LT3468ES5-1 [Linear]

Photoflash Capacitor Charger in ThinSOT; 照片FL灰电容充电器采用ThinSOT
LT3468ES5-1
型号: LT3468ES5-1
厂家: Linear    Linear
描述:

Photoflash Capacitor Charger in ThinSOT
照片FL灰电容充电器采用ThinSOT

模拟IC 信号电路 光电二极管
文件: 总12页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LT3468/LT3468-1  
Photoflash Capacitor  
Charger in ThinSOTTM  
October 2003  
U
DESCRIPTIO  
FEATURES  
TheLT®3468/LT3468-1arehighlyintegratedICsdesigned  
to charge photoflash capacitors in digital and film cam-  
eras. A new control technique* allows for the use of  
extremely small transformers. Each device contains an  
on-chip high voltage NPN power switch. Output voltage  
detection* is completely contained within the device,  
eliminating the need for any discrete zener diodes or  
resistors. The output voltage can be adjusted by simply  
changing the turns ratio of the transformer. The LT3468  
has a primary current limit of 1.4A while the LT3468-1 has  
a 0.7A limit. These different current limit levels result in  
well controlled input currents of 500mA for the LT3468  
and 225mA for the LT3468-1. Aside from the differing  
current limit, the two devices are otherwise equivalent.  
Highly Integrated IC Reduces Solution Size  
Uses Small Transformers:  
5.8mm × 5.8mm × 3mm  
Fast Photoflash Charge Times:  
4.6s for LT3468 (0V to 320V, 100µF, VIN = 3.6V)  
5.5s for LT3468-1 (0V to 320V, 50µF, VIN = 3.6V)  
Controlled Input Current:  
500mA (LT3468)  
225mA (LT3468-1)  
Supports Operation from Single Li-Ion Cell, or Any  
Supply from 2.5V up to 16V  
Adjustable Output Voltage  
No Output Voltage Divider Needed  
Charges Any Size Photoflash Capacitor  
Low Profile (1mm) SOT-23 Package  
The CHARGE pin gives full control of the part to the user.  
DrivingCHARGElowputsthepartinshutdown. TheDONE  
pin indicates when the part has completed charging. The  
LT3468 series of parts are housed in tiny low profile  
(1mm) SOT-23 packages.  
U
APPLICATIO S  
Digital / Film Camera Flash  
PDA / Cell Phone Flash  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation. *U.S. Patent # 6, 518, 733  
Emergency Strobe  
U
TYPICAL APPLICATIO S  
DANGER HIGH VOLTAGE – OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
T1  
1:10.2  
T1  
D1  
D1  
1:10.2  
V
V
IN  
IN  
320V  
320V  
2.5V TO 8V  
1
2
4
5
2.5V TO 8V  
4
3
5
6
C1  
4.7µF  
C1  
4.7µF  
+
C
+
OUT  
C
OUT  
PHOTOFLASH  
CAPACITOR  
PHOTOFLASH  
CAPACITOR  
V
IN  
SW  
V
IN  
SW  
LT3468-1  
R1  
100k  
D2  
R1  
100k  
D2  
LT3468  
DONE  
DONE  
GND  
DONE  
DONE  
GND  
CHARGE  
CHARGE  
CHARGE  
CHARGE  
C1: 4.7µF, X5R OR X7R, 10V  
C1: 4.7µF, X5R OR X7R, 10V  
T1: KIJIMA MUSEN PART# SBL-5.6-1, L = 10µH, N = 10.2  
PRI  
T1: KIJIMA MUSEN PART# SBL-5.6S-1, L = 24µH, N = 10.2  
PRI  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
D2: ZETEX ZHCS400 OR EQUIVALENT  
R1: PULL UP RESISTOR NEEDED IF DONE PIN USED  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
D2: ZETEX ZHCS400 OR EQUIVALENT  
R1: PULL UP RESISTOR NEEDED IF DONE PIN USED  
3468 TA01  
3468 TA02  
Figure 1. LT3468 Photoflash Charger Uses  
High Efficiency 4mm Tall Transformer  
Figure 2. LT3468-1 Photoflash Charger Uses  
High Efficiency 3mm Tall Transformer  
34681i  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
1
LT3468/LT3468-1  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
VIN Voltage .............................................................. 16V  
SW Voltage ................................................0.4V to 50V  
CHARGE Voltage...................................................... 10V  
DONE Voltage .......................................................... 10V  
Current into DONE Pin .......................................... ±1mA  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range (Note 2) ...–40°C to 85°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
NUMBER  
TOP VIEW  
LT3468ES5  
LT3468ES5-1  
SW 1  
GND 2  
5 VIN  
DONE 3  
4 CHARGE  
S5 PART  
MARKING  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
TJMAX = 125°C, θJA = 256°C/W  
LTAEC  
LTAGQ  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3V, VCHARGE = VIN unless otherwise noted. (Note 2) Specifications  
are for both the LT3468 and LT3468-1 unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Quiescent Current  
Not Switching  
5
0
8
1
mA  
µA  
V
= 0V  
CHARGE  
Input Voltage Range  
Switch Current Limit  
2.5  
16  
V
LT3468 (Note 3)  
LT3468-1  
1.1  
0.45  
1.2  
0.55  
1.3  
0.65  
A
A
Switch V  
LT3468, I = 1A  
330  
150  
430  
200  
mV  
mV  
CESAT  
SW  
LT3468-1, I = 400mA  
SW  
V
V
Comparator Trip Voltage  
Comparator Overdrive  
Measured as V – V  
31  
10  
31.5  
200  
36  
32  
400  
80  
V
mV  
mV  
OUT  
OUT  
SW  
IN  
300ns Pulse Width  
DCM Comparator Trip Voltage  
CHARGE Pin Current  
Measured as V – V  
SW  
IN  
V
V
= 3V  
= 0V  
15  
0
40  
0.1  
µA  
µA  
CHARGE  
CHARGE  
Switch Leakage Current  
CHARGE Input Voltage High  
CHARGE Input Voltage Low  
DONE Output Signal High  
DONE Output Signal Low  
DONE Leakage Current  
V
= V = 5V, in Shutdown  
0.01  
1
µA  
V
IN  
SW  
1
0.3  
V
100kfrom V to DONE  
3
V
IN  
33µA into DONE Pin  
100  
20  
200  
100  
mV  
nA  
V
= 3V, DONE NPN Off  
DONE  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
operating temperature range are assured by design, characterization and  
correlation with statistical process.  
Note 2: The LT3468E/LT3468E-1 are guaranteed to meet performance  
specifications from 0°C to 70°C. Specifications over the –40°C to 85°C  
Note 3: Specifications are for static test. Current limit in actual application  
will be slightly higher.  
34681i  
2
LT3468/LT3468-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS LT3468 curves use the circuit of Figure 1 and  
LT3468-1 curves use the circuit of Figure 2 unless otherwise noted.  
LT3468 Charging Waveform  
LT3468-1 Charging Waveform  
LT3468 Charge Time  
10  
9
8
7
6
5
4
3
2
1
0
VIN = 3.6V  
COUT = 100µF  
VIN = 3.6V  
COUT = 50µF  
T
= 25°C  
A
VOUT  
VOUT  
50V/DIV  
50V/DIV  
C
= 100µF  
OUT  
AVERAGE  
INPUT  
CURRENT  
1A/DIV  
AVERAGE  
INPUT  
CURRENT  
0.5A/DIV  
C
= 50µF  
OUT  
3
1s/DIV  
1s/DIV  
3468 G01  
3468 G02  
2
4
5
6
7
8
9
V
(V)  
IN  
3468 G03  
LT3468-1 Charge Time  
LT3468 Input Current  
LT3468-1 Input Current  
10  
9
8
7
6
5
4
3
2
1
0
800  
600  
400  
200  
0
400  
300  
200  
100  
0
T
= 25°C  
T
= 25°C  
T = 25°C  
A
A
A
V
IN  
= 2.8V  
V
IN  
= 2.8V  
V
IN  
= 4.2V  
V
IN  
= 4.2V  
C
5
= 50µF  
OUT  
V
IN  
= 3.6V  
V
IN  
= 3.6V  
C
= 20µF  
OUT  
3
2
4
6
(V)  
7
8
9
0
50  
100 150 200 250 300  
(V)  
0
50  
100 150 200 250 300  
(V)  
V
V
V
OUT  
IN  
OUT  
3468 G04  
3468 G05  
3468 G06  
LT3468 Efficiency  
LT3468-1 Efficiency  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
T
= 25°C  
T
= 25°C  
A
A
V
= 4.2V  
V
= 4.2V  
IN  
IN  
V
IN  
= 2.8V  
V
= 2.8V  
IN  
V
= 3.6V  
V
IN  
= 3.6V  
IN  
50  
100  
150  
V
200  
(V)  
250  
300  
50  
100  
150  
200  
(V)  
250  
300  
V
OUT  
OUT  
3468 G07  
3468 G08  
34681i  
3
LT3468/LT3468-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS LT3468 curves use the circuit of Figure 1 and  
LT3468-1 curves use the circuit of Figure 2 unless otherwise noted.  
LT3468 Output Voltage  
LT3468-1 Output Voltage  
LT3468 Switch Current Limit  
324  
323  
322  
321  
320  
319  
318  
324  
323  
322  
321  
320  
319  
318  
1.5  
1.4  
1.3  
1.2  
1.1  
V
V
= 3V  
IN  
OUT  
= 0V  
T
= –40°C  
A
T
A
= –40°C  
A
T
= 25°C  
T
= 25°C  
A
T
= 85°C  
T
= 85°C  
A
A
2
3
4
5
6
7
8
2
3
4
5
6
7
8
–40 –20  
0
20  
40  
60  
80 100  
V
IN  
(V)  
V
IN  
(V)  
TEMPERATURE (°C)  
3468 G09  
3468 G10  
3468 G11  
LT3468-1 Switch Current Limit  
LT3468 Switching Waveform  
LT3468 Switching Waveform  
0.700  
0.660  
0.620  
0.580  
0.540  
0.500  
VIN = 3.6V  
VOUT = 100V  
VIN = 3.6V  
V
V
= 3V  
IN  
OUT  
VOUT = 300V  
= 0V  
VSW  
VSW  
10V/DIV  
10V/DIV  
IPRI  
1A/DIV  
IPRI  
1A/DIV  
1µs/DIV  
1µs/DIV  
3468 G13  
3468 G14  
–40 –20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
3468 G12  
LT3468/LT3468-1 Switch  
Breakdown Voltage  
LT3468-1 Switching Waveform  
LT3468-1 Switching Waveform  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VIN = 3.6V  
VIN = 3.6V  
VOUT = 100V  
SW PIN IS RESISTIVE UNTIL BREAKDOWN  
VOLTAGE DUE TO INTEGRATED  
RESISTORS. THIS DOES NOT INCREASE  
QUIESCENT CURRENT OF PART  
VOUT = 300V  
VSW  
VSW  
T = 25°C  
10V/DIV  
10V/DIV  
T = –40°C  
T = 85°C  
IPRI  
1A/DIV  
IPRI  
1A/DIV  
1µs/DIV  
1µs/DIV  
3468 G15  
3468 G16  
V
IN  
= V  
CHARGE  
= 5V  
0
0
10 20 30 40 50 60 70 80 90 100  
SWITCH VOLTAGE (V)  
3468 G17  
34681i  
4
LT3468/LT3468-1  
U
U
U
PI FU CTIO S  
SW (Pin 1): Switch Pin. This is the collector of the internal  
NPN Power switch. Minimize the metal trace area con-  
nected to this pin to minimize EMI. Tie one side of the  
primary of the transformer to this pin. The target output  
voltage is set by the turns ratio of the transformer.  
GND (Pin 2): Ground. Tie directly to local ground plane.  
DONE (Pin 3): Open NPN Collector Indication Pin. When  
target output voltage is reached, NPN turns on. This pin  
needs a pull-up resistor or current source.  
CHARGE (Pin 4): Charge Pin. A low (<0.3V) to high (>1V)  
transition on this pin puts the part into power delivery  
mode. Once the target output voltage is reached, the part  
will stop charging the output. Toggle this pin to start  
charging again. Ground to shut down.  
Choose Turns Ratio N by the following equation:  
V
OUT + 2  
31. 5  
N =  
Where: VOUT is the desired output voltage.  
VIN (Pin 5): Input Supply Pin. Must be locally bypassed  
with a good quality ceramic capacitor. Input supply must  
be 2.5V or higher.  
You must tie a Schottky diode from GND to SW, with the  
anode at GND for proper operation of the circuit. Please  
refer to the applications section for further information.  
34681i  
5
LT3468/LT3468-1  
W
BLOCK DIAGRA  
D1  
T1  
V
TO BATTERY  
OUT  
PRIMARY  
SECONDARY  
C1  
D2  
DONE  
3
V
SW  
1
IN  
+
C
OUT  
5
PHOTOFLASH  
CAPACITOR  
R2  
60k  
Q3  
DCM COMPARATOR  
+
ONE-  
SHOT  
A3  
+
36mV  
Q2  
Q1  
ENABLE  
MASTER  
LATCH  
R1  
2.5k  
DRIVER  
S
Q
S
Q
R
Q1  
R
Q
+
A2  
1.25V  
REFERENCE  
+
R
SENSE  
A1  
20mV  
V
COMPARATOR  
OUT  
+–  
CHARGE  
GND  
ONE-  
SHOT  
4
2
3486 BD  
LT3468: R  
= 0.015  
SENSE  
SENSE  
LT3468-1: R  
= 0.03Ω  
Figure 3  
U
OPERATIO  
The LT3468/LT3468-1 are designed to charge photoflash  
capacitorsquicklyandefficiently.Theoperationofthepart  
can be best understood by referring to Figure 3. When the  
CHARGE pin is first driven high, a one shot sets both SR  
latches in the correct state. The power NPN device, Q1,  
turns on and current begins ramping up in the primary of  
transformer T1. Comparator A1 monitors the switch cur-  
rent and when the peak current reaches 1.4A (LT3468) or  
0.7A (LT3468-1), Q1 is turned off. Since T1 is utilized as  
a flyback transformer, the flyback pulse on the SW pin will  
cause the output of A3 to be high. The voltage on the SW  
pin needs to be at least 36mV higher than VIN for this to  
happen.  
During this phase, current is delivered to the photoflash  
capacitor via the secondary and diode D1. As the second-  
arycurrentdecreasestozero,theSWpinvoltagewillbegin  
to collapse. When the SW pin voltage drops to 36mV  
above VIN or lower, the output of A3 (DCM Comparator)  
will go low. This fires a one shot which turns Q1 back on.  
This cycle will continue to deliver power to the output.  
Output voltage detection is accomplished via R2, R1, Q2,  
and comparator A2 (VOUT Comparator). Resistors R1 and  
R2 are sized so that when the SW voltage is 31.5V above  
VIN, the output of A2 goes high which resets the master  
latch. This disables Q1 and halts power delivery. Power  
deliverycanonlyberestartedbytogglingtheCHARGEPin.  
34681i  
6
LT3468/LT3468-1  
U
W
U U  
APPLICATIO S I FOR ATIO  
Choosing The Right Device (LT3468/LT3468-1)  
the amplitude of the reflected voltage from the output to  
theSWpin. ChooseNaccordingtothefollowingequation:  
The only difference between the two versions of the  
LT3468 is the peak current level. For the fastest possible  
charge time, use the LT3468. The LT3468-1 has a lower  
peak current capability, and is designed for applications  
that need a more limited drain on the batteries. Due to the  
lower peak current, the LT3468-1 can use a physically  
smaller transformer.  
V
OUT + 2  
31. 5  
N =  
Where: VOUT is the desired output voltage. The number  
2 in the numerator is used to include the effect of the  
voltage drop across the output diode(s).  
Thus for a 320V output, N should be 322/31.5 or 10.2.  
For a 300V output, choose N equal to 302/31.5 or 9.6.  
Transformer Design  
The flyback transformer is a key element for any LT3468/  
LT3468-1design.Itmustbedesignedcarefullyandchecked  
that it does not cause excessive current or voltage on any  
pin of the part. The main parameters that need to be  
designed are shown in Table 1.  
The next parameter that needs to be set is the primary  
inductance, LPRI. Choose LPRI according to the following  
formula:  
V
OUT • 200 109  
LPRI  
The first transformer parameter that needs to be set is the  
turns ratio N. The LT3468/LT3468-1 accomplish output  
voltage detection by monitoring the flyback waveform on  
the SW pin. When the SW voltage reaches 31.5V higher  
thantheVIN voltage,thepartwillhaltpowerdelivery.Thus,  
the choice of N sets the target output voltage as it changes  
N IPK  
Where: VOUT is the desired output voltage. N is  
the transformer turns ratio. IPK is 1.4 (LT3468), 0.7  
(LT3468-1)  
LPRI needs to be equal or larger than this value to ensure  
that the LT3468/LT3468-1 has adequate time to respond  
to the flyback waveform.  
Table 1. Recommended Transformer Parameters  
TYPICAL RANGE  
LT3468  
TYPICAL RANGE  
LT3468-1  
PARAMETER  
NAME  
UNITS  
µH  
L
L
Primary Inductance  
>5  
100 to 300  
8 to 12  
>500  
>10  
200 to 500  
8 to 12  
>500  
PRI  
Primary Leakage Inductance  
Secondary: Primary Turns Ratio  
Secondary to Primary Isolation Voltage  
Primary Saturation Current  
Primary Winding Resistance  
Secondary Winding Resistance  
nH  
LEAK  
N
V
V
A
ISO  
I
>1.6  
>0.8  
SAT  
R
R
<300  
<500  
mΩ  
PRI  
<40  
<80  
SEC  
34681i  
7
LT3468/LT3468-1  
U
W
U U  
APPLICATIO S I FOR ATIO  
VIN = 5V  
OUT = 320V  
All other parameters need to meet or exceed the recom-  
mended limits as shown in Table 1. A particularly impor-  
tant parameter is the leakage inductance, LLEAK. When the  
power switch of the LT3468/LT3468-1 turns off, the  
leakage inductance on the primary of the transformer  
causes a voltage spike to occur on the SW pin. The height  
of this spike must not exceed 40V, even though the  
absolute maximum rating of the SW Pin is 50V. The 50V  
absolute maximum rating is a DC blocking voltage speci-  
fication, which assumes that the current in the power NPN  
is zero. Figure 4 shows the SW voltage waveform for the  
circuit of Figure 1(LT3468). Note that the absolute maxi-  
mum rating of the SW pin is not exceeded. Figure 5 shows  
theSWvoltagewaveformforthecircuitofFigure2(LT3468-  
1). Again, the absolute maximum rating of the SW pin is  
V
VSW  
10V/DIV  
100ns/DIV  
3468 G19  
Figure 5. LT3468-1 SW Voltage Waveform  
not compromised. Make sure to check the SW voltage  
waveform with VOUT near the target output voltage, as this  
is the worst case condition for SW voltage.  
It is important not to minimize the leakage inductance to  
a very low level. Although this would result in a very low  
leakage spike on the SW pin, the parasitic capacitance of  
the transformer would become large. This will adversely  
effect the charge time of the photoflash circuit.  
VIN = 5V  
VOUT = 320V  
Linear Technology has worked with several leading mag-  
netic component manufacturers to produce pre-designed  
flyback transformers for use with the LT3468/LT3468-1.  
Table 2 shows the details of several of these transformers.  
VSW  
10V/DIV  
100ns/DIV  
3468 G18  
Figure 4. LT3468 SW Voltage Waveform  
Table 2. Pre-Designed Transformers - Typical Specifications Unless Otherwise Noted.  
SIZE  
L
R
(m)  
R
SEC  
()  
PRI  
LPRI-LEAKAGE  
PRI  
FOR USE WITH  
TRANSFORMER NAME (W × L × H) mm (µH)  
(nH)  
N
VENDOR  
LT3468  
LT3468-1  
SBL-5.6-1  
SBL-5.6S-1  
5.6 × 8.5 × 4.0  
5.6 × 8.5 × 3.0  
10  
24  
200 Max  
400 Max  
10.2  
10.2  
103  
305  
26  
55  
Kijima Musen  
Hong Kong Office  
852-2489-8266 (ph)  
kijimahk@netvigator.com (email)  
LT3468  
LT3468-1  
LDT565630T-001  
LDT565630T-002  
5.8 × 5.8 × 3.0  
5.8 × 5.8 × 3.0  
6
14.5  
200 Max  
500 Max  
10.4 100 Max 10 Max  
10.2 240 Max 16.5 Max  
TDK  
Chicago Sales Office  
(847) 803-6100 (ph)  
www.components.tdk.com  
LT3468/LT3468-1  
LT3468-1  
T-15-089  
T-15-083  
6.4 × 7.7 × 4.0  
8.0 × 8.9 × 2.0  
12  
20  
400 Max  
500 Max  
10.2 211 Max 27 Max  
10.2 675 Max 35 Max  
Tokyo Coil Engineering  
Japan Office  
0426-56-6336 (ph)  
www.tokyo-coil.co.jp  
34681i  
8
LT3468/LT3468-1  
U
W
U U  
APPLICATIO S I FOR ATIO  
Capacitor Selection  
For the circuit of Figure 1 with VIN of 5V, VPK-R is 371V and  
IPK-SEC is 137mA. The GSD2004S dual silicon diode is  
recommended for most LT3468/LT3468-1 applications.  
Another option is to use the BAV23S dual silicon diodes.  
Toshiba makes a dual diode named 1SS306 which also  
meets all the requirements. Table 3 shows the various  
diodes and relevant specifications. Use the appropriate  
number of diodes to achieve the necessary reverse break-  
down voltage.  
For the input bypass capacitor, a high quality X5R or X7R  
type should be used. Make sure the voltage capability of  
the part is adequate.  
Output Diode Selection  
The rectifying diode(s) should be low capacitance type  
with sufficient reverse voltage and forward current rat-  
ings. The peak reverse voltage that the diode(s) will see is  
approximately:  
SW Pin Clamp Diode Selection  
The diode D2 in Figure 1 is needed to clamp the SW node.  
Due to the new control scheme of the LT3468/LT3468-1,  
the SW node may go below ground during a switch cycle.  
The clamp diode prevents the SW node from going too  
far below ground. The diode is required for proper opera-  
tion of the circuit. The recommended diode should be a  
Schottkydiodewithatleasta500mApeakforwardcurrent  
capability. Reversevoltageratingshouldbe40Vorhigher.  
Table 4 shows various recommended clamping diodes.  
V
PKR = VOUT + N • V  
(
)
IN  
The peak current of the diode is simply:  
1.4  
IPKSEC  
=
=
(LT3468)  
N
0.7  
N
IPKSEC  
(LT3468-1)  
Table 3. Recommended Output Diodes  
MAX REVERSE VOLTAGE MAX FORWARD CONTINUOUS CURRENT  
CAPACITANCE  
(pF)  
PART  
(V)  
(mA)  
VENDOR  
GSD2004S  
(Dual Diode)  
2x300  
225  
5
5
3
Vishay  
(402) 563-6866  
www.vishay.com  
BAV23S  
(Dual Diode)  
2x250  
2x250  
225  
100  
Philips Semiconductor  
(800) 234-7381  
www.philips.com  
1SS306  
Toshiba  
(Dual Diode)  
(949) 455-2000  
www.semicon.toshiba.co.jp  
Table 4. Recommended Clamp Diodes  
MAX REVERSE VOLTAGE  
PART  
(V)  
VENDOR  
ZHCS400  
40  
Zetex  
(631) 360-2222  
www.zetex.com  
B0540W  
40  
Diodes Inc.  
(805) 446-4800  
www.diodes.com  
34681i  
9
LT3468/LT3468-1  
U
W
U U  
APPLICATIO S I FOR ATIO  
Board Layout  
all high voltage nodes in order to meet breakdown voltage  
requirements for the circuit board. It is imperative to keep  
theelectricalpathformedbyC1, theprimaryofT1, andthe  
LT3468/LT3468-1 as short as possible. If this path is  
haphazardly made long, it will effectively increase the  
leakage inductance of T1, which may result in an overvolt-  
age condition on the SW pin.  
The high voltage operation of the LT3468/LT3468-1 de-  
mands careful attention to board layout. You will not get  
advertised performance with careless layout. Figure 6  
showstherecommendedcomponentplacement.Keepthe  
area for the high voltage end of the secondary as small as  
possible. Also note the larger than minimum spacing for  
V
IN  
C1  
R1  
D1  
(DUAL DIODE)  
DONE  
CHARGE  
+
C
4
5
3
2
1
OUT  
PHOTOFLASH  
CAPACITOR  
T1  
D2  
3468 F01  
Figure 6. Suggested Layout: Keep electrical path formed by C1, Transformer Primary and LT3468/LT3468-1 short.  
34681i  
10  
LT3468/LT3468-1  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic SOT-23  
(Reference LTC DWG # 05-08-1633)  
0.62  
MAX  
0.95  
REF  
2.80 – 3.10  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.60 – 3.00  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
0.25 – 0.50  
TYP 5 PLCS  
NOTE 3  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.95 BSC  
0.90 – 1.30  
0.20 BSC  
DATUM ‘A’  
0.00 – 0.15  
0.90 – 1.45  
0.35 – 0.55 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 SOT-23 0502  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
ATTENTION: ORIGINAL SOT23-5L PACKAGE.  
MOST SOT23-5L PRODUCTS CONVERTED TO THIN SOT23  
PACKAGE, DRAWING # 05-08-1635 AFTER APPROXIMATELY  
APRIL 2001 SHIP DATE  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)  
34681i  
11  
LT3468/LT3468-1  
U
TYPICAL APPLICATIO S  
LT3468 Photoflash Circuit uses Tiny 3mm Tall Transformer  
T1  
Charge Time  
D1  
1:10.4  
V
10  
9
8
7
6
5
4
3
2
1
0
IN  
320V  
2.5V TO 8V  
5, 6  
7, 8  
4
1
C1  
4.7µF  
+
C
OUT  
PHOTOFLASH  
CAPACITOR  
5
1
V
SW  
IN  
R1  
100k  
D2  
LT3468  
C
OUT  
= 100µF  
2
3
4
DONE  
DONE  
GND  
CHARGE  
CHARGE  
C
OUT  
= 50µF  
C1: 4.7µF, X5R OR X7R, 10V  
T1: TDK PART# LDT565630T-001, L = 6µH, N = 10.4  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
D2: ZETEX ZHCS400 OR EQUIVALENT  
R1: PULL UP RESISTOR NEEDED IF DONE PIN USED  
PRI  
2
3
4
5
V
6
7
8
9
3468 TA03  
(V)  
IN  
3468 TA05  
LT3468-1 Photoflash Circuit uses Tiny 3mm Tall Transformer  
T1  
Charge Time  
D1  
1:10.2  
V
IN  
320V  
10  
9
8
7
6
5
4
3
2
1
0
2.5V TO 8V  
5
8
4
1
C1  
4.7µF  
+
C
OUT  
PHOTOFLASH  
CAPACITOR  
5
1
V
SW  
IN  
R1  
100k  
D2  
LT3468-1  
C
= 50µF  
OUT  
2
3
4
DONE  
DONE  
GND  
CHARGE  
CHARGE  
C
OUT  
= 20µF  
C1: 4.7µF, X5R OR X7R, 10V  
T1: TDK PART# LDT565630T-002, L = 14.5µH, N = 10.2  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
D2: ZETEX ZHCS400 OR EQUIVALENT  
R1: PULL UP RESISTOR NEEDED IF DONE PIN USED  
PRI  
2
3
4
5
6
7
8
9
3468 TA04  
V
IN  
(V)  
3468 TA06  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC3407  
Dual 600mA (I ), 1.5MHz, Synchronous Step-Down DC/DC 96% Efficiency, V : 2.5V to 5.5V, V  
: 0.6V, I : 40µA,  
OUT(MIN) Q  
OUT  
IN  
Converter  
I : <1µA, MS10E  
SD  
LT3420/LT3420-1  
LTC3425  
1.4A/1A, Photoflash Capacitor Chargers with  
Automatic Top-Off  
Charges 220µF to 320V in 3.7 seconds from 5V,  
V : 2.2V to 16V, I : 90µA, I : <1µA, MS10  
IN  
Q
SD  
5A I , 8MHz, Multi-Phase Synchronous Step-Up DC/DC  
95% Efficiency, V : 0.5V to 4.5V, V  
: 5.25V, I : 12µA,  
OUT(MIN)  
SW  
IN  
Q
Converter  
I : <1µA, QFN-32  
SD  
LTC3440/LTC3441  
600mA/1A (I ), Synchronous Buck-Boost DC/DC Converter 95% Efficiency, V : 2.5V to 5.5V, V  
: 2.5V to 5.5V,  
OUT(MIN)  
OUT  
IN  
I : 25µA, I : <1µA, MS-10, DFN-12  
Q
SD  
34681i  
LT/TP 1003 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LT3468ES5-1#TR

IC SPECIALTY ANALOG CIRCUIT, PDSO5, PLASTIC, SOT-23, MO-193, 5 PIN, Analog IC:Other
Linear

LT3468ES5-1#TRMPBF

LT3468 - Photoflash Capacitor Chargers in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3468ES5-1#TRPBF

LT3468 - Photoflash Capacitor Chargers in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3468ES5-2

Photoflash Capacitor Chargers in ThinSOT
Linear

LT3468ES5-2#PBF

IC SPECIALTY ANALOG CIRCUIT, PDSO5, PLASTIC, SOT-23, MO-193, 5 PIN, Analog IC:Other
Linear

LT3468ES5-2#TR

IC SPECIALTY ANALOG CIRCUIT, PDSO5, PLASTIC, SOT-23, MO-193, 5 PIN, Analog IC:Other
Linear

LT3468ES5-2#TRM

IC SPECIALTY ANALOG CIRCUIT, PDSO5, PLASTIC, SOT-23, MO-193, 5 PIN, Analog IC:Other
Linear

LT3468ES5-2#TRMPBF

LT3468 - Photoflash Capacitor Chargers in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3468ES5-2#TRPBF

LT3468 - Photoflash Capacitor Chargers in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3468_15

Photoflash Capacitor Chargers in ThinSOT
Linear

LT3469

Piezo Microactuator Driver with Boost Regulator
Linear

LT3469ETS8

Piezo Microactuator Driver with Boost Regulator
Linear