LT3741EUF-PBF [Linear]

High Power, Constant Current, Constant Voltage, Step-Down Controller; 高功率,恒定电流,恒定电压,降压型控制器
LT3741EUF-PBF
型号: LT3741EUF-PBF
厂家: Linear    Linear
描述:

High Power, Constant Current, Constant Voltage, Step-Down Controller
高功率,恒定电流,恒定电压,降压型控制器

控制器
文件: 总24页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3741  
High Power, Constant  
Current, Constant Voltage,  
Step-Down Controller  
FeaTures  
DescripTion  
The LT®3741 is a fixed frequency synchronous step-down  
DC/DCcontrollerdesignedtoaccuratelyregulatetheoutput  
current at up to 20A. The average current-mode controller  
willmaintaininductorcurrentregulationoverawideoutput  
n
Control Pin Provides Accurate Control of Regulated  
Output Current  
n
1.5% Voltage Regulation Accuracy  
n
±±% Current Regulation Accuracy  
6V to 36V Input Voltage Range  
Wide Output Voltage Range Up to (V – 2V)  
Average Current Mode Control  
n
voltage range of 0V to (V – 2V). The regulated current is  
IN  
n
set by an analog voltage on the CTRL pins and an external  
sense resistor. Due to its unique topology, the LT3741 is  
capable of sourcing and sinking current. The regulated  
voltage and overvoltage protection are set with a voltage  
dividerfromtheoutputtotheFBpin.Soft-Startisprovided  
to allow a gradual increase in the regulated current during  
startup. The switching frequency is programmable from  
200kHz to 1MHz through an external resistor on the RT  
pin or through the use of the SYNC pin and an external  
clock signal.  
IN  
n
n
<1µA Shutdown Current  
Up to 94% Efficiency  
n
n
Additional Pin for Thermal Control of Load Current  
n
Thermally Enhanced 4mm × 4mm QFN and 20-Pin  
FE Package  
applicaTions  
n
General Purpose Industrial  
Additional Features include an accurate external reference  
voltage for use with the CTRL pins, an accurate UVLO/EN  
pin that allows for programmable UVLO hysteresis, and  
thermal shutdown.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 7199560, 7321203 and others pending.  
n
Super-Cap Charging  
n
Applications Needing Extreme Short-Circuit  
Protection and/or Accurate Output Current Limit  
n
Constant Current or Constant Voltage Source  
Typical applicaTion  
10V/20A Constant Current, Constant Voltage Step-Down Converter  
VOUT vs IOUT  
V
IN  
V
EN/UVLO  
82.5k  
EN/UVLO  
RT  
SYNC  
IN  
14V TO 36V  
12  
10  
8
1µF  
100µF  
HG  
LT3741  
220nF  
V
REF  
CBOOT  
SW  
2.2µH  
V
10V  
20A  
2.5mΩ  
10nF  
OUT  
CTRL1  
VC  
6
V
CC_INT  
22µF  
39.2k  
5.6nF  
4
R
LG  
HOT  
150µF  
s2  
45.3k  
GND  
V
V
I
= 18V  
2
IN  
OUT  
+
CTRL2  
SS  
SENSE  
SENSE  
= 10V  
= 20A  
88.7k  
12.1k  
LIMIT  
0
R
NTC  
FB  
0
2
4
6
8
10 12 14 16 18 20 22  
(A)  
10nF  
I
OUT  
3741 TA01b  
3741 TA01a  
3741f  
LT3741  
absoluTe maximum raTings (Note 1)  
V Voltage................................................................40V  
CBOOT – SW Voltage..................................................6V  
RT Voltage...................................................................3V  
FB Voltage...................................................................3V  
SS Voltage ..................................................................6V  
IN  
EN/UVLO Voltage ........................................................6V  
V
Voltage................................................................3V  
REF  
CTRL1 and CTRL2 Voltage..........................................3V  
+
SENSE Voltage ........................................................40V  
V
Voltage...........................................................6V  
CC_INT  
SENSE Voltage ........................................................40V  
SYNC Voltage..............................................................6V  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
VC Voltage ..................................................................3V  
SW Voltage ...............................................................40V  
CBOOT ......................................................................46V  
TSSOP .............................................................. 300°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
V
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
LG  
CC_INT  
GND  
CBOOT  
SW  
20 19 18 17 16  
V
IN  
EN/UVLO  
HG  
1
2
3
4
5
15  
14  
13  
12  
11  
EN/UVLO  
HG  
V
GND  
SYNC  
RT  
REF  
V
GND  
SYNC  
RT  
REF  
21  
GND  
21  
GND  
CTRL2  
GND  
CTRL2  
GND  
CTRL1  
GND  
CTRL1  
SS  
VC  
SENSE  
SENSE  
6
7
8
9 10  
+
FB 10  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
UF PACKAGE  
20-LEAD (4mm s 4mm) PLASTIC QFN  
= 125°C, θ = 37°C/W  
T
= 125°C, θ = 38°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
T
JMAX  
JA  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
orDer inFormaTion  
LEAD FREE FINISH  
LT3741EUF#PBF  
LT3741IUF#PBF  
LT3741EFE#PBF  
LT3741IFE#PBF  
TAPE AND REEL  
PART MARKING*  
3741  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3741EUF#TRPBF  
LT3741IUF#TRPBF  
LT3741EFE#TRPBF  
LT3741IFE#TRPBF  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
20-Lead (4mm × 4mm) Plastic QFN  
20-Lead (4mm × 4mm) Plastic QFN  
20-Lead Plastic TSSOP  
3741  
LT3741FE  
LT3741FE  
20-Lead Plastic TSSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3741f  
LT3741  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VEN/UVLO = 5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Input Voltage Range  
6
36  
V
V
Pin Quiescent Current (Note 2)  
Non-Switching Operation  
Shutdown Mode  
IN  
Not Switching  
EN/UVLO  
1.8  
0.1  
2.5  
1
mA  
µA  
V
= 0V  
EN/UVLO Pin Falling Threshold  
EN/UVLO Hysteresis  
EN/UVLO Pin Current  
SYNC Pin Threshold  
CTRL1 Pin Control Range  
CTRL1 Pin Current  
1.49  
0
1.55  
130  
5.5  
1.61  
V
mV  
µA  
V
V
= 6V, EN/UVLO = 1.45V  
IN  
1.0  
1.5  
V
CTRL1 = 1.5V  
100  
2
nA  
Reference  
l
l
Reference Voltage (V Pin)  
1.94  
48  
2.06  
54  
V
REF  
Inductor Current Sensing  
+
Full Range SENSE to SENSE  
V
= 1.5V  
51  
50  
10  
mV  
nA  
µA  
CTRL1  
+
SENSE Pin Current  
SENSE Pin Current  
With V  
~ 4V, V  
= 0V  
CTRL1  
OUT  
Internal V Regulator (V  
Pin)  
CC  
CC_INT  
l
Regulation Voltage  
4.7  
5
5.2  
V
NMOS FET Driver  
Non-Overlap time HG to LG  
Non-Overlap time LG to HG  
Minimum On-Time LG  
Minimum On-Time HG  
Minimum Off-Time LG  
100  
60  
50  
80  
65  
ns  
ns  
ns  
ns  
ns  
(Note 3)  
(Note 3)  
(Note 3)  
High Side Driver Switch On-Resistance  
Gate Pull Up  
V
– V = 5V  
SW  
CBOOT  
2.3  
1.3  
Ω
Ω
Gate Pull Down  
Low Side Driver Switch On-Resistance  
Gate Pull Up  
V
= 5V  
CC_INT  
2.3  
1.0  
Ω
Ω
Gate Pull Down  
Switching Frequency  
l
f
R = 40kΩ  
T
900  
190  
1000  
218  
1070  
233  
kHz  
kHz  
SW  
T
R = 200kΩ  
Soft-Start  
Charging Current  
Voltage Regulation Amplifier  
Input Bias Current  
11  
µA  
FB = 1.3V  
850  
800  
1.21  
nA  
µA/V  
V
g
m
l
Feedback Regulation Voltage  
CTRL1 = 1.5V, I  
= 23µA  
1.192  
1.228  
SENSE  
3741f  
LT3741  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VEN/UVLO = 5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Current Control Loop g Amp  
m
l
Offset Voltage  
–3  
0
3
mV  
Input Common Mode Range  
V
V
0
2
V
V
CM(LOW)  
CM(HIGH)  
V
Measured from V to V  
IN CM  
CM(HIGH)  
Output Impedance  
3.5  
475  
1.7  
MΩ  
µA/V  
mV/V  
g
375  
625  
m
Differential Gain  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT3741I is guaranteed to meet performance specifications over the –40°C  
to 125°C operating junction temperature range.  
Note 2: The LT3741E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
Note 3: The minimum on and off times are guaranteed by design and are  
not tested.  
3741f  
LT3741  
Typical perFormance characTerisTics  
EN/UVLO Threshold (Falling)  
EN/UVLO Pin Current  
IQ in Shutdown  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.70  
1.64  
1.58  
1.52  
1.46  
1.40  
10  
8
6
–50°C  
130°C  
130°C  
25°C  
4
2
25°C  
130°C  
–50°C  
0
0
8
16  
24  
(V)  
32  
40  
6
12  
18  
24  
(V)  
30  
36  
6
12  
24  
(V)  
30  
36  
18  
V
V
V
IN  
IN  
IN  
3741 G03  
3741 G01  
3741 G02  
Quiescent Current (Non-Switching)  
VREF Pin Voltage  
VREF Current Limit  
1.6  
1.4  
1.2  
1.0  
0.8  
2.0  
1.6  
1.2  
0.8  
0.4  
0
2.06  
2.05  
2.04  
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
T
= 25°C  
A
V
= 36V  
IN  
T
= 130°C  
A
V
= 6V  
IN  
T
= –50°C  
A
T
T
T
= 25°C  
= 130°C  
= –50°C  
A
A
A
6
12  
18  
24  
30  
36  
6
12  
18  
24  
(V)  
30  
36  
–50  
–15  
20  
55  
90  
125  
V
(V)  
V
TEMPERATURE (°C)  
IN  
IN  
3741 G04  
3741 G06  
3741 G05  
VCC_INT Current Limit  
RT Pin Current Limit  
Soft-Start Pin Current  
14  
13  
12  
11  
10  
9
90  
80  
70  
60  
50  
40  
6
5
4
3
2
1
0
V
IN  
= 36V  
V
IN  
= 6V  
8
7
V
A
= 12V  
IN  
T
= 25°C  
6
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
125  
0
10  
30  
(mA)  
40  
50  
20  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
I
LOAD  
3741 G07  
3741 G08  
3741 G09  
3741f  
LT3741  
Typical perFormance characTerisTics  
CBOOT-SW UVLO Voltage  
VCC_INT UVLO  
Internal UVLO  
5.0  
4.5  
4.0  
3.5  
3.0  
3.00  
2.75  
4.00  
3.75  
2.50  
2.25  
3.50  
3.25  
2.00  
1.75  
1.50  
3.00  
2.75  
2.50  
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3741 G11  
3741 G10  
3741 G12  
Regulated Current vs VFB  
Overvoltage Threshold  
VCC_INT Load Reg at 12V  
150  
100  
50  
1.75  
1.65  
1.55  
1.45  
1.35  
1.25  
6.0  
5.6  
5.2  
4.8  
4.4  
4.0  
0
25°C  
–50  
–100  
–150  
–200  
–50°C  
130°C  
1.30 1.35  
1.10  
1.15  
1.20  
V
1.25  
(V)  
–50 –25  
0
25  
50  
75 100 125  
0
10  
20  
30  
(mA)  
40  
50  
60  
TEMPERATURE (°C)  
I
FB  
LOAD  
3741 G14  
3741 G15  
3741 G13  
Overvoltage Timeout  
Regulated Sense Voltage  
Common Mode Lockout  
19  
17  
15  
13  
11  
9
60  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MEASURED V – V  
IN  
OUT  
V
= 6V  
IN  
40  
30  
V
= 36V  
IN  
20  
10  
0
–50  
–15  
20  
55  
90  
125  
0
0.5  
1.0  
1.5  
2.0  
–50  
–15  
20  
55  
90  
125  
V
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CTRL  
3741 G16  
3741 G17  
3741 G18  
3741f  
LT3741  
Typical perFormance characTerisTics  
HG Driver RDS(ON)  
LG Driver RDS(ON)  
Minimum Off-Time  
5
4
3
2
1
0
300  
240  
180  
120  
60  
5
4
3
2
1
0
HG  
PULL-UP  
PULL-UP  
PULL-DOWN  
LG  
PULL-DOWN  
0
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3741 G21  
3741 G25  
3741 G20  
Non-Overlap Time  
Minimum On-Time  
Oscillator Frequency  
150  
120  
90  
60  
30  
0
150  
120  
90  
60  
30  
0
1.5  
1.2  
0.9  
0.6  
0.3  
0
1.2MHz  
HG TO LG  
900kHz  
HG  
LG  
LG TO HG  
220kHz  
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
125  
–50  
–15  
20  
55  
90  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3741 G23  
3741 G24  
3741 G36  
Current Regulation Accuracy  
CTRL1 = 1.5V, VIN = 12V  
Current Regulation Accuracy  
CTRL1 = 0.75V, VIN = 12V  
Overcurrent Threshold  
6
4
120  
100  
3
2
2
0
80  
60  
1
0
25°C  
25°C  
–2  
–4  
–6  
40  
20  
0
–1  
–2  
–3  
0
2.5  
5.0  
7.5  
10  
0
0.75  
1.5  
2.25  
3.0  
0
2.5  
5.0  
7.5  
10  
OUTPUT VOLTAGE (V)  
CTRL_H (V)  
OUTPUT VOLTAGE (V)  
3741 G27  
3741 G28  
3741 G26  
3741f  
LT3741  
Typical perFormance characTerisTics  
VOUT vs IOUT  
VOUT vs IOUT  
6
5
4
3
2
1
0
25  
20  
15  
10  
5
V
V
I
= 20V  
= 5V  
LIMIT  
V
V
I
= 25V  
IN  
OUT  
IN  
OUT  
= 20V  
= 24A  
= 9.5A  
LIMIT  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
(A)  
0
1
2
3
4
5
6
7
8
9
10  
I
I
(A)  
OUT  
OUT  
3741 G19  
3741 G22  
Efficiency and Power Loss  
vs Load Current  
VOUT vs IOUT  
12  
10  
8
100  
95  
90  
85  
80  
75  
70  
30  
25  
20  
15  
10  
5
EFFICIENCY  
6
4
POWER LOSS  
V
V
I
= 24V  
2
IN  
OUT  
= 10V  
= 18A  
V
= 20V  
= 5V  
IN  
OUT  
V
LIMIT  
0
0
0
2
4
6
8
10 12 14 16 18 20  
(A)  
0
5
10  
15  
20  
25  
LOAD CURRENT (A)  
I
OUT  
3741 G33  
3741 G29  
Efficiency and Power Loss  
vs Load Current  
Efficiency and Power Loss  
vs Load Current  
100  
95  
90  
85  
80  
75  
70  
4.8  
4.0  
3.2  
2.4  
1.6  
0.8  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
12  
10  
8
EFFICIENCY  
EFFICIENCY  
6
POWER LOSS  
4
POWER LOSS  
2
V
V
= 25V  
OUT  
V
V
= 24V  
OUT  
IN  
IN  
= 20V  
= 10V  
0
0
2
4
6
8
10  
0
5
10  
15  
20  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
3741 G30  
3741 G37  
3741f  
LT3741  
Typical perFormance characTerisTics  
Voltage Regulation with 10A  
Regulated Inductor Current  
5A Load Step Recovery  
V
OUT  
20mV/DIV  
V
OUT  
AC-COUPLED  
2V/DIV  
I
L
I
L
2A/DIV  
5A/DIV  
3741 G31  
3741 G34  
20ms/DIV  
100µs/DIV  
C
OUT  
= 470µF  
Shutdown and Recovery  
1.5nF Soft-Start Capacitor  
Common Mode Lockout  
EN/UVLO  
5V/DIV  
V
OUT  
I
2V/DIV  
L
5A/DIV  
I
L
V
OUT  
200mA/DIV  
2V/DIV  
3741 G32  
3741 G35  
100µs/DIV  
1ms/DIV  
C
V
= 1mF  
= 5V  
OUT  
OUT  
V
= 7V  
IN  
10A LOAD  
18A CURRENT LIMIT  
3741f  
LT3741  
pin FuncTions (QFN/TSSOP)  
EN/UVLO (Pin 1/Pin 4): Enable Pin. The EN/UVLO pin  
acts as an enable pin and turns on the internal current  
bias core and subregulators at 1.55V. The pin does  
not have any pull-up or pull-down, requiring a voltage  
bias for normal part operation. Full shutdown occurs at  
approximately 0.5V.  
VC (Pin 10/Pin 13): VC provides the necessary com-  
pensation for the average current loop stability. Typical  
compensation values are 20k to 50k for the resistor and  
2nF to 5nF for the capacitor.  
RT(Pin12/Pin14):Aresistortogroundsetstheswitching  
frequency between 200kHz and 1MHz. When using the  
SYNC function, set the frequency to be 20% lower than  
the SYNC pulse frequency. This pin is current limited to  
60µA. Do not leave this pin open.  
V
(Pin 2/Pin 5): Buffered 2V reference capable of  
REF  
0.5mA drive.  
CTRL2(Pin3/Pin±):Thermalcontrolinputusedtoreduce  
the regulated current level.  
SYNC (Pin 13/Pin 15): Frequency Synchronization Pin.  
Thispinallowstheswitchingfrequencytobesynchronized  
GND (Pins 4,11,14, Exposed Pad Pin 21/Pins 2,7,1±,  
Exposed Pad Pin 21): Ground. The exposed pad must be  
soldered to the PCB  
to an external clock. The R resistor should be chosen to  
T
operate the internal clock at 20% slower than the SYNC  
pulse frequency. This pin should be grounded when not  
in use. When laying out board, avoid noise coupling to  
or from SYNC trace.  
CTRL1 (Pin 5/Pin 8): The CTRL1 pin sets the high level  
regulated output current and overcurrent. The maximum  
inputvoltageisinternallyclampedto1.5V.Theovercurrent  
setpointisequaltothehighlevelregulatedcurrentlevelset  
by the CTRL1 pin with an additional 23mV offset between  
HG (Pin 15/Pin 17): HG is the top-FET gate drive signal  
that controls the state of the high-side external power FET.  
The driver impedance is approximately 1.8Ω.  
+
the SENSE and SENSE pins.  
SW (Pin 1±/Pin 18): The SW pin is used internally as the  
lower-rail for the floating high-side driver. Externally, this  
node connects the two power-FETs and the inductor.  
SS (Pin ±/Pin 9): The Soft-Start Pin. Place an external  
capacitor to ground to limit the regulated current during  
start-up conditions. The soft-start pin has a 11µA charg-  
ing current. This pin controls regulated output current  
determined by CTRL1.  
CBOOT (Pin 17/Pin 19): The CBOOT pin provides a float-  
ing 5V regulated supply for the high-side FET driver. An  
external Schottky diode is required from the V  
pin  
CC_INT  
FB (Pin 7/Pin 10): Feedback Pin for Voltage Regulation  
andOvervoltageProtection.Thefeedbackvoltageis1.21V.  
Overvoltage is also sensed through the FB pin. When the  
feedback voltage exceeds 1.5V, the overvoltage lockout  
prevents switching for 13μs to allow the inductor current  
to discharge.  
to the CBOOT pin to charge the CBOOT capacitor when  
the switch-pin is near ground.  
LG (Pin 18/Pin 20): LG is the bottom-FET gate drive signal  
that controls the state of the low-side external power-FET.  
The driver impedance is approximately 1.8Ω.  
+
+
SENSE (Pin 8/Pin 11): SENSE is the inverting input of  
V
(Pin 19/Pin 1): A regulated 5V output for charging  
CC_INT  
the average current mode loop error amplifier. This pin is  
connected to the external current sense resistor, R . The  
voltage drop between SENSE and SENSE referenced to  
the voltage drop across an internal resistor produces the  
input voltages to the current regulation loop.  
the CBOOT capacitor. V  
also provides the power for  
CC_INT  
the digital and switching subcircuits. Below 6V V , tie this  
S
IN  
+
pintotherail.V  
iscurrentlimitedto50mA.Shutdown  
CC_INT  
operation disables the output voltage drive.  
V
(Pin 20/Pin 3): Input Supply Pin. Must be locally  
IN  
SENSE (Pin 9/Pin 12): SENSE is the non-inverting input  
oftheaveragecurrentmodelooperroramplifier. Therefer-  
ence current, based on CTRL1 or CTRL2 flows out of the  
bypassed with a 4.7μF low-ESR capacitor to ground.  
pin to the output side of the sense resistor, R .  
S
3741f  
ꢀ0  
LT3741  
block Diagram (QFN Package)  
V
IN  
V
IN  
20  
19  
V
IN  
402k  
133k  
1µF  
47µF  
EN/UVLO  
1
2
INTERNAL  
REGULATOR  
AND  
V
CC_INT  
10µF  
V
REF  
UVLO  
2V REFERENCE  
OSCILLATOR  
100nF  
HIGH SIDE  
DRIVER  
CBOOT  
HG  
17  
15  
16  
SYNC  
RT  
SYNC  
82.5k  
13  
12  
+
0.1µF  
2.4µH  
SW  
SYNCRONOUS  
CONTROLLER  
R
Q
S
LG  
18  
PWM  
COMPARATOR  
LOW SIDE  
DRIVER  
+
+
SENSE  
8
9
R
S
5mΩ  
1.5V  
3k  
SENSE  
g
AMP  
= 450µA/V  
= 4M  
V
OUT  
m
m
O
CURRENT  
MIRROR  
g
150µF  
s2  
+
+
R
I
11µA  
CTRL1  
= 40µA  
OUT  
5
40.2k  
+
FB  
7
CTRL BUFFER  
10k  
SS  
6
3
90k  
1.21V  
100nF  
VOLTAGE  
REGULATOR  
AMP  
CTRL2  
VC  
g
= 850µA/V  
10  
m
40.2k  
5.6µF  
3741 F01  
Figure 1. Block Diagram  
3741f  
ꢀꢀ  
LT3741  
operaTion  
TheLT3741utilizesxed-frequency,averagecurrentmode  
control to accurately regulate the inductor current, inde-  
pendently from the output voltage. This is an ideal solu-  
tion for applications requiring a regulated current source.  
The control loop will regulate the current in the inductor  
at an accuracy of 6%. Once the output has reached the  
regulation voltage determined by the resistor divider from  
the output to the FB pin and ground, the inductor current  
will be reduced by the voltage regulation loop. In voltage  
regulation, the output voltage has an accuracy of 1.5%.  
For additional operation information, refer to the Block  
Diagram in Figure 1.  
is limited on a cycle-by-cycle basis; shutting switching  
down once the overcurrent level is reached. Overcurrent  
is not soft-started.  
The regulated output voltage is set with a resistor divider  
from the output back to the FB pin. The reference at the  
FB pin is 1.21V. If the output voltage level is high enough  
to engage the voltage loop, the regulated inductor current  
will be reduced to support the load at the output. If the  
voltage at the FB pin reaches 1.5V (~25% higher than the  
regulation level), an internal overvoltage flag is set, shut-  
ting down switching for 13μs.  
The EN/UVLO pin functions as a precision shutdown  
pin. When the voltage at the EN/UVLO pin is lower than  
1.55V, the internal reset flag is asserted and switching is  
terminated. Full shutdown occurs at approximately 0.5V  
with a quiescent current of less than 1μA in full shutdown.  
The EN/UVLO pin has 130mV of built-in hysteresis. In  
addition, a 5.5µA current source is connected to this pin  
that allows any amount of hysteresis to be added with a  
The current control loop has two reference inputs, deter-  
minedbythevoltageattheanalogcontrolpins,CTRL1and  
CTRL2. The lower of the two analog voltages on CTRL1  
and CTRL2 determines the regulated output current. The  
analog voltage at the CTRL1 pin is buffered and produces  
areferencevoltageacrossaninternalresistor. Theinternal  
buffer has a 1.5V clamp on the output, limiting the analog  
control range of the CTRL1 and CTRL2 pins from 0V to  
1.5V – corresponding to a 0mV to 51mV range on the  
series resistor or resistor divider from V .  
IN  
During startup, the SS pin is held low until the internal  
reset goes low. Once reset goes low, the capacitor at the  
soft-start pin is charged with an 11μA current source.  
The internal buffers for the CTRL1 and CTRL2 signals are  
limited by the voltage at the soft-start pin, slowly ramping  
the regulated inductor current to the current determined  
by the voltage at the CTRL1 or CTRL2 pins.  
sense resistor, R . The average current-mode control  
S
loop uses the internal reference voltage to regulate the  
inductor current, as a voltage drop across the external  
sense resistor, R .  
S
A 2V reference voltage is provided on the V  
pin to al-  
REF  
low the use of a resistor voltage divider to the CTRL1 and  
CTRL2 pins. The V pin can supply up to 500μA and is  
REF  
The thermal shutdown is set at 163°C with 8°C hysteresis.  
During thermal shutdown, all switching is terminated and  
the part is in reset (forcing the SS pin low).  
current limited to 1mA.  
The error amplifier for the average current-mode control  
loophasacommonmodelockoutthatregulatestheinduc-  
tor current so that the error amplifier is never operated out  
of the common mode range. The common mode range is  
The switching frequency is determined by a resistor at  
the RT pin. The RT pin is also limited to 60µA, while not  
recommended,thislimitstheswitchingfrequencyto2MHz  
when the RT pin is shorted to ground. The LT3741 may  
also be synchronized to an external clock through the use  
of the SYNC pin.  
from 0V to 2V below the V supply rail.  
IN  
The overcurrent set point is equal to the regulated current  
level set by the CTRL1 pin with an additional 23mV offset  
+
between the SENSE and SENSE pins. The overcurrent  
3741f  
ꢀꢁ  
LT3741  
applicaTions inFormaTion  
Programming Inductor Current  
Inductor Selection  
The analog voltage at the CTRL1 pin is buffered and  
Size the inductor to have no less than 30% peak-to-peak  
ripple. The overcurrent set point is equal to the high  
level regulated current level set by the CTRL1 pin with  
produces a reference voltage, V  
, across an internal  
CTRL  
resistor. The regulated average inductor current is deter-  
mined by:  
+
an additional 23mV offset between the SENSE and  
SENSE pins. The saturation current for the inductor  
VCTRL1  
30 RS  
should be at least 20% higher than the maximum regu-  
lated current. The following equation sizes the inductor  
for best performance:  
IO =  
where R is the external sense resistor and I is the aver-  
S
O
2
age inductor current, which is equal to the output current.  
V • VO – VO  
IN  
L =  
Figure 2 shows the maximum output current vs R . The  
S
0.3• f •I • V  
IN   
S
O
maximum power dissipation in the resistor will be:  
2
whereV istheoutputvoltage,I isthemaximumregulated  
O
O
0.05V  
RS  
(
)
PRS =  
current in the inductor and f is the switching frequency.  
S
Using this equation, the inductor will have approximately  
15% ripple at maximum regulated current.  
Table1containsseveralresistorsvalues,thecorresponding  
maximumcurrentandpowerdissipationinthesenseresis-  
tor. Susumu, Panasonic and Vishay offer accurate sense  
Table 2. Recommended Inductor Manufacturers  
VENDOR  
Coilcraft  
WEBSITE  
resistors. Figure 3 shows the power dissipation in R .  
S
www.coilcraft.com  
www.sumida.com  
www.vishay.com  
www.we-online.com  
www.nec-tokin.com  
Sumida  
Table 1. Sense Resistor Values  
MAXIMUM OUTPUT  
Vishay  
CURRENT (A)  
RESISTOR, R (mΩ) POWER DISSIPATION (W)  
S
Würth Electronics  
NEC-Tokin  
1
5
50  
10  
5
0.05  
0.25  
0.5  
10  
25  
1.4  
1.2  
2
1.25  
1.0  
30  
25  
0.8  
0.6  
0.4  
0.2  
20  
15  
10  
5
0
0
6
2
4
8
10 12 14 16 18 20  
R
S
(mΩ)  
3741 F03  
0
Figure 3. Power Dissipation in RS  
0
2
4
6
8
10 12 14 16 18 20  
R
S
(mΩ)  
3741 F02  
Figure 2. RS Value Selection for Regulated Output Current  
3741f  
ꢀꢂ  
LT3741  
applicaTions inFormaTion  
Switching MOSFET Selection  
higher R  
and lower C . The power loss in the high  
DS(ON) GD  
side MOSFET can be approximated by:  
When selecting switching MOSFETs, the following pa-  
rameters are critical in determining the best devices for  
P
LOSS  
= (ohmic loss) + (transition loss)  
a given application: total gate charge (Q ), on-resistance  
G
V +R I  
(
)
IO RDS(ON) ρ  
F
D O  
2
(R  
), gate to drain charge (Q ), gate-to-source  
DS(ON)  
GD  
P
+
T   
LOSS  
V
charge (Q ), gate resistance (R ), breakdown voltages  
IN  
GS  
G
(maximumV andV )anddraincurrent(maximumI ).  
GS  
DS  
D
V •I  
OUT   
IN  
The following guidelines provide information to make the  
• QGD +QGS 2•R +R +R  
• f  
S
(
) (  
)
(
)
G
PU  
PD  
5V  
selection process easier.  
BothoftheswitchingMOSFETsneedtohavetheirmaximum  
rated drain currents greater than the maximum inductor  
current. The following equation calculates the peak induc-  
tor current:  
whereρ isatemperature-dependanttermoftheMOSFET’s  
T
on-resistance.Using7Casthemaximumambientoperat-  
ing temperature, ρ is roughly equal to 1.3. R and R  
T
PD  
PU  
are the LT3741 high side gate driver output impedance,  
1.3Ω and 2.3Ω respectively.  
2   
V • VO – VO  
IN  
IMAX =I +  
A good approach to MOSFET sizing is to select a high  
side MOSFET, then select the low side MOSFET. The trade-  
O
2• fS L • V  
IN  
off between R  
, Q , Q and Q for the high side  
DS(ON)  
G GD GS  
where V is the input voltage, L is the inductance value,  
IN  
MOSFET is shown in the following example. V is equal  
O
V is the output voltage, I is the regulated output current  
O
O
to 4V. Comparing two N-channel MOSFETs, with a rated  
and f is the switching frequency. During MOSFET selec-  
S
V
of 40V and in the same package, but with 8× different  
DS(ON)  
DS  
R
tion,noticethatthemaximumdraincurrentistemperature  
dependant. Most data sheets include a table or graph of  
the maximum rated drain current vs temperature.  
and 4.5× different Q and Q :  
G GD  
M1: R  
GS  
= 2.3mΩ, Q = 45.5nF,  
G
DS(ON)  
Q
= 13.8nF, Q = 14.4nF, R = 1Ω  
GD G  
The maximum V should be selected to be higher than  
DS  
M2: R  
GS  
= 18mΩ, Q = 10nF,  
G
GD G  
the maximum input supply voltage (including transient)  
for both MOSFETs. The signals driving the gates of the  
switching MOSFETs have a maximum voltage of 5V with  
respect to the source. During start-up and recovery con-  
ditions, the gate drive signals may be as low as 3V. To  
ensure that the LT3741 recovers properly, the maximum  
threshold should be less than 2V. For a robust design,  
DS(ON)  
Q
= 4.5nF, Q = 3.1nF, R = 3.5Ω  
PowerlossforbothMOSFETsisshowninFigure4.Observe  
thatwhiletheR ofM1iseighttimeslower,thepower  
DS(ON)  
loss at low input voltages is equal, but four times higher  
at high input voltages than the power loss for M2.  
AnotherpowerlossrelatedtoswitchingMOSFETselection  
isthepowerlosttodrivingthegates.Thetotalgatecharge,  
select the maximum V greater than 7V.  
GS  
Power losses in the switching MOSFETs are related to  
Q ,mustbechargedanddischargedeachswitchingcycle.  
G
the on-resistance, R  
; the transitional loss related  
DS(ON)  
The power is lost to the internal LDO within the LT3741.  
to the gate resistance, R ; gate-to-drain capacitance, Q  
G
GD  
The power lost to the charging of the gates is:  
and gate-to-source capacitance, Q . Power loss to the  
on-resistance is an Ohmic loss, I R  
GS  
2
P
≈ (V – 5V) • (Q  
+ Q ) • f  
GLG GHG S  
LOSS_LDO  
IN  
, and usually  
DS(ON)  
dominates for input voltages less than ~15V. Power losses  
to the gate capacitance dominate for voltages greater than  
~12V. When operating at higher input voltages, efficiency  
can be optimized by selecting a high side MOSFET with  
where Q  
is the low side gate charge and Q  
is the  
GLG  
GHG  
high side gate charge.  
Whenever possible, utilize a switching MOSFET that  
minimizes the total gate charge to limit the internal power  
dissipation of the LT3741.  
3741f  
ꢀꢃ  
LT3741  
applicaTions inFormaTion  
7
6
5
2.5  
2.0  
1.5  
1.0  
0.5  
0
TOTAL  
4
3
TOTAL  
TRANSITIONAL  
TRANSITIONAL  
OHMIC  
2
1
OHMIC  
0
20  
INPUT VOLTAGE (V)  
30  
0
10  
10  
20  
40  
40  
0
30  
INPUT VOLTAGE (V)  
3741 F04a  
3741 F04b  
Figure 4a. Power Loss Example for M1  
Figure 4b. Power Loss Example for M2  
Figure 4  
Thecapacitorsalsoneedtobesurgeratedtothemaximum  
outputcurrent.ToachievethelowestpossibleESR,several  
low ESR capacitors should be used in parallel. Many ap-  
plications benefit from the use of high density POSCAP  
capacitors, which are easily destroyed when exposed to  
overvoltage conditions. To prevent this, select POSCAP  
capacitors that have a voltage rating that is at least 50%  
higher than the regulated voltage  
Table 3. Recommended Switching FETs  
V
V
I
OUT OUT  
IN  
(V) (V) (A)  
TOP FET  
BOTTOM FET MANUFACTURER  
8
4
4
5-10 RJK0365DPA RJK0330DPB Renesas  
www.renesas.com  
24  
5
RJK0368DPA RJK0332DPB  
24 2-4 20 RJK0365DPA RJK0346DPA  
12 2-4 10 FDMS8680 FDMS8672AS Fairchild  
www.fairchildsemi.com  
36  
24  
4
4
20  
40  
Si7884BDP  
SiR470DP Vishay  
www.vishay.com  
C
BOOT  
Capacitor Selection  
PSMN4R0- RJK0346DPA NXP/Philips  
30YL www.nxp.com  
The C  
capacitor must be sized less than 220nF and  
BOOT  
more than 50nF to ensure proper operation of the LT3741.  
Use 220nF for high current switching MOSFETs with high  
gate charge.  
Input Capacitor Selection  
The input capacitor should be sized at 4µF for every 1A  
of output current and placed very close to the high side  
MOSFET. A small 1µF ceramic capacitor should be placed  
V
Capacitor Selection  
CC_INT  
The bypass capacitor for the V  
pin should be larger  
CC_INT  
near the V and ground pins of the LT3741 for optimal  
IN  
than 5µF for stability and has no ESR requirement. It  
is recommended that the ESR be lower than 50mΩ to  
reduce noise within the LT3741. For driving MOSFETs  
with gate charges larger than 10nC, use 0.5µF/nC of total  
gate charge.  
noise immunity. The input capacitor should have a ripple  
currentratingequaltohalfofthemaximumoutputcurrent.  
ItisrecommendedthatseverallowESRceramiccapacitors  
be used as the input capacitance. Use only type X5R or  
X7R capacitors as they maintain their capacitance over a  
wide range of operating voltages and temperatures.  
Soft-Start  
Output Capacitor Selection  
Unlike conventional voltage regulators, the LT3741 utilizes  
thesoft-startfunctiontocontroltheregulatedinductorcur-  
rent.Thechargingcurrentis1Aandreducestheregulated  
current when the SS pin voltage is lower than CTRL1.  
TheoutputcapacitorsneedtohaveverylowESR(equivalent  
series resistance) to reduce output ripple. A minimum of  
20µF/A of load current should be used in most designs.  
3741f  
ꢀꢄ  
LT3741  
applicaTions inFormaTion  
Output Current Regulation  
V
REF  
To adjust the regulated load current, an analog voltage is  
applied to the CTRL1 pin. Figure 5 shows the regulated  
voltage across the sense resistor for control voltages up  
to 2V. Figure 6 shows the CTRL1 voltage created by a volt-  
LT3741  
R2  
R1  
CTRL1  
3741 F06  
age divider from V to ground. When sizing the resistor  
REF  
Figure ±. Analog Control of Inductor Current  
divider, please be aware that the V pin is current limited  
REF  
to 500µA. Above 1.5V, the control voltage has no effect on  
the regulated inductor current.  
V
OUT  
60  
50  
LT3741  
R2  
FB  
R1  
40  
30  
3741 F07  
Figure 7. Output Voltage Regulation and Overvoltage Protection  
Feedback Connections  
20  
10  
0
not leave this pin open under any condition. The RT pin  
is also current limited to 60µA. See Table 4 and Figure 8  
for resistor values and the corresponding switching  
frequencies.  
0
0.5  
1.0  
1.5  
2.0  
V
(V)  
CTRL  
3741 F05  
Table 4. Switching Frequency  
SWITCHING FREQUENCY (MHz)  
Figure 5. Sense Voltage vs CTRL Voltage  
R (kΩ)  
T
1
0.750  
0.5  
40.2  
53.6  
82.5  
143  
221  
453  
Voltage Regulation and Overvoltage Protection  
The LT3741 uses the FB pin to regulate the output voltage  
and to provide a high speed overvoltage lockout to avoid  
high voltage conditions. The regulated output voltage  
is programmed using a resistor divider from the output  
and ground (Figure 7). When the output voltage exceeds  
125% of the regulated voltage level (1.5V at the FB pin),  
the internal overvoltage flag is set, terminating switching.  
The regulated output voltage must be greater than 1.5V  
and is set by the equation:  
0.3  
0.2  
0.1  
1.2  
1.0  
0.8  
0.6  
R2  
R1  
VOUT =1.21V 1+  
0.4  
0.2  
0
Programming Switching Frequency  
The LT3741 has an operational switching frequency range  
between200kHzand1MHz.Thisfrequencyisprogrammed  
with an external resistor from the RT pin to ground. Do  
0
50 100 150 200 250 300 350 400 450 500  
(kΩ)  
R
T
3743 F08  
Figure 8. Frequency vs RT Resistance  
3741f  
ꢀꢅ  
LT3741  
applicaTions inFormaTion  
Thermal Shutdown  
V
IN  
V
IN  
The internal thermal shutdown within the LT3741 engages  
at 163°C and terminates switching and resets soft-start.  
When the part has cooled to 155°C, the internal reset is  
cleared and soft-start is allowed to charge.  
LT3741  
EN/UVLO  
R2  
R1  
3741 F09  
Switching Frequency Synchronization  
Figure 9. UVLO Configuration  
The nominal switching frequency of the LT3741 is deter-  
mined by the resistor from the RT pin to ground and may  
be set from 200kHz to 1MHz. The internal oscillator may  
alsobesynchronizedtoanexternalclockthroughtheSYNC  
pin. The external clock applied to the SYNC pin must have  
a logic low below 0.3V and a logic high higher than 1.25V.  
Theinputfrequencymustbe20%higherthanthefrequency  
determined by the resistor at the RT pin. The duty cycle of  
theinputsignalneedstobegreaterthan10%andlessthan  
90%. Input signals outside of these specified parameters  
will cause erratic switching behavior and subharmonic  
oscillations. When synchronizing to an external clock,  
pleasebeawarethattherewillbeaxeddelayfromtheinput  
clock edge to the edge of switch. The SYNC pin must be  
grounded if the synchronization to an external clock is not  
required.WhenSYNCisgrounded,theswitchingfrequency  
is determined by the resistor at the RT pin.  
The EN/UVLO pin has an absolute maximum voltage of  
6V. To accommodate the largest range of applications,  
there is an internal Zener diode that clamps this pin. For  
applications where the supply range is greater than 4:1,  
size R2 greater than 375k.  
Load Current Derating Using the CTRL2 Pin  
The LT3741 is designed specifically for driving high power  
loads. In high current applications, derating the maximum  
current based on operating temperature prevents damage  
to the load. In addition, many applications have thermal  
limitations that will require the regulated current to be re-  
ducedbasedonloadand/orboardtemperature.Toachieve  
this, theLT3741usestheCTRL2pintoreducetheeffective  
regulated current in the load. While CTRL1 programs the  
regulated current in the load, CTRL2 can be configured to  
reduce this regulated current based on the analog voltage  
at the CTRL2 pin. The load/board temperature derating is  
programmed using a resistor divider with a temperature  
dependant resistance (Figure 10). When the board/load  
temperature rises, the CTRL2 voltage will decrease. To  
reduce the regulated current, the CTRL2 voltage must be  
lower than voltage at the CTRL1 pin.  
Shutdown and UVLO  
TheLT3741hasaninternalUVLOthatterminatesswitching,  
resetsallsynchronouslogic, anddischargesthesoft-start  
capacitor for input voltages below 4.2V. The LT3741 also  
has a precision shutdown at 1.55V on the EN/UVLO pin.  
Partial shutdown occurs at 1.55V and full shutdown is  
guaranteed below 0.5V with <1µA I in the full shutdown  
Q
R
R
V
V
state. Below 1.55V, an internal current source provides  
5.5µA of pull-down current to allow for programmable  
UVLO hysteresis. The following equations determine the  
voltage divider resistors for programming the UVLO volt-  
age and hysteresis as configured in Figure 9.  
V
REF  
R
R
R
R
R
R
X
LT3741  
NTC  
NTC  
X
NTC  
NTC  
R2  
CTRL2  
3741 F10  
R1  
(OPTION A TO D)  
A
B
C
D
VHYST  
R2=  
Figure 10. Load Current Derating vs Temperature  
Using NTC Resistor  
5.5µA  
1.55V •R2  
1.55V  
R1=  
V
UVLO  
3741f  
ꢀꢆ  
LT3741  
applicaTions inFormaTion  
Average Current Mode Control Compensation  
the error amplifier will be the compensation resistor, R .  
C
Use the following equation as a good starting point for  
compensation component sizing:  
Theuseofaveragecurrentmodecontrolallowsforprecise  
regulation of the inductor and load currents. Figure 11  
shows the average current mode control loop used in the  
LT3741, where the regulation current is programmed by  
a current source and a 3k resistor.  
fS •L •1000V  
VO •RS  
0.002  
fS  
RC =  
[], CC =  
[F]  
where f is the switching frequency, L is the inductance  
S
V
• 11µA/V  
CTRL  
3k  
value, V is the output voltage and R is the sense resistor.  
O
S
For most applications, a 4.7nF compensation capacitor  
is adequate and provides excellent phase margin with  
optimized bandwidth. Please refer to Table 6 for recom-  
mended compensation values.  
L
R
S
MODULATOR  
LOAD  
+
g
m
ERROR AMP  
Board Layout Considerations  
3741 F11  
R
C
Average current mode control is relatively immune to the  
switching noise associated with other types of control  
schemes. Placing the sense resistor as close as possible  
C
C
+
Figure 11. LT3741 Average Current Mode Control Scheme  
to the SENSE and SENSE pins avoids noise issues. Due  
to sense resistor ESL (equivalent series inductance), a  
To design the compensation network, the maximum com-  
pensation resistor needs tobe calculated. Incurrent mode  
controllers, the ratio of the sensed inductor current ramp  
to the slope compensation ramp determines the stability  
of the current regulation loop above 50% duty cycle. In  
the same way, average current mode controllers require  
the slope of the error voltage to not exceed the PWM ramp  
slope during the switch off-time.  
+
10Ω resistor in series with the SENSE and SENSE pins  
with a 33nF capacitor placed between the SENSE pins is  
recommended. Utilizing a good ground plane underneath  
the switching components will minimize interplane noise  
coupling. To dissipate the heat from the switching com-  
ponents, use a large area for the switching mode while  
keeping in mind that this negatively affects the radiated  
noise.  
Since the closed-loop gain at the switching frequency  
produces the error signal slope, the output impedance of  
Table ±. Recommended Compensation Values  
V
(V)  
V (V)  
I (A)  
f
SW  
(MHz)  
0.5  
L (µH)  
1.5  
R (mΩ)  
R (kΩ)  
C (nF)  
IN  
O
L
S
C
C
12  
4
4
5
4
4
5
5
47.5  
47.5  
38.3  
52.3  
52.3  
4.7  
4.7  
8.2  
4.7  
4.7  
12  
12  
24  
24  
10  
20  
2
0.5  
1.5  
5
0.25  
0.5  
1.8  
2.5  
2.5  
2.5  
1.0  
20  
0.5  
1.0  
3741f  
ꢀꢇ  
LT3741  
Typical applicaTions  
20A Super Capacitor Charger with 5V Regulated Output  
V
IN  
V
IN  
EN/UVLO  
EN/UVLO  
10V TO 36V  
1µF  
100µF  
RT  
SYNC  
M1  
HG  
100nF  
82.5k  
L1  
1.0µH  
V
R1  
2.5mΩ  
OUT  
CBOOT  
SW  
20A MAXIMUM  
V
REF  
150µF  
s2  
2.2µF  
LT3741  
V
CC_INT  
10Ω  
10Ω  
22µF  
R
HOT  
LG  
M2  
CTRL1  
50k  
45.3k  
GND  
+
CTRL2  
SS  
SENSE  
33nF  
R
NTC  
38.3k  
12.1k  
SENSE  
470k  
10nF  
FB  
VC  
L1: IHLP4040DZER1R0M01  
M1: RJK0365DPA  
47.5k  
4.7nF  
3741 TA02  
M2: RJK0346DPA  
R1: VISHAY WSL25122L500FEA  
Efficiency and Power Loss  
vs Load Current  
VOUT vs IOUT  
100  
95  
90  
85  
80  
75  
70  
30  
25  
20  
15  
10  
5
6
5
4
3
2
EFFICIENCY  
POWER LOSS  
V
V
I
= 20V  
= 5V  
LIMIT  
1
0
IN  
OUT  
V
V
= 20V  
OUT  
IN  
= 20A  
= 5V  
0
0
5
10  
15  
20  
25  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
(A)  
LOAD CURRENT (A)  
I
OUT  
3741 TA02b  
3741 TA02c  
3741f  
ꢀꢈ  
LT3741  
Typical applicaTions  
20A LED Driver  
V
IN  
V
IN  
EN/UVLO  
EN/UVLO  
12V TO 36V  
1µF  
100µF  
RT  
SYNC  
M1  
HG  
150nF  
82.5k  
L1  
1.1µH  
V
OUT  
CBOOT  
6V, 20A MAXIMUM  
2.5mΩ  
V
SW  
REF  
680µF  
2.2µF  
LT3741  
D1  
V
CC_INT  
22µF  
CONTROL  
R
LG  
GND  
+
M2  
HOT  
CTRL1  
CTRL2  
INPUT  
45.3k  
10Ω  
10Ω  
SENSE  
33nF  
R
NTC  
470k  
SENSE  
47.5k  
SS  
FB  
10nF  
VCH  
12.1k  
82.5k  
4.7nF  
3741 TA03  
LED Current Waveforms 10A to  
20A Current Step  
1.5V  
CTRL1  
1V/DIV  
0.75V  
20A  
I
LED  
5A/DIV  
10A  
3741 TA03b  
1ms/DIV  
3741f  
ꢁ0  
LT3741  
Typical applicaTions  
10A Single-Cell Lithium-Ion Battery Charger  
V
24V  
IN  
V
EN/UVLO  
CTRL1  
IN  
1µF  
33µF  
µCONTROLLER  
HG  
220nF  
1%  
5mΩ  
V
RT  
SYNC  
OUT  
CBOOT  
SW  
2.2µH  
4.2V, 10A MAXIMUM  
82.5k  
LT3741  
+
3.6V  
V
V
CC_INT  
REF  
22µF  
2.2µF  
LG  
R
10Ω  
10Ω  
HOT  
GND  
+
45.3k  
CTRL2  
SS  
SENSE  
20nF  
R
470k  
NTC  
30.1k  
SENSE  
FB  
VC  
1nF  
12.1k  
82.5k  
8.2nF  
3741 TA04  
3741f  
ꢁꢀ  
LT3741  
package DescripTion  
UF Package  
20-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1710 Rev A)  
0.70 ±0.05  
4.50 ± 0.05  
3.10 ± 0.05  
2.45 ± 0.05  
2.00 REF  
2.45 ± 0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
PIN 1 NOTCH  
R = 0.20 TYP  
OR 0.35 × 45°  
CHAMFER  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
R = 0.05  
TYP  
R = 0.115  
0.75 ± 0.05  
TYP  
4.00 ± 0.10  
19 20  
0.40 ± 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.45 ± 0.10  
2.00 REF  
4.00 ± 0.10  
2.45 ± 0.10  
(UF20) QFN 01-07 REV A  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING IS PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220  
VARIATION (WGGD-1)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3741f  
ꢁꢁ  
LT3741  
package DescripTion  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation CB  
6.40 – 6.60*  
(.252 – .260)  
3.86  
(.152)  
3.86  
(.152)  
20 1918 17 16 15 14 1312 11  
6.60 ±0.10  
2.74  
(.108)  
4.50 ±0.10  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE20 (CB) TSSOP 0204  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3741f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢁꢂ  
LT3741  
Typical applicaTion  
20V Regulated Output with 5A Current Limit  
V
IN  
V
IN  
EN/UVLO  
EN/UVLO  
36V  
1µF  
22µF  
RT  
SYNC  
M1  
HG  
100nF  
82.5k  
L1  
8.2µH  
V
R1  
10mΩ  
OUT  
CBOOT  
SW  
5A MAXIMUM  
V
REF  
100µF  
2.2µF  
LT3741  
V
CC_INT  
10Ω  
10Ω  
22µF  
R
LG  
M2  
HOT  
CTRL1  
45.3k  
GND  
+
CTRL2  
SS  
SENSE  
10nF  
R
NTC  
187k  
12.1k  
SENSE  
470k  
10nF  
FB  
VC  
30.1k  
3.9nF  
3741 TA05  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
Synchronous Step-Down LED Driver  
COMMENTS  
92% Efficiency, I  
LT3743  
to 20A, V : 5.5V to 36V, I = 2mA, I < 1µA, 4mm x 5mm  
IN Q SD  
OUT  
QFN-28, TSSOP-28E  
3741f  
LT 0310 • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢁꢃ  
LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3741EUF-TRPBF

High Power, Constant Current, Constant Voltage, Step-Down Controller
Linear

LT3741IFE-PBF

High Power, Constant Current, Constant Voltage, Step-Down Controller
Linear

LT3741IFE-TRPBF

High Power, Constant Current, Constant Voltage, Step-Down Controller
Linear

LT3741IUF-PBF

High Power, Constant Current, Constant Voltage, Step-Down Controller
Linear

LT3741IUF-TRPBF

High Power, Constant Current, Constant Voltage, Step-Down Controller
Linear

LT3741_15

High Power, Constant Current, Constant Voltage, Step-Down Controller
Linear

LT3742

Dual, 2-Phase Step-Down Switching Controller
Linear

LT3742EUF#PBF

LT3742 - Dual, 2-Phase Step-Down Switching Controller; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3742EUF#TRPBF

LT3742 - Dual, 2-Phase Step-Down Switching Controller; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3742EUF-PBF

Dual, 2-Phase Step-Down Switching Controller
Linear

LT3742EUF-TRPBF

Dual, 2-Phase Step-Down Switching Controller
Linear

LT3742_1

Dual, 2-Phase Step-Down Switching Controller Programmable Soft-Start
Linear