LT3467ES6 [Linear]

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C;
LT3467ES6
型号: LT3467ES6
厂家: Linear    Linear
描述:

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C

开关 光电二极管 输出元件
文件: 总12页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LT3467  
1.1A Step-Up DC/DC  
Converter in ThinSOTTM  
with Integrated Soft-Start  
June 2003  
U
FEATURES  
DESCRIPTIO  
The LT®3467 SOT-23 switching regulator combines a  
42V, 1.1Aswitchwithasoft-startfunction. Pincompatible  
with the LT1930, its low VCESAT bipolar switch enables the  
device to deliver high current outputs in a small footprint.  
The LT3467 switches at 1.3MHz, allowing the use of tiny,  
low cost and low height inductors and capacitors. High  
inrushcurrentatstart-upiseliminatedusingtheprogram-  
mable soft-start function. A single external capacitor sets  
the current ramp rate. A constant frequency current mode  
PWM architecture results in low, predictable output noise  
that is easy to filter.  
1.3MHz Switching Frequency  
Low VCESAT Switch: 330mV at 1.1A  
High Output Voltage: Up to 40V  
Wide Input Range: 2.4V to 16V  
Dedicated Soft-Start Pin  
5V at 540mA from 3.3V Input  
12V at 270mA from 5V Input  
Uses Small Surface Mount Components  
Low Shutdown Current: <1µA  
Pin-for-Pin Compatible with the LT1930 and LT1613  
Low Profile (1mm) SOT-23 Package  
U
The high voltage switch on the LT3467 is rated at 42V,  
making the device ideal for boost converters up to 40V as  
well as SEPIC and flyback designs. The LT3467 can  
generate 5V at up to 540mA from a 3.3V supply or 5V at  
450mA from four alkaline cells in a SEPIC design. The  
LT3467 is available in a low profile (1mm) 6-lead SOT-23  
package.  
APPLICATIO S  
Digital Cameras  
White LED Power Supply  
Cellular Phones  
Medical Diagnostic Equipment  
Local 5V or 12V Supply  
TFT-LCD Bias Supply  
, LTC and LT are registered trademarks of Linear Technology Corporation  
ThinSOT is a trademark of Linear Technology Corporation.  
xDSL Power Supply  
U
TYPICAL APPLICATIO  
Efficiency  
95  
90  
L1  
D1  
2.7µH  
V
IN  
V
OUT  
5V  
2.6V TO  
4.2V  
V
= 4.2V  
IN  
= 3.3V  
85  
80  
75  
70  
65  
60  
55  
50  
6
1
C1  
R1  
765mA if V = 4.2V,  
IN  
V
IN  
4.7µF  
402k  
540mA if V = 3.3V,  
IN  
V
SW  
IN  
V
= 2.6V  
IN  
C4  
3.3pF  
360mA if V = 2.6V  
IN  
4
5
SHDN  
OFF ON  
LT3467  
3
SS  
FB  
C2  
15µF  
R2  
133k  
C3  
0.047µF  
GND  
2
C1, C2: X5R OR X7R, 6.3V  
3467 TA05a  
D1: ON SEMICONDUCTOR MBRM120  
L1: SUMIDA CR43-2R7  
800  
900  
0
100  
300 400 500  
700  
600  
200  
I
(mA)  
OUT  
Figure 1. Single Li-Ion Cell to 5V Boost Converter  
3467 TA05b  
3467i  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
1
LT3467  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
VIN Voltage .............................................................. 16V  
SW Voltage ................................................0.4V to 42V  
FB Voltage .............................................................. 2.5V  
Current Into FB Pin .............................................. ±1mA  
SHDN Voltage ......................................................... 16V  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
SW 1  
GND 2  
FB 3  
6 V  
IN  
LT3467ES6  
5 SS  
4 SHDN  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
S6 PART MARKING  
LTACH  
TJMAX = 125°C, θJA = 256°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
VIN = 3V, VSHDN = VIN unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2.4  
UNITS  
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage  
2.2  
V
V
16  
1.230  
1.220  
1.255  
1.270  
1.280  
V
V
FB Pin Bias Current  
(Note 3)  
10  
1.2  
50  
2
nA  
mA  
µA  
Quiescent Current  
V
V
= 2.4V, Not Switching  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Reference Line Regulation  
Switching Frequency  
Maximum Duty Cycle  
= 0.5V, V = 3V  
0.01  
0.01  
1.3  
1
IN  
2.6V V 16V  
0.05  
1.6  
%/V  
MHz  
%
IN  
1
88  
87  
94  
Minimum Duty Cycle  
Switch Current Limit  
10  
%
A
At Minimum Duty Cycle  
At Maximum Duty Cycle (Note 4)  
1.4  
0.8  
1.8  
1.2  
2.5  
1.9  
Switch V  
I
= 1.1A  
= 5V  
330  
500  
1
mV  
µA  
V
CESAT  
SW  
Switch Leakage Current  
SHDN Input Voltage High  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
V
0.01  
SW  
2.4  
0.5  
V
V
V
= 3V  
= 0V  
16  
0
32  
0.1  
µA  
µA  
SHDN  
SHDN  
SS Charging Current  
V
= 0.5V  
2
3
4.5  
µA  
SS  
Note 1: Absolute Maximum Ratings are those values beyond which the life of  
Note 3: Current flows out of the pin.  
a device may be impaired.  
Note 4: See Typical Performance Characteristics for guaranteed current  
Note 2: The LT3467E is guaranteed to meet performance specifications from  
0°C to 70°C. Specifications over the –40°C to 85°C operating temperature  
range are assured by design, characterization and correlation with statistical  
process controls.  
limit vs duty cycle.  
3467i  
2
LT3467  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quiescent Current vs  
Temperature  
FB Pin Voltage vs Temperature  
SHDN Current vs SHDN Voltage  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
140  
120  
100  
80  
T
= 25°C  
A
60  
40  
20  
0
–25 –10  
5
20 35 50 65 80  
125  
95 110  
–25 –10 5 20 35 50 65 80  
125  
95 110  
–40  
–40  
0
2
4
6
12 14 16 18  
8
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
SHDN  
(V)  
3467 G03  
3467 G02  
3467 G01  
Oscillator Frequency vs  
Temperature  
Switch Saturation Voltage vs  
Switch Current  
Current Limit vs Duty Cycle  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
T
= 25°C  
A
TYPICAL  
T
= 25°C  
A
T
A
= 85°C  
V
CESAT  
GUARANTEED  
100mV  
/DIV  
T
= –40°C  
A
3467 G05  
–25  
0
25  
50  
75  
125  
10  
50  
70 80  
–50  
100  
20 30 40  
60  
90  
SW CURRENT 200mA/DIV  
DC (%)  
TEMPERATURE (°C)  
3467 G04  
3467 G06  
Soft-Start Current vs Soft-Start  
Voltage  
Peak Switch Current vs Soft-Start  
Voltage  
Start-Up Waveform  
(Figure 1 Circuit)  
6
5
4
3
2
1
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
T = 25°C  
A
A
V
SHDN  
2V/DIV  
V
OUT  
1V/DIV  
I
SUPPLY  
0.5A/DIV  
3467 G09  
0
50 100 150 200 250 300 350 400 450 500  
(mV)  
0.5ms/DIV  
0
50 100 150 200 250 300 350 400 450 500  
(mV)  
V
V
SS  
SS  
3467 G07  
3467 G08  
3467i  
3
LT3467  
U
U
U
PI FU CTIO S  
SW (Pin 1): Switch Pin. (Collector of internal NPN power  
switch) Connect inductor/diode here and minimize the  
metal trace area connected to this pin to minimize EMI.  
SHDN(Pin4):ShutdownPin.Tieto2.4Vormoretoenable  
device. Ground to shut down.  
SS(Pin5):Soft-StartPin. Placeasoft-startcapacitorhere.  
Upon start-up, 4µA of current charges the capacitor to  
1.255V. Use a larger capacitor for slower start-up. Leave  
floating if not in use.  
GND (Pin 2): Ground. Tie directly to local ground plane.  
FB (Pin 3): Feedback Pin. Reference voltage is 1.255V.  
Connect resistive divider tap here. Minimize trace area at  
FB. Set VOUT = 1.255V(1 + R1/R2).  
VIN (Pin 6): Input Supply Pin. Must be locally bypassed.  
W
BLOCK DIAGRA  
250k  
SS  
5
6
1
SW  
1.255V  
V
IN  
+
COMPARATOR  
A2  
REFERENCE  
+
A1  
DRIVER  
Q1  
R
Q
R
C
S
V
OUT  
R1 (EXTERNAL)  
C
C
+
0.01Ω  
Σ
FB  
R2 (EXTERNAL)  
RAMP  
GENERATOR  
SHUTDOWN  
4
SHDN  
3
FB  
2
GND  
3467 F02  
1.3MHz  
OSCILLATOR  
Figure 2. Block Diagram  
U
OPERATIO  
The LT3467 uses a constant frequency, current-mode  
control scheme to provide excellent line and load regula-  
tion. Refer to the Block Diagram above. At the start of each  
oscillator cycle, the SR latch is set which turns on the  
power switch Q1. A voltage proportional to the switch  
current is added to a stabilizing ramp and the resulting  
sum is fed into the positive terminal of the PWM compara-  
tor A2. When this voltage exceeds the level at the negative  
input of A2, the SR latch is reset, turning off the power  
switch. The level at the negative input of A2 is set by the  
erroramplifierA1,andissimplyanamplifiedversionofthe  
difference between the feedback voltage and the reference  
voltage of 1.255V. In this manner, the error amplifier sets  
the correct peak current level to keep the output in regu-  
lation. If the error amplifier’s output increases, more  
current is delivered to the output. Similarly, if the error  
decreases, less current is delivered. The soft-start feature  
of the LT3467 allows for clean start-up conditions by  
limiting the rate of voltage rise at the output of comparator  
A1 which, in turn, limits the peak switch current. The soft-  
start pin is connected to a reference voltage of 1.255V  
through a 250k resistor, providing 4µA of current to  
charge the soft-start capacitor. Typical values for the soft-  
start capacitor range from 10nF to 200nF. The LT3467 has  
a current limit circuit not shown in the Block Diagram. The  
switch current is constantly monitored and not allowed to  
exceedthemaximumswitchcurrent(typically1.4A). Ifthe  
switch current reaches this value, the SR latch is reset  
regardlessofthestateofcomparatorA2. Thiscurrentlimit  
protects the power switch as well as the external compo-  
nents connected to the LT3467.  
3467i  
4
LT3467  
W U U  
U
APPLICATIONS INFORMATION  
Duty Cycle  
ofthetotalswitchcurrent.Forbetterefficiency,usesimilar  
valued inductors with a larger volume. Many different  
sizes and shapes are available from various manufactur-  
ers. Chooseacorematerialthathaslowlossesat1.3MHz,  
such as ferrite core.  
The typical maximum duty cycle of the LT3467 is 94%.  
The duty cycle for a given application is given by:  
|VOUT | + |VD | – |V |  
|VOUT | + |VD | – |VCESAT  
IN  
DC =  
Table 1. Inductor Manufacturers.  
|
Sumida  
TDK  
(847) 956-0666  
(847) 803-6100  
(714) 852-2001  
www.sumida.com  
www.tdk.com  
Where VD is the diode forward voltage drop and VCESAT is  
in the worst case 330mV (at 1.1A)  
Murata  
www.murata.com  
The LT3467 can be used at higher duty cycles, but it must  
beoperatedinthediscontinuousconductionmodesothat  
the actual duty cycle is reduced.  
Soft-Start  
The soft-start feature provides a way to limit the inrush  
current drawn from the supply upon startup. An internal  
250k resistor charges the external soft start capacitor to  
1.255V. After the capacitor reaches 0.15V the rate of  
voltage rise at the output of the comparator A1 tracks the  
rate of voltage rise of the soft-start capacitor. This limits  
the inrush current drawn from the supply during startup.  
Once the part is shut down, the soft start capacitor is  
quicklydischargedto0.4V,thenslowlydischargedthrough  
the 250k resistor to ground. If the part is to be shut down  
and re-enabled in a short period of time while soft-start is  
used, you must ensure that the soft-start capacitor has  
enough time to discharge before re-enabling the part.  
Typical values of the soft-start capacitor range from 10nF  
to 200nF.  
Setting Output Voltage  
R1 and R2 determine the output voltage.  
Vout = 1.255V (1+ R1/R2)  
Switching Frequency and Inductor Selection  
TheLT3467switchesat1.3MHz,allowingforsmallvalued  
inductors to be used. 4.7µH or 10µH will usually suffice.  
Choose an inductor that can handle at least 1.2A without  
saturating, and ensure that the inductor has a low DCR  
(copper-wire resistance) to minimize I2R power losses.  
Note that in some applications, the current handling  
requirements of the inductor can be lower, such as in the  
SEPIC topology where each inductor only carries one half  
Supply Current of Figure 1 During  
Startup without Soft-Start Capacitor  
Supply Current of Figure 1 During  
Startup with 47nF Soft-Start Capacitor  
VOUT  
1V/DIV  
VOUT  
1V/DIV  
ISUPPLY  
0.5A/DIV  
ISUPPLY  
0.5A/DIV  
0.1ms/DIV  
0.5ms/DIV  
3467i  
5
LT3467  
W U U  
U
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
By choosing the appropriate values for the resistor and  
capacitor, the zero frequency can be designed to improve  
the phase margin of the overall converter. The typical  
target value for the zero frequency is between 35kHz to  
55kHz. Figure 3 shows the transient response of the step-  
up converter from Figure 8 without the phase lead capaci-  
tor C4. Although adequate for many applications, phase  
margin is not ideal as evidenced by 2-3 “bumps” in both  
the output voltage and inductor current. A 22pF capacitor  
for C4 results in ideal phase margin, which is revealed in  
Figure 4 as a more damped response and less overshoot.  
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multi-layer ceramic capacitors are an excellent choice, as  
they have extremely low ESR and are available in very  
small packages. X5R dielectrics are preferred, followed by  
X7R, as these materials retain the capacitance over wide  
voltage and temperature ranges. A 4.7µF to 15µF output  
capacitor is sufficient for most applications, but systems  
withverylowoutputcurrentsmayneedonlya1µFor2.2µF  
outputcapacitor. SolidtantalumorOSCONcapacitorscan  
be used, but they will occupy more board area than a  
ceramicandwillhaveahigherESR.Alwaysuseacapacitor  
with a sufficient voltage rating.  
LOAD CURRENT  
100mA/DIV  
AC COUPLED  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT3467. A 1µF to 4.7µF input capacitor is  
sufficient for most applications. Table 2 shows a list of  
several ceramic capacitor manufacturers. Consult the  
manufacturers for detailed information on their entire  
selection of ceramic parts.  
VOUT  
200mV/DIV  
AC COUPLED  
IL2  
5A/DIV  
AC COUPLED  
20µs/DIV  
3467 F03  
Table 2. Ceramic Capacitor Manufacturers  
Figure 3. Transient Response of Figure 8's Step-Up  
Converter without Phase Lead Capacitor  
Taiyo Yuden  
AVX  
(408) 573-4150  
(803) 448-9411  
(714) 852-2001  
www.t-yuden.com  
www.avxcorp.com  
www.murata.com  
Murata  
LOAD CURRENT  
100mA/DIV  
ThedecisiontouseeitherlowESR(ceramic)capacitorsor  
the higher ESR (tantalum or OSCON) capacitors can affect  
the stability of the overall system. The ESR of any capaci-  
tor, along with the capacitance itself, contributes a zero to  
the system. For the tantalum and OSCON capacitors, this  
zero is located at a lower frequency due to the higher value  
of the ESR, while the zero of a ceramic capacitor is at a  
much higher frequency and can generally be ignored.  
AC COUPLED  
VOUT  
200mV/DIV  
AC COUPLED  
IL2  
5A/DIV  
AC COUPLED  
20µs/DIV  
3467 F04  
A phase lead zero can be intentionally introduced by  
placing a capacitor (C4) in parallel with the resistor (R1)  
betweenVOUT andVFB asshowninFigure1.Thefrequency  
of the zero is determined by the following equation.  
Figure 4. Transient Response of Figure 8's Step-Up  
Converter with 22pF Phase Lead Capacitor  
1
ƒZ =  
2π R1C4  
3467i  
6
LT3467  
W U U  
APPLICATIONS INFORMATION  
U
Compensation—Theory  
DIODE SELECTION  
Like all other current mode switching regulators, the  
LT3467 needs to be compensated for stable and efficient  
operation. Two feedback loops are used in the LT3467: a  
fast current loop which does not require compensation,  
and a slower voltage loop which does. Standard Bode plot  
analysis can be used to understand and adjust the voltage  
feedback loop.  
ASchottkydiodeisrecommendedforusewiththeLT3467.  
The Philips PMEG 2005 is a very good choice. Where the  
switch voltage exceeds 20V, use the PMEG 3005 (a 30V  
diode). Where the switch voltage exceeds 30V, use the  
PMEG 4005 (a 40V diode). These diodes are rated to  
handle an average forward current of 0.5A. In applications  
where the average forward current of the diode exceeds  
0.5A, a Philips PMEG 2010 rated at 1A is recommended.  
For higher efficiency, use a diode with better thermal  
characteristics such as the On Semiconductor MBRM120  
(a 20V diode) or the MBRM140 (a 40V diode).  
As with any feedback loop, identifying the gain and phase  
contribution of the various elements in the loop is critical.  
Figure 6 shows the key equivalent elements of a boost  
converter. Because of the fast current control loop, the  
power stage of the IC, inductor and diode have been  
replaced by the equivalent transconductance amplifier  
SETTING OUTPUT VOLTAGE  
g
mp. gmp actsasacurrentsourcewheretheoutputcurrent  
To set the output voltage, select the values of R1 and R2  
(see Figure 1) according to the following equation.  
is proportional to the VC voltage. Note that the maximum  
output current of gmp is finite due to the current limit in the  
IC.  
VOUT  
1.255V  
R1= R2  
– 1  
From Figure 6, the DC gain, poles and zeroes can be  
calculated as follows:  
2
A good value for R2 is 13.3k which sets the current in the  
resistor divider chain to 1.255V/13.3k = 94µA.  
Output Pole: P1=  
2• π RL COUT  
1
Error Amp Pole: P2 =  
LAYOUT HINTS  
2• π RO CC  
The high speed operation of the LT3467 demands careful  
attention to board layout. You will not get advertised  
performance with careless layout. Figure 5 shows the  
recommended component placement.  
1
Error Amp Zero: Z1=  
2• π RC CC  
1.255  
VOUT  
1
2
DC GAIN: A =  
gma RO gmp RL •  
1
ESR Zero: Z2 =  
2• π RESR COUT  
L1  
D1  
C1  
V
2 RL  
IN  
V
IN  
V
RHP Zero: Z3 =  
OUT  
2• π VOUT2 L  
C2  
1
2
3
6
5
4
C
SS  
SS  
fS  
3
GND  
High Frequency Pole: P3 >  
SHDN  
FB  
R2  
R1  
1
Phase Lead Zero: Z4 =  
2• π R1CPL  
1
3467 F05  
C3  
Phase Lead Pole:P4 =  
V
OUT  
R1R2  
R1+ R2  
2• π CPL  
Figure 5. Suggested Layout  
3467i  
7
LT3467  
W U U  
U
APPLICATIONS INFORMATION  
Table 3. Bode Plot Parameters  
Parameter  
Value  
10.4  
15  
Units  
Comment  
g
mp  
V
OUT  
R
Application Specific  
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Adjustable  
L
+
C
R
R
L
PL  
ESR  
C
OUT  
µF  
C
OUT  
1.255V  
REFERENCE  
+
R
ESR  
10  
mΩ  
MΩ  
pF  
V
C
g
ma  
R1  
R2  
R
0.4  
60  
O
C
R
R
O
C
C
C
C
C
3.3  
100  
402  
133  
5
pF  
PL  
3467 F06  
R
kΩ  
kΩ  
kΩ  
V
Not Adjustable  
Adjustable  
C : COMPENSATION CAPACITOR  
C
C
OUT  
PL  
ma  
mp  
C
C
g
g
: OUTPUT CAPACITOR  
R1  
R2  
: PHASE LEAD CAPACITOR  
: TRANSCONDUCTANCE AMPLIFIER INSIDE IC  
: POWER STAGE TRANSCONDUCTANCE AMPLIFIER  
Adjustable  
R : COMPENSATION RESISTOR  
C
V
OUT  
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Application Specific  
Not Adjustable  
R : OUTPUT RESISTANCE DEFINED AS V  
DIVIDED BY I  
LOAD(MAX)  
L
OUT  
R : OUTPUT RESISTANCE OF g  
O
ma  
V
IN  
3.3  
35  
V
R1, R2: FEEDBACK RESISTOR DIVIDER NETWORK  
: OUTPUT CAPACITOR ESR  
R
ESR  
g
g
µmho  
mho  
µH  
ma  
7.5  
2.7  
1.3  
Figure 6. Boost Converter Equivalent Model  
mp  
L
The Current Mode zero is a right half plane zero which can  
be an issue in feedback control design, but is manageable  
with proper external component selection.  
f
MHz  
S
From Figure 7, the phase is –138° when the gain reaches  
0dB giving a phase margin of 42°. This is more than  
adequate. The crossover frequency is 37kHz.  
Using the circuit of Figure 1 as an example, the following  
tableshowstheparametersusedtogeneratetheBodeplot  
shown in Figure 7.  
50  
40  
0
–45  
30  
–90  
20  
–135  
–180  
–225  
–270  
–315  
–360  
–405  
–450  
10  
0
–10  
–20  
–30  
GAIN  
–40  
–50  
PHASE  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
3467 F07  
Figure 7.Bode Plot of 3.3V to 5V Application  
3467i  
8
LT3467  
U
TYPICAL APPLICATIO S  
Lithium-Ion to 6V Step-Up DC/DC Converter  
Li-Ion to 6V  
L1  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
D1  
2.2µH  
V
IN  
V
OUT  
6V  
V
= 4.2V  
IN  
2.7V  
TO 4.2V  
6
1
R1  
275mA AT V = 2.7V  
V
= 3.8V  
IN  
IN  
501k  
V
SW  
490mA AT V = 3.8V  
IN  
C1  
2.2µF  
IN  
V
= 2.7V  
IN  
C3  
1.8pF  
4
5
590mA AT V = 4.2V  
IN  
SHDN  
C4  
SHDN  
LT3467  
3
SS  
FB  
C2  
15µF  
R2  
133k  
GND  
2
0.047µF  
C1, C2: X5R OR X7R, 6.3V  
3467 TA01  
D1: ON SEMICONDUCTOR MBRM120  
L1: SUMIDA CR43-2R2  
0
100  
300 400 500 600 700  
(mA)  
200  
I
OUT  
3467 TA01b  
4-Cell to 5V SEPIC Converter  
C3  
1µF  
L1  
10µH  
D1  
V
OUT  
5V  
4V TO 6.5V  
325mA AT V = 4V  
6
1
C1  
IN  
400mA AT V = 5V  
IN  
2.2µF  
V
SW  
IN  
SHDN  
LT3467  
450mA AT V = 6.5V  
4
IN  
255k  
SHDN  
C5  
4.7pF  
4-CELL  
BATTERY  
3
5
L2  
10µH  
C2  
10µF  
SS  
FB  
C4  
0.047µF  
GND  
2
84.5k  
C1, C3: X5R or X7R, 10V  
C2: X5R or X7R, 6.3V  
3467 TA02  
D1: PHILIPS PMEG 2010  
L1, L2: MURATA LQH32CN100K33L  
5V to 40V Boost Converter  
±15V Dual Output Converter with Output Disconnect  
C4  
1µF  
L1  
10µH  
L1  
D1  
D1  
2.7µH  
V
OUT  
V
V
15V  
IN  
IN  
40V  
5V  
5V  
100mA  
20mA  
C1  
6
1
6
1
C1  
R3  
R1  
147k  
2.2µF  
4.7µF  
C5  
V
SW  
V
SW  
1Ω  
IN  
IN  
R1  
412k  
4
5
4
5
1µF  
OFF ON  
SHDN  
SHDN  
SHDN  
D2  
C2  
2.2µF  
C2  
1µF  
LT3467  
LT3467  
3
3
SS  
FB  
FB  
SS  
C6  
0.047µF  
R2  
13.3k  
C3  
0.1µF  
R2  
13.3k  
GND  
2
GND  
2
D3  
C1: X5R or X7R, 6.3V  
C2: X5R or X7R, 50V  
D1: ON SEMICONDUCTOR, MBRM140  
L1: SUMIDA CD43-2R7  
C3  
2.2µF  
C1: X5R or X7R, 6.3V  
C2 TO C5: X5R or X7R, 16V  
D1 TO D4: PHILIPS PMEG 2005  
L1: SUMIDA CR43-100  
3467 TA03  
R4  
D4  
1Ω  
–15V  
100mA  
3467 TA04  
3467i  
9
LT3467  
TYPICAL APPLICATIO S  
U
9V, 18V, 9V Triple Output TFT-LCD Bias Supply with Soft-Start  
D1  
D2  
18V  
10mA  
C4  
C3  
0.1µF  
1µF  
L1  
4.7µH  
Start-Up Waveforms  
D5  
V
9V  
220mA  
IN  
9V OUTPUT  
5V/DIV  
3.3V  
6
1
C1  
2.2µF  
R1  
124k  
V
SW  
IN  
4
5
V
SHDN  
SHDN  
–9V OUTPUT  
5V/DIV  
LT3467  
C5  
10µF  
3
SS  
FB  
3.3V  
GND  
2
C7  
0.1µF  
R2  
20k  
18V OUTPUT  
10V/DIV  
0V  
C2  
0.1µF  
C1: X5R OR X7R, 6.3V  
C2,C3, C5, C6: X5R OR X7R, 10V  
C4: X5R OR X7R, 25V  
D1 TO D4: PHILIPS BAT54S OR EQUIVALENT  
D5: PHILIPS PMEG 2005  
L1: PANASONIC ELT5KT4R7M  
IL1 0.5A/DIV  
D4  
D3  
C6  
1µF  
2ms/DIV  
–9V  
10mA  
3467 TA07a  
8V, 23V, –8V Triple Output TFT-LCD Bias Supply with Soft-Start  
D1  
D2  
D3  
D4  
23V  
10mA  
C3  
0.1µF  
C4  
0.1µF  
C5  
0.1µF  
C6  
1µF  
Start-Up Waveforms  
L1  
4.7µH  
D7  
8V OUTPUT  
5V/DIV  
V
8V  
270mA  
IN  
3.3V  
SHDN  
3.3V  
6
1
C1  
–8V OUTPUT  
5V/DIV  
R1  
113k  
V
SW  
2.2µF  
IN  
4
5
V
SHDN  
C7  
10µF  
LT3467  
3
SS  
FB  
23V OUTPUT  
10V/DIV  
GND  
2
R2  
21k  
0V  
C9  
C2  
0.1µF  
0.1µF  
IL1 0.5A/DIV  
C1: X5R OR X7R, 6.3V  
D5  
D6  
C2 TO C4, C7, C8: X5R OR X7R, 10V  
C5: X5R OR X7R, 16V  
2ms/DIV  
C8  
C6: X5R OR X7R, 25V  
1µF  
D1 TO D6: PHILIPS BAT54S OR EQUIVALENT  
D7: PHILIPS PMEG 2005  
–8V  
10mA  
3467 TA08a  
L1: PANASONIC ELT5KT4R7M  
3467i  
10  
LT3467  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3467i  
11  
LT3467  
U
TYPICAL APPLICATIO S  
5V to 12V Efficiency  
L1  
D1  
4.7µH  
V
OUT  
V
IN  
5V  
90  
85  
80  
75  
70  
65  
60  
55  
50  
12V  
C1  
270mA  
6
1
R1  
2.2µF  
115k  
V
SW  
IN  
C4*  
22pF  
4
5
SHDN  
SHDN  
C2  
10µF  
LT3467  
3
SS  
FB  
C3  
0.047µF  
R2  
13.3k  
GND  
2
C1: X5R OR X7R, 6.3V  
C2: X5R OR X7R, 16V  
D1: PHILIPS PMEG 2010  
L1: SUMIDA CR43-4R7  
*OPTIONAL  
3467 TA06a  
300  
0
50  
100 150 200 250  
350  
I
(mA)  
OUT  
3467 TA06b  
Figure 8. 5V to 12V, 270mA Step-Up Converter  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 2.7V to 30V, V  
LT1371/LT1371HV  
3A (I ), 500kHz, High Efficiency  
: 35V/42V,  
OUT(MAX)  
SW  
IN  
Step-Up DC/DC Converter  
I : 4mA, I : <12µA, DD,TO220-7, S20 Package  
Q SD  
LT1613  
550mA (I ), 1.4MHz, High Efficiency Step-Up  
90% Efficiency, V : 0.9V to 10V, V  
: 34V, I : 3mA,  
SW  
IN  
OUT(MAX)  
Q
DC/DC Converter  
I : <1µA, ThinSOT Package  
SD  
LT1615/LT1615-1  
LT1618  
300mA/80mA (I ), High Efficiency Step-Up DC/DC Converter  
V
SD  
= 1V to 15V, V  
: 34V, I : 20µA,  
SW  
IN  
OUT(MAX) Q  
I
: <1µA, ThinSOT Package  
1.5A (I ), 1.25MHz, High Efficiency  
90% Efficiency, V : 1.6V to 18V, V : 35V,  
OUT(MAX)  
I : 1.8mA, I : <1µA, MS Package  
Q SD  
SW  
IN  
Step-Up DC/DC Converter  
LTC1700  
No R  
TM, 530kHz, Synchronous Step-Up DC/DC Controller 95% Efficiency, V : 0.9V to 5V, I : 200µA, I : <10µA,  
SENSE IN Q SD  
MS Package  
LTC1871  
Wide Input Range, 1MHz, No R  
Flyback and SEPIC Controller  
Current Mode Boost,  
92% Efficiency, V : 2.5V to 36V, I : 250µA, I : <10µA,  
SENSE  
IN  
Q
SD  
MS Package  
LT1930/LT1930A  
LT1946/LT1946A  
LT1961  
1A (I ), 1.2MHz/2.2MHz, High Efficiency  
High Efficiency, V : 2.6V to 16V, V  
Q SD  
: 34V,  
SW  
IN  
OUT(MAX  
Step-Up DC/DC Converter  
I : 4.2mA/5.5mA, I : <1µA, ThinSOT Package  
1.5A (I ), 1.2MHz/2.7MHz, High Efficiency  
High Efficiency, V : 2.45V to 16V, V  
: 34V,  
OUT(MAX)  
SW  
IN  
Step-Up DC/DC Converter with Soft-Start  
I : 3.2mA, I : <1µA, MS8 Package  
Q SD  
1.5A (I ), 1.25MHz, High Efficiency  
90% Efficiency, V : 3V to 25V, V  
: 35V,  
SW  
IN  
OUT(MAX)  
Step-Up DC/DC Converter  
I : 0.9mA, I : 6µA, MS8E Package  
Q SD  
LTC3400/LTC3400B  
LTC3401  
600mA (I ), 1.2MHz, Synchronous Step-Up DC/DC Converter 92% Efficiency, V : 0.85V to 5V, V  
: 5V,  
SW  
IN  
OUT(MAX)  
I : 19µA/300µA, I : <1µA, ThinSOT Package  
Q
SD  
1A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, V : 0.5V to 5V, V  
: 5.5V,  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
I : 38µA, I : <1µA, MS Package  
Q
SD  
LTC3402  
2A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, V : 0.5V to 5V, V  
IN  
: 5.5V,  
SW  
I : 38µA, I : <1µA, MS Package  
Q
SD  
LTC3464  
85mA (I ), High Efficiency Step-Up DC/DC Converter  
V : 2.3V to 10V, V  
: 34V,  
SW  
IN  
OUT(MAX)  
with Integrated Schottky and PNP Disconnect  
I : 25µA, I : <1µA, ThinSOT Package  
Q SD  
No R  
is a trademark of Linear Technology Corporation.  
SENSE  
3467i  
LT/TP 0603 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LT3467ES6#TR

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467ES6#TRM

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467ES6#TRMPBF

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467IDDB

1.1A Step-Up DC/DC Converter with
Linear System

LT3467IDDB#PBF

暂无描述
Linear

LT3467IDDB#TR

暂无描述
Linear

LT3467IDDB#TRM

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467IDDB#TRMPBF

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467IDDB#TRPBF

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467IS5

IC 2.5 A SWITCHING REGULATOR, 1600 kHz SWITCHING FREQ-MAX, PDSO6, 1 MM HEIGHT, PLASTIC, MO-193, TSOT-23, 6 PIN, Switching Regulator or Controller
Linear

LT3467IS6

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3467IS6#PBF

LT3467 - 1.1A Step-Up DC/DC Converter with Integrated Soft-Start; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear