LT3468_15 [Linear]

Photoflash Capacitor Chargers in ThinSOT;
LT3468_15
型号: LT3468_15
厂家: Linear    Linear
描述:

Photoflash Capacitor Chargers in ThinSOT

文件: 总12页 (文件大小:459K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3468/LT3468-1/LT3468-2  
Photoflash Capacitor  
Chargers in ThinSOTTM  
U
FEATURES  
DESCRIPTIO  
The LT®3468/LT3468-1/LT3468-2 are highly integrated  
ICsdesignedtochargephotoflashcapacitorsindigitaland  
filmcameras. Apatentedcontroltechnique*allowsforthe  
useofextremelysmalltransformers.Eachdevicecontains  
anon-chiphighvoltageNPNpowerswitch.Outputvoltage  
detection* is completely contained within the device,  
eliminating the need for any discrete zener diodes or  
resistors. The output voltage can be adjusted by simply  
changing the turns ratio of the transformer. The LT3468  
has a primary current limit of 1.4A, the LT3468-2 has a 1A  
limit, and the LT3468-1 has a 0.7A limit. These different  
current limit levels result in well controlled input currents  
of 500mA for the LT3468, 375mA for the LT3468-2 and  
225mA for the LT3468-1. Aside from the differing current  
limit, the three devices are otherwise equivalent.  
Highly Integrated IC Reduces Solution Size  
Uses Small Transformers:  
5.8mm × 5.8mm × 3mm  
Fast Photoflash Charge Times:  
4.6s for LT3468 (0V to 320V, 100µF, VIN = 3.6V)  
5.7s for LT3468-2 (0V to 320V, 100µF, VIN = 3.6V)  
5.5s for LT3468-1 (0V to 320V, 50µF, VIN = 3.6V)  
Controlled Input Current:  
500mA (LT3468)  
375mA (LT3468-2)  
225mA (LT3468-1)  
Supports Operation from Single Li-Ion Cell, or Any  
Supply from 2.5V up to 16V  
Adjustable Output Voltage  
No Output Voltage Divider Needed  
Charges Any Size Photoflash Capacitor  
The CHARGE pin gives full control of the part to the user.  
DrivingCHARGElowputsthepartinshutdown. TheDONE  
pin indicates when the part has completed charging. The  
LT3468 series of parts are available in tiny low profile  
(1mm) SOT-23 packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
*Protected by U.S. Patents, including 6518733.  
Low Profile (<1mm) SOT-23 Package  
U
APPLICATIO S  
Digital / Film Camera Flash  
PDA / Cell Phone Flash  
Emergency Strobe  
U
TYPICAL APPLICATIO  
LT3468 Photoflash Charger Uses  
High Efficiency 4mm Tall Transformer  
LT3468 Charging Waveform  
DANGER HIGH VOLTAGE – OPERATION BY HIGH VOLTAGE  
TRAINED PERSONNEL ONLY  
VIN = 3.6V  
COUT = 100µF  
1:10.2  
V
IN  
320V  
2.5V TO 8V  
1
2
4
5
4.7µF  
VOUT  
50V/DIV  
+
100µF  
V
SW  
IN  
100k  
AVERAGE  
INPUT  
LT3468  
CURRENT  
DONE  
DONE  
GND  
1A/DIV  
1s/DIV  
3468 G01  
CHARGE  
CHARGE  
346812 TA01  
346812fa  
1
LT3468/LT3468-1/LT3468-2  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
VIN Voltage .............................................................. 16V  
SW Voltage ................................................0.4V to 50V  
CHARGE Voltage...................................................... 10V  
DONE Voltage .......................................................... 10V  
Current into DONE Pin .......................................... ±1mA  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range (Note 2) ...–40°C to 85°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
LT3468ES5  
LT3468ES5-1  
LT3468ES5-2  
SW 1  
GND 2  
5 VIN  
DONE 3  
4 CHARGE  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
S5 PART  
MARKING  
TJMAX = 125°C  
θJA = 150°C ON BOARD OVER  
GROUND PLANE  
LTAEC  
LTAGQ  
LTBCH  
θJC = 90°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3V, VCHARGE = VIN unless otherwise noted. (Note 2) Specifications  
are for the LT3468, LT3468-1 and LT3468-2 unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Quiescent Current  
Not Switching  
5
0
8
1
mA  
µA  
V
= 0V  
CHARGE  
Input Voltage Range  
Switch Current Limit  
2.5  
16  
V
LT3468 (Note 3)  
LT3468-2  
LT3468-1  
1.1  
0.77  
0.45  
1.2  
0.87  
0.55  
1.3  
0.97  
0.65  
A
A
A
Switch V  
LT3468, I = 1A  
330  
210  
150  
430  
280  
200  
mV  
mV  
mV  
CESAT  
SW  
LT3468-2, I = 650mA  
SW  
LT3468-1, I = 400mA  
SW  
V
V
Comparator Trip Voltage  
Comparator Overdrive  
Measured as V – V  
31  
10  
31.5  
200  
36  
32  
400  
80  
V
mV  
mV  
OUT  
OUT  
SW  
IN  
300ns Pulse Width  
DCM Comparator Trip Voltage  
CHARGE Pin Current  
Measured as V – V  
SW  
IN  
V
V
= 3V  
= 0V  
15  
0
40  
0.1  
µA  
µA  
CHARGE  
CHARGE  
Switch Leakage Current  
V
= V = 5V, in Shutdown  
0.01  
1
µA  
V
IN  
SW  
CHARGE Input Voltage High  
CHARGE Input Voltage Low  
Minimum Charge Pin Low Time  
DONE Output Signal High  
DONE Output Signal Low  
DONE Leakage Current  
1
0.3  
V
HighLowHigh  
20  
3
µs  
V
100kfrom V to DONE  
IN  
33µA into DONE Pin  
100  
20  
200  
100  
mV  
nA  
V
= 3V, DONE NPN Off  
DONE  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
–40°C to 85°C operating temperature range are assured by design,  
characterization and correlation with statistical process.  
Note 2: The LT3468E/LT3468E-1/LT3468E-2 are guaranteed to meet  
performance specifications from 0°C to 70°C. Specifications over the  
Note 3: Specifications are for static test. Current limit in actual application  
will be slightly higher.  
346812fa  
2
LT3468/LT3468-1/LT3468-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS LT3468 curves use the circuit of Figure 6, LT3468-1  
curves use the circuit of Figure 7 and LT3468-2 use the circuit of Figure 8 unless otherwise noted.  
LT3468 Charging Waveform  
LT3468-1 Charging Waveform  
LT3468-2 Charging Waveform  
V
C
= 3.6V  
IN  
OUT  
VIN = 3.6V  
COUT = 100µF  
VIN = 3.6V  
COUT = 50µF  
= 100µF  
V
OUT  
50V/DIV  
VOUT  
50V/DIV  
VOUT  
50V/DIV  
AVERAGE  
INPUT  
CURRENT  
0.5A/DIV  
AVERAGE  
INPUT  
CURRENT  
1A/DIV  
AVERAGE  
INPUT  
CURRENT  
0.5A/DIV  
3468 G03  
1s/DIV  
1s/DIV  
1s/DIV  
3468 G01  
3468 G02  
LT3468-1 Charge Time  
LT3468-2 Charge Time  
LT3468 Charge Time  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
T
= 25°C  
T = 25°C  
A
T
= 25°C  
A
A
C
= 100µF  
OUT  
C
5
= 50µF  
OUT  
C
= 100µF  
OUT  
C
= 50µF  
OUT  
4
C
= 50µF  
OUT  
3
C
= 20µF  
OUT  
3
2
5
6
7
8
9
3
2
4
5
6
7
8
9
2
4
6
7
8
9
V
(V)  
IN  
V
(V)  
IN  
V
(V)  
IN  
3468 G06  
3468 G04  
3468 G05  
LT3468 Input Current  
LT3468-1 Input Current  
LT3468-2 Input Current  
800  
600  
400  
200  
0
400  
300  
200  
100  
0
600  
450  
300  
150  
0
T
= 25°C  
T
= 25°C  
T = 25°C  
A
A
A
V
= 2.8V  
IN  
V
= 2.8V  
IN  
V
= 2.8V  
IN  
V
= 4.2V  
IN  
V
= 4.2V  
IN  
V
= 3.6V  
V
= 4.2V  
IN  
IN  
V
= 3.6V  
IN  
V
= 3.6V  
IN  
0
50  
100 150 200 250 300  
(V)  
0
50  
100 150 200 250 300  
(V)  
0
50  
100 150 200 250 300  
(V)  
V
V
V
OUT  
OUT  
OUT  
3468 G07  
3468 G08  
3468 G09  
346812fa  
3
LT3468/LT3468-1/LT3468-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS LT3468 curves use the circuit of Figure 6, LT3468-1  
curves use the circuit of Figure 7 and LT3468-2 use the circuit of Figure 8 unless otherwise noted.  
LT3468-2 Efficiency  
LT3468 Efficiency  
LT3468-1 Efficiency  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
T
= 25°C  
T
= 25°C  
T
= 25°C  
A
A
A
V
= 4.2V  
V
= 4.2V  
IN  
IN  
V
= 4.2V  
IN  
V
= 2.8V  
IN  
V
= 2.8V  
V
= 2.8V  
IN  
IN  
V
= 3.6V  
V
= 3.6V  
V
= 3.6V  
IN  
IN  
IN  
50  
100  
150  
200  
(V)  
250  
300  
50  
100  
150  
200  
(V)  
250  
300  
50  
100  
150  
200  
(V)  
250  
300  
V
V
OUT  
V
OUT  
OUT  
3468 G10  
3468 G11  
3468 G12  
LT3468-2 Output Voltage  
LT3468 Output Voltage  
LT3468-1 Output Voltage  
324  
324  
319  
318  
317  
316  
315  
314  
313  
312  
T
= –40°C  
323  
322  
321  
320  
319  
318  
323  
322  
321  
320  
319  
318  
A
T
A
= –40°C  
A
T
A
= 25°C  
T
= 25°C  
T
= 85°C  
A
T
= 25°C  
A
T
= 85°C  
T
A
= 85°C  
A
T
= –40°C  
A
2
3
4
5
6
7
8
2
3
4
5
6
7
8
2
4
5
6
7
8
3
V
(V)  
V
IN  
(V)  
V
IN  
(V)  
IN  
3468 G13  
3468 G14  
3468 G15  
LT3468-2 Switch Current Limit  
LT3468-1 Switch Current Limit  
LT3468 Switch Current Limit  
1.00  
0.96  
0.92  
0.88  
0.84  
0.80  
1.5  
1.4  
1.3  
1.2  
1.1  
0.700  
0.660  
0.620  
0.580  
0.540  
0.500  
V
V
= 3V  
V
V
= 3V  
IN  
OUT  
IN  
OUT  
V
V
= 3V  
IN  
OUT  
= 0V  
= 0V  
= 0V  
–40 –20  
0
20  
40  
60  
80 100  
–40  
0
20  
40  
60  
80 100  
–20  
–40 –20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3468 G16  
34682 G18  
3468 G17  
346812fa  
4
LT3468/LT3468-1/LT3468-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS LT3468 curves use the circuit of Figure 6, LT3468-1  
curves use the circuit of Figure 7 and LT3468-2 use the circuit of Figure 8 unless otherwise noted.  
LT3468-2 Switching Waveform  
LT3468 Switching Waveform  
LT3468-1 Switching Waveform  
VIN = 3.6V  
VOUT = 100V  
V
V
= 3.6V  
VIN = 3.6V  
IN  
OUT  
= 100V  
V
OUT = 100V  
VSW  
10V/DIV  
VSW  
10V/DIV  
V
SW  
10V/DIV  
IPRI  
1A/DIV  
IPRI  
1A/DIV  
I
PRI  
1A/DIV  
3468 G21  
1µs/DIV  
1µs/DIV  
1µs/DIV  
3468 G19  
3468 G22  
LT3468-2 Switching Waveform  
LT3468-1 Switching Waveform  
LT3468 Switching Waveform  
V
V
= 3.6V  
VIN = 3.6V  
VOUT = 300V  
VIN = 3.6V  
VOUT = 300V  
IN  
OUT  
= 300V  
V
VSW  
10V/DIV  
SW  
VSW  
10V/DIV  
10V/DIV  
IPRI  
1A/DIV  
I
PRI  
IPRI  
1A/DIV  
1A/DIV  
1µs/DIV  
3468 G24  
1µs/DIV  
1µs/DIV  
3468 G23  
3468 G20  
LT3468/LT3468-1/LT3468-2  
Switch Breakdown Voltage  
10  
9
8
7
6
5
4
3
2
1
0
SW PIN IS RESISTIVE UNTIL BREAKDOWN  
VOLTAGE DUE TO INTEGRATED  
RESISTORS. THIS DOES NOT INCREASE  
QUIESCENT CURRENT OF PART  
T = 25°C  
T = –40°C  
T = 85°C  
V
IN  
= V = 5V  
CHARGE  
0
10 20 30 40 50 60 70 80 90 100  
SWITCH VOLTAGE (V)  
3468 G25  
346812fa  
5
LT3468/LT3468-1/LT3468-2  
U
U
U
PI FU CTIO S  
SW (Pin 1): Switch Pin. This is the collector of the internal  
NPN Power switch. Minimize the metal trace area con-  
nected to this pin to minimize EMI. Tie one side of the  
primary of the transformer to this pin. The target output  
voltage is set by the turns ratio of the transformer.  
DONE (Pin 3): Open NPN Collector Indication Pin. When  
target output voltage is reached, NPN turns on. This pin  
needs a pull-up resistor or current source.  
CHARGE (Pin 4): Charge Pin. This pin must be brought  
high (>1V) to enable the part. A low (<0.3V) to high (>1V)  
transition on this pin puts the part into power delivery  
mode. Once the target output voltage is reached, the part  
will stop charging the output. Toggle this pin to start  
charging again. Ground to shut down. You may bring this  
pin low during a charge cycle to halt charging at any time.  
Choose Turns Ratio N by the following equation:  
V
OUT + 2  
31.5  
N =  
Where: VOUT is the desired output voltage.  
VIN (Pin 5): Input Supply Pin. Must be locally bypassed  
with a good quality ceramic capacitor. Input supply must  
be 2.5V or higher.  
You must tie a Schottky diode from GND to SW, with the  
anode at GND for proper operation of the circuit. Please  
refer to the applications section for further information.  
GND (Pin 2): Ground. Tie directly to local ground plane.  
W
BLOCK DIAGRA  
D1  
T1  
V
TO BATTERY  
OUT  
PRIMARY  
SECONDARY  
C1  
D2  
DONE  
V
SW  
1
IN  
+
C
OUT  
3
5
PHOTOFLASH  
CAPACITOR  
R2  
60k  
Q3  
DCM COMPARATOR  
+
ONE-  
SHOT  
A3  
+
36mV  
Q2  
Q1  
ENABLE  
MASTER  
LATCH  
R1  
2.5k  
DRIVER  
S
Q
S
Q
R
Q1  
R
Q
+
A2  
1.25V  
REFERENCE  
+
R
A1  
SENSE  
20mV  
V
COMPARATOR  
OUT  
+–  
CHARGE  
GND  
ONE-  
SHOT  
4
2
CHIP ENABLE  
3486 BD  
LT3468: R  
= 0.015  
SENSE  
LT3468-2: R  
= 0.022Ω  
= 0.03Ω  
SENSE  
SENSE  
LT3468-1: R  
Figure 1  
346812fa  
6
LT3468/LT3468-1/LT3468-2  
U
OPERATIO  
The LT3468/LT3468-1/LT3468-2 are designed to charge  
photoflash capacitors quickly and efficiently. The opera-  
tion of the part can be best understood by referring to  
Figure 1. When the CHARGE pin is first driven high, a one  
shot sets both SR latches in the correct state. The power  
NPN device, Q1, turns on and current begins ramping up  
intheprimaryoftransformerT1. ComparatorA1monitors  
theswitchcurrentandwhenthepeakcurrentreaches1.4A  
(LT3468),1A(LT3468-2)or0.7A(LT3468-1),Q1isturned  
off. Since T1 is utilized as a flyback transformer, the  
flyback pulse on the SW pin will cause the output of A3 to  
be high. The voltage on the SW pin needs to be at least  
36mV higher than VIN for this to happen.  
indicating that the part has finished charging. Power  
deliverycanonlyberestartedbytogglingtheCHARGEpin.  
The CHARGE pin gives full control of the part to the user.  
The charging can be halted at any time by bringing the  
CHARGE pin low. Only when the final output voltage is  
reached will the DONE pin go low. Figure 2 shows these  
various modes in action. When CHARGE is first brought  
high, charging commences. When CHARGE is brought  
low during charging, the part goes into shutdown and  
VOUT no longer rises. When CHARGE is brought high  
again, charging resumes. When the target VOUT voltage is  
reached, the DONE pin goes low and charging stops.  
Finally the CHARGE pin is brought low again so the part  
enters shutdown and the DONE pin goes high.  
During this phase, current is delivered to the photoflash  
capacitor via the secondary and diode D1. As the second-  
arycurrentdecreasestozero,theSWpinvoltagewillbegin  
to collapse. When the SW pin voltage drops to 36mV  
above VIN or lower, the output of A3 (DCM Comparator)  
will go low. This fires a one shot which turns Q1 back on.  
This cycle will continue to deliver power to the output.  
LT3468-2  
V
C
= 3.6V  
IN  
OUT  
= 50µF  
V
OUT  
100V/DIV  
V
DONE  
5V/DIV  
Output voltage detection is accomplished via R2, R1, Q2,  
and comparator A2 (VOUT Comparator). Resistors R1 and  
R2 are sized so that when the SW voltage is 31.5V above  
VIN, the output of A2 goes high which resets the master  
latch. This disables Q1 and halts power delivery. NPN  
transistor Q3 is turned on pulling the DONE pin low,  
V
CHARGE  
5V/DIV  
3468 F02  
1s/DIV  
Figure 2. Halting the Charging Cycle with the CHARGE Pin  
U
W
U U  
APPLICATIO S I FOR ATIO  
and checked that it does not cause excessive current or  
voltage on any pin of the part. The main parameters that  
need to be designed are shown in Table 1.  
Choosing The Right Device (LT3468/LT3468-1/  
LT3468-2)  
The only difference between the three versions of the  
LT3468 is the peak current level. For the fastest possible  
chargetime,usetheLT3468.TheLT3468-1hasthelowest  
peak current capability, and is designed for applications  
that need a more limited drain on the batteries. Due to the  
lower peak current, the LT3468-1 can use a physically  
smaller transformer. The LT3468-2 has a current limit in  
between that of the LT3468 and the LT3468-1.  
The first transformer parameter that needs to be set is the  
turns ratio N. The LT3468/LT3468-1/LT3468-2 accom-  
plish output voltage detection by monitoring the flyback  
waveform on the SW pin. When the SW voltage reaches  
31.5V higher than the VIN voltage, the part will halt power  
delivery. Thus, the choice of N sets the target output  
voltageasitchangestheamplitudeofthereflectedvoltage  
from the output to the SW pin. Choose N according to the  
following equation:  
Transformer Design  
The flyback transformer is a key element for any LT3468/  
LT3468-1/LT3468-2 design. It must be designed carefully  
V
OUT + 2  
31.5  
N =  
346812fa  
7
LT3468/LT3468-1/LT3468-2  
U
W
U U  
APPLICATIO S I FOR ATIO  
Where: VOUT is the desired output voltage. The number  
2 in the numerator is used to include the effect of the  
voltage drop across the output diode(s).  
off, the leakage inductance on the primary of the trans-  
former causes a voltage spike to occur on the SW pin. The  
heightofthisspikemustnotexceed40V,eventhoughthe  
absolute maximum rating of the SW Pin is 50V. The 50V  
absolute maximum rating is a DC blocking voltage speci-  
fication, which assumes that the current in the power NPN  
is zero. Figure 3 shows the SW voltage waveform for the  
circuit of Figure 6(LT3468). Note that the absolute maxi-  
mum rating of the SW pin is not exceeded. Make sure to  
check the SW voltage waveform with VOUT near the target  
output voltage, as this is the worst case condition for SW  
voltage. Figure 4 shows the various limits on the SW  
voltage during switch turn off.  
Thus for a 320V output, N should be 322/31.5 or 10.2.  
For a 300V output, choose N equal to 302/31.5 or 9.6.  
The next parameter that needs to be set is the primary  
inductance, LPRI. Choose LPRI according to the following  
formula:  
VOUT • 200 109  
LPRI  
N IPK  
Where: VOUT is the desired output voltage. N is  
the transformer turns ratio. IPK is 1.4 (LT3468), 0.7  
(LT3468-1), and 1.0 (LT3468-2).  
It is important not to minimize the leakage inductance to  
a very low level. Although this would result in a very low  
leakage spike on the SW pin, the parasitic capacitance of  
the transformer would become large. This will adversely  
effect the charge time of the photoflash circuit.  
LPRI needs to be equal or larger than this value to ensure  
that the LT3468/LT3468-1/LT3468-2 has adequate time  
to respond to the flyback waveform.  
Linear Technology has worked with several leading mag-  
netic component manufacturers to produce pre-designed  
flyback transformers for use with the LT3468/LT3468-1/  
LT3468-2. Table 2 shows the details of several of these  
transformers.  
All other parameters need to meet or exceed the recom-  
mended limits as shown in Table 1. A particularly impor-  
tant parameter is the leakage inductance, LLEAK. When the  
power switch of the LT3468/LT3468-1/LT3468-2 turns  
Table 1. Recommended Transformer Parameters  
TYPICAL RANGE  
LT3468  
TYPICAL RANGE  
LT3468-1  
TYPICAL RANGE  
LT3468-2  
PARAMETER  
NAME  
UNITS  
µH  
L
L
Primary Inductance  
>5  
100 to 300  
8 to 12  
>500  
>10  
200 to 500  
8 to 12  
>500  
>7  
200 to 500  
8 to 12  
>500  
PRI  
Primary Leakage Inductance  
Secondary: Primary Turns Ratio  
Secondary to Primary Isolation Voltage  
Primary Saturation Current  
Primary Winding Resistance  
Secondary Winding Resistance  
nH  
LEAK  
N
V
V
A
ISO  
I
>1.6  
>0.8  
>1.0  
SAT  
R
R
<300  
<500  
<400  
mΩ  
PRI  
<40  
<80  
<60  
SEC  
VIN = 5V  
OUT = 320V  
V
“B”  
MUST BE  
LESS THAN 50V  
“A”  
MUST BE  
LESS THAN 40V  
V
SW  
0V  
VSW  
10V/DIV  
3420 F07  
100ns/DIV  
3468 G18  
Figure 3. LT3468 SW Voltage Waveform  
Figure 4. New Transformer Design Check (Not to Scale).  
346812fa  
8
LT3468/LT3468-1/LT3468-2  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 2. Pre-Designed Transformers - Typical Specifications Unless Otherwise Noted.  
SIZE  
L
R
(m)  
R
SEC  
()  
PRI  
LPRI-LEAKAGE  
PRI  
FOR USE WITH  
TRANSFORMER NAME (W × L × H) mm (µH)  
(nH)  
N
VENDOR  
LT3468/LT3468-2  
LT3468-1  
SBL-5.6-1  
SBL-5.6S-1  
5.6 × 8.5 × 4.0  
5.6 × 8.5 × 3.0  
10  
24  
200 Max  
400 Max  
10.2  
10.2  
103  
305  
26  
55  
Kijima Musen  
Hong Kong Office  
852-2489-8266 (ph)  
kijimahk@netvigator.com (email)  
LT3468  
LT3468-1  
LT3468-2  
LDT565630T-001  
LDT565630T-002  
LDT565630T-003  
5.8 × 5.8 × 3.0  
5.8 × 5.8 × 3.0  
5.8 × 5.8 × 3.0  
6
14.5  
10.5  
200 Max  
500 Max  
550 Max  
10.4 100 Max 10 Max  
10.2 240 Max 16.5 Max  
10.2 210 Max 14 Max  
TDK  
Chicago Sales Office  
(847) 803-6100 (ph)  
www.components.tdk.com  
LT3468/LT3468-1  
LT3468-1  
T-15-089  
T-15-083  
6.4 × 7.7 × 4.0  
8.0 × 8.9 × 2.0  
12  
20  
400 Max  
500 Max  
10.2 211 Max 27 Max  
10.2 675 Max 35 Max  
Tokyo Coil Engineering  
Japan Office  
0426-56-6262 (ph)  
www.tokyo-coil.co.jp  
Capacitor Selection  
0.7  
N
IPKSEC  
=
(LT3468-1)  
For the input bypass capacitor, a high quality X5R or X7R  
type should be used. Make sure the voltage capability of  
the part is adequate.  
For the circuit of Figure 6 with VIN of 5V, VPK-R is 371V and  
IPK-SEC is 137mA. The GSD2004S dual silicon diode is  
recommended for most LT3468/LT3468-1/LT3468-2  
applications. Another option is to use the BAV23S dual  
silicon diodes. Diodes Incorporated makes a dual diode  
named MMBD3004S which also meets all the require-  
ments. Table 3 shows the various diodes and relevant  
specifications. Use the appropriate number of diodes to  
achieve the necessary reverse breakdown voltage.  
Output Diode Selection  
The rectifying diode(s) should be low capacitance type  
with sufficient reverse voltage and forward current rat-  
ings. The peak reverse voltage that the diode(s) will see is  
approximately:  
V
PKR = VOUT + N • V  
(
)
IN  
SW Pin Clamp Diode Selection  
The peak current of the diode is simply:  
1.4  
The diode D2 in Figure 6 is needed to clamp the SW node.  
Due to the new control scheme of the LT3468/LT3468-1/  
LT3468-2, the SW node may go below ground during a  
switch cycle. The clamp diode prevents the SW node from  
going too far below ground. The diode is required for  
proper operation of the circuit. The recommended diode  
IPKSEC  
=
(LT3468)  
N
1.0  
N
IPKSEC  
=
(LT3468-2)  
Table 3. Recommended Output Diodes  
MAX REVERSE VOLTAGE MAX FORWARD CONTINUOUS CURRENT  
CAPACITANCE  
(pF)  
PART  
(V)  
(mA)  
VENDOR  
GSD2004S  
2x300  
225  
5
5
5
Vishay  
(402) 563-6866  
www.vishay.com  
(Dual Diode)  
BAV23S  
(Dual Diode)  
2x250  
2x350  
225  
225  
Philips Semiconductor  
(800) 234-7381  
www.philips.com  
MMBD3004S  
Diodes Incorporated  
(805) 446-4800  
www.diodes.com  
346812fa  
9
LT3468/LT3468-1/LT3468-2  
U
W
U U  
APPLICATIO S I FOR ATIO  
Keep the area for the high voltage end of the secondary as  
small as possible. Also note the larger than minimum  
spacing for all high voltage nodes in order to meet break-  
down voltage requirements for the circuit board. It is  
imperative to keep the electrical path formed by C1, the  
primary of T1, and the LT3468/LT3468-1/LT3468-2 as  
short as possible. If this path is haphazardly made long, it  
will effectively increase the leakage inductance of T1,  
which may result in an overvoltage condition on the SW  
pin.  
should be a Schottky diode with at least a 500mA peak  
forwardcurrentcapability.Thediodeforwardvoltagedrop  
should be 600mV or less at 500mA of forward current.  
Reverse voltage rating should be 40V or higher. Table 4  
shows various recommended clamping diodes.  
Table 4. Recommended Clamp Diodes  
MAX REVERSE VOLTAGE  
PART  
(V)  
VENDOR  
ZHCS400  
40  
Zetex  
(631) 360-2222  
www.zetex.com  
V
IN  
C1  
R1  
D1  
(DUAL DIODE)  
DONE  
B0540W  
40  
40  
Diodes Inc.  
(805) 446-4800  
www.diodes.com  
CHARGE  
+
C
4
5
3
2
1
OUT  
PHOTOFLASH  
CAPACITOR  
T1  
MA2Z720  
Panasonic  
(408) 487-9510  
www.panasonic.co.jp  
D2  
Board Layout  
3468 F05  
The high voltage operation of the LT3468/LT3468-1/  
LT3468-2 demands careful attention to board layout. You  
will not get advertised performance with careless layout.  
Figure 5 shows the recommended component placement.  
Figure 5. Suggested Layout: Keep Electrical Path Formed by C1,  
Transformer Primary and LT3468/LT3468-1/LT3468-2 Short  
U
TYPICAL APPLICATIO S  
T1  
D1  
T1  
1:10.2  
D1  
1:10.2  
V
IN  
V
320V  
OUT  
IN  
320V  
2.5V TO 8V  
4
3
5
6
2.5V TO 8V  
1
2
4
5
C1  
4.7µF  
C1  
4.7µF  
+
C
+
C
OUT  
PHOTOFLASH  
CAPACITOR  
PHOTOFLASH  
CAPACITOR  
V
SW  
LT3468-1  
IN  
V
SW  
R1  
D2  
IN  
R1  
100k  
D2  
100k  
LT3468  
DONE  
DONE  
GND  
DONE  
DONE  
GND  
CHARGE  
CHARGE  
CHARGE  
CHARGE  
3468 F06  
C1: 4.7µF, X5R OR X7R, 10V  
C1: 4.7µF, X5R OR X7R, 10V  
T1: KIJIMA MUSEN PART# SBL-5.6S-1, L = 24µH, N = 10.2  
PRI  
T1: KIJIMA MUSEN PART# SBL-5.6-1, L = 10µH, N = 10.2  
PRI  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
D2: ZETEX ZHCS400 OR EQUIVALENT  
R1: PULL UP RESISTOR NEEDED IF DONE PIN USED  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
D2: ZETEX ZHCS400 OR EQUIVALENT  
R1: PULL UP RESISTOR NEEDED IF DONE PIN USED  
3468 F07  
Figure 6. LT3468 Photoflash Charger Uses  
High Efficiency 4mm Tall Transformer  
Figure 7. LT3468-1 Photoflash Charger Uses  
High Efficiency 3mm Tall Transformer  
346812fa  
10  
LT3468/LT3468-1/LT3468-2  
U
TYPICAL APPLICATIO S  
T1  
1:10.2  
D1  
V
IN  
320V  
2.5V TO 8V  
5
8
4
1
C1  
4.7µF  
+
C
OUT  
PHOTOFLASH  
CAPACITOR  
V
SW  
LT3468-2  
IN  
R1  
100k  
D2  
DONE  
DONE  
GND  
CHARGE  
CHARGE  
C1: 4.7µF, X5R OR X7R, 10V  
T1: TDK LDT565630T-003 L = 10.5µH, N = 10.2  
PRI  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
D2: ZETEX ZHCS400 OR EQUIVALENT  
R1: PULL UP RESISTOR NEEDED IF DONE PIN USED  
3468 F08  
Figure 8. LT3468-2 Photoflash Charger Uses High Efficiency 3mm Tall Transformer  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
346812fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT3468/LT3468-1/LT3468-2  
U
TYPICAL APPLICATIO S  
LT3468 Photoflash Circuit uses Tiny 3mm Tall Transformer  
Charge Time  
T1  
D1  
1:10.4  
V
10  
9
8
7
6
5
4
3
2
1
0
IN  
320V  
2.5V TO 8V  
5, 6  
7, 8  
4
1
C1  
4.7µF  
+
C
OUT  
PHOTOFLASH  
CAPACITOR  
5
1
V
SW  
IN  
R1  
100k  
D2  
LT3468  
2
3
4
DONE  
DONE  
GND  
C
= 100µF  
OUT  
CHARGE  
CHARGE  
C
= 50µF  
OUT  
3
C1: 4.7µF, X5R OR X7R, 10V  
T1: TDK PART# LDT565630T-001, L = 6µH, N = 10.4  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
D2: ZETEX ZHCS400 OR EQUIVALENT  
R1: PULL UP RESISTOR NEEDED IF DONE PIN USED  
PRI  
2
4
5
6
7
8
9
3468 TA03  
V
(V)  
IN  
3468 TA05  
LT3468-1 Photoflash Circuit uses Tiny 3mm Tall Transformer  
T1  
D1  
Charge Time  
1:10.2  
V
IN  
10  
9
8
7
6
5
4
3
2
1
0
320V  
2.5V TO 8V  
5
8
4
1
C1  
4.7µF  
+
C
OUT  
PHOTOFLASH  
CAPACITOR  
5
1
V
SW  
IN  
R1  
100k  
D2  
LT3468-1  
2
3
4
DONE  
DONE  
GND  
C
= 50µF  
OUT  
CHARGE  
CHARGE  
C1: 4.7µF, X5R OR X7R, 10V  
C
= 20µF  
OUT  
T1: TDK PART# LDT565630T-002, L = 14.5µH, N = 10.2  
PRI  
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES  
D2: ZETEX ZHCS400 OR EQUIVALENT  
2
3
4
5
6
7
8
9
3468 TA04  
V
(V)  
IN  
R1: PULL UP RESISTOR NEEDED IF DONE PIN USED  
3468 TA06  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC3407  
Dual 600mA (I ), 1.5MHz, Synchronous Step-Down DC/DC 96% Efficiency, V : 2.5V to 5.5V, V  
: 0.6V, I : 40µA,  
OUT(MIN) Q  
OUT  
IN  
Converter  
I : <1µA, MS10E  
SD  
LT3420/LT3420-1  
LTC3425  
1.4A/1A, Photoflash Capacitor Chargers with  
Automatic Top-Off  
Charges 220µF to 320V in 3.7 seconds from 5V,  
V : 2.2V to 16V, I : 90µA, I : <1µA, MS10  
IN  
Q
SD  
5A I , 8MHz, Multi-Phase Synchronous Step-Up DC/DC  
95% Efficiency, V : 0.5V to 4.5V, V  
: 5.25V, I : 12µA,  
OUT(MIN)  
SW  
IN  
Q
Converter  
I : <1µA, QFN-32  
SD  
LTC3440/LTC3441  
600mA/1A (I ), Synchronous Buck-Boost DC/DC Converter 95% Efficiency, V : 2.5V to 5.5V, V  
: 2.5V to 5.5V,  
OUT(MIN)  
OUT  
IN  
I : 25µA, I : <1µA, MS-10, DFN-12  
Q
SD  
346812fa  
LT/TP 0105 1K REV A • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LT3469

Piezo Microactuator Driver with Boost Regulator
Linear

LT3469ETS8

Piezo Microactuator Driver with Boost Regulator
Linear

LT3469ETS8#TRMPBF

暂无描述
Linear

LT3469ETS8#TRPBF

暂无描述
Linear

LT3470

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear System

LT3470

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear

LT3470A

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear

LT3470AEDDB#PBF

LT3470A - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3470AEDDB#TRMPBF

LT3470A - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3470AEDDB#TRPBF

LT3470A - Micropower Buck Regulator with Integrated Boost and Catch Diodes; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3470AEDDB-PBF

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear

LT3470AEDDB-TRPBF

Micropower Buck Regulator with Integrated Boost and Catch Diodes
Linear