LT3641EUFD#TRPBF [Linear]

LT3641 - Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer; Package: QFN; Pins: 28; Temperature Range: -40°C to 85°C;
LT3641EUFD#TRPBF
型号: LT3641EUFD#TRPBF
厂家: Linear    Linear
描述:

LT3641 - Dual Monolithic Buck Regulator with Power-On Reset and Watchdog Timer; Package: QFN; Pins: 28; Temperature Range: -40°C to 85°C

开关
文件: 总28页 (文件大小:451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3641  
Dual Monolithic Buck  
Regulator with Power-On  
Reset and Watchdog Timer  
FEATURES  
DESCRIPTION  
TheLT®3641isadualchannel,currentmodemonolithicbuck  
switching regulator with a power-on reset and a watchdog  
timer.Bothregulatorsaresynchronizedtoasingleoscillator  
with an adjustable frequency (350kHz to 2.5MHz). At light  
loads, both regulators operate in low ripple Burst Mode®  
to maintain high efficiency and low output ripple.  
n
High Voltage Buck Regulator:  
4V to 42V Operating Range  
1.3A Output Current  
n
Input Transient Protection to 55V  
n
Low Voltage Synchronous Buck Regulator:  
2.5V to 5.5V Input Voltage Range  
1.1A Output Current  
The high voltage channel is a nonsynchronous buck with  
an internal 2.4A top switch that operates from an input  
of 4V to 42V and input transient protection to 55V. The  
low voltage channel operates from an input of 2.5V to  
5.5V. Internal synchronous power switches provide high  
efficiency without the need of external Schottky diode.  
Bothchannelshavecycle-by-cyclecurrentlimit,providing  
protection against shorted outputs.  
n
Synchronizable, Adjustable 350kHz to 2.5MHz  
Switching Frequency  
Programmable Power-On Reset Timer  
Programmable Window Mode Watchdog Timer  
Typical Quiescent Current: 290μA  
Short-Circuit Robust  
Programmable Soft-Start  
Low Shutdown Current: I < 1μA  
Thermal Shutdown  
Available in Thermally Enhanced 28-Lead  
(4mm × 5mm) QFN and 28-Lead TSSOP Packages  
n
n
n
n
n
n
Q
n
n
The power-on reset and watchdog timeout periods are  
both adjustable using external capacitors. The window  
mode watchdog timer flags when the μP pulses group  
too close together or too far apart.  
APPLICATIONS  
The LT3641 is available in a 28-pin 4mm × 5mm QFN  
package and 28-pin TSSOP package. Both packages have  
an exposed pad for low thermal resistance.  
n
Industrial Power Supplies  
n
Automotive Electronic Control Units  
L, LT, LTC, LTM, Linear Technology, Burst Mode and the Linear logo are registered trademarks  
and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
TYPICAL APPLICATION  
2MHz 5V/0.8A and 3.3V/0.5A Step Down Regulators  
HV Channel Efficiency,  
2MHz, VOUT1 = 5V  
LV Channel Efficiency,  
2MHz, VOUT2 = 3.3V  
0.22μF  
V
IN  
7V TO 42V*  
10μF  
4.7μH  
301k  
V
OUT1  
90  
85  
80  
75  
70  
95  
90  
85  
80  
75  
70  
EN/UVLO  
V
SW  
BST SW1  
IN  
5V/0.8A  
SYNC  
WDE  
PGOOD2  
22μF  
DA  
FB1  
V
IN  
= 12V  
V
IN2  
= 5V  
100k  
V
OUT1  
100k  
100k  
LT3641  
V
IN2  
RST1  
RST2  
WDO  
WDI  
EN2  
2.2μH  
μP  
V
OUT2  
SW2  
3.3V/0.5A  
226k  
22μF  
CWDT  
CPOR  
FB2  
RT GND SS2 SS1  
49.9k  
1nF  
1.5nF  
1.5nF  
32.4k  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
CURRENT (A)  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1nF  
V
V
OUT2  
CURRENT (A)  
OUT1  
3641 TA01a  
3641 TA01b  
3641 TA01c  
* FOR INPUT VOLTAGES ABOVE 42V RESTRICTIONS APPLY  
3641fa  
1
LT3641  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
V , EN/UVLO Voltage (Note 7).................................55V  
SW2 Voltage ................................0.3V to (V + 0.3V)  
IN  
IN2  
WDE Voltage.............................................................30V  
BST Above SW, SW1 Voltage....................... –0.3V to 6V  
SW1 Above SW Voltage............................... –0.3V to 6V  
Operating Junction Temperature Range (Note 2)  
LT3641E................................................. –40°C to 125°C  
LT3641I.................................................. –40°C to 125°C  
LT3641H................................................. –40°C to 150°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature, FE Only (Soldering, 10 sec) .... 300°C  
V , SYNC, EN2, PGOOD2, WDI,  
IN2  
WDO, RST1, RST2, Voltages ....................... –0.3V to 6V  
SS1, SS2, FB1, FB2, RT, CWDT,  
CPOR Voltages……….............................. –0.3V to 2.5V  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
SS2  
EN2  
GND  
SW2  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
FB2  
PGOOD2  
EN/UVLO  
SYNC  
SS1  
3
28 27 26 25 24 23  
4
SYNC  
SS1  
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
SW2  
5
V
IN2  
V
IN2  
6
GND  
FB1  
FB1  
GND  
7
V
RT  
IN  
29  
GND  
RT  
V
29  
GND  
IN  
8
BST  
SW  
RST2  
RST1  
WDO  
RST2  
RST1  
WDO  
CWDT  
BST  
SW  
SW1  
DA  
9
10  
11  
12  
13  
14  
SW1  
DA  
CWDT  
CPOR  
WDE  
9
10 11 12 13 14  
UFD PACKAGE  
NC  
GND  
GND  
WDI  
28-LEAD (4mm × 5mm) PLASTIC QFN  
= 43°C/W, θ = 3.4°C/W  
FE PACKAGE  
θ
28-LEAD PLASTIC TSSOP  
JA  
JC  
EXPOSED PAD (PIN 29) IS GND, MUST BE SOLDERED TO PCB  
θ
= 30°C/W, θ = 8°C/W  
JA  
JC  
EXPOSED PAD (PIN 29) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3641EFE#PBF  
LT3641IFE#PBF  
LT3641HFE#PBF  
LT3641EUFD#PBF  
LT3641IUFD#PBF  
TAPE AND REEL  
PART MARKING*  
LT3641FE  
LT3641FE  
LT3641FE  
3641  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3641EFE#TRPBF  
LT3641IFE#TRPBF  
LT3641HFE#TRPBF  
LT3641EUFD#TRPBF  
LT3641IUFD#TRPBF  
28-Lead Plastic TSSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 125°C  
–40°C to 125°C  
28-Lead Plastic TSSOP  
28-Lead Plastic TSSOP  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
3641  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3641fa  
2
LT3641  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VIN2 = 3.3V, EN/UVLO = 12V, EN2 = 3.3V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
3.6  
3.8  
MAX  
4
UNITS  
l
l
V
IN  
V
IN  
Undervoltage Lockout Threshold  
Undervoltage Release Threshold  
V
V
4.2  
Quiescent Current from V  
EN/UVLO = 0.3V  
Not Switching  
0.1  
275  
1
375  
μA  
μA  
IN  
EN/UVLO Threshold Voltage  
EN/UVLO High Bias Current  
EN/UVLO Low Bias Current  
SYNC Input Frequency  
1.2  
1.26  
2
1.3  
V
μA  
EN/UVLO = Threshold + 60mV  
EN/UVLO = Threshold – 60mV  
0.1  
μA  
0.35  
0.4  
2.5  
1
MHz  
V
SYNC Threshold Voltage  
Switching Frequency  
0.8  
l
l
RT = 32.4k  
RT = 182k  
1.75  
450  
2
500  
2.35  
550  
MHz  
kHz  
l
FB1 Voltage  
1.24  
1.265  
30  
1.29  
100  
V
nA  
FB1 Bias Current  
FB1 Line Regulation  
SW1 Minimum Off-Time  
FB1 = 1.265V  
5V < V < 30V  
0.001  
70  
%/V  
ns  
IN  
100  
SW1 V  
I
= 800mA  
SW1  
400  
0.1  
mV  
μA  
CESAT  
SW1 Leakage Current  
SW1 Current Limit  
1
l
l
FB1 = 1V (Note 3)  
FB1 = 0.1V  
2.2  
2.8  
1.8  
3.4  
A
A
DA Current limit  
FB1 = 1V (Note 4)  
FB1 = 0.1V  
1.35  
1.7  
1
2.2  
A
A
BST Pin Current  
I
= 800mA  
30  
2
50  
2.7  
mA  
V
SW1  
Minimum BST-SW Voltage  
l
l
l
V
V
Minimum Operating Voltage  
Maximum Operating Voltage  
2.3  
2.5  
V
IN2  
IN2  
5.5  
V
EN2 Threshold  
Rising  
1.13  
50  
1.18  
80  
1.23  
110  
500  
615  
100  
V
EN2 Hysteresis  
mV  
nA  
mV  
nA  
%/V  
A
EN2 Bias Current  
FB2 Voltage  
EN2 = EN2 Threshold  
FB2 = 0.6V  
50  
l
585  
600  
0
FB2 Bias Current  
FB2 Line Regulation  
SW2 PMOS Current Limit  
SW2 NMOS Current Limit  
2.5V < V < 5.5V  
0.01  
1.9  
1.6  
275  
200  
40  
IN2  
l
l
(Note 5)  
(Note 5)  
1.5  
1.2  
2.2  
2
A
SW2 PMOS R  
SW2 NMOS R  
I
I
= 0.5A (Note 6)  
= 0.5A (Note 6)  
mΩ  
mΩ  
mV  
mV  
mV  
DS(ON)  
DS(ON)  
SW2  
SW2  
ΔFB2 to Enable PGOOD2  
ΔFB2 Hysteresis to Disable PGOOD2  
PGOOD2 Voltage  
20  
20  
80  
80  
40  
FB2 = 0.6V, I  
= 1mA  
200  
320  
PGOOD2  
3641fa  
3
LT3641  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VIN2 = 3.3V, EN/UVLO = 12V, EN2 = 3.3V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.0  
5
MAX  
2.7  
30  
UNITS  
μA  
mV  
mV  
%
SS1, SS2 Charge Current  
SS1 = 0.5V, SS2 = 0.5V  
SS1 = 0.6V  
1.3  
SS1 to FB1 Offset Voltage  
SS2 to FB2 Offset Voltage  
SS2 = 0.3V  
5
30  
l
l
RST1 Threshold as Percentage of V  
RST2 Threshold as Percentage of V  
Undervoltage to RST Assert Time  
RST1, RST2, WDO Pull-Up Current  
RST1, RST2, WDO Output Voltage  
90  
88  
92  
91  
20  
15  
150  
9.5  
16  
32  
2
94  
FB1  
94  
%
FB1  
μs  
RST1, RST2, WDO = 0V  
5
30  
250  
11  
μA  
mV  
ms  
ms  
ms  
ms  
μA  
V
I
, I  
, I  
= 2mA  
RST1 RST2 WDO  
l
RST1, RST2 Timeout Period (t  
)
CPOR = 220pF  
CWDT = 820pF  
CWDT = 820pF  
CWDT = 820pF  
WDI = 1.2V  
8
14  
RST  
Watchdog Start Delay Time (t  
Watchdog Upper Boundary (t  
Watchdog Lower Boundary (t  
WDI Pull-Up Current  
)
18  
DLY  
l
l
)
27  
35  
WDU  
)
1.68  
2.2  
WDL  
4
WDI Voltage Threshold  
0.55  
300  
300  
0.85  
1.15  
0.9  
WDI Low Minimum Pulse Width  
WDI High Minimum Pulse Width  
WDE Pull-Down Current  
WDE Threshold  
ns  
ns  
WDE = 2V  
1
μA  
V
l
0.5  
0.7  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: The oscillator cycle is extended when DA current exceeds its limit.  
DA current limit is flat over duty cycle.  
Note 5: If the SW2 NMOS current exceeds its limit at the start of an  
oscillator cycle, the PMOS will not be turned on in the cycle.  
Note 2: The LT3641E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT3641I is guaranteed and tested over the full –40°C to 125°C operating  
junction temperature range. The LT3641H is guaranteed and tested over  
the full –40°C to 150°C operating junction temperature range.  
Note 3: SW1, SW2 current limit is guaranteed by design and/or correlation  
to static test. Slope compensation reduces current limit at higher duty  
cycle.  
Note 6: The QFN switch R  
measurement.  
Note 7: Absolute Maximum Voltage at V and EN/UVLO pins is 55V for  
nonrepetitive 1 second transients, and 42V for continuous operation.  
Note 8: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed the maximum operating junction temperature  
when overtemperature protection is active. Continuous operation above  
the specified maximum operating junction temperature may impair device  
reliability.  
is guaranteed by correlation to wafer level  
DS(ON)  
IN  
3641fa  
4
LT3641  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
HV Channel Efficiency  
(2MHz, VOUT1 = 5V)  
LV Channel Efficiency  
(2MHz, VOUT2 = 1.2V)  
HV Channel Efficiency  
(2MHz, VOUT1 = 3.3V)  
90  
85  
80  
75  
70  
95  
90  
85  
80  
75  
70  
65  
90  
85  
80  
75  
70  
V
= 12V  
IN  
V
= 3.3V  
V
= 16V  
= 24V  
IN2  
IN  
V
= 5V  
IN2  
V
IN  
V
V
V
V
= 12V  
= 24V  
= 36V  
= 48V  
IN  
IN  
IN  
IN  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
CURRENT (A)  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
CURRENT (A)  
V
V
OUT2  
CURRENT (A)  
OUT1  
OUT1  
3641 G01  
3641 G02  
3641 G03  
LV Channel Efficiency  
(2MHz, VOUT2 = 1.8V)  
Quiescent Current vs VIN  
Quiescent Current vs Temperature  
0.35  
0.30  
350  
300  
90  
85  
80  
75  
70  
V
= 3.3V  
IN2  
0.25  
250  
V
= 5V  
IN2  
0.20  
0.15  
0.10  
0.05  
200  
150  
100  
50  
0.00  
0
20  
30  
40  
50  
100  
150  
0
10  
–50  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
CURRENT (A)  
V
VOLTAGE (V)  
IN  
TEMPERATURE (°C)  
OUT2  
3641 G05  
3641 G06  
3641 G04  
FB1 Voltage vs SS1  
FB1 Voltage vs Temperature  
FB2 Voltage vs Temperature  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
REGULATION  
REGULATION  
RST1 THRESHOLD  
RST2 THRESHOLD  
0
1.0  
1.5  
2.0  
50  
100  
150  
0.5  
–50  
0
50  
100  
150  
–50  
0
SS1 VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3641 G08  
3641 G09  
3641 G07  
3641fa  
5
LT3641  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Switching Frequency  
vs Temperature  
HV Channel Current Limit  
vs Duty Cycle  
FB2 Voltage vs SS2  
0.52  
0.51  
0.50  
0.49  
0.48  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
700  
600  
500  
400  
300  
200  
100  
0
R
= 182k  
T
0
40  
60  
80  
100  
0
400  
6000  
800  
1000  
–50  
0
50  
100  
150  
20  
200  
TEMPERATURE (°C)  
DUTY CYCLE (%)  
SS2 VOLTAGE (mV)  
3641 G11  
3641 G12  
3641 G10  
LV Channel Peak Current Limit  
vs Duty Cycle  
LV Channel Switch Voltage  
Drop vs Current (VIN2 = 3.3V)  
VOUT1 Minimum Load to Run at  
Full Frequency (VOUT1 = 3.3V)  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
450  
400  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5MHz  
2MHz  
PMOS  
NMOS  
0
0
5
10  
V
15  
20  
25  
30  
0.5  
1
1.5  
0
0
40  
60  
80  
100  
20  
VOLTAGE (V)  
SW2 CURRENT (A)  
DUTY CYCLE (%)  
IN  
3641 G15  
3641 G14  
3641 G13  
HV Channel Switching Frequency  
(VOUT1 = 3.3V)  
LV Channel Switching Frequency  
(VOUT2 = 1.8V)  
EN2 Current vs Voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
30  
25  
20  
15  
10  
5
R
= 32.4k  
= 12V  
T
V
= 3.3V  
V
IN2  
IN  
V
= 16V  
V
= 5V  
IN  
IN2  
V
= 24V  
IN  
0
0
0.4  
0.6  
0.8  
1.0  
0.2  
0
0.4  
0.6  
0.8  
1.0  
1.2  
0
4
6
0.2  
2
V
CURRENT (A)  
V
CURRENT (A)  
OUT2  
EN2 VOLTAGE (V)  
OUT1  
3641 G17  
3641 G16  
3641 G17a  
3641fa  
6
LT3641  
T = 25°C, unless otherwise noted.  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
Watchdog Upper Boundary  
Period vs CWDT  
Full Frequency Waveforms  
Light Load Operation Waveforms  
180  
160  
140  
120  
100  
80  
SW1  
10V/DIV  
SW1  
10V/DIV  
I
L1  
I
L1  
0.5A/DIV  
0.5A/DIV  
SW2  
5V/DIV  
SW2  
5V/DIV  
60  
40  
I
L2  
I
L2  
20  
0.5A/DIV  
0.5A/DIV  
0
3641 G19  
3641 G18  
0
1000  
2000  
3000  
4000  
5000  
500ns/DIV  
200ns/DIV  
C
CAPACITANCE (pF)  
WDT  
V
V
= 12V  
OUT1  
V = V  
IN2 OUT1  
V
V
= 12V  
OUT1  
V
V
= V  
OUT2  
IN1  
IN1  
IN2 OUT1  
3641 G20  
= 3.3V/25mA  
V
= 1.8V/30mA  
= 3.3V/0.5A  
= 1.8V/0.5A  
OUT2  
Watchdog Upper Boundary  
Period vs Temperature  
RST/WDO Pull-Up Current  
35  
30  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
50  
100  
150  
–50  
0
1
1.5  
2
0
0.5  
TEMPERATURE (°C)  
RST/WDO VOLTAGE (V)  
3641 G21  
3641 G22  
3641fa  
7
LT3641  
PIN FUNCTIONS (FE/QFN)  
FB2(Pin1/Pin26):Thelowvoltageconverterregulatesthe  
FB2 pin to 600mV. Connect the feedback resistor divider  
tap to this pin to set output voltage.  
WDE (Pin 13/Pin 10): Watchdog Enable Pin.  
WDI (Pin 14/Pin 11): The WDI pin receives watchdog  
signals from a microprocessor.  
PGOOD2(Pin2/Pin27):Open-drainlogicoutputthatstarts  
to sink current when FB2 is in regulation.  
GND (Pins 15, 16, 23, 26, Exposed Pad Pin 29/Pins 12,  
13, 20, 23, Exposed Pad Pin 29): Ground. These pins  
must be soldered to PCB ground.  
EN/UVLO (Pin 3/Pin 28): Pull this pin below 0.3V to shut  
down the LT3641. The 1.26V threshold can function as an  
accurateundervoltagelockout,preventingtheLT3641from  
NC (Pin 17/Pin 14): Not Connected. This pin can be con-  
nected to ground.  
operating until V voltage has reached the programmed  
IN  
DA (Pin 18/Pin 15): The DA pin is used to sense the catch  
diodecurrentforcurrentlimitandprotection.Connectthis  
pin to catch diode anode.  
level.  
SYNC (Pin 4/Pin 1): Driving the SYNC pin with an external  
clock signal synchronizes both converters to the applied  
frequency. The lowest external clock frequency should be  
20% higher than the internal oscillator frequency.  
SW1 (Pin 19/Pin 16): Output of the High Voltage Internal  
Power Switch. Connect this pin to the inductor and catch  
diode cathode.  
SS1 (Pin 5/Pin 2): The SS1 pin sets the FB1 voltage ex-  
ternally between 0V and 1.265V, providing soft-start and  
tracking. Tie this pin 1.5V or higher to use the internal  
1.265Vreference. Acapacitortogroundatthispinsetsthe  
ramp time to regulated output voltage for the high voltage  
converter. Use a resistor divider to track another supply.  
SW (Pin 20/Pin 17): The SW pin is used to charge the  
boost capacitor. Connect this pin to the boost capacitor.  
BST(Pin21/Pin18):TheBSTpinisusedtoprovideadrive  
pin voltage, to the high voltage  
voltage, higher than V  
IN  
channel internal power switch. Connect an external boost  
diode to this pin.  
FB1(Pin6/Pin3):Thehighvoltageconverterregulatesthe  
FB1 pin to 1.265V. Connect the feedback resistor divider  
tap to this pin to set output voltage.  
V
(Pin 22/Pin 19): The V pin supplies current to  
IN  
IN  
the LT3641’s internal circuitry and to the high voltage  
channel internal power switch. This pin must be locally  
bypassed.  
RT (Pin 7/Pin 4): Oscillator Resistor Input. Connecting a  
resistor to ground from this pin sets the internal oscillator  
frequency.  
V
(Pin 24/Pin 21): The V pin supplies current to the  
IN2  
IN2  
internal power MOSFET of the low voltage converter and  
RST2 (Pin 8/Pin 5): Open-drain logic output that remains  
asserted for the period set by the CPOR pin capacitor after  
FB2 goes above 550mV.  
to the LT3641’s internal circuitry when V is above 3V.  
IN2  
SW2 (Pin 25/Pin 22): Switch Node of the Low Voltage  
Converter. Connect this pin to an inductor.  
RST1 (Pin 9/Pin 6): Open-drain logic output that remains  
asserted for the period set by the CPOR pin capacitor after  
FB1 goes above 1.165V.  
EN2 (Pin 27/Pin 24): Low Voltage Converter Enable Pin. The  
enable threshold is 100mV below FB1 target voltage. The  
disablethresholdhas50mVhysteresis.Theaccuratethreshold  
can function as an accurate undervoltage lockout.  
WDO(Pin10/Pin7):Open-drainlogicoutputthatremains  
asserted for the period set by the CPOR pin capacitor if  
WDE is enabled and WDI pin is not driven by an appropri-  
ate signal.  
SS2 (Pin 28/Pin 25): The SS2 pin sets the FB2 voltage  
externally between 0V and 0.6V, providing soft-start and  
tracking. Tie this pin 0.8V or higher to use the internal  
0.6V reference. A capacitor to ground at this pin sets the  
ramp time to regulated output voltage for the low voltage  
converter. Use a resistor divider to track another supply.  
CWDT (Pin 11/Pin 8): Connect a capacitor to ground at  
this pin to set watchdog timer.  
CPOR (Pin 12/Pin 9): Connect a capacitor to ground at this  
pin to set the power-on reset timer and WDO output timer.  
3641fa  
8
LT3641  
BLOCK DIAGRAM  
C
IN  
V
IN  
2μA  
D
BST  
BST  
SW  
EN/  
UVLO  
100k  
C
BST  
+
ENABLE  
+
Q1  
R
Q
A4  
A3  
S
5.5V  
DRIVER  
+
V
REF  
A1  
A2  
1.265V  
L1  
V
OUT1  
C
2μA  
SW1  
DA  
g
D1  
m1  
SS1  
VC1  
+
+
+
RAMP  
GENERATOR  
OUT1  
OSCILLATOR  
Σ
R2  
FB1  
V
OUT1  
+
R1  
RT  
SYNC  
+
A8  
V
IN2  
+
A5  
Σ
C
IN2  
2μA  
g
m2  
+
S
L2  
SS2  
FB2  
V
OUT2  
C
SW2  
+
LOGIC  
CIRCUIT  
VC2  
A7  
R
Q
+
R4  
OUT2  
V
OUT2  
+
V
REF  
50mV  
R3  
+
600mV  
A6  
+
PGOOD2  
A9  
+
EN2  
2μA  
2μA  
1.165V  
CWDT  
CPOR  
WATCHDOG  
TIMER  
POR TIMER  
RST1  
RST2  
WDE  
WDI  
WDO  
3641 BD  
3641fa  
9
LT3641  
TIMING DIAGRAMS  
Power-On Reset Timing  
FB  
t
t
RST  
UV  
RST  
Watchdog Timing  
WDI  
WDO  
t < t  
WDU  
t
t
WDU  
DLY  
t < t  
t
t
< t < t  
t
RST  
WDL RST  
WDL  
WDU  
3641 TD  
OPERATION  
The LT3641 is a dual channel, constant-frequency, current  
mode monolithic buck switching regulator with power-on  
resetandwatchdogtimer.Bothchannelsaresynchronized  
to a single oscillator with frequency set by RT. Operation  
can be best understood by referring to the Block Diagram.  
An active clamp (not shown) on the VC1 node provides  
peak current limit. A DA pin current comparator extends  
the oscillator cycle until the catch diode current is below  
the valley current limit. Both the peak and valley current  
limits help to control the inductor current in fault condi-  
tions such as shorted output with high V . Both current  
IN  
Buck Regulators  
limits are reduced when the voltage at the FB1 pin is below  
0.2V. This current foldback helps to control the inductor  
current during start-up and overload.  
The high voltage channel is a nonsynchronous buck  
regulator that operates from the V pin. The start of each  
IN  
oscillator cycle sets an SR latch and turns on the internal  
The NPN power switch driver operates from either the V  
IN  
NPN power switch. An amplifier and comparator monitor  
pin or the BST pin. An external capacitor and diode are  
used to generate a voltage between the BST and SW pins.  
Duringthepower-upoftheLT3641,aninternal5mAcurrent  
source charges the external BST capacitor. The regulator  
starts switching when the (BST-SW) voltage reaches the  
2V threshold. The internal NPN power switch can be fully  
saturatedforefficientoperationwhenthe(BST-SW)voltage  
is between 2.3V and 5.5V.  
thecurrentowingbetweentheV andSW1pins, turning  
IN  
theswitchoffwhenthiscurrentreachesaleveldetermined  
by the voltage at VC1 node. An error amplifier measures  
the output voltage through an external resistor divider tied  
to the FB1 pin and servos the VC1 node. The reference  
of the error amplifier is determined by the lower of the  
internalreferenceandthevoltageattheSS1pin.Iftheerror  
amplifier’s output increases, more current is delivered to  
the output; if it decreases, less current is delivered.  
The low voltage channel is a synchronous buck regulator  
that operates from the V pin. It starts switching only  
IN2  
3641fa  
10  
LT3641  
OPERATION  
when the V pin voltage is above 2.3V, and the EN2 pin  
undervoltage condition on the V pin triggers an internal  
IN2  
IN  
is above its threshold. The internal top power MOSFET is  
turned on each cycle at the beginning of each oscillator  
cycle, and turned off when the current flowing through  
the top MOSFET reaches a level determined by the voltage  
at the VC2 node. An error amplifier measures the output  
voltage through an external resistor divider tied to the FB2  
pin and servos the VC2 node. The reference of the error  
amplifier is determined by the lower of the internal 600mV  
reference and the voltage at the SS2 pin.  
latch that discharges the SS1 pin to below 100mV before  
it is released. If the EN2 pin goes below its threshold,  
or the V voltage falls below 2.2V, the SS2 pin will be  
IN2  
discharged to below 100mV before it is released.  
To optimize efficiency, the LT3641 switches to low ripple  
Burst Mode operation in light load situations. Between  
switching pulses, control-circuitry current is minimized.  
A power good comparator with 40mV of hysteresis trips  
when the low voltage channel is enabled and the FB2 pin  
is above 550mV. The PGOOD2 pin is an open-drain output  
that is pulled low when both the outputs are in regulation.  
While the top MOSFET is off, the bottom MOSFET is  
turned on in an oscillator cycle until the inductor current  
starts to reverse. If the inductor current is higher than the  
valley current limit at the beginning of an oscillator cycle,  
the bottom MOSFET will remain on and prevent the top  
MOSFET from turning on until the overcurrent situation  
clears, limiting inductor current in shorted output fault.  
Power-On Reset and Watchdog Timer  
The LT3641 includes one power-on reset timer for each  
buck regulator and one common watchdog timer. Power-  
on reset and watchdog timers are both adjustable using  
external capacitors. Operation can be best understood by  
referring to the Timing Diagram.  
Aninternalregulatorprovidespowertothecontrolcircuitry.  
The regulator draws most power from the V pin and a  
IN2  
small portion of power from the V pin when the V pin  
IN  
IN2  
The RST1, RST2 and WDO pins are all open-drain outputs  
withweakinternalpull-upstoabout2V.TheRST1andRST2  
voltage is higher than 3V. If the voltage at V pin is lower  
IN2  
than 3V, the regulator draws all power from the V pin.  
IN  
pins are pulled low when the LT3641 is enabled and V is  
IN  
The EN/UVLO pin is used to put the LT3641 in shutdown,  
reducing the input current to less than 1μA. The accurate  
1.26V threshold of the EN/UVLO pin provides a program-  
above 3.6V. Once the FB1 pin rises above 1.165V, the high  
voltagechannelresettimerisstartedandRST1isreleased  
aftertheresettimeoutperiod.Thelowvoltagechannelreset  
timer is started once the FB2 pin rises above 550mV, and  
releases RST2 after the reset timeout period.  
mableV undervoltagelockoutthroughanexternalresistor  
IN  
divider tied to the EN/UVLO pin. A 2μA hysteresis current  
on the EN/UVLO pin prevents switching noise from shut-  
ting down the LT3641.  
The watchdog circuit monitors a μP’s activity. As soon as  
RST2 is released, a delay timer is started. The watchdog  
timer is started after the delay timer times out. The LT3641  
implements windowed watchdog function for higher sys-  
tem reliability. The watchdog timer detects falling edges  
on the WDI pin. If the falling edges are grouped too close  
together or too far apart, the WDO pin is pulled down and  
the reset timer is started. When the reset timer times out,  
WDO is released and the watchdog timer is again started  
after the delay period.  
The LT3641 has an overtemperature protection feature  
which disables switching in both channels when the junc-  
tion temperature exceeds the overtemperature threshold.  
Junction temperature will exceed the maximum operating  
junction when overtemperature protection is active.  
Internal2μAcurrentsourceschargetheSS1pinandtheSS2  
pin up to about 2V. Soft-start or output voltage tracking of  
the two channels can be independently implemented with  
capacitorsfromtheSS1pinandtheSS2pintoground.Any  
3641fa  
11  
LT3641  
APPLICATIONS INFORMATION  
Setting the Output Voltages  
The high switching frequency also decreases the duty  
cycle range. The reason is that the LT3641 switches have  
finite minimum on- and off-times independent of the  
switching frequency. The top switch in the high voltage  
channel can turn on for a minimum of ~60ns and turn off  
for a minimum of ~70ns. The top switch in the low voltage  
channel can turn on for a minimum of ~110ns and turn  
off for a minimum of ~70ns. The minimum and maximum  
duty cycles are:  
The internal reference voltage is 1.265V for the high  
voltage channel, and 600mV for the low voltage channel.  
The output voltages are set by resistor dividers according  
to the following formulas:  
VOUT1  
1.265V  
R2 = R1•  
1  
V
0.6V  
OUT2  
DC  
DC  
= f • t  
S ON(MIN)  
R4 = R3 •  
1  
MIN  
= 1 – f • t  
OFF(MIN)  
MAX  
S
Use 1% resistors in the resistor dividers. To avoid noise  
problems, R1 should be 100k or less, and R3 should  
be 50k or less. Reference designators refer to the Block  
Diagram.  
wheref istheswitchingfrequency,t  
istheminimum  
S
ON(MIN)  
is the minimum switch  
switch on-time, and t  
OFF(MIN)  
off-time. These equations illustrate how duty cycle range  
increases when switching frequency decreases.  
Switching Frequency  
The internal oscillator of the LT3641 can be synchronized  
to an external 350kHz to 2.5MHz positive clock signal on  
The LT3641 uses a constant-frequency PWM architecture  
thatcanbeprogrammedtoswitchfrom350kHzto2.2MHz  
by using a resistor tied from the RT pin to ground. Table  
1 shows the necessary R value for a desired switching  
frequency.  
the SYNC pin. The R value should be chosen such that  
T
the internal oscillator’s frequency is 20% lower than the  
lowest SYNC clock frequency (refer to Table 1). To avoid  
erratic operation, the LT3641 ignores the SYNC signal  
until the FB1 pin voltage is above 1.165V. When applying  
a SYNC signal, the rising edges reset the LT3641’s internal  
clock and initiate a switch cycle. The amplitude of the  
SYNC signal must be at least 2V. The SYNC pulse width  
must be at least 40ns.  
T
Table 1. Switching Frequency vs RT Value  
SWITCHING FREQUENCY (MHz)  
R (k)  
T
0.35  
0.5  
1
267  
182  
82.5  
32.4  
27.4  
V Voltage Range  
IN  
2
2.2  
The LT3641’s minimum operating voltage is 3.6V typical.  
A higher minimum operating voltage can be accurately  
Selection of the operating frequency is mainly a trade-off  
between efficiency and component size. The advantage  
of high frequency operation is that smaller inductor and  
capacitor values may be used. The disadvantage is lower  
efficiency.  
programmed with a resistor divider between the V pin  
IN  
and the EN/UVLO pin. The EN/UVLO threshold is 1.26V.  
WhentheLT3641isenabled, a2μAcurrentowsoutofthe  
EN/UVLOpingeneratinghysteresistopreventtheswitching  
actionfromfalselydisablingtheLT3641.Choosethedivider  
resistances for appropriate hysteresis voltage.  
3641fa  
12  
LT3641  
APPLICATIONS INFORMATION  
The high voltage nonsynchronous channel operates from  
V
Voltage Range  
IN2  
the V pin. The minimum V voltage to regulate output  
IN  
IN  
The low voltage synchronous channel operates from  
voltage is:  
the V pin. The V pin can be connected to either an  
IN2  
IN2  
independent voltage supply or the high voltage channel  
VOUT1 + VD  
DCMAX  
VIN(MIN)  
=
VD + VCE  
output for a two-stage power regulator. The V voltage  
IN2  
range is 2.3V ~ 5.5V  
WhereV istheforwardvoltagedropofthecatchdiode,V  
D
CE  
The minimum V voltage to regulate output voltage at  
IN2  
is the voltage drop of the internal NPN power switch, and  
full frequency is:  
DC  
is the maximum duty cycle (refer to the Switching  
MAX  
VOUT2  
Frequencysection).IfV isbelowthecalculatedminimum  
V
IN  
IN2(MIN)  
DCMAX  
voltage, output will lose regulation.  
The maximum V should not exceed the absolute  
WhereDC  
isthemaximumdutycycle(refertoSwitching  
IN  
MAX  
maximum rating. For fixed frequency operation, the  
Frequencysection).IfV isbelowthecalculatedminimum  
IN2  
maximum V is:  
voltage, the low voltage channel starts to skip oscillator  
clock. In this case, the low voltage channel switching  
frequency will no longer be the programmed frequency.  
IN  
VOUT1 + VD  
DCMIN  
V
=
VD + VCE  
IN(MAX)  
As the V voltage further decreases, the top MOSFET  
IN2  
will remain on 100% duty cycle. In the case, the output  
Note that the high voltage buck will still regulate at an  
input voltage that exceeds V (up to 42V). It will  
starts to fall out of regulation.  
IN(MAX)  
The maximum V for fixed frequency operation is:  
continue to regulate through transients up to 55V for one  
second. Note that the switching frequency will be reduced  
once the on-time required to satisfy the above equation is  
below 50ns (Figure 1).  
IN2  
VOUT2  
DCMIN  
V
IN2(MAX)  
Where DC  
is the minimum duty cycle (refer to the  
MIN  
Switching Frequency section). For voltage that exceeds  
(up to 5.5V), the low voltage channel exhi-  
V
IN2(MAX)  
bits pulse-skipping behavior, and the output ripple will  
increase.  
SW1  
10V/DIV  
Inductor Selection  
I
L1  
0.5A/DIV  
Inductorselectioninvolvesinductance,saturationcurrent,  
series resistance (DCR) and magnetic loss.  
3641 F01  
200ns/DIV  
SET = 2MHz  
V
V
= 30V  
R
T
IN  
OUT1  
= 3.3V/0.2A  
The inductance for the high voltage channel is:  
Figure 1. Lower Switching Frequency Occurs in High  
Voltage Channel When Required On-Time Is Below 50ns  
VOUT1 + VD  
L1= 1.7 •  
fS  
3641fa  
13  
LT3641  
APPLICATIONS INFORMATION  
where V  
is high voltage channel output voltage, V is  
OUT1  
D
Table 2. Inductor Vendors  
VENDOR  
Murata  
the forward voltage drop of the catch diode, and f is the  
S
WEBSITE  
www.murata.com  
switching frequency. For example, 3.3μH is a reasonable  
inductance for a 3.3V output with 2MHz switching  
frequency.  
TDK  
www.tdk.com  
TOKO  
www.toko.com  
Oncetheinductanceisselected,theinductorcurrentripple  
and peak current can be calculated:  
Sumida  
www.sumida.com  
www.cooperindustries.com  
www.coilcraft.com  
www.vishay.com  
Cooper/Coiltronics  
Coilcraft  
Vishay  
(VOUT1 + VD)  
VOUT1 + VD  
ΔIL1 =  
• 1–  
L1• fS  
V
IN  
NIC  
www.niccomp.com  
www.we-online.com  
Würth Elektronik  
ΔIL  
2
IL(PEAK) = IOUT(MAX)  
+
Of course, such a simple design guide will not always  
result in the optimum inductors for the applications. A  
larger value inductor provides a slightly higher maximum  
load current and will reduce the output voltage ripple. A  
largervalueinductoralsoresultsinhigherefficiencyinthe  
condition of same DCR and same magnetic loss. However,  
for a same series of inductors, a larger value inductor has  
higher DCR. The trade-off between inductance and DCR  
is not always obvious. Use experiments to find optimum  
inductors.  
To guarantee sufficient output current, peak inductor  
current must be lower than the switch current limit (I ).  
LIM  
The largest inductor current ripple occurs at the highest  
V . To guarantee current capacity, use V  
in the  
IN  
IN(MAX)  
above formula.  
The inductance for the low voltage channel is:  
VOUT2  
L2 = 1.5  
fS  
Low inductance may result in discontinuous mode oper-  
ation, which is okay, but reduces maximum load current.  
For details of maximum output current and discontinuous  
modeoperation,seetheLinearTechnologyApplicationNote  
44. For duty cycles greater than 50%, there is a minimum  
inductance required to avoid subharmonic oscillations.  
See the Linear Technology Application Note 19.  
For a selected inductance, the inductor current ripple can  
be calculated:  
VOUT2  
L2 • fS  
VOUT2  
V
IN2  
ΔIL2  
=
• 1–  
For robust operation in fault conditions, the inductor  
saturation current should be higher than the upper limit  
of the corresponding top switch current limit.  
Input Capacitor  
Bypass the V pin of the LT3641 with a ceramic capacitor  
IN  
To keep the efficiency high, the inductor series resistance  
(DCR) should be as small as possible (must be < 0.1Ω),  
and the core material should be intended for the chosen  
operation frequency. High efficiency converters generally  
cannot afford the core loss found in low cost powdered  
iron cores; instead use ferrite, molypermalloy or Kool Mμ  
cores. Table 2 lists several vendors and suitable inductor  
series.  
of X7R (–55°C to 125°C) or X5R (–55°C to 85°C) type.  
Buckconvertersdrawpulsecurrentfromtheinputsupply.  
The input capacitor is required to reduce the resulting  
voltage ripple. Use a ceramic capacitor with:  
10μF  
fS  
CIN ≥  
where f in the switching frequency in MHz.  
S
3641fa  
14  
LT3641  
APPLICATIONS INFORMATION  
Asecondprecautionregardingtheceramicinputcapacitor  
concernsthemaximuminputvoltageratingoftheLT3641.  
A ceramic input capacitor combined with trace or cable  
inductanceformsaunderdampedtankcircuit.IftheLT3641  
circuit is plugged into a live supply, the input voltage can  
ring to twice its nominal value, possibly exceeding the  
LT3641’svoltagerating.Thissituationcanbeeasilyavoided  
(see the Linear Technology Application Note 80).  
When choosing a capacitor, look carefully through the  
data sheet to find out what the actual capacitance is under  
operating conditions (applied voltage and temperature).  
A physically larger capacitor or one with a higher voltage  
rating may be required. High performance tantalum or  
electrolyticcapacitorscanbeusedfortheoutputcapacitor.  
Low ESR is important, so choose one that is intended for  
use in switching regulators. Table 3 lists several capacitor  
vendors.  
Output Capacitors and Output Ripple  
Table 3. Capacitor Vendors  
Theoutputcapacitorhastwoessentialfunctions.Insteady  
state, it determines the output voltage ripple. In transient,  
it stores energy in order to satisfy transient loads and  
stabilize the control loop. Ceramic capacitors have low  
equivalent series resistance (ESR) and provide the best  
ripple performance. A good starting value is:  
PART SERIES  
VENDOR  
Ceramic, Polymer, Tantalum Panasonic/Sanyo  
www.panasonic.com  
Ceramic, Tantalum  
Kemet  
www.kemet.com  
Ceramic  
Murata  
www.murata.com  
150  
VOUT fS  
Ceramic, Tantalum  
Ceramic  
AVX  
COUT1  
=
www.avxcorp.com  
Taiyo Yuden  
www.taiyo-yuden.com  
where f is in MHz, and C  
is the recommended output  
OUT  
S
capacitance in μF. Use X5R or X7R types. This choice will  
Catch Diode  
provide low output ripple and good transient response.  
The high voltage channel requires an external catch diode  
toconductcurrentduringswitchoff-time.Averageforward  
current in normal operation can be calculated from:  
A good starting value for the low voltage channel output  
capacitor is:  
100  
VOUT2 • fS  
COUT2  
=
IOUT (VIN VOUT  
)
ID(AVG)  
where I  
=
V
IN  
In the case where V is connected to the high voltage  
IN2  
is the output load current. Use a 1A or 2A  
OUT  
channel output, the high voltage channel output capacitor  
rated Schottky diode. Peak reverse voltage is equal to  
the regulator input voltage. Use a diode with a reverse  
voltage rating greater than the input voltage. Table 4 lists  
several Schottky diodes and their manufacturers. Diodes  
Inc. PDS360 is recommended for high current, H-grade  
applications. DiodesInc. DFLS260canbeusedforsmaller  
circuit footprint in non-H-grade applications.  
can be used as the low voltage channel input capacitor.  
The required V input capacitor value is usually smaller  
IN2  
than the high voltage output capacitor.  
Low ESR ceramic capacitors for V input and high volt-  
IN2  
age channel output could form resonant tank and cause  
jitter in certain operating area. Avoid V input capacitor  
IN2  
if possible.  
3641fa  
15  
LT3641  
APPLICATIONS INFORMATION  
Table 4. Diode Vendors  
capacitor charging scheme solves this start-up issue.  
Figure 2 shows that the minimum input voltage to start  
the high voltage channel nonsynchronous buck regulator  
of the LT3641 is very close to the minimum input voltage  
to regulate the output voltage for most of the load range.  
V
I
V AT 1A V AT 2A V AT 3A  
F F F  
R
AVE  
PART NUMBER  
(V)  
(A)  
(MV)  
(MV)  
(MV)  
On Semiconductor  
MBRM120E  
MBRM140  
20  
40  
1
1
530  
595  
5
Diodes Inc.  
START  
B120  
20  
30  
20  
30  
40  
60  
60  
100  
1
1
2
2
2
2
3
3
500  
500  
4
B130  
RUN  
B220  
B230  
DFLS240L  
DFLS260  
PDS360  
PDS3100  
500  
500  
500  
620  
3
2
1
0
650  
620  
760  
International Rectifier  
10BQ030  
20BQ030  
30  
30  
1
2
420  
470  
470  
0.001  
0.01  
0.1  
1
V
CURRENT (A)  
OUT  
3641 F03a  
BST and SW Pin Considerations  
(2a) FS = 2MHz  
The high voltage channel requires an external capacitor  
between the BST and SW pins and an external boost diode  
from a voltage source to the BST pin. In most cases, a  
0.22μF capacitor will work well. Use a Schottky with fast  
reverse recovery for BST diode. The (BST-SW) voltage  
cannot exceed 5.5V, and must be more than 2.3V for best  
efficiency.Connecttheboostdiodetoanyvoltagebetween  
5
4
3
2
1
START  
RUN  
2.7V and 5.5V. The V pin is the best choice if the low  
IN2  
voltage channel is used.  
The high voltage channel will not start until the (BST-SW)  
voltage is 2V or above. When the LT3641 is enabled, an  
internal ~5mA current source from V flows out of the  
0
IN  
0.001  
0.01  
0.1  
1
BST pin. The SW pin is disconnected from the SW1 pin,  
andispulleddownbyaninternalcurrentsourcetoground.  
The external boost capacitor can be charged up regard-  
less of the output. When the (BST-SW) voltage reaches  
2V, the SW pin is connected to the SW1 pin, and the high  
voltage channel starts switching. However, the internal  
bipolar power switch cannot be fully saturated until the  
(BST-SW)voltageisfurtherchargedtoabove2.3V.Tostart  
up a traditional nonsynchronous buck regulator with very  
light load, the input voltage needs to be a couple of volts  
higherthantheminimumrunninginputvoltageiftheinput  
voltage is ramping up slowly. The LT3641’s unique boost  
V
CURRENT (A)  
OUT  
3641 F03b  
(2b) FS = 500kHz  
Figure 2. High Voltage Channel Minimum  
Input Voltage for VOUT1 = 3.3V  
3641fa  
16  
LT3641  
APPLICATIONS INFORMATION  
Soft-Start  
EN/UVLO  
2V/DIV  
The LT3641 has a soft-start pin for each channel. The  
feedback pin voltage is regulated to the lower of the  
corresponding SS pin and the internal references, which  
is 1.265V for the high voltage channel, and 600mV for the  
lowvoltagechannel.AcapacitorfromtheSSpintoground  
ischargedbyaninternal2μAcurrentsourceresultinginan  
output ramping linearly from 0V to the regulated voltage.  
The duration of the ramp is:  
V
OUT1  
2V/DIV  
V
OUT2  
1V/DIV  
PGOOD2  
2V/DIV  
3641 F04  
500μs/DIV  
V
= 12V  
IN  
T
R
SET = 2MHz  
EN2 TIED TO FB2  
1.265V  
2μA  
tSS1 = CSS1  
Figure 3. Soft-Start of LT3641  
600mV  
2μA  
tSS2 = CSS2  
where t  
Shorted-Output Protection  
If an inductor is chosen that will not saturate excessively,  
the LT3641 will tolerate a shorted output. For the high  
voltage channel, the DA current comparator extends the  
internal oscillator period until the catch diode current is  
below its limit. Both the top switch and the DA comparator  
have current foldback to help limit load current when the  
output is shorted to ground. The DA current limit is 1.7A  
when the FB1 voltage is above 0.2V, and is 1A when the  
FB1 voltage is below 0.2V. Figure 4 shows the high voltage  
channel operation under shorted output.  
is the ramping time for the SS1 pin, t  
the ramping time for the SS2 pin, C  
from the SS1 pin to ground, and C  
from the SS2 pin to ground.  
is  
SS1  
SS2  
is the capacitance  
is the capacitance  
SS1  
SS2  
At power-up, a latch is set to discharge the SS1 pin.  
After the SS1 pin is discharged to below 100mV, the latch  
is reset. The internal 2μA current source starts to charge  
the SS1 pin when the (BST-SW) voltage is charged to  
above 2V.  
In the event of V undervoltage lockout, or the EN/UVLO  
IN  
Because of the low V voltage, the low voltage channel  
IN2  
pin being driven below 1.26V, the soft-start latch is set,  
does not have current foldback. The low voltage channel  
does not extend the internal oscillator in shorted output  
condition allowing the high voltage channel to operate  
in constant frequency. If the bottom MOSFET current  
exceeds the NMOS current limit at the start of a clock  
cycle, the top MOSFET is kept off until the overcurrent  
situation clears. The inductor valley current is kept below  
the NMOS current limit to ensure robustness in shorted  
output condition (Figure 5).  
triggering a start-up sequence.  
A latch is set to discharge the SS2 pin at power-up. After  
EN/UVLO is enabled, the V voltage is above 2.3V, the  
IN2  
EN2 pin is enabled, and the SS2 pin is below 100mV, the  
latch is reset. The internal 2μA current source starts to  
charge the SS2 pin.  
In the event of the V pin falling below 2.2V, or the EN2  
IN2  
pin going below its threshold, the SS2 discharging latch  
is set, triggering a start-up sequence.  
The SS pins can also be pulled up by external current  
sources or resistors for output tracking. The external pull-  
up current should not exceed 100μA for either SS pin.  
Figure 3 shows the soft-start for a 3.3V and 1.8V  
application.  
3641fa  
17  
LT3641  
APPLICATIONS INFORMATION  
Reverse Protection  
In battery charging applications or in battery back-up  
systems, the output will be held high when the input to the  
SW1  
20V/DIV  
LT3641 is absent. If the V pin is floated and the LT3641  
IN  
is enabled, the LT3641’s internal circuitry will pull its qui-  
escent current through the SW1 pin or the SW2 pin. This  
is fine if the system can tolerate a few mA in this state.  
If the LT3641 is disabled, the SW1 pin and the SW2 pin  
I
L1  
1A/DIV  
3641 F05  
1μs/DIV  
current will drop to essentially zero. However, if the V  
IN  
V
V
= 55V  
IN  
OUT1  
= SHORT  
pin is grounded while the high voltage channel output is  
held high, an external diode is required at the V pin to  
IN  
Figure 4. The High Voltage Channel Reduces Frequency  
to Protect Against Shorted Output with 55V Input  
prevent current being pulled out of the V pin. If the V  
IN  
IN2  
pin is grounded while the low voltage channel output is  
held high, an external diode is required at the V pin to  
IN2  
SW1  
20V/DIV  
prevent current being pulled out of the V pin (Figure 6).  
IN2  
PFM Operation  
SW2  
2V/DIV  
Toimproveefficiencyatlightloads,theLT3641automatically  
switches to pulse frequency modulation (PFM) operation  
which minimizes the switching loss and keeps the output  
voltage ripples small.  
I
L2  
1A/DIV  
3641 F06  
1μs/DIV  
Because the two channels of the LT3641 may have differ-  
ent loads, the two channels can have different switching  
frequency (Figure 7).  
V
V
= 5V  
OUT2  
IN2  
= SHORT  
Figure 5. The Low Voltage Channel Operates in Valley  
Current Limit Mode to Protect Against Shorted Output  
IN  
V
SW BST SW1  
OUT1  
OUT2  
IN  
+
DA  
FB1  
EN/UVLO  
LT3641  
SW2  
FB2  
IN2  
V
IN2  
+
GND  
3641 F07  
Figure 6. Diodes Prevent Shorted Inputs from  
Discharging a Battery Tied to the Outputs  
3641fa  
18  
LT3641  
APPLICATIONS INFORMATION  
Power-On Reset Timer  
SW1  
10V/DIV  
Each channel of the LT3641 has a power-on comparator.  
BothcomparatorsareenabledwhentheLT3641ispowered  
up and starts monitoring their corresponding feedback  
voltages. The threshold of power-on comparator is 1.15V  
for the high voltage channel, and 550mV for the low  
voltage channel.  
I
L1  
0.5A/DIV  
SW2  
5V/DIV  
I
L2  
0.5A/DIV  
3641 F08a  
500ns/DIV  
Both RST1 and RST2 are open-drain outputs with weak  
internal pull-ups (100k to ~2V). The DC characteristics of  
the RST1 and RST2 pull-down strength are shown in the  
Typical Performance Characteristics section. The weak  
pull-ups eliminate the need for external pull-ups when  
the rise time of these pins is not critical. The open-drain  
configuration allows wired-OR connections.  
V
V
= 12V  
IN  
OUT1  
V
OUT2  
= V  
IN2 OUT1  
= 3.3V/25mA  
V
= 1.8V/30mA  
(7a)  
SW1  
10V/DIV  
I
L1  
The two power-on reset timers share one oscillator. The  
0.5A/DIV  
power-on reset timeout period, t  
(64 cycles on the  
RST  
SW2  
5V/DIV  
CPOR pin), which is the same for the two channels, can  
be programmed by connecting a capacitor, C , between  
POR  
I
L2  
0.5A/DIV  
the CPOR pin and ground:  
3641 F08b  
2μs/DIV  
s
⎝ ⎠  
F
⎛ ⎞  
tRST = CPOR • 37 • 106  
V
V
= 12V  
OUT1  
V = V  
IN2 OUT1  
IN  
⎜ ⎟  
= 3.3V/25mA  
V
= 1.8V/20mA  
OUT2  
(7b)  
For example, using a capacitor value of 8.2nF gives a  
303ms reset timeout period. The accuracy of t will be  
RST  
SW1  
limited by the accuracy and temperature coefficient of the  
capacitor CPOR. Extra parasitic capacitance on the CPOR  
10V/DIV  
I
L1  
pin, such as probe capacitance, can affect t  
.
RST  
0.5A/DIV  
SW2  
5V/DIV  
Watchdog  
TheWDEpinistheenablepinforthewatchdog.Assoonas  
RST2 is released, the watchdog starts a delay period, t  
during which the input signal at the WDI pin is ignored for  
higherreliability.Afterthedelayperiod,thewatchdogstarts  
detecting falling edges on the WDI pin. If the time between  
any two WDI falling edges is shorter than the watchdog  
I
L2  
0.5A/DIV  
,
DLY  
3641 F08c  
2μs/DIV  
V
V
= 12V  
OUT1  
V
OUT2  
= V  
IN  
IN2 OUT1  
= 3.3V/0mA  
V
= 1.8V/30mA  
(7c)  
Figure 7. PFM Operation  
lower boundary, t  
, or longer than the watchdog upper  
WDL  
boundary, t  
, the WDO pin is pulled down for a period  
WDU  
of t , which is the same as the power-on reset timeout  
RST  
period.WhentheWDOpinisreleased,thewatchdogagain  
starts the delay period.  
3641fa  
19  
LT3641  
APPLICATIONS INFORMATION  
The WDO is open-drain output with weak internal pull-up,  
CWDT  
CPOR  
similar to the RST pins.  
WD STARTS  
The delay period corresponding to 33 cycles on CWDT, the  
watchdog lower boundary (4 cycles on CWDT), and the  
watchdog upper boundary (64 cycles on CWDT) are all  
64 CYCLES 64 CYCLES  
FB2  
FB1  
RST2  
RST1  
related and set by a capacitor, C  
pin and ground:  
, between the CWDT  
WDT  
3641 F09a  
33  
64  
20ms/DIV  
tDLY = tWDU ⎜  
(8a)  
tWDU  
16  
tWDL  
=
s
⎝ ⎠  
F
CWDT  
CPOR  
⎛ ⎞  
tWDU = CWDT • 37 • 106  
⎜ ⎟  
The accuracy of the watchdog timer will be limited by  
the accuracy and temperature coefficient of the capacitor  
WDT  
WDI  
C
. Extra parasitic capacitance on the CWDT pin, such  
WDO  
as probe capacitance, can affect the watchdog timer.  
3641 F09b  
1ms/DIV  
Figure 8a shows the power-on reset timing. Having FB1  
(8b)  
or FB2 high starts the CPOR oscillator. After t , the cor-  
RST  
responding RST is released. When both RST1 and RST2  
are released, the CWDT oscillator starts. Figure 8b shows  
thewatchdogwaveformwiththeWDIperiodbetweent  
WDL  
CWDT  
CPOR  
andt  
.TheWDIfallingedgeresetstheCWDToscillator.  
WDU  
The CPOR oscillator is disabled and WDO remains high.  
Figure 8c shows the watchdog waveform with the WDI  
period longer than t  
RST  
. WDO is asserted for a period of  
WDU  
WDI  
t
when the watchdog upper boundary, t  
, expires.  
WDU  
WDO  
The watchdog function can be disabled by tying WDE  
above its threshold. In this case, the CWDT pin can be left  
floating. If neither the watchdog function nor the power-  
on reset function is used, both the CWDT and CPOR pin  
can be left floating.  
3640 F09c  
50ms/DIV  
(8c)  
Figure 8. Power-On Reset and Watchdog Timing  
TheaccuracyoftheCPORandCWDTcapacitorsdetermine  
the accuracy of the power-on reset timer and watchdog  
timer. The COG or NPO type of ceramic capacitors have  
zero temperature coefficient and good aging characteris-  
tics. Use COG or NPO type of capacitors with flat DC bias  
characteristic up to 1.5V on the CPOR and CWDT pins.  
3641fa  
20  
LT3641  
APPLICATIONS INFORMATION  
PCB Layout  
For proper operation and minimum EMI, care must be  
takenduringtheprintedcircuitboard(PCB)layout.Figure9  
shows the recommended component placement with  
trace, ground plane and via locations. The input loop  
of the high voltage channel, which is formed by the V  
IN  
C
OUT2  
and SW1 pins, the external catch diode (D1), the input  
L2  
capacitor (C ) and the ground, should be as small as  
IN  
possible. These external components should be placed  
on the same side of the circuit board as the LT3641, and  
their connections should be made on that layer. Place a  
local, unbroken ground plane below these components.  
The BST and SW nodes should be as small as possible.  
C
C
IN2  
IN  
C
BST  
L1  
The boost capacitor (C ) should be as close to the BST  
BST  
and SW pins as possible.  
C
OUT1  
The input loop of the low voltage channel is formed by  
the V pin, the input capacitor (C ) and the ground.  
3641 F10  
IN2  
IN2  
Place C close to the V and the GND pin to minimize  
IN2  
IN2  
Figure 9. Recommended PCB Layout, FE28 Package  
this loop. Place a local, unbroken ground plane below  
this input loop.  
Figure 10b shows a simple alternative. By tying EN2 to  
IN2  
minimum operating voltage of 2.3V.  
KeeptheFB1andFB2nodessmallsothatthegroundtraces  
will shield them from the switching nodes. The Exposed  
Pad on the bottom of the package must be soldered to  
the ground so that the pad acts as a heat sink. To keep  
thermalresistancelow,extendthegroundplaneasmuchas  
possible, and add thermal vias under and near the LT3641  
to additional ground planes within the circuit board and  
on the bottom side.  
V
, channel 2 starts as soon as its input reaches its  
Figure 10c shows a circuit that handles two other com-  
mon requirements. If the system requires the low voltage  
output to be in regulation before the higher voltage output  
(for example core voltage must appear before the I/O sup-  
ply), then add a PMOS switch and drive its gate with the  
PGOOD2 pin, which will go low when both channels are  
in regulation. This provides a third output OUT3, which is  
present only when both OUT1 and OUT2 are in regulation.  
Sequencing Options  
In most LT3641 applications, the low voltage regulator  
generating OUT2 will operate from the output of the  
high voltage regulator generating OUT1. In this cascade  
circuit, channel 1 must start before channel 2. However,  
the LT3641 provides additional flexibility in programming  
the sequencing of the outputs. Figure 10 shows several  
possibilities.  
Figure 10c also takes care of a potential problem in  
cascaded power supply circuits. Because channel 2 is a  
switchingregulator,itappearsasnegativeimpedanceload  
to channel 1; as OUT1 decreases, the load required to sup-  
ply the input of channel 2 increases. Since the channel 1  
is current limited, you must be certain that it can supply  
bothitsownloadandthepowerrequiredbychannel2.The  
EN2 has an accurate threshold of 1.165V, and is used to  
program an undervoltage lockout for channel 2, allowing  
channel 1 to supply adequate power.  
Figure 10a shows the easiest option. With EN2 tied to  
FB1, channel 2 will start when OUT1 is within 10% of its  
regulation point.  
3641fa  
21  
LT3641  
APPLICATIONS INFORMATION  
OUT1  
FB1  
EN2  
OUT1  
OUT2  
90%  
V
IN2  
OUT1  
OUT1  
(10a)  
FB1  
EN2  
OUT1  
OUT2  
2.3V  
V
IN2  
OUT1  
(10b)  
OUT1  
OUT3  
FB1  
OUT1  
OUT2  
OUT3  
PROGRAMMED  
LEVEL  
PGOOD2  
V
IN2  
OUT1  
90%  
EN2  
3641 F11  
(10c)  
Figure 10. The EN2 and PGOOD2 Pins Allow Serial Sequencing Options  
3641fa  
22  
LT3641  
TYPICAL APPLICATIONS  
2MHz 3.3V/1.3A and 1.8V/1A Buck Regulators  
V
0.22μF  
IN  
D2  
5V TO 42V*  
4.7μF  
301k  
100k  
L1  
3.3μH  
V
OUT1  
3.3V/1.3A  
22μF  
EN/UVLO  
V
IN  
SW  
BST  
SW1  
80.6k  
D1  
DA  
FB1  
SYNC  
49.9k  
WDE  
EN2  
V
IN2  
PGOOD2  
LT3641  
V
IN2  
2.5V TO 5.5V  
4.7μF  
L2  
1μH  
RST1  
RST2  
WDO  
V
OUT2  
1.8V/1.1A  
22μF  
SW2  
100k  
WDI  
FB2  
SS1  
CWDT CPOR  
RT  
GND SS2  
49.9k  
1nF  
1.5nF  
32.4k  
1.5nF  
1nF  
3641 TA02  
L1: VISHAY IHLP2020BZER3R3M01  
L2: VISHAY IHLP1616ABER1R0M01  
D1: DIODES PDS360  
D2: CENTRAL SEMI CMDSH-4E  
* RESTRICTIONS APPLY FOR INPUT VOLTAGES ABOVE 42V  
2MHz 5V/0.8A and 1.2V/1A Buck Regulators  
V
0.22μF  
D2  
IN  
7V TO 42V*  
4.7μF  
100k  
453k  
L1  
4.7μH  
V
OUT1  
5V/0.8A  
EN/UVLO  
V
IN  
SW  
BST  
SW1  
22μF  
301k  
100k  
D1  
DA  
SYNC  
WDE  
WDI  
FB1  
EN2  
LT3641  
WDI  
V
IN2  
OUT1  
100k  
L2  
0.47μH  
PGOOD2  
WDO  
100k  
100k  
V
OUT2  
SW2  
1.2V/1A  
22μF  
100k  
49.9k  
49.9k  
RST1  
FB2  
SS1  
RST2  
CWDT CPOR  
RT  
GND SS2  
1nF  
1.5nF  
32.4k  
1.5nF  
1nF  
3641 TA03  
L1: VISHAY IHLP2020BZER4R7M01  
L2: VISHAY IHLP1616ABERR47M01  
D1: DIODES DFLS260  
D2: CENTRAL SEMI CMDD6263  
* RESTRICTIONS APPLY FOR INPUT VOLTAGES ABOVE 42V  
3641fa  
23  
LT3641  
TYPICAL APPLICATIONS  
2MHz 3V/0.8A and 0.6V/1A Buck Regulators  
0.22μF  
D2  
V
IN  
L1  
4V TO 42V*  
3.3μH  
V
OUT1  
4.7μF  
3V/0.8A  
22μF  
EN/UVLO  
V
IN  
SW  
BST  
SW1  
68.1k  
D1  
DA  
FB1  
SYNC  
49.9k  
EN2  
WDE  
PGOOD2  
LT3641  
V
IN2  
L2  
0.47μH  
RST1  
RST2  
WDO  
V
OUT2  
SW2  
FB2  
0.6V/1A  
22μF  
WDI  
CWDT CPOR  
RT  
GND SS2  
32.4k  
SS1  
1nF  
1.5nF  
1.5nF  
1nF  
3641 TA04  
L1: VISHAY IHLP2020BZER3R3M01  
L2: VISHAY IHLP1616ABERR47M01  
D1: DIODES PDS360  
D2: CENTRAL SEMI CMDSH2-3  
* RESTRICTIONS APPLY FOR INPUT VOLTAGES ABOVE 42V  
3641fa  
24  
LT3641  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
FE Package  
28-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation EB  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
4.75  
(.187)  
28 2726 25 24 23 22 21 20 19 18 1716 15  
6.60 0.10  
4.50 0.10  
2.74  
EXPOSED  
PAD HEAT SINK  
ON BOTTOM OF  
PACKAGE  
(.108)  
SEE NOTE 4  
6.40  
2.74  
(.252)  
(.108)  
BSC  
0.45 0.05  
1.05 0.10  
0.65 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
5
7
1
2
3
4
6
8
9 10 12 13 14  
11  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE28 (EB) TSSOP 0204  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
MILLIMETERS  
(INCHES)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
3. DRAWING NOT TO SCALE  
3641fa  
25  
LT3641  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UFD Package  
28-Lead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1712 Rev B)  
0.70 0.05  
4.50 0.05  
3.10 0.05  
2.50 REF  
2.65 0.05  
3.65 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
3.50 REF  
4.10 0.05  
5.50 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.35  
× 45 CHAMFER  
2.50 REF  
R = 0.115  
TYP  
R = 0.05  
TYP  
0.75 0.05  
4.00 0.10  
(2 SIDES)  
27  
28  
0.40 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 0.10  
(2 SIDES)  
3.50 REF  
3.65 0.10  
2.65 0.10  
(UFD28) QFN 0506 REV B  
0.25 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3641fa  
26  
LT3641  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
11/11 Added H-grade to Absolute Maximum Ratings, Order Information, and Note 2  
2, 4  
3641fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT3641  
TYPICAL APPLICATION  
2MHz 3.3V/0.8A and 0.8V/1.2A Buck Regulators  
0.22μF  
V
IN  
4V TO 42V*  
3.3μH  
V
OUT1  
4.7μF  
3.3V/0.8A  
22μF  
EN/UVLO  
SYNC  
V
IN  
SW  
BST  
SW1  
80.6k  
49.9k  
DA  
FB1  
EN2  
PGOOD2  
LT3641  
V
IN2  
WDE  
RST1  
RST2  
WDO  
0.47μH  
V
OUT2  
0.8V/1.2A  
22μF  
SW2  
16.5k  
49.9k  
WDI  
FB2  
SS1  
CWDT CPOR  
RT  
GND SS2  
1nF  
32.4k  
1nF  
3641 TA05  
* RESTRICTIONS APPLY FOR INPUT VOLTAGES ABOVE 42V  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT3640  
35V, 55V Transient Protection, 1.3A High Voltage Channel and V : 4V to 35V, Transient to 55V, V  
= 0.6V, I = 290mA, 1μA,  
IN  
OUT(MIN) Q  
1.1A Low Volume Channel  
4mm × 5mm QFN-28, TSSOP-28E Packages  
LT3689  
36V, 60V Transient Protection, 800mA, 2.2MHz High  
Efficiency MicroPower Step-Down DC/DC Converter with  
POR Reset and Watchdog Timer  
V : 3.6V to 36V, Transient to 60V, V  
SD  
= 0.8V, I = 75μA,  
Q
IN  
OUT(MIN)  
I
< 1μA, 3mm × 3mm QFN-16 Package  
LT3686/LT3686A 37V, 55V  
, 1.2A, 2.5MHz High Efficiency Step-Down DC/  
V : 3.6V to 37V, Transient to 55V, V  
= 1.21V, I = 1.1mA,  
Q
MAX  
IN  
OUT(MIN)  
DC Converter  
I
< 1μA, 3mm × 3mm DFN-10 Package  
SD  
LT3682  
LT3971  
LT3991  
36V, 60V  
, 1A, 2.2MHz High Efficiency Micropower  
V : 3.6V to 36V, V  
= 0.8V, I = 75μA, I < 1μA, 3mm × 3mm  
Q SD  
MAX  
IN  
OUT(MIN)  
Step-Down DC/DC Converter  
DFN-12 Package  
38V, 1.2A (I ), 2MHz, High Efficiency Step-Down DC/DC  
Converter with Only 2.8μA of Quiescent Current  
V : 4.2V to 38V, V  
= 1.2V, I = 2.8μA, I < 1μA, 3mm × 3mm  
Q SD  
OUT  
IN  
OUT(MIN)  
DFN-10, MSOP-10E Packages  
55V, 1.2A (I ), 2MHz, High Efficiency Step-Down DC/DC  
Converter with Only 2.8μA of Quiescent Current  
V : 4.2V to 55V, V  
= 1.2V, I = 2.8μA, I < 1μA, 3mm × 3mm  
Q SD  
OUT  
IN  
OUT(MIN)  
DFN-10, MSOP-10E Packages  
3641fa  
LT 1111 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY