LT3502AEDC [Linear]

IC 1.1 A SWITCHING REGULATOR, 2800 kHz SWITCHING FREQ-MAX, PDSO10, 2 X 2 MM, PLASTIC, DFN-10, Switching Regulator or Controller;
LT3502AEDC
型号: LT3502AEDC
厂家: Linear    Linear
描述:

IC 1.1 A SWITCHING REGULATOR, 2800 kHz SWITCHING FREQ-MAX, PDSO10, 2 X 2 MM, PLASTIC, DFN-10, Switching Regulator or Controller

稳压器
文件: 总24页 (文件大小:387K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3502/LT3502A  
1.1MHz/2.2MHz, 500mA  
Step-Down Regulators in  
2mm × 2mm DFN and MS10  
DESCRIPTION  
FEATURES  
The LT®3502/LT3502A are current mode PWM step-down  
DC/DC converters with an internal 500mA power switch,  
in tiny 8-lead 2mm × 2mm DFN and 10-lead MS10  
packages.Thewideinputvoltagerangeof3Vto40Vmakes  
the LT3502/LT3502A suitable for regulating power from a  
wide variety of sources, including 24V industrial supplies  
and automotive batteries. Its high operating frequency  
allows the use of tiny, low cost inductors and capacitors,  
resulting in a very small solution. Constant frequency  
abovetheAMbandavoidsinterferingwithradioreception,  
making the LT3502A particularly suitable for automotive  
applications.  
3V to 40V Input Voltage Range  
500mA Output Current  
Switching Frequency: 2.2MHz (LT3502A),  
1.1MHz (LT3502)  
800mV Feedback Voltage  
Short-Circuit Robust  
Soft-Start  
Low Shutdown Current: <2μA  
Internally Compensated  
Internal Boost Diode  
Thermally Enhanced 2mm × 2mm 8-Lead DFN  
and 10-lead MS10 Package  
Cycle-by-cycle current limit and frequency foldback  
provide protection against shorted outputs. Soft-start  
and frequency foldback eliminates input current surge  
duringstart-up. DAcurrentsenseprovidesfurtherprotec-  
tion in fault conditions. An internal boost diode reduces  
component count.  
APPLICATIONS  
Automotive Systems  
Battery-Powered Equipment  
Wall Transformer Regulation  
Distributed Supply Regulation  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
LT3502A 12VIN Efficiency  
3.3V Step-Down Converter  
90  
80  
BD  
5V  
3.3V  
OUT  
V
OUT  
IN  
V
BOOST  
SW  
IN  
70  
60  
50  
40  
30  
20  
10  
4.7V TO 40V  
1μF  
0.1μF  
6.8μH  
31.6k  
V
OUT  
3.3V  
500mA  
LT3502A  
DA  
FB  
SHDN  
OFF ON  
GND  
10k  
10μF  
3502 TA01a  
0
0
0.4  
0.5  
0.1  
0.2  
0.3  
LOAD CURRENT (A)  
3502 TA01b  
3502fc  
1
LT3502/LT3502A  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage (V )....................................................40V  
BD Voltage ..................................................................7V  
Operating Junction Temperature Range (Note 2)  
LT3502AE, LT3502E ...........................–40°C to 125°C  
LT3502AI, LT3502I.............................–40°C to 125°C  
Storage Temperature Range...................–65°C to 150°C  
IN  
BOOST Voltage .........................................................50V  
BOOST Pin Above SW Pin...........................................7V  
FB Voltage...................................................................6V  
SHDN Voltage ...........................................................40V  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
3
4
8
7
6
5
SW  
V
IN  
SW  
BOOST  
NC  
1
2
3
4
5
10  
9
V
IN  
BD  
FB  
BOOST  
DA  
NC  
9
8
BD  
FB  
SHDN  
DA  
7
6
SHDN  
GND  
GND  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
DC PACKAGE  
8-LEAD (2mm × 2mm) PLASTIC DFN  
θ
JA  
= 110°C/W  
θ
= 102°C/W  
JA  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3502EDC#PBF  
LT3502IDC#PBF  
LT3502AEDC#PBF  
LT3502AIDC#PBF  
LT3502EMS#PBF  
LT3502IMS#PBF  
LT3502AEMS#PBF  
LT3502AIMS#PBF  
TAPE AND REEL  
PART MARKING*  
LCLV  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT3502EDC#TRPBF  
LT3502IDC#TRPBF  
LT3502AEDC#TRPBF  
LT3502AIDC#TRPBF  
LT3502EMS#TRPBF  
LT3502IMS#TRPBF  
LT3502AEMS#TRPBF  
LT3502AIMS#TRPBF  
8-Lead 2mm × 2mm Plastic DFN  
8-Lead 2mm × 2mm Plastic DFN  
8-Lead 2mm × 2mm Plastic DFN  
8-Lead 2mm × 2mm Plastic DFN  
10-Lead Plastic MSOP  
LCLV  
LCLT  
LCLT  
LTDTR  
LTDTR  
LTDTS  
LTDTS  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3502fc  
2
LT3502/LT3502A  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 10V, VSHDN = 5V, VBOOST = 15V.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.8  
0.5  
1.5  
MAX  
UNITS  
V
Undervoltage Lockout  
Quiescent Current at Shutdown  
Quiescent Current  
2.6  
3
2
2
V
SHDN  
= 0V  
μA  
Not Switching  
mA  
Feedback Voltage  
2mm × 2mm DFN  
2mm × 2mm DFN  
MS10  
0.785  
0.79  
0.780  
0.786  
0.8  
0.8  
0.8  
0.8  
0.813  
0.81  
0.816  
0.813  
V
V
V
V
MS10  
Reference Voltage Line Regulation  
FB Pin Bias Current  
0.005  
15  
%/V  
nA  
(Note 5)  
50  
Switching Frequency  
I
I
I
I
< 500mA (LT3502A)  
< 500mA (LT3502A)  
< 500mA (LT3502)  
< 500mA (LT3502)  
1.9  
1.8  
0.9  
0.8  
2.25  
2.25  
1.1  
2.7  
2.8  
1.3  
1.4  
MHz  
MHz  
MHz  
MHz  
DA  
DA  
DA  
DA  
1.1  
Maximum Duty Cycle  
100mA Load (LT3502A)  
100mA Load (LT3502)  
70  
80  
80  
90  
%
%
Switch V  
I
= 500mA  
SW  
450  
0.9  
mV  
A
CESAT  
Switch Current Limit  
Switch Active Current  
(Note 3)  
0.75  
1.1  
SW = 10V (Note 4)  
SW = 0V (Note 5)  
95  
8
130  
30  
μA  
μA  
BOOST Pin Current  
I
I
I
= 500mA  
= 500mA  
= 100mA  
10  
1.9  
0.8  
650  
55  
13  
2.2  
1
mA  
V
SW  
SW  
OUT  
Minimum BOOST Voltage Above Switch  
BOOST Schottky Forward Drop  
DA Pin Current to Stop OSC  
SHDN Bias Current  
V
500  
2
mA  
V
V
= 5V  
= 0V  
80  
1
μA  
μA  
SHDN  
SHDN  
SHDN Input Voltage High  
SHDN Input Voltage Low  
V
V
0.3  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
with statistical process controls. The LT3502IDC and LT3502AIDC are  
guaranteed over the – 40°C to 125°C operating junction temperature  
range.  
Note 3: Current limit guaranteed by design and/or correlation to static test.  
Note 2. The LT3502EDC and LT3502AEDC are guaranteed to meet  
performance specifications from 0°C to 125°C junction temperature  
range. Specifications over the 40°C to 125°C operating junction  
temperature range are assured by design, characterization and correlation  
Slope compensation reduces current limit at higher duty cycle.  
Note 4: Current flows into pin.  
Note 5: Current flows out of pin.  
3502fc  
3
LT3502/LT3502A  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
LT3502A 3.3VOUT Efficiency  
LT3502A 5VOUT Efficiency  
LT3502 3.3VOUT Efficiency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
12V  
IN  
5V  
IN  
24V  
IN  
12V  
IN  
24V  
24V  
IN  
IN  
12V  
IN  
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.4  
0.5  
40  
40  
0.1  
0.2  
0.3  
0
0.4  
0.5  
0.1  
0.2  
0.3  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
3502 G03  
3502 G02  
3502 G01  
LT3502A Maximum Load Current  
VOUT = 3.3V, L = 6.8μH  
LT3502A Maximum Load Current  
VOUT = 5V, L = 10μH  
LT3502 5VOUT Efficiency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
12V  
IN  
TYPICAL  
TYPICAL  
24V  
IN  
MINIMUM  
MINIMUM  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
20  
(V)  
30  
0
20  
(V)  
30  
10  
10  
40  
V
V
LOAD CURRENT (A)  
IN  
IN  
3502 G04  
3502 G05  
3502 G06  
LT3502 Maximum Load Current  
VOUT = 3.3V, L = 15μH  
LT3502 Maximum Load Current  
OUT = 5V, L = 22μH  
V
Switch Voltage Drop  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
700  
600  
TYPICAL  
TYPICAL  
MINIMUM  
MINIMUM  
500  
400  
300  
200  
100  
0
–40°C  
25°C  
125°C  
20  
(V)  
0
10  
30  
40  
20  
(V)  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
10  
30  
V
V
SWITCH CURRENT (A)  
IN  
IN  
3502 G07  
3502 G08  
3502 G09  
3502fc  
4
LT3502/LT3502A  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TA = 25°C unless otherwise noted)  
UVLO  
Switching Frequency  
Soft-Start (SHDN)  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.5  
3.0  
2.5  
2.5  
2.0  
1.5  
1.0  
0.5  
0
LT3502A  
2.0  
1.5  
1.0  
0.5  
0
LT3502  
–0.1  
0
50  
150  
1400  
200 400 600 800 1000 1200 1600  
–50  
100  
0
0
50  
100  
–50  
150  
SHDN PIN VOLTAGE (mV)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3502 G10  
3502 G12  
3502 G11  
SHDN Pin Current  
Switch Current Limit  
Switch Current Limit  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
300  
250  
1.2  
1.0  
SW PEAK CURRENT LIMIT  
DA VALLEY CURRENT LIMIT  
LT3502  
LT3502A  
200  
0.8  
0.6  
150  
100  
0.4  
0.2  
0
50  
0
–50  
0
50  
100  
150  
0
5
10 15 20 25 30 35 40 45  
0
50  
DUTY CYCLE (%)  
100  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
3502 G14  
3502 G13  
3502 G15  
LT3502A Maximum VIN for Full  
Frequency (VOUT = 3.3V)  
LT3502A Maximum VIN for Full  
Frequency (VOUT = 5V)  
LT3502 Maximum VIN for Full  
Frequency (VOUT = 3.3V)  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
T
T
= 25°C  
= 85°C  
A
A
T
= 25°C  
T = 25°C  
A
A
T
= 85°C  
T = 85°C  
A
A
0
0
0
0
0.1 0.2 0.3  
LOAD CURRENT (A)  
0.7  
0
0.1 0.2 0.3  
LOAD CURRENT (A)  
0.7  
0
0.1 0.2 0.3  
LOAD CURRENT (A)  
0.7  
0.4 0.5 0.6  
0.4 0.5 0.6  
0.4 0.5 0.6  
3502 G16  
3502 G17  
3502 G18  
3502fc  
5
LT3502/LT3502A  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
LT3502A Typical Minimum Input  
Voltage (VOUT = 3.3V)  
LT3502A Typical Minimum Input  
Voltage (VOUT = 5V)  
LT3502 Typical Minimum Input  
Voltage (VOUT = 3.3V)  
7
6
5
4
3
2
1
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
0
0
0
0.1  
LOAD CURRENT (A)  
1
0.1  
LOAD CURRENT (A)  
1
0.001  
0.01  
0.001  
0.01  
0.001  
0.01  
0.1  
1
LOAD CURRENT (A)  
3502 G20  
3502 G21  
3502 G19  
LT3502 Typical Minimum Input  
Voltage (VOUT = 5V)  
Continuous Mode Waveform  
Discontinuous Mode Waveform  
8
7
6
5
4
3
2
1
0
V
V
SW  
SW  
5V/DIV  
5V/DIV  
I
L
200mA/DIV  
I
L
200mA/DIV  
V
OUT  
V
OUT  
20mV/DIV  
20mV/DIV  
3502 G23  
3502 G24  
V
V
= 12V  
200ns/DIV  
V
V
= 12V  
200ns/DIV  
IN  
OUT  
IN  
OUT  
= 3.3V  
= 3.3V  
L = 6.8μH  
L = 6.8μH  
C
= 10μF  
C
= 10μF  
OUT  
OUT  
OUT  
OUT  
0.001  
0.01  
0.1  
1
I
= 250mA  
I
= 30mA  
LOAD CURRENT (A)  
3502 G22  
3502fc  
6
LT3502/LT3502A  
PIN FUNCTIONS (DFN/MS)  
V
(Pin 1/Pin 10): The V pin supplies current to the  
GND (Pin 5/Pin 5): Ground Pin.  
IN  
IN  
LT3502/LT3502A’s internal regulator and to the internal  
DA (Pin 6/Pin 4): Connect the catch diode (D1) anode to  
this pin. This pin is used to provide frequency foldback  
in extreme situations.  
power switch. This pin must be locally bypassed.  
BD (Pin 2/Pin 8): The BD pin is used to provide current  
to the internal boost Schottky diode.  
BOOST (Pin 7/Pin 2): The BOOST pin is used to provide a  
drive voltage, higher than the input voltage, to the internal  
bipolarNPNpowerswitch.Connectaboostcapacitorfrom  
this pin to SW Pin.  
FB (Pin 3/Pin 7): The LT3502/LT3502A regulate their  
feedback pin to 0.8V. Connect the feedback resistor di-  
vider tap to this pin. Set the output voltage according to  
V
OUT  
= 0.8(1 + R1/R2). A good value for R2 is 10k.  
SW (Pin 8/Pin 1): The SW pin is the output of the internal  
powerswitch.Connectthispintotheinductor,catchdiode  
and boost capacitor.  
SHDN (Pin 4/Pin 6): The SHDN pin is used to put the  
LT3502 in shutdown mode. Tie to ground to shut down  
the LT3502/LT3502A. Tie to 2V or more for normal  
operation. If the shutdown feature is not used, tie this pin  
to the V pin. The SHDN pin also provides soft-start and  
IN  
frequency foldback. To use the soft-start feature, connect  
R3 and C4 to the SHDN pin. SHDN Pin voltage should  
not be higher than V .  
IN  
3502fc  
7
LT3502/LT3502A  
BLOCK DIAGRAM  
3502fc  
8
LT3502/LT3502A  
OPERATION  
The LT3502/LT3502A are constant frequency, current  
mode step-down regulators. An oscillator enables an RS  
flip-flop, turning on the internal 500mA power switch Q1.  
An amplifier and comparator monitor the current flowing  
The switch driver operates from either V or from the  
IN  
BOOST pin. An external capacitor and the internal diode  
are used to generate a voltage at the BOOST pin that is  
higher than the input supply. This allows the driver to  
fully saturate the internal bipolar NPN power switch for  
efficient operation.  
between the V and SW pins, turning the switch off when  
IN  
this current reaches a level determined by the voltage at  
V .Anerroramplifiermeasurestheoutputvoltagethrough  
C
A comparator monitors the current flowing through  
the catch diode via the DA pin and reduces the LT3502/  
LT3502A’s operating frequency when the DA pin current  
exceeds the 650mA valley current limit. This frequency  
foldback helps to control the output current in fault  
conditions such as shorted output with high input volt-  
age. The DA comparator works in conjunction with the  
switch peak current limit comparator to determine the  
maximumdeliverablecurrentoftheLT3502/LT3502A. The  
peak current limit comparator is used in normal current  
modeoperationsandisusedtoturnofftheswitch. TheDA  
valleycurrentcomparatormonitorsthecatchdiodecurrent  
and will delay switching until the catch diode current is  
below the 650mA limit. Maximum deliverable current to  
the output is therefore limited by both switch peak current  
limit and DA valley current limit.  
an external resistor divider tied to the FB pin and servos  
the V node. If the error amplifier’s output increases, more  
C
current is delivered to the output; if it decreases, less  
currentisdelivered.Anactiveclamp(notshown)ontheV  
C
node provides current limit. The V node is also clamped  
C
to the voltage on the SHDN pin; soft-start is implemented  
by generating a voltage ramp at the SHDN pin using an  
external resistor and capacitor. The SHDN pin voltage  
during soft-start also reduces the oscillator frequency to  
avoid hitting current limit during start-up.  
An internal regulator provides power to the control cir-  
cuitry. This regulator includes an undervoltage lockout to  
prevent switching when V is less than ~3V. The SHDN  
pin is used to place the LT3502/LT3502A in shutdown,  
disconnecting the output and reducing the input current  
to less than 2μA.  
IN  
3502fc  
9
LT3502/LT3502A  
APPLICATIONS INFORMATION  
FB Resistor Network  
Note that this is a restriction on the operating input volt-  
age for fixed frequency operation; the circuit will tolerate  
transient inputs up to the absolute maximum ratings of  
The output voltage is programmed with a resistor divider  
between the output and the FB pin. Choose the 1% resis-  
tors according to:  
the V and BOOST pins. The input voltage should be  
IN  
limited to the V operating range (40V) during overload  
IN  
conditions.  
VOUT  
0.8V  
R1= R2  
– 1  
Minimum On Time  
R2 should be 20k or less to avoid bias current errors.  
Reference designators refer to the Block Diagram.  
The LT3502/LT3502A will still regulate the output at input  
voltages that exceed V  
(up to 40V), however, the  
IN(MAX)  
output voltage ripple increases as the input voltage is  
Input Voltage Range  
increased.  
The input voltage range for the LT3502/LT3502A applica-  
tions depends on the output voltage and on the absolute  
As the input voltage is increased, the part is required to  
switch for shorter periods of time. Delays associated with  
turning off the power switch dictate the minimum on time  
of the part. The minimum on time for the LT3502/LT3502A  
is 60ns (Figure 1).  
maximum ratings of the V and BOOST pins.  
IN  
The minimum input voltage is determined by either the  
LT3502/LT3502A’s minimum operating voltage of 3V, or  
by its maximum duty cycle. The duty cycle is the fraction  
of time that the internal switch is on and is determined  
by the input and output voltages:  
When the required on time decreases below the minimum  
ontimeof60ns,insteadoftheswitchpulsewidthbecoming  
narrower to accommodate the lower duty cycle require-  
ment, the switch pulse width remains fixed at 60ns. The  
inductorcurrentrampsuptoavalueexceedingtheloadcur-  
rentandtheoutputrippleincreases. Thepartthenremains  
V
OUT + VD  
DC =  
V – VSW + VD  
IN  
where V is the forward voltage drop of the catch diode  
D
(~0.4V) and V is the voltage drop of the internal switch  
SW  
(~0.45Vatmaximumload). Thisleadstoaminimuminput  
V
voltage of:  
SW  
20V/DIV  
V
OUT + VD  
V
=
VD + VSW  
IN(MIN)  
DCMAX  
I
L
500mA/DIV  
with DC  
LT3502.  
= 0.80 for the LT3502A and 0.90 for the  
V
MAX  
OUT  
100mV/DIV  
3502 F01  
V
V
= 33V  
1μs/DIV  
IN  
OUT  
= 3.3V  
The maximum input voltage is determined by the  
L = 6.8μH  
absolute maximum ratings of the V and BOOST pins. For  
C
= 10μF  
= 250mA  
OUT  
OUT  
IN  
I
fixed frequency operation, the maximum input voltage is  
determined by the minimum duty cycle DC  
:
MIN  
Figure 1. Continuous Mode Operation Near  
Minimum On Time of 60ns  
V
OUT + VD  
DCMIN  
V
=
VD + VSW  
IN(MAX)  
DC  
= 0.15 for the LT3502A and 0.08 for the LT3502.  
MIN  
3502fc  
10  
LT3502/LT3502A  
APPLICATIONS INFORMATION  
V
SW  
V
SW  
20V/DIV  
20V/DIV  
I
L
I
L
500mA/DIV  
500mA/DIV  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
3502 F02  
3502 F03  
V
V
= 40V  
1μs/DIV  
V
V
= 40V  
1μs/DIV  
IN  
OUT  
IN  
OUT  
= 3.3V  
= 3.3V  
L = 6.8μH  
L = 6.8μH  
C
= 10μF  
= 250mA  
C
= 10μF  
= 500mA  
OUT  
OUT  
OUT  
OUT  
I
I
Figure 2. Pulse Skip Occurs when  
Required On Time is Below 60ns  
Figure 3. Pulse Skip with Large Load Current Will be Limited  
by the DA Valley Current Limit. Notice the Flat Inductor Valley  
Current and Reduced Switching Frequency  
off until the output voltage dips below the programmed  
value before it begins switching again (Figure 2).  
Inductor Selection and Maximum Output Current  
A good first choice for the inductor value is:  
Provided that the load can tolerate the increased output  
voltagerippleandthatthecomponentshavebeenproperly  
L = 1.6(V  
L = 4.6(V  
+ V ) for the LT3502A  
OUT  
OUT  
D
+ V ) for the LT3502  
selected, operation above V  
damage the part.  
is safe and will not  
D
IN(MAX)  
whereV isthevoltagedropofthecatchdiode(~0.4V)and  
D
L is in μH. With this value there will be no subharmonic  
oscillationforapplicationswith50%orgreaterdutycycle.  
Theinductor’sRMScurrentratingmustbegreaterthanthe  
maximum load current and its saturation current should  
be about 30% higher. For robust operation during fault  
conditions, the saturation current should be above 1.2A.  
Tokeepefficiencyhigh,theseriesresistance(DCR)should  
be less than 0.1Ω. Table 1 lists several vendors and types  
that are suitable.  
As the input voltage increases, the inductor current ramps  
up quicker, the number of skipped pulses increases and  
the output voltage ripple increases. For operation above  
V
the only component requirement is that the  
IN(MAX)  
components be adequately rated for operation at the  
intended voltage levels.  
Inductor current may reach current limit when operating  
in pulse skip mode with small valued inductors. In this  
case, the LT3502/LT3502A will periodically reduce its  
frequency to keep the inductor valley current to 650mA  
(Figure 3). Peak inductor current is therefore peak current  
plus minimum switch delay:  
There are several graphs in the Typical Performance  
Characteristics section of this data sheet that show the  
maximum load current as a function of input voltage and  
inductor value for several popular output voltages. Low  
inductance may result in discontinuous mode opera-  
tion, which is okay, but further reduces maximum load  
current. For details of the maximum output current and  
discontinuous mode operation, see Linear Technology  
Application Note 44.  
V – VOUT  
IN  
900mA +  
• 60ns  
L
The part is robust enough to survive prolonged operation  
under these conditions as long as the peak inductor cur-  
rent does not exceed 1.2A. Inductor current saturation  
and junction temperature may further limit performance  
during this operating regime.  
3502fc  
11  
LT3502/LT3502A  
APPLICATIONS INFORMATION  
Table 1  
VENDOR  
URL  
PART SERIES  
INDUCTANCE RATE (μH)  
SIZE (mm)  
Sumida  
www.sumida.com  
CDRH4D28  
CDRH5D28  
CDRH8D28  
1.2 to 4.7  
2.5 to 10  
2.5 to 33  
4.5 × 4.5  
5.5 × 5.5  
8.3 × 8.3  
Toko  
www.toko.com  
A916CY  
D585LC  
2 to 12  
1.1 to 39  
6.3 × 6.2  
8.1 × 8  
Würth Elektronik  
www.we-online.com  
WE-TPC(M)  
WE-PD2(M)  
WE-PD(S)  
1 to 10  
2.2 to 22  
1 to 27  
4.8 × 4.8  
5.2 × 5.8  
7.3 × 7.3  
Catch Diode  
quality(underdamped)tankcircuit.IftheLT3502/LT3502A  
circuit is plugged into a live supply, the input voltage can  
ring to twice its nominal value, possibly exceeding the  
LT3502/LT3502A’s voltage rating. This situation is easily  
avoided; see the Hot Plugging Safely section.  
Alowcapacitance500mASchottkydiodeisrecommended  
for the catch diode, D1. The diode must have a reverse  
voltage rating equal to or greater than the maximum input  
voltage. The Phillips PMEG4005AEA is a good choice; it  
is related for 500mA continuous forward current and a  
maximum reverse voltage of 40V.  
Output Capacitor  
The output capacitor has two essential functions. Along  
with the inductor, it filters the square wave generated by  
the LT3502/LT3502A to produce the DC output. In this role  
it determines the output ripple so low impedance at the  
switchingfrequencyisimportant.Thesecondfunctionisto  
storeenergyinordertosatisfytransientloadsandstabilize  
the LT3502/LT3502A’s control loop. Ceramic capacitors  
have very low equivalent series resistance (ESR) and  
provide the best ripple performance. A good value is:  
Input Capacitor  
Bypass the input of the LT3502/LT3502A circuit with a 1μF  
or higher value ceramic capacitor of X7R or X5R type. Y5V  
typeshavepoorperformanceovertemperatureandapplied  
voltage and should not be used. A 1μF ceramic is adequate  
to bypass the LT3502/LT3502A and will easily handle the  
ripple current. However, if the input power source has  
high impedance, or there is significant inductance due to  
long wires or cables, additional bulk capacitance may be  
necessary. This can be provided with a low performance  
electrolytic capacitor.  
33  
VOUT  
COUT  
=
for the LT3502A  
for the LT3502  
66  
VOUT  
Step-down regulators draw current from the input supply  
in pulses with very fast rise and fall times. The input ca-  
pacitor is required to reduce the resulting voltage ripple at  
the LT3502/LT3502A and to force this very high frequency  
switching current into a tight local loop, minimizing EMI.  
A1μFcapacitoriscapableofthistask,butonlyifitisplaced  
close to the LT3502/LT3502A and the catch diode (see the  
PCB Layout section). A second precaution regarding the  
ceramicinputcapacitorconcernsthemaximuminputvolt-  
ageratingoftheLT3502/LT3502A. Aceramicinputcapaci-  
tor combined with trace or cable inductance forms a high  
COUT  
=
where C  
is in μF. Use an X5R or X7R type and keep  
OUT  
in mind that a ceramic capacitor biased with V  
will  
OUT  
have less than its nominal capacitance. This choice will  
provide low output ripple and good transient response.  
Transient performance can be improved with a high value  
capacitor, but a phase lead capacitor across the feedback  
resistor, R1, may be required to get the full benefit (see  
the Compensation section).  
3502fc  
12  
LT3502/LT3502A  
APPLICATIONS INFORMATION  
For small size, the output capacitor can be chosen  
according to:  
BOOST Pin Considerations  
Capacitor C3 and the internal boost diode are used to  
generate a boost voltage that is higher than the input  
voltage. In most cases a 0.1ꢀF capacitor will work well.  
Figure 5 shows two ways to arrange the boost circuit. The  
BOOST pin must be at least 2.2V above the SW pin for  
best efficiency. For outputs of 3V and above, the standard  
circuit (Figure 5a) is best. For outputs less than 3V and  
above 2.5V, place a discrete Schottky diode (such as the  
25  
VOUT  
COUT  
=
where C  
is in μF. However, using an output capacitor  
OUT  
thissmallresultsinanincreasedloopcrossoverfrequency  
and increased sensitivity to noise.  
High performance electrolytic capacitors can be used for  
the output capacitor. Low ESR is important, so choose  
one that is intended for use in switching regulators. The  
ESR should be specified by the supplier and should be  
0.1Ωorless. Suchacapacitorwillbelargerthanaceramic  
capacitor and will have a larger capacitance, because the  
capacitor must be large to achieve low ESR. Table 2 lists  
several capacitor vendors.  
BAT54)inparallelwiththeinternaldiodetoreduceV . The  
D
following equations can be used to calculate and minimize  
boost capacitance in ꢀF:  
0.012/(V + V  
– V – 2.2) for the LT3502A  
D
BD  
CATCH  
0.030/(V + V  
– V – 2.2) for the LT3502  
D
BD  
CATCH  
V is the forward drop of the boost diode, and V  
is  
D
CATCH  
the forward drop of the catch diode (D1).  
Figure4showsthetransientresponseoftheLT3502Awith  
several output capacitor choices. The output is 3.3V. The  
loadcurrentissteppedfrom150mAto400mAandbackto  
150mA,andtheoscilloscopetracesshowtheoutputvoltage.  
The upper photo shows the recommended value. The sec-  
ondphotoshowstheimprovedresponse(lessvoltagedrop)  
resulting from a larger output capacitor and a phase lead  
capacitor. The last photo shows the response to a high  
performanceelectrolyticcapacitor.Transientperformance  
is improved due to the large output capacitance.  
For lower output voltages the BD pin can be tied to an  
external voltage source with adequate local bypassing  
(Figure 5b). The above equations still apply for calculating  
the optimal boost capacitor for the chosen BD voltage.  
The absence of BD voltage during startup will increase  
minimum voltage to start and reduce efficiency. You must  
also be sure that the maximum voltage rating of BOOST  
pin is not exceeded.  
Table 2  
VENDOR  
Panasonic  
PHONE  
(714) 373-7366  
URL  
PART SERIES  
COMMENTS  
EEF Series  
T494,T495  
www.panasonic.com  
Ceramic  
Polymer,  
Tantalum  
Ceramic,  
Tantalum  
Ceramic  
Polymer,  
Tantalum  
Kemet  
Sanyo  
(864) 963-6300  
(408)794-9714  
www.kemet.com  
www.sanyovideo.com  
POSCAP  
Murata  
AVX  
(404) 436-1300  
(864) 963-6300  
www.murata.com  
www.avxcorp.com  
Ceramic  
Ceramic,  
Tantalum  
TPS Series  
Taiyo Yuden  
www.taiyo-yuden.com  
Ceramic  
3502fc  
13  
LT3502/LT3502A  
APPLICATIONS INFORMATION  
V
OUT  
32.4k  
FB  
I
L
0.2A/DIV  
10μF  
V
OUT  
10k  
0.1V/DIV  
AC COUPLED  
3502 F04a  
3502 F04b  
3502 F04c  
10μs/DIV  
10μs/DIV  
10μs/DIV  
V
OUT  
32.4k  
FB  
10k  
50pF  
I
L
10μF  
×2  
0.2A/DIV  
V
OUT  
0.1V/DIV  
AC COUPLED  
V
OUT  
32.4k  
FB  
10k  
+
I
L
100μF  
0.2A/DIV  
V
OUT  
SANYO  
4TPB100M  
0.1V/DIV  
AC COUPLED  
Figure 4. Transient Load Response of the LT3502A with Different Output Capacitors  
as the Load Current is Stepped from 150mA to 400mA. VIN = 12V, VOUT = 3.3V, L = 6.8μH  
V
DD  
BD  
BD  
BOOST  
BOOST  
V
LT3502  
GND  
V
OUT  
V
SW  
IN  
IN  
V
IN  
LT3502  
GND  
V
OUT  
V
SW  
IN  
DA  
DA  
V
– V V  
SW OUT  
BOOST  
3502 F05a  
BOOST  
V
– V V  
BOOST  
3502 F05b  
BOOST  
SW  
IN  
IN  
MAX V  
V + V  
IN OUT  
MAX V  
2V  
(5a)  
(5b)  
Figure 5  
3502fc  
14  
LT3502/LT3502A  
APPLICATIONS INFORMATION  
The minimum operating voltage of an LT3502/LT3502A  
applicationislimitedbytheundervoltagelockout(3V)and  
by the maximum duty cycle as outlined above. For proper  
start-up, the minimum input voltage is also limited by the  
boost circuit. If the input voltage is ramped slowly, or the  
LT3502/LT3502A is turned on with its SHDN pin when the  
output is already in regulation, then the boost capacitor  
may not be fully charged. Because the boost capacitor is  
charged with the energy stored in the inductor, the circuit  
will rely on some minimum load current to get the boost  
circuit running properly. This minimum load will depend  
on the input and output voltages, and on the arrangement  
of the boost circuit. The minimum load generally goes to  
zero once the circuit has started. Figure 6 shows plots of  
minimum load to start and to run as a function of input  
voltage. In many cases the discharged output capacitor  
will present a load to the switcher which will allow it to  
start. The plots show the worst-case situation where V  
IN  
is ramping very slowly. At light loads, the inductor current  
becomes discontinuous and the effective duty cycle can  
be very high. This reduces the minimum input voltage to  
approximately400mVaboveV .Athigherloadcurrents,  
OUT  
the inductor current is continuous and the duty cycle is  
limitedbythemaximumdutycycleoftheLT3502/LT3502A,  
requiring a higher input voltage to maintain regulation.  
7
6
5
8
7
START  
6
RUN  
START  
5
4
3
2
1
0
4
3
RUN  
2
1
0
0.1  
LOAD CURRENT (A)  
1
0.001  
0.01  
0.001  
0.01  
0.1  
1
LOAD CURRENT (A)  
3502 G20  
3502 G19  
(6a) LT3502A Typical Minimum Input Voltage, VOUT = 3.3V  
(6b) LT3502A Typical Minimum Input Voltage, VOUT = 5V  
8
7
6
5
7
START  
6
5
4
3
2
1
RUN  
START  
RUN  
4
3
2
1
0
0
0.001  
0.01  
0.1  
1
0.1  
LOAD CURRENT (A)  
1
0.001  
0.01  
LOAD CURRENT (A)  
3502 G22  
3502 G21  
(6c) LT3502 Typical Minimum Input Voltage, VOUT = 3.3V  
(6d) LT3502 Typical Minimum Input Voltage, VOUT = 5V  
Figure 6  
3502fc  
15  
LT3502/LT3502A  
APPLICATIONS INFORMATION  
V
SW  
10V/DIV  
RUN  
SHDN  
GND  
I
L
500mA/DIV  
3502 F07a  
V
OUT  
2V/DIV  
5μs/DIV  
V
V
= 12V  
IN  
OUT  
= 3.3V  
L = 6.8μH  
= 10μF  
C
OUT  
RUN  
50k  
V
SW  
10V/DIV  
SHDN  
GND  
I
0.1μF  
L
500mA/DIV  
3502 F07b  
V
OUT  
2V/DIV  
3502 F07  
50μs/DIV  
V
V
= 12V  
IN  
= 3.3V  
OUT  
L = 6.8μH  
C
= 10μF  
OUT  
Figure 7. To Soft Start the LT3502A, Add a Resistor and Capacitor to the SHDN Pin  
Soft-Start  
batterychargingapplicationsorinbatterybackupsystems  
where a battery or some other supply is diode OR-ed with  
TheSHDNpincanbeusedtosoftstarttheLT3502/LT3502A,  
reducing the maximum input current during start-up. The  
SHDN pin is driven through an external RC filter to create  
a voltage ramp at this pin. Figure 7 shows the start-up  
waveforms with and without the soft-start circuit. By  
choosing a large RC time constant, the peak start up  
current can be reduced to the current that is required to  
regulate the output, with no overshoot. Choose the value  
of the resistor so that it can supply 80μA when the SHDN  
pin reaches 2V.  
the LT3502/LT3502A’s output. If the V pin is allowed to  
IN  
float and the SHDN pin is held high (either by a logic signal  
or because it is tied to V ), then the LT3502/LT3502A’s  
IN  
V
SW  
10V/DIV  
Short and Reverse Protection  
I
L
500mA/DIV  
Iftheinductorischosensothatitwon’tsaturateexcessively,  
the LT3502/LT3502A will tolerate a shorted output. When  
operating in short-circuit condition, the LT3502/LT3502A  
will reduce their frequency until the valley current is  
650mA (Figure 8a). There is another situation to consider  
in systems where the output will be held high when the  
input to the LT3502/LT3502A is absent. This may occur in  
3502 F08a  
V
V
= 40V  
2μs/DIV  
IN  
= 0V  
OUT  
L = 6.8μH  
C
= 10μF  
OUT  
Figure 8a. The LT3502A Reduces its Frequency to Below 500kHz  
to Protect Against Shorted Output with 40V Input  
3502fc  
16  
LT3502/LT3502A  
APPLICATIONS INFORMATION  
input. The input voltage rings as high as 35V and the input  
current peaks at 20A. One method of damping the tank  
circuit is to add another capacitor with a series resistor to  
the circuit. In Figure 9b an aluminum electrolytic capacitor  
has been added. This capacitor’s high equivalent series  
resistance damps the circuit and eliminates the voltage  
overshoot. The extra capacitor improves low frequency  
ripplelteringandcanslightlyimprovetheefficiencyofthe  
circuit,thoughitislikelytobethelargestcomponentinthe  
circuit. An alternative solution is shown in Figure 9c. A 1Ω  
resistor is added in series with the input to eliminate the  
voltage overshoot (it also reduces the peak input current).  
A 0.1μF capacitor improves high frequency filtering. This  
solution is smaller and less expensive than the electrolytic  
capacitor. For high input voltages its impact on efficiency  
is minor, reducing efficiency less than one half percent for  
a 5V output at full load operating from 24V.  
D4  
BD  
V
V
BOOST  
IN  
IN  
V
SW  
OUT  
LT3502A  
DA  
FB  
+
SHDN  
GND  
3502 F08b  
Figure 8b. Diode D4 Prevents a Shorted Input from Discharging  
a Backup Battery Tied to the Output; it Also Protects the Circuit  
from a Reversed Input. The LT3502/LT3502A Runs Only When  
the Input is Present  
internal circuitry will pull its quiescent current through  
its SW pin. This is fine if your system can tolerate a few  
mA in this state. If you ground the SHDN pin, the SW  
pin current will drop to essentially zero. However, if the  
Frequency Compensation  
V
pin is grounded while the output is held high, then  
IN  
TheLT3502/LT3502Ausecurrentmodecontroltoregulate  
theoutput.Thissimplifiesloopcompensation.Inparticular,  
theLT3502/LT3502AdoesnotrequiretheESRoftheoutput  
capacitorforstabilityallowingtheuseofceramiccapacitors  
to achieve low output ripple and small circuit size.  
parasitic diodes inside the LT3502/LT3502A can pull large  
currents from the output through the SW pin and the V  
IN  
pin. Figure 8b shows a circuit that will run only when the  
inputvoltageispresentandthatprotectsagainstashorted  
or reversed input.  
Figure 10 shows an equivalent circuit for the LT3502/  
LT3502Acontrolloop.Theerrorampisatransconductance  
amplifierwithniteoutputimpedance. Thepowersection,  
consisting of the modulator, power switch and inductor,  
is modeled as a transconductance amplifier generating an  
Hot Plugging Safely  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LT3502/LT3502A circuits. However,  
thesecapacitorscancauseproblemsiftheLT3502/LT3502A  
are plugged into a live supply (see Linear Technology  
Application Note 88 for a complete discussion). The low  
loss ceramic capacitor combined with stray inductance in  
series with the power source forms an underdamped tank  
output current proportional to the voltage at the V node.  
C
Note that the output capacitor integrates this current,  
and that the capacitor on the V node (C ) integrates the  
C
C
error amplifier output current, resulting in two poles in the  
loop. R provides a zero. With the recommended output  
C
circuit,andthevoltageattheV pinoftheLT3502/LT3502A  
capacitor, the loop crossover occurs above the R C zero.  
IN  
C C  
can ring to twice the nominal input voltage, possibly ex-  
ceeding the LT3502/LT3502A’s rating and damaging the  
part. If the input supply is poorly controlled or the user  
will be plugging the LT3502/LT3502A into an energized  
supply, the input network should be designed to prevent  
this overshoot. Figure 9 shows the waveforms that result  
when an LT3502/LT3502A circuit is connected to a 24V  
supply through six feet of 24-gauge twisted pair. The first  
plot is the response with a 2.2μF ceramic capacitor at the  
This simple model works well as long as the value of the  
inductor is not too high and the loop crossover frequency  
is much lower than the switching frequency. With a larger  
ceramiccapacitor(verylowESR),crossovermaybelower  
and a phase lead capacitor (C ) across the feedback  
PL  
divider may improve the phase margin and transient  
response. Large electrolytic capacitors may have an ESR  
large enough to create an additional zero, and the phase  
lead may not be necessary.  
3502fc  
17  
LT3502/LT3502A  
APPLICATIONS INFORMATION  
CLOSING SWITCH  
SIMULATES HOT PLUG  
I
IN  
V
IN  
DANGER!  
LT3502  
2.2μF  
V
IN  
20V/DIV  
RINGING V MAY EXCEED  
IN  
ABSOLUTE MAXIMUM  
RATING OF THE LT3502  
+
I
IN  
5A/DIV  
LOW  
STRAY  
IMPEDANCE  
ENERGIZED  
24V SUPPLY  
INDUCTANCE  
20μs/DIV  
DUE TO 6 FEET  
(2 METERS) OF  
TWISTED PAIR  
(9a)  
V
LT3502  
2.2μF  
IN  
20V/DIV  
+
+
+
10μF  
35V  
AI.EI.  
I
IN  
5A/DIV  
(9b)  
20μs/DIV  
1Ω  
V
LT3502  
2.2μF  
IN  
20V/DIV  
0.1μF  
I
IN  
5A/DIV  
3502 F09  
20μs/DIV  
(9c)  
Figure 9. A Well Chosen Input Network Prevents Input Voltage Overshoot and  
Ensures Reliable Operation When the LT3502 is Connected to a Live Supply  
CURRENT MODE  
POWER STAGE  
LT3502  
0.5V  
SW  
g
=
m
OUT  
1A/V  
+
C
R1  
PL  
+
FB  
g
=
V
C
m
100μA/V  
ESR  
800mV  
R
C
C1  
ERROR  
AMPLIFIER  
+
150k  
C1  
C
C
1M  
70pF  
R2  
GND  
3502 F10  
Figure 10. Model for Loop Response  
3502fc  
18  
LT3502/LT3502A  
APPLICATIONS INFORMATION  
If the output capacitor is different than the recommended  
capacitor, stability should be checked across all operat-  
ing conditions, including load current, input voltage and  
temperature. The LT1375 data sheet contains a more  
thorough discussion of loop compensation and describes  
how to test the stability using a transient load.  
High Temperature Considerations  
The die temperature of the LT3502/LT3502A must be  
lower than the maximum rating of 125°C. This is generally  
not a concern unless the ambient temperature is above  
85°C. For higher temperatures, care should be taken in  
the layout of the circuit to ensure good heat sinking of  
the LT3502/LT3502A. The maximum load current should  
be derated as the ambient temperature approaches  
125°C. The die temperature is calculated by multiplying  
the LT3502/LT3502A power dissipation by the thermal  
resistance from junction to ambient. Power dissipation  
within the LT3502/LT3502A can be estimated by calculat-  
ing the total power loss from an efficiency measurement  
and subtracting the catch diode loss. Thermal resistance  
depends on the layout of the circuit board, but 102°C/W  
and 110ºC/W are typical for the (2mm × 2mm) DFN and  
MS10 packages respectively.  
PCB Layout  
For proper operation and minimum EMI, care must be  
taken during printed circuit board layout. Figure 11 shows  
the recommended component placement with trace,  
ground plane and via locations. Note that large, switched  
currents flow in the LT3502/LT3502A’s V and SW pins,  
IN  
the catch diode (D1) and the input capacitor (C2). The  
loop formed by these components should be as small  
as possible and tied to system ground in only one place.  
These components, along with the inductor and output  
capacitor, should be placed on the same side of the circuit  
board, and their connections should be made on that  
layer. Place a local, unbroken ground plane below these  
components, and tie this ground plane to system ground  
at one location, ideally at the ground terminal of the output  
capacitor C1. The SW and BOOST nodes should be as  
small as possible. Finally, keep the FB node small so that  
the ground pin and ground traces will shield it from the  
SWandBOOSTnodes. IncludeviasneartheexposedGND  
pad of the LT3502/LT3502A to help remove heat from the  
LT3502/LT3502A to the ground plane.  
Outputs Greater Than 7V  
Note that for outputs above 7V, the input voltage range will  
be limited by the maximum rating of the BOOST pin. The  
sumofinputandoutputvoltagescannotexceedtheBOOST  
pin’s 50V rating. The 15V circuit (Figure 12) shows how to  
overcome this limitation using an additional zener diode.  
Other Linear Technology Publications  
Application notes AN19, AN35 and AN44 contain more  
detailed descriptions and design information for Buck  
regulators and other switching regulators. The LT1376  
data sheet has a more extensive discussion of output  
ripple, loop compensation and stability testing. Design  
Note 100 shows how to generate a bipolar output supply  
using a buck regulator.  
V
OUT  
C1  
L1  
C2  
10V  
BD  
V
V
IN  
IN  
V
IN  
BOOST  
SW  
C3  
20V TO 40V  
L1  
33μH  
C3  
0.1μF  
C2  
1μF  
V
D1  
OUT  
BST  
DA  
15V  
500mA  
FB  
R1  
LT3502A  
BD  
SHDN  
22pF  
DA  
R2  
R1  
180k  
GND  
SHDN  
FB  
OFF ON  
R2  
10k  
C1  
10μF  
3502 F11  
GND  
= VIA  
3502 F12  
Figure 11  
Figure 12. 15V Step-Down Converter  
3502fc  
19  
LT3502/LT3502A  
TYPICAL APPLICATIONS  
0.8V Step-Down Converter  
V
BD  
V
BD  
3V TO 7V  
3V TO 7V  
0.1μF  
0.1μF  
BD  
BD  
V
V
IN  
3V TO 40V  
IN  
V
BOOST  
SW  
V
BOOST  
SW  
IN  
IN  
3V TO 40V  
L1  
3.3μH  
L1  
10μH  
C3  
C3  
C2  
1μF  
C2  
1μF  
V
V
OUT  
0.1μF  
0.1μF  
OUT  
0.8V  
0.8V  
500mA  
500mA  
LT3502A  
LT3502  
D1  
D1  
DA  
FB  
DA  
FB  
SHDN  
SHDN  
OFF ON  
OFF ON  
C1  
47μF  
C1  
100μF  
GND  
GND  
C1: JMK212BJ476MG  
C3: HMK212BJ104MG  
L1: LQH43CN3R3M03  
C1: JMK316BJ107ML  
L1: LQH43CN100K03  
3502 TA02a  
3502 TA02b  
1.8V Step-Down Converter  
V
V
BD  
BD  
3V TO 7V  
3V TO 7V  
0.1μF  
0.1μF  
BD  
BD  
V
V
IN  
3V TO 40V  
IN  
V
BOOST  
C3  
V
BOOST  
SW  
IN  
IN  
3V TO 40V  
L1  
4.7μH  
L1  
15μH  
C2  
1μF  
C2  
1μF  
C3  
0.1μF  
V
V
0.1μF  
SW  
OUT  
OUT  
1.8V  
1.8V  
500mA  
500mA  
LT3502A  
LT3502  
D1  
D1  
DA  
FB  
DA  
FB  
R1  
R1  
12.5k  
12.5k  
SHDN  
SHDN  
OFF ON  
OFF ON  
R2  
10k  
C1  
22μF  
R2  
10k  
C1  
47μF  
GND  
GND  
C1: JMK212BJ226MG  
L1: LQH43CN4R7M03  
C1: JMK212BJ476MG  
L1: LQH55DN150M03  
3502 TA03a  
3502 TA03b  
3502fc  
20  
LT3502/LT3502A  
TYPICAL APPLICATIONS  
2.5V Step-Down Converter  
V
V
BD  
BD  
3V TO 7V  
3V TO 7V  
0.1μF  
0.1μF  
BD  
BD  
V
V
IN  
IN  
V
BOOST  
V
BOOST  
SW  
IN  
IN  
3.5V TO 40V  
3.5V TO 40V  
L1  
C3  
L1  
6.8μH  
C2  
1μF  
C2  
1μF  
C3  
15μH  
V
V
0.1μF  
0.1μF  
OUT  
2.5V  
OUT  
SW  
DA  
FB  
2.5V  
500mA  
500mA  
LT3502  
LT3502A  
D1  
D1  
DA  
FB  
R1  
21.3k  
R1  
21.3k  
SHDN  
SHDN  
OFF ON  
OFF ON  
R2  
10k  
C1  
22μF  
R2  
10k  
C1  
22μF  
GND  
GND  
C1: JMK212BJ226MG  
L1: LQH55DN150M03  
C1: JMK212BJ226MG  
L1: LQH43DN6R8M03  
3502 TA04b  
3502 TA04a  
3.3V Step-Down Converter  
BD  
BD  
V
V
IN  
IN  
V
BOOST  
SW  
V
BOOST  
SW  
IN  
IN  
4.5V TO 40V  
4.7V TO 40V  
L1  
15μH  
L1  
6.8μH  
C3  
0.1μF  
C3  
C2  
1μF  
C2  
1μF  
V
V
0.1μF  
OUT  
3.3V  
OUT  
3.3V  
500mA  
500mA  
LT3502  
LT3502A  
D1  
D1  
DA  
FB  
DA  
FB  
R1  
R1  
31.6k  
31.6k  
SHDN  
SHDN  
OFF ON  
OFF ON  
R2  
10k  
C1  
22μF  
R2  
10k  
C1  
10μF  
GND  
GND  
C1: JMK212BJ226MG  
L1: LQH55DN150M03  
C1: LMK316BJ106ML-BR  
L1: LQH43CN6R8M03  
3502 TA05b  
3502 TA05a  
3502fc  
21  
LT3502/LT3502A  
PACKAGE DESCRIPTION  
DC Package  
8-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1719 Rev Ø)  
0.70 ±0.05  
2.55 ±0.05  
0.64 ±0.05  
1.15 ±0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.45 BSC  
1.37 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
TYP  
5
8
R = 0.05  
TYP  
0.40 ± 0.10  
PIN 1 NOTCH  
2.00 ±0.10 0.64 ± 0.10  
(4 SIDES)  
(2 SIDES)  
R = 0.20 OR  
0.25 × 45°  
CHAMFER  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
(DC8) DFN 0106 REVØ  
4
1
0.23 ± 0.05  
0.45 BSC  
0.75 ±0.05  
0.200 REF  
1.37 ±0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3502fc  
22  
LT3502/LT3502A  
PACKAGE DESCRIPTION  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
0.889 0.127  
(.035 .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
(.0197)  
0.497 0.076  
(.0196 .003)  
REF  
0.50  
0.305 0.038  
(.0120 .0015)  
TYP  
10 9  
8
7 6  
BSC  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
GAUGE PLANE  
1
2
3
4 5  
0.53 0.152  
(.021 .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 0.0508  
(.004 .002)  
0.50  
(.0197)  
BSC  
MSOP (MS) 0307 REV E  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3502fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT3502/LT3502A  
TYPICAL APPLICATION  
5V Step-Down Converter  
BD  
BD  
V
V
IN  
IN  
V
BOOST  
SW  
V
BOOST  
SW  
IN  
IN  
6.7V TO 40V  
6.4V TO 40V  
L1  
10μH  
C3  
L1  
22μH  
C3  
C2  
1μF  
C2  
1μF  
V
0.1μF  
V
0.1μF  
OUT  
OUT  
5V  
5V  
500mA  
500mA  
LT3502A  
D1  
LT3502  
D1  
DA  
FB  
DA  
FB  
R1  
R1  
52.3k  
52.3k  
SHDN  
OFF ON  
SHDN  
OFF ON  
R2  
10k  
C1  
10μF  
GND  
R2  
10k  
C1  
22μF  
GND  
C1: LMK316BJ106ML-BR  
L1: LQH43CN100K03  
C1: LMK316BJ106ML-BR  
L1: LQH43CN100K03  
3502 TA06a  
3502 TA06b  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 5.5V to 60V, V  
LT1766  
60V, 1.2A (I ), 200kHz, High Efficiency Step-Down  
DC/DC Converter  
= 1.2V, I = 2.5mA, I = 25μA,  
OUT(MIN) Q SD  
OUT  
IN  
TSSOP16/TSSOP16E Packages  
LT1933  
500mA (I ), 500kHz, Step-Down Switching Regulator in V : 3.6V to 36V, V  
= 1.2V, I = 1.6mA, I < 1μA,  
OUT(MIN) Q SD  
OUT  
IN  
SOT-23  
ThinSOTTM Package  
LT1936  
36V, 1.4A (I ), 500kHz, High Efficiency Step-Down  
V : 3.6V to 36V, V  
= 1.2V, I = 1.9mA, I < 1μA,  
Q SD  
OUT  
IN  
OUT(MIN)  
DC/DC Converter  
MS8E Package  
LT1940  
Dual 25V, 1.4A (I ), 1.1MHz, High Efficiency Step-Down V : 3.6V to 25V, V  
= 1.20V, I = 3.8mA, I < 30μA,  
Q SD  
OUT  
IN  
OUT(MIN)  
DC/DC Converter  
TSSOP16E Package  
LT1976/LT1977  
60V, 1.2A (I ), 200kHz/500kHz High Efficiency Step-  
V : 3.3V to 60V, V  
= 1.20V, I = 100μA, I < 1μA,  
OUT(MIN) Q SD  
OUT  
IN  
Down DC/DC Converters with Burst Mode® Operation  
TSSOP16E Package  
LTC 3407/LTC3407-2 Dual 600mA/800mA, 1.5MHz/2.25MHz, Synchronous  
Step-DownDC/DC Converters  
V : 2.5V to 5.5V, V  
= 0.6V, I = 40μA, I <1μA,  
Q SD  
IN  
OUT(MIN)  
3mm × 3mm DFN, MS10E Package  
LT3434/LT3435  
60V, 1.2A (I ), 200kHz/500kHz High Efficiency Step-  
V : 3.3V to 60V, V = 1.20V, I = 100μA, I < 1μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
Down DC/DC Converters with Burst Mode Operation  
TSSOP16E Package  
LT3437  
60V, 400mA (I ), Micropower Step-Down DC/DC  
V : 3.3V to 60V, V  
= 1.25V, I = 100μA, I < 1μA,  
Q SD  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
Converter with Burst Mode Operation  
DFN Package  
LT3493  
36V, 1.4A (I ), 750kHz, High Efficiency Step-Down  
V : 3.6V to 36V, V  
= 0.8V, I = 1.9mA, I < 1μA,  
Q SD  
OUT  
IN  
DC/DC Converter  
DFN Package  
LT3501  
Dual 25V, 3A (I ), 1.5MHz, High Efficiency Step-Down  
V : 3.3V to 25V, V  
= 0.8V, I = 3.7mA, I < 10μA,  
Q SD  
OUT  
IN  
DC/DC Converter  
TSSOP20E Package  
LT3503  
20V, 1A (I ), 2.2MHz, High Efficiency Step-Down  
V : 3.6V to 20V, V  
= 0.78V, I = 1.9mA, I < 1μA,  
OUT(MIN) Q SD  
OUT  
IN  
DC/DC Converter  
2mm × 3mm DFN Package  
V : 3.6V to 36V, V = 0.78V, I = 2mA, I < 2μA,  
OUT(MIN) Q SD  
LT3505  
36V, 1.2A (I ), 3MHz, High Efficiency Step-Down  
OUT  
IN  
DC/DC Converter  
3mm × 3mm DFN, MS8E Packages  
LT3506/LT3506A  
LT3508  
Dual 25V, 1.6A (I ), 575kHz/1.1MHz, High Efficiency  
V : 3.6V to 25V, V = 0.8V, I = 3.8mA, I < 30μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
Step-Down DC/DC Converters  
4mm × 5mm DFN Package  
Dual 36V, 1.4A (I ), 2.5MHz, High Efficiency Step-Down V : 3.6V to 36V, V  
= 0.8V, I = 4.3mA, I < 1μA,  
Q SD  
OUT  
IN  
OUT(MIN)  
DC/DC Converter  
4mm × 4mm QFN, TSSOP16E Packages  
LT3510  
Dual 25V, 2A (I ), 1.5MHz, High Efficiency Step-Down  
V : 3.3V to 25V, V = 0.8V, I = 3.7mA, I < 10μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
DC/DC Converter  
TSSOP20E Package  
LTC3548  
Dual 400mA + 800mA, 2.25MHz Synchronous Step-Down V : 2.5V to 5.5V, V  
= 0.6V, I = 40μA, I < 1μA,  
IN  
OUT(MIN) Q SD  
DC/DC Converter  
3mm × 3mm DFN, MS10E Packages  
Burst Mode is a registered trademark of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation.  
3502fc  
LT 0908 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY