + R1/R2).  
OUT  
SS(Pin7/Pin5):Soft-StartPin.Placeasoft-startcapacitor  
here. Upon start-up, 4μA of current charges the capacitor  
to1.255V. Usealargercapacitorforslowerstart-up. Leave  
floating if not in use.  
GND (Pins 2, 5, 9/Pin 2): Ground. Tie directly to local  
ground plane.  
SW (Pins 3, 4/Pin 1): Switch Pin. (Collector of internal  
NPN power switch) Connect inductor/diode here and  
minimize the metal trace area connected to this pin to  
minimize EMI.  
SHDN (Pin 8/Pin 4): Shutdown Pin. Tie to 2.4V or more  
to enable device. Ground to shut down.  
BLOCK DIAGRAM  
250k  
SS  
SW  
1.255V  
REFERENCE  
V
IN  
+
COMPARATOR  
A1  
DRIVER  
Q1  
A2  
R
Q
R
C
S
+
V
OUT  
C
C
+
R1 (EXTERNAL)  
0.01Ω  
3
FB  
R2 (EXTERNAL)  
RAMP  
GENERATOR  
SHUTDOWN  
SHDN  
FB  
GND  
3467 F01  
1.3MHz  
OSCILLATOR*  
*2.1MHz FOR LT3467A  
Figure 1. Block Diagram  
3467afd  
5
LT3467/LT3467A  
OPERATION  
TheLT3467usesaconstantfrequency,current-modecon-  
trol scheme to provide excellent line and load regulation.  
Refer to the Block Diagram. At the start of each oscillator  
cycle, the SR latch is set which turns on the power switch  
Q1. A voltage proportional to the switch current is added  
to a stabilizing ramp and the resulting sum is fed into the  
positive terminal of the PWM comparator A2. When this  
voltage exceeds the level at the negative input of A2, the  
SR latch is reset, turning off the power switch. The level  
at the negative input of A2 is set by the error amplifier A1,  
andissimplyanamplifiedversionofthedifferencebetween  
the feedback voltage and the reference voltage of 1.255V.  
In this manner, the error amplifier sets the correct peak  
current level to keep the output in regulation. If the error  
amplifier’s output increases, more current is delivered to  
the output. Similarly, if the error decreases, less current  
is delivered. The soft-start feature of the LT3467 allows  
for clean start-up conditions by limiting the rate of voltage  
rise at the output of comparator A1 which, in turn, limits  
the peak switch current. The soft-start pin is connected  
to a reference voltage of 1.255V through a 250k resistor,  
providing 4μA of current to charge the soft-start capacitor.  
Typical values for the soft-start capacitor range from 10nF  
to 200nF. The LT3467 has a current limit circuit not shown  
in the Block Diagram. The switch current is constantly  
monitoredandnotallowedtoexceedthemaximumswitch  
current (typically 1.4A). If the switch current reaches  
this value, the SR latch is reset regardless of the state  
of comparator A2. This current limit protects the power  
switch as well as the external components connected to  
the LT3467.  
TheBlockDiagramfortheLT3467A(notshown)isidentical  
except that the oscillator frequency is 2.1MHz.  
APPLICATIONS INFORMATION  
Duty Cycle  
Switching Frequency and Inductor Selection  
The typical maximum duty cycle of the LT3467 is 94%  
(88% for the LT3467A). The duty cycle for a given ap-  
plication is given by:  
TheLT3467switchesat1.3MHz, allowingforsmallvalued  
inductors to be used. 4.7μH or 10μH will usually suffice.  
TheLT3467Aswitchesat2.1MHz,allowingforevensmaller  
valued inductors to be used. 0.9μH to 6.8μH will usually  
suffice. Choose an inductor that can handle at least 1.2A  
without saturating, and ensure that the inductor has a  
| VOUT | + | VD | – | V |  
| VOUT | + | VD | – | VCESAT  
IN  
DC =  
|
2
low DCR (copper-wire resistance) to minimize I R power  
where V is the diode forward voltage drop and V  
is  
CESAT  
D
losses.Notethatinsomeapplications,thecurrenthandling  
requirements of the inductor can be lower, such as in the  
SEPIC topology where each inductor only carries one-half  
ofthetotalswitchcurrent.Forbetterefficiency,usesimilar  
valuedinductorswithalargervolume.Manydifferentsizes  
and shapes are available from various manufacturers.  
Choose a core material that has low losses at 1.3MHz,  
(2.1MHz for the LT3467A) such as ferrite core.  
in the worst case 330mV (at 1.1A)  
TheLT3467andLT3467Acanbeusedathigherdutycycles,  
but must be operated in the discontinuous conduction  
mode so that the actual duty cycle is reduced.  
Setting Output Voltage  
R1 and R2 determine the output voltage.  
V
= 1.255V (1+ R1/R2)  
OUT  
3467afd  
6
LT3467/LT3467A  
APPLICATIONS INFORMATION  
L1  
2.7μH  
D1  
V
OUT  
V
IN  
5V  
765mA AT V = 4.2V,  
2.6V TO 4.2V  
C1  
IN  
R1  
402k  
4.7μF  
540mA AT V = 3.3V,  
IN  
V
IN  
SW  
360mA AT V = 2.6V  
IN  
C4  
3.3pF  
SHDN  
OFF ON  
LT3467  
SS  
FB  
C2  
R2  
133k  
C3  
GND  
15μF  
0.047μF  
C1, C2: X5R OR X7R, 6.3V  
3467 TA05a  
D1: ON SEMICONDUCTOR MBRM120  
L1: SUMIDA CR43-2R7  
Figure 2. Single Li-Ion Cell to 5V Boost Converter (Same as 1st Page Application)  
Supply Current of Figure 2 During Start-Up  
Table 1. Inductor Manufacturers  
Without Soft-Start Capacitor  
Sumida  
TDK  
(847) 956-0666  
(847) 803-6100  
(714) 852-2001  
(408) 432-8331  
www.sumida.com  
www.tdk.com  
Murata  
FDK  
www.murata.com  
www.fdk.co.jp  
V
OUT  
1V/DIV  
Soft-Start  
The soft-start feature provides a way to limit the inrush  
current drawn from the supply upon start-up. An internal  
250k resistor charges the external soft-start capacitor  
to 1.255V. After the capacitor reaches 0.15V the rate of  
voltage rise at the output of the comparator A1 tracks the  
rate of voltage rise of the soft-start capacitor. This limits  
the inrush current drawn from the supply during start-  
up. The soft-start feature plays another important role in  
applications where the switch will reach levels of 30V or  
higher. During start-up, excessively high switch current,  
together with the presence of high voltage can overstress  
the switch. A properly used soft-start feature will keep the  
switchcurrentfromovershooting.Thispracticewillgreatly  
improve the robustness of such designs. Once the part is  
shut down, the soft-start capacitor is quickly discharged  
to 0.4V, then slowly discharged through the 250k resistor  
to ground. If the part is to be shut down and re-enabled in  
a short period of time while soft-start is used, you must  
ensure that the soft-start capacitor has enough time to  
discharge before re-enabling the part. Typical values of  
the soft-start capacitor range from 10nF to 200nF.  
I
SUPPLY  
0.5A/DIV  
3467 AI01  
0.1ms/DIV  
Supply Current of Figure 2 During Start-Up  
with a 47nF Soft-Start Capacitor  
V
OUT  
1V/DIV  
I
SUPPLY  
0.5A/DIV  
3467 AI02  
0.5ms/DIV  
3467afd  
7
LT3467/LT3467A  
APPLICATIONS INFORMATION  
Capacitor Selection  
Aphaseleadzerocanbeintentionallyintroducedbyplacing  
a capacitor (C4) in parallel with the resistor (R1) between  
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multi-layer ceramic capacitors are an excellent choice,  
as they have extremely low ESR and are available in very  
small packages. X5R dielectrics are preferred, followed  
by X7R, as these materials retain the capacitance over  
wide voltage and temperature ranges. A 4.7μF to 15μF  
output capacitor is sufficient for most applications, but  
systems with very low output currents may need only a  
1μF or 2.2μF output capacitor. Solid tantalum or OS-CON  
capacitors can be used, but they will occupy more board  
area than a ceramic and will have a higher ESR. Always  
use a capacitor with a sufficient voltage rating.  
V
and V as shown in Figure 2. The frequency of the  
OUT  
FB  
zero is determined by the following equation.  
1
ƒZ =  
2π R1C4  
By choosing the appropriate values for the resistor and  
capacitor, the zero frequency can be designed to improve  
the phase margin of the overall converter. The typical  
target value for the zero frequency is between 35kHz  
to 55kHz. Figure 3 shows the transient response of the  
step-up converter from Figure 8 without the phase lead  
capacitor C4. Although adequate for many applications,  
phase margin is not ideal as evidenced by 2-3 “bumps”  
in both the output voltage and inductor current. A 22pF  
capacitor for C4 results in ideal phase margin, which is  
revealed in Figure 4 as a more damped response and less  
overshoot.  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT3467. A 1μF to 4.7μF input capacitor  
is sufficient for most applications. Table 2 shows a list  
of several ceramic capacitor manufacturers. Consult the  
manufacturers for detailed information on their entire  
selection of ceramic parts.  
Diode Selection  
A Schottky diode is recommendedforusewith the LT3467  
and the LT3467A. The Philips PMEG 2005 is a very good  
choice. Where the switch voltage exceeds 20V, use the  
PMEG 3005 (a 30V diode). Where the switch voltage  
exceeds 30V, use the PMEG 4005 (a 40V diode). These  
diodes are rated to handle an average forward current of  
0.5A. In applications where the average forward current  
of the diode exceeds 0.5A, a Philips PMEG 2010 rated at  
1A is recommended. For higher efficiency, use a diode  
with better thermal characteristics such as the On Semi-  
conductor MBRM120 (a 20V diode) or the MBRM140 (a  
40V diode).  
Table 2. Ceramic Capacitor Manufacturers  
Taiyo Yuden  
AVX  
(408) 573-4150  
(803) 448-9411  
(714) 852-2001  
www.t-yuden.com  
www.avxcorp.com  
www.murata.com  
Murata  
The decision to use either low ESR (ceramic) capacitors  
or the higher ESR (tantalum or OS-CON) capacitors can  
affect the stability of the overall system. The ESR of any  
capacitor, along with the capacitance itself, contributes  
a zero to the system. For the tantalum and OS-CON ca-  
pacitors, this zero is located at a lower frequency due to  
the higher value of the ESR, while the zero of a ceramic  
capacitor is at a much higher frequency and can generally  
be ignored.  
3467afd  
8
LT3467/LT3467A  
APPLICATIONS INFORMATION  
LOAD CURRENT  
100mA/DIV  
AC COUPLED  
Layout Hints  
ThehighspeedoperationoftheLT3467/LT3467Ademands  
careful attention to board layout. You will not get adver-  
tised performance with careless layout. Figure 5a shows  
the recommended component placement for the ThinSOT  
package. Figure 5b shows the recommended component  
placement for the DFN package. Note the vias under the  
Exposed Pad. These should connect to a local ground  
plane for better thermal performance.  
V
OUT  
200mV/DIV  
AC COUPLED  
I
L1  
5A/DIV  
AC COUPLED  
3467 F03  
20μs/DIV  
Figure 3. Transient Response of Figure 8s Step-Up  
Converter without Phase Lead Capacitor  
L1  
D1  
C1  
V
IN  
V
OUT  
LOAD CURRENT  
C2  
1
2
3
6
5
4
100mA/DIV  
C
SS  
AC COUPLED  
SS  
GND  
SHDN  
V
OUT  
FB  
200mV/DIV  
R2  
R1  
AC COUPLED  
I
L1  
3467 F05a  
5A/DIV  
C3  
V
OUT  
AC COUPLED  
3467 F04  
20μs/DIV  
Figure 5a. Suggested Layout—ThinSOT  
Figure 4. Transient Response of Figure 8s Step-Up  
Converter with a 22pF Phase Lead Capacitor  
V
OUT  
C3  
R1  
Setting Output Voltage  
R2  
To set the output voltage, select the values of R1 and R2  
(see Figure 2) according to the following equation.  
SHDN  
FB  
1
2
3
4
8
7
6
5
GND  
C
SS  
VOUT  
R1= R2  
– 1  
C2  
1.255V  
V
OUT  
V
IN  
D1  
A good value for R2 is 13.3k which sets the current in the  
resistor divider chain to 1.255V/13.3k = 94μA.  
C1  
L1  
3467 F05b  
Figure 5b. Suggested Layout—DFN  
3467afd  
9
LT3467/LT3467A  
APPLICATIONS INFORMATION  
Compensation—Theory  
From Figure 6, the DC gain, poles and zeroes can be  
calculated as follows:  
Like all other current mode switching regulators, the  
LT3467/LT3467A needs to be compensated for stable  
and efficient operation. Two feedback loops are used in  
the LT3467/LT3467A: a fast current loop which does not  
require compensation, and a slower voltage loop which  
does. Standard Bode plot analysis can be used to under-  
stand and adjust the voltage feedback loop.  
2
Output Pole: P1=  
2 • π RL COUT  
1
Error Amp Pole: P2=  
2 • π RO CC  
1
Error Amp Zero: Z1=  
2 • π RC CC  
As with any feedback loop, identifying the gain and phase  
contribution of the various elements in the loop is critical.  
Figure 6 shows the key equivalent elements of a boost  
converter. Because of the fast current control loop, the  
power stage of the IC, inductor and diode have been re-  
1.255  
1
2
DC GAIN: A=  
• V • gma RO • gmp RL •  
IN  
2
VOUT  
1
ESR Zero: Z2 =  
2 • π RESR COUT  
placed by the equivalent transconductance amplifier gmp  
.
gmp acts as a current source where the output current is  
proportional to the VC voltage. Note that the maximum  
output current of gmp is finite due to the current limit  
in the IC.  
V
2 RL  
IN  
RHP Zero: Z3=  
2 • π • VOUT2 L  
fS  
3
High Frequency Pole: P3>  
1
Phase Lead Zero : Z4 =  
g
mp  
V
OUT  
2 • π R1CPL  
+
C
PL  
R
R
L
ESR  
1
Phase LeadPole:P4 =  
C
OUT  
1.255V  
REFERENCE  
R1R2  
R1+R2  
+
2 • π CPL  
V
C
g
ma  
R1  
R2  
R
C
R
O
The current mode zero is a right-half plane zero which can  
be an issue in feedback control design, but is manageable  
with proper external component selection.  
C
C
3467 F06  
C : COMPENSATION CAPACITOR  
C
OUT  
PL  
ma  
mp  
C
C
g
g
: OUTPUT CAPACITOR  
: PHASE LEAD CAPACITOR  
: TRANSCONDUCTANCE AMPLIFIER INSIDE IC  
: POWER STAGE TRANSCONDUCTANCE AMPLIFIER  
R : COMPENSATION RESISTOR  
C
R : OUTPUT RESISTANCE DEFINED AS V  
DIVIDED BY I  
LOAD(MAX)  
L
OUT  
R : OUTPUT RESISTANCE OF g  
O
ma  
R1, R2: FEEDBACK RESISTOR DIVIDER NETWORK  
: OUTPUT CAPACITOR ESR  
R
ESR  
Figure 6. Boost Converter Equivalent Model  
3467afd  
10  
LT3467/LT3467A  
APPLICATIONS INFORMATION  
Using the circuit of Figure 2 as an example, the following  
table shows the parameters used to generate the Bode  
plot shown in Figure 7.  
Table 3. Bode Plot Parameters  
PARAMETER  
VALUE  
10.4  
15  
UNITS  
Ω
COMMENT  
R
L
Application Specific  
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Adjustable  
C
μF  
OUT  
50  
40  
0
R
10  
mΩ  
MΩ  
pF  
ESR  
–45  
R
0.4  
60  
30  
–90  
O
C
C
20  
–135  
–180  
–225  
–270  
–315  
–360  
–405  
–450  
10  
C
3.3  
100  
402  
133  
5
pF  
PL  
0
R
kΩ  
kΩ  
kΩ  
V
Not Adjustable  
Adjustable  
C
–10  
–20  
–30  
–40  
–50  
R1  
R2  
Adjustable  
V
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Application Specific  
Not Adjustable  
OUT  
GAIN  
PHASE  
V
3.3  
35  
V
IN  
100  
1k  
10k  
100k  
1M  
g
g
μmho  
mho  
μH  
ma  
FREQUENCY (Hz)  
7.5  
2.7  
1.3*  
mp  
3467 F07  
L
Figure 7. Bode Plot of 3.3V to 5V Application  
f
MHz  
S
*2.1MHz for LT3467A  
From Figure 7, the phase is –138° when the gain reaches  
0dB giving a phase margin of 42°. This is more than  
adequate. The crossover frequency is 37kHz.  
TYPICAL APPLICATIONS  
Lithium-Ion to 6V Step-Up DC/DC Converter  
Li-Ion to 6V  
95  
L1  
D1  
2.2μH  
V
V
IN  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 4.2V  
OUT  
6V  
IN  
2.7V TO 4.2V  
R1  
275mA AT V = 2.7V  
V
IN  
= 3.8V  
IN  
501k  
V
SW  
490mA AT V = 3.8V  
IN  
IN  
V
IN  
= 2.7V  
590mA AT V = 4.2V  
IN  
C1  
C3  
1.8pF  
SHDN  
SHDN  
LT3467  
2.2μF  
SS  
FB  
C2  
15μF  
C4  
0.047μF  
R2  
133k  
GND  
C1, C2: X5R OR X7R, 6.3V  
3467 TA02  
D1: ON SEMICONDUCTOR MBRM120  
L1: SUMIDA CR43-2R2  
50 100  
300 400 500 600 700  
(mA)  
200  
I
OUT  
3467 TA02b  
3467afd  
11  
LT3467/LT3467A  
TYPICAL APPLICATIONS  
4-Cell to 5V SEPIC Converter  
C3  
1μF  
L1  
10μH  
D1  
4V TO 6.5V  
V
OUT  
5V  
C1  
325mA AT V = 4V  
IN  
2.2μF  
400mA AT V = 5V  
IN  
450mA AT V = 6.5V  
V
SW  
IN  
C5  
4.7pF  
IN  
SHDN  
SHDN  
255k  
4-CELL  
BATTERY  
LT3467  
L2  
10μH  
C2  
10μF  
SS  
FB  
C4  
0.047μF  
GND  
84.5k  
D1: PHILIPS PMEG 2010  
L1, L2: MURATA LQH32CN100K33L  
C1, C3: X5R or X7R, 10V  
C2: X5R or X7R, 6.3V  
3467 TA03  
5V to 40V Boost Converter  
L1  
2.7μH  
D1  
V
OUT  
V
IN  
40V  
20mA  
5V  
C1  
4.7μF  
V
SW  
IN  
R1  
412k  
SHDN  
SHDN  
LT3467  
SS  
C2  
1μF  
FB  
C3  
0.1μF  
R2  
13.3k  
GND  
C1: X5R or X7R, 6.3V  
C2: X5R or X7R, 50V  
3467 TA04a  
D1: ON SEMICONDUCTOR, MBRM140  
L1: SUMIDA CD43-2R7  
15V Dual Output Converter with Output Disconnect  
C4  
1μF  
L1  
10μH  
D1  
V
15V  
IN  
5V  
100mA  
C1  
R3  
1Ω  
R1  
147k  
2.2μF  
C5  
1μF  
V
SW  
IN  
OFF ON  
SHDN  
D2  
C2  
2.2μF  
LT3467  
SS  
FB  
C6  
0.047μF  
R2  
13.3k  
GND  
C3  
2.2μF  
C1: X5R or X7R, 6.3V  
R4  
1Ω  
D3  
D4  
C2 TO C5: X5R or X7R, 16V  
D1 TO D4: PHILIPS PMEG 2005  
L1: SUMIDA CR43-100  
–15V  
100mA  
3467 TA05  
3467afd  
12  
LT3467/LT3467A  
TYPICAL APPLICATIONS  
9V, 18V, 9V Triple Output TFT-LCD Bias Supply with Soft-Start  
D1  
D2  
18V  
10mA  
C4  
1μF  
C3  
0.1μF  
Start-Up Waveforms  
L1  
4.7μH  
D5  
V
9V  
220mA  
IN  
9V OUTPUT  
5V/DIV  
3.3V  
C1  
2.2μF  
–9V OUTPUT  
5V/DIV  
V
SW  
IN  
R1  
124k  
V
SHDN  
SHDN  
LT3467  
C5  
10μF  
SS  
FB  
3.3V  
GND  
R2  
20k  
0V  
18V OUTPUT  
10V/DIV  
C2  
0.1μF  
C7  
0.1μF  
C1: X5R OR X7R, 6.3V  
C2,C3, C5, C6: X5R OR X7R, 10V  
C4: X5R OR X7R, 25V  
D1 TO D4: PHILIPS BAT54S OR EQUIVALENT  
D5: PHILIPS PMEG 2005  
L1: PANASONIC ELT5KT4R7M  
I
L1  
D4  
D3  
0.5A/DIV  
3467 TA06b  
2ms/DIV  
C6  
1μF  
–9V  
10mA  
3467 TA06a  
8V, 23V, 8V Triple Output TFT-LCD Bias Supply with Soft-Start  
D1  
D2  
D3  
D4  
23V  
10mA  
C3  
0.1μF  
C4  
0.1μF  
C5  
0.1μF  
C6  
1μF  
Start-Up Waveforms  
L1  
4.7μH  
D7  
V
8V OUTPUT  
5V/DIV  
–8V OUTPUT  
5V/DIV  
8V  
IN  
3.3V  
SHDN  
3.3V  
270mA  
C1  
R1  
V
SW  
2.2μF  
IN  
113k  
V
SHDN  
LT3467  
C7  
10μF  
SS  
FB  
GND  
R2  
21k  
23V OUTPUT  
10V/DIV  
0V  
C9  
C2  
0.1μF  
0.1μF  
C1: X5R OR X7R, 6.3V  
I
L1  
0.5A/DIV  
D5  
D6  
C2 TO C4, C7, C8: X5R OR X7R, 10V  
C5: X5R OR X7R, 16V  
3467 TA07b  
2ms/DIV  
C8  
C6: X5R OR X7R, 25V  
1μF  
D1 TO D6: PHILIPS BAT54S OR EQUIVALENT  
D7: PHILIPS PMEG 2005  
–8V  
10mA  
L1: PANASONIC ELT5KT4R7M  
3467 TA07a  
3467afd  
13  
LT3467/LT3467A  
TYPICAL APPLICATIONS  
Single Li-Ion Cell to 5V Boost Converter  
Efficiency  
L1  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
D1  
0.9μH  
V
V
IN  
OUT  
5V  
2.6V TO 4.2V  
R1  
600mA AT V = 4.2V  
IN  
8.06k  
V
SW  
360mA AT V = 3.3V  
IN  
C1  
4.7μF  
V
IN  
= 4.2V  
IN  
250mA AT V = 2.6V  
IN  
V
IN  
= 3.3V  
C4*  
75pF  
SHDN  
OFF ON  
C3  
V
IN  
= 2.6V  
LT3467A  
SS  
FB  
C2*  
22μF  
R2  
GND  
0.047μF  
2.67k  
C1, C2: X5R OR X7R, 6.3V  
D1: PHILIPS PMEG 2010  
L1: FDK MIPW3226D0R9M  
*C2 CAN BE 10μF IN A 1210 OR LARGER PACKAGE WITH  
THE ADDITION OF C4, OTHERWISE C4 IS OPTIONAL  
3467 TA09a  
50 100 150 200 250 300 350 400 450 500  
(mA)  
I
OUT  
3467 TA09b  
2.6V-3.3V to 5V Boost Converter  
Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
L1  
D1  
1.5μH  
V
V
IN  
OUT  
5V  
2.6V TO 3.3V  
R1  
430mA AT V = 3.3V  
270mA AT V = 2.6V  
IN  
IN  
V
= 3.3V  
IN  
8.06k  
V
SW  
C1  
IN  
V
= 2.6V  
IN  
4.7μF  
C4  
56pF  
SHDN  
LT3467A  
OFF ON  
C3  
SS  
FB  
C2  
10μF  
GND  
R2  
0.047μF  
2.67k  
C1, C2: X5R OR X7R, 6.3V  
D1: PHILIPS PMEG 2010  
L1: FDK MIP3226D1R5M  
3467 TA08a  
50 100 150 200 250 300 350 400 450 500  
(mA)  
I
OUT  
3467 TA08b  
3.3V to 15V, 135mA Step-Up Converter  
Efficiency  
90  
80  
70  
60  
50  
40  
30  
L1  
D1  
6.8μH  
V
OUT  
V
IN  
15V  
135mA  
3.3V  
R1  
16.5k  
V
SW  
C1  
4.7μF  
IN  
C4  
68pF  
SHDN  
LT3467A  
OFF ON  
C3  
SS  
FB  
C2  
2.2μF  
R2  
GND  
1.5k  
0.047μF  
C1: X5R OR X7R, 6.3V  
C2: X5R OR X7R, 16V  
D1: PHILIPS PMEG 2010  
3467 TA10a  
L1: SUMIDA CMD4D13-6R8MC  
140  
20  
40  
60  
80 100 120  
160  
I
(mA)  
OUT  
3467 TA10b  
3467afd  
14  
LT3467/LT3467A  
PACKAGE DESCRIPTION  
DDB Package  
8-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1702 Rev B)  
0.61 p0.05  
(2 SIDES)  
R = 0.115  
0.40 p 0.10  
3.00 p0.10  
(2 SIDES)  
TYP  
R = 0.05  
TYP  
5
8
0.70 p0.05  
2.55 p0.05  
1.15 p0.05  
2.00 p0.10  
PIN 1 BAR  
(2 SIDES)  
TOP MARK  
PIN 1  
R = 0.20 OR  
0.25 s 45o  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
0.56 p 0.05  
(2 SIDES)  
CHAMFER  
4
1
(DDB8) DFN 0905 REV B  
0.25 p 0.05  
0.25 p 0.05  
0.75 p0.05  
0.200 REF  
0.50 BSC  
2.20 p0.05  
(2 SIDES)  
0.50 BSC  
2.15 p0.05  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 1005  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3467afd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT3467/LT3467A  
TYPICAL APPLICATIONS  
L1  
Efficiency  
D1  
4.7μH  
V
OUT  
V
90  
85  
80  
75  
70  
65  
60  
55  
50  
IN  
12V  
5V  
C1  
2.2μF  
270mA  
R1  
115k  
V
SW  
IN  
C4*  
22pF  
SHDN  
SHDN  
C2  
10μF  
LT3467  
SS  
FB  
C3  
0.047μF  
R2  
13.3k  
GND  
C1: X5R OR X7R, 6.3V  
C2: X5R OR X7R, 16V  
D1: PHILIPS PMEG 2010  
L1: SUMIDA CR43-4R7  
*OPTIONAL  
3467 F08a  
300  
50  
100  
150  
200  
(mA)  
250  
350  
Figure 8. 5V to 12V, 270mA Step-Up Converter  
I
OUT  
3467 F08b  
Efficiency  
L1  
D1  
3.3μH  
V
OUT  
V
IN  
5V  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
12V  
260mA  
R1  
115k  
V
SW  
C1  
4.7μF  
IN  
C4  
12pF  
SHDN  
OFF ON  
C3  
LT3467A  
GND  
SS  
FB  
C2  
10μF  
R2  
0.047μF  
13.3k  
C1: X5R OR X7R, 6.3V  
C2: X5R OR X7R, 16V  
3467 F09a  
D1: PHILIPS PMEG 2010  
L1: SUMIDA CDRH4D18-3R3  
Figure 9. 5V to 12V, 260mA Step-Up Converter  
50  
100  
150  
200  
250  
300  
I
(mA)  
OUT  
3467 F09b  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 1V to 15V, V  
LT1615/LT1615-1 300mA/80mA (I ), High Efficiency Step-Up DC/DC Converter  
= 34V, I = 20μA, I < 1μA,  
SW  
IN  
OUT(MAX)  
Q
SD  
ThinSOT Package  
LT1618  
1.5A (I ), 1.25MHz, High Efficiency Step-Up DC/DC Converter  
90% Efficiency, V : 1.6V to 18V, V  
= 35V, I = 1.8mA,  
SW  
IN  
OUT(MAX) Q  
I
< 1μA, MS Package  
SD  
Q
LTC1700  
No R  
™, 530kHz, Synchronous Step-Up DC/DC Controller  
SENSE  
95% Efficiency, V : 0.9V to 5V, I = 200μA, I < 10μA,  
IN SD  
MS Package  
LTC1871  
Wide Input Range, 1MHz, No R  
Flyback and SEPIC Controller  
Current Mode Boost,  
92% Efficiency, V : 2.5V to 36V, I = 250μA, I < 10μA,  
SENSE  
IN  
Q
SD  
MS Package  
High Efficiency, V : 2.6V to 16V, V  
LT1930/LT1930A  
LT1946/LT1946A  
LT1961  
1A (I ), 1.2MHz/2.2MHz, High Efficiency Step-Up  
= 34V,  
SW  
IN  
OUT(MAX)  
DC/DC Converter  
I = 4.2mA/5.5mA, I < 1μA, ThinSOT Package  
Q SD  
1.5A (I ), 1.2MHz/2.7MHz, High Efficiency Step-Up  
High Efficiency, V : 2.45V to 16V, V  
SD  
= 34V, I = 3.2mA,  
OUT(MAX) Q  
SW  
IN  
DC/DC Converter with Soft-Start  
I
< 1μA, MS8 Package  
1.5A (I ), 1.25MHz, High Efficiency Step-Up DC/DC Converter  
90% Efficiency, V : 3V to 25V, V  
SD  
= 35V, I = 0.9mA,  
OUT(MAX) Q  
SW  
IN  
I
< 6μA, MS8E Package  
LTC3400/  
LTC3400B  
600mA (I ), 1.2MHz, Synchronous Step-Up DC/DC Converter  
92% Efficiency, V : 0.85V to 5V, V  
= 5V,  
SW  
IN  
OUT(MAX)  
I = 19μA/300μA, I < 1μA, ThinSOT Package  
Q
SD  
LTC3401  
LTC3402  
LT3464  
1A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, V : 0.5V to 5V, V  
SD  
= 5.5V, I = 38μA,  
Q
SW  
IN  
OUT(MAX)  
I
< 1μA, MS Package  
2A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, V : 0.5V to 5V, V  
SD  
= 5.5V, I = 38μA,  
Q
SW  
IN  
OUT(MAX)  
I
< 1μA, MS Package  
85mA (I ), High Efficiency Step-Up DC/DC Converter with  
V : 2.3V to 10V, V  
= 34V, I = 25μA, I < 1μA,  
OUT(MAX) Q SD  
SW  
IN  
Integrated Schottky and PNP Disconnect  
ThinSOT Package  
No R  
is a trademark of Linear Technology Corporation.  
SENSE  
3467afd  
LT 1208 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3467EDDB#TRMPBF

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467EDDB#TRPBF

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467ES6

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467ES6#TR

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467ES6#TRM

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467ES6#TRMPBF

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467IDDB

1.1A Step-Up DC/DC Converter with
Linear System

LT3467IDDB#PBF

暂无描述
Linear

LT3467IDDB#TR

暂无描述
Linear

LT3467IDDB#TRM

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467IDDB#TRMPBF

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467IDDB#TRPBF

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear