LT3751IUFD-PBF [Linear]

Capacitor Charger Controller with Regulation; 电容充电器控制器调节
LT3751IUFD-PBF
型号: LT3751IUFD-PBF
厂家: Linear    Linear
描述:

Capacitor Charger Controller with Regulation
电容充电器控制器调节

控制器
文件: 总28页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3751  
Capacitor Charger  
Controller with Regulation  
FEATURES  
DESCRIPTION  
The LT®3751 is a high input voltage capable flyback con-  
troller designed to rapidly charge a large capacitor to a  
user-adjustabletargetvoltagesetbythetransformerturns  
ratioandthreeexternalresistors. Anoptionalfeedbackpin  
can be used to provide a low noise high-voltage regulated  
output.  
n
Charges Any Size Capacitor  
n
Low Noise Output in Voltage Regulation Mode  
n
Stable Operation Under a No-Load Condition  
n
Integrated 2A MOSFET Gate Driver with Rail-to-Rail  
Operation for V ≤ 8V  
CC  
n
Selectable 5.6V or 10.5V Internal Gate Drive  
Voltage Clamp  
The LT3751 has an integrated rail-to-rail MOSFET gate  
driver that allows for efficient operation down to 4.75V.  
A low 106mV differential current sense threshold voltage  
accurately limits the peak switch current. Added protec-  
tion is achieved with user-selectable overvoltage and  
n
User-Selectable Over/Undervoltage Detect  
n
Easily Adjustable Output Voltage  
n
Primary or Secondary Side Output Voltage Sense  
n
Wide Input V Voltage Range (5V to 24V)  
CC  
n
Available in a 20-Pin QFN 4mm × 5mm  
undervoltage lockouts for both V and V  
. A typical  
CC  
TRANS  
application can charge a 1000μF capacitor to 500V in less  
than one second.  
APPLICATIONS  
The CHARGE pin is used to initiate a new charge cycle and  
providesON/OFFcontrol.TheDONEpinindicateswhenthe  
capacitor has reached its programmed value and the part  
has stopped charging. The FAULT pin indicates when the  
LT3751 has shut down due to either V or V  
exceeding the user-programmed supply tolerances.  
n
High Voltage Regulated Supply  
n
High Voltage Capacitor Charger  
n
Professional Photoflash Systems  
n
Emergency Strobe  
voltage  
n
CC  
TRANS  
Security/Inventory Control Systems  
n
Detonators  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. Protected by U.S. Patents including  
6518733 and 6636021.  
TYPICAL APPLICATION  
Regulation Mode Load Regulation  
and Efficiency vs Load Current  
DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
T1  
1:10  
D1  
V
500V  
TRANS  
24V  
500  
498  
496  
494  
492  
490  
90  
84  
78  
72  
66  
60  
0 TO 150mA  
330μF  
10μF  
×2  
40.2k  
TRANS  
+
s2  
100μF  
RV  
CHARGE  
CLAMP  
18.2k  
0.47μF  
OFF ON  
RDCM  
40.2k  
RV  
OUT  
V
CC  
24V  
V
CC  
LT3751  
10μF  
HVGATE  
LVGATE  
CSP  
TO  
DONE  
FAULT  
V
CC  
MICRO  
374k  
475k  
374k  
475k  
UVLO1  
OVLO1  
UVLO2  
6mΩ  
V
TRANS  
CSN  
FB  
715k  
OUTPUT VOLTAGE  
EFFICIENCY  
V
CC  
OVLO2  
GND  
1.74k  
10nF  
RBG  
0
50  
100  
150  
732Ω  
LOAD CURRENT (mA)  
3751 TA01b  
3751 TA01a  
3751f  
1
LT3751  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , CHARGE, CLAMP ..............................................24V  
CC  
DONE, FAULT ............................................................24V  
LVGATE (Note 8) .......................................................24V  
20 19 18 17  
V
LVGATE..............................................................8V  
CC  
OVLO1  
UVLO2  
OVLO2  
FAULT  
1
2
3
4
5
6
16 RV  
15 NC  
OUT  
HVGATE ................................................................Note 9  
RBG, CSP, CSN............................................................2V  
FB ...............................................................................5V  
Current into DONE Pin ........................................... 1mA  
Current into FAULT Pin........................................... 1mA  
14 RBG  
21  
13 HVGATE  
12 LVGATE  
DONE  
CHARGE  
11 V  
CC  
7
8
9 10  
Current into RV  
Current into RV  
Pin ....................................... 1mA  
TRANS  
Pin......................................... 10mA  
OUT  
Current into RDCM Pin ........................................ 10mA  
Current into UVLO1 Pin.......................................... 1mA  
Current into UVLO2 Pin.......................................... 1mA  
Current into OVLO1 Pin.......................................... 1mA  
Current into OVLO2 Pin.......................................... 1mA  
Maximum Junction Temperature........................... 125°C  
Operating Temperature Range (Note 2)..–40°C to 125°C  
Storage Temperature Range...................–65°C to 125°C  
UFD PACKAGE  
20-PIN (4mm × 5mm) PLASTIC QFN  
= 125°C, θ = 43°C/W  
T
JMAX  
JA  
EXPOSED PAD (PIN 21) IS GND, MUST BE TIED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3751EUFD#PBF  
LT3751IUFD#PBF  
LEAD BASED FINISH  
LT3751EUFD  
TAPE AND REEL  
LT3751EUFD#TRPBF  
LT3751IUFD#TRPBF  
TAPE AND REEL  
LT3751EUFD#TR  
LT3751IUFD#TR  
PART MARKING*  
3751  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
20-Lead (4mm × 5mm) Plastic QFN  
20-Lead (4mm × 5mm) Plastic QFN  
PACKAGE DESCRIPTION  
3751  
PART MARKING*  
3751  
20-Lead (4mm × 5mm) Plastic QFN  
20-Lead (4mm × 5mm) Plastic QFN  
LT3751IUFD  
3751  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3751f  
2
LT3751  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VCC = CHARGE = 5V, CLAMP = 0V, unless otherwise noted. Individual 25kΩ  
resistors tied from 5V VTRANS supply to RVTRANS, RVOUT, RDCM, unless otherwise noted. (Note 2)  
PARAMETER  
Voltage  
CONDITIONS  
MIN  
4.75  
4.75  
TYP  
MAX  
24  
UNITS  
l
l
V
V
V
CC  
RV  
TRANS  
Voltage  
(Note 3)  
65  
V
CC  
Quiescent Current  
Not Switching, CHARGE = 5V  
Not Switching, CHARGE = 0.3V  
5.5  
0
8
1
mA  
μA  
RV  
, R  
Quiescent Current  
(Note 4)  
TRANS DCM  
Not Switching, CHARGE = 5V  
Not Switching, CHARGE = 0.3V  
l
l
35  
42  
40  
0
45  
1
μA  
μA  
RV  
Quiescent Current  
(Note 4)  
Not Switching, CHARGE = 5V  
Not Switching, CHARGE = 0.3V  
OUT  
47  
0
52  
1
μA  
μA  
UVLO1, UVLO2, OVLO1, OVLO2 Clamp Voltage  
RV , RV , R Clamp Voltage  
Measured at 1mA into Pin, CHARGE = 0V  
Measured at 1mA into Pin, CHARGE = 0V  
55  
60  
V
V
TRANS  
OUT DCM  
CHARGE Pin Current  
CHARGE = 24V  
CHARGE = 5V  
CHARGE = 0V  
425  
60  
μA  
μA  
μA  
1
l
l
CHARGE Minimum Enable Voltage  
CHARGE Maximum Disable Voltage  
Minimum CHARGE Pin Low Time  
One-Shot Clock Period  
1.5  
V
V
I
≤ 1μA  
0.3  
VCC  
20  
38  
ꢀs  
ꢀs  
V
l
l
32  
44  
1.005  
40  
V
OUT  
V
OUT  
Comparator Trip Voltage  
Comparator Overdrive  
Measured RBG at Pin  
2μs Pulse Width,  
RV  
R
0.955  
0.98  
20  
mV  
, RV  
TRANS  
= 25kꢁ  
OUT  
= 0.83kꢁ  
BG  
DCM Comparator Trip Voltage  
Measured as V  
– V , R = 25kΩ (Note 5)  
TRANS DCM  
350  
600  
900  
mV  
DRAIN  
Current Limit Comparator Trip Voltage  
FB Pin = 0V  
FB Pin = 1.3V  
l
l
100  
7
106  
11  
112  
15  
mV  
mV  
FB Pin Bias Current  
Current Sourced from FB Pin, Measured at FB Pin Voltage  
(Note 6)  
64  
1.22  
1.16  
55  
1.34  
60  
5
300  
1.25  
1.2  
nA  
V
l
FB Pin Voltage  
1.19  
1.12  
FB Pin Charge Mode Threshold  
FB Pin Charge Mode Hysteresis  
FB Pin Overvoltage Mode Threshold  
FB Pin Overvoltage Hysteresis  
DONE Output Signal High  
DONE Output Signal Low  
DONE Leakage Current  
FAULT Output Signal High  
FAULT Output Signal Low  
FAULT Leakage Current  
UVLO1 Pin Current  
V
mV  
V
1.29  
1.38  
mV  
V
100kΩ to 5V  
100kΩ to 5V  
40  
5
200  
200  
mV  
nA  
V
DONE = 5V  
100kΩ to 5V  
5
100kΩ to 5V  
40  
5
200  
200  
mV  
nA  
ꢀA  
ꢀA  
ꢀA  
ꢀA  
FAULT = 5V  
l
l
l
l
UVLO1 Pin Voltage = 1.24V  
UVLO2 Pin Voltage = 1.24V  
OVLO1 Pin Voltage = 1.24V  
OVLO2 Pin Voltage = 1.24V  
48.5  
48.5  
48.5  
48.5  
50  
50  
50  
50  
51.5  
51.5  
51.5  
51.5  
UVLO2 Pin Current  
OVLO1 Pin Current  
OVLO2 Pin Current  
3751f  
3
LT3751  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VCC = CHARGE = 5V, CLAMP = 0V, unless otherwise noted. Individual 25kΩ  
resistors tied from 5V VTRANS supply to RVTRANS, RVOUT, RDCM, unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.225  
1.225  
1.225  
1.225  
0.7  
MAX  
1.255  
1.255  
1.255  
1.255  
UNITS  
l
l
l
l
UVLO1 Threshold  
UVLO2 Threshold  
OVLO1 Threshold  
OVLO2 Threshold  
Gate Minimum High Time  
Gate Peak Pull-Up Current  
Measured from Pin to GND  
Measured from Pin to GND  
Measured from Pin to GND  
Measured from Pin to GND  
1.195  
1.195  
1.195  
1.195  
V
V
V
V
ꢀs  
V
CC  
V
CC  
= 5V, LVGATE Active  
= 12V, LVGATE Inactive  
2.0  
1.5  
A
A
Gate Peak Pull-Down Current  
Gate Rise Time  
V
V
= 5V, LVGATE Active  
1.2  
1.5  
A
A
CC  
CC  
= 12V, LVGATE Inactive  
10% 90%, C  
= 3.3nF (Note 8)  
GATE  
40  
55  
ns  
ns  
V
V
= 5V, LVGATE Active  
CC  
CC  
= 12V, LVGATE Inactive  
Gate Fall Time  
90% 10%, C  
= 3.3nF (Note 8)  
GATE  
30  
30  
ns  
ns  
V
V
= 5V, LVGATE Active  
CC  
= 12V, LVGATE Inactive  
CC  
Gate High Voltage  
(Note 8):  
V
V
V
V
= 5V, LVGATE Active  
4.98  
10  
5
5
V
V
V
V
CC  
CC  
CC  
CC  
= 12V, LVGATE Inactive  
= 12V, LVGATE Inactive, CLAMP Pin = 5V  
= 24V, LVGATE Inactive  
10.5  
5.6  
11.5  
6.5  
11.5  
10  
10.5  
Gate Turn-Off Propagation Delay  
C
= 3.3nF  
180  
ns  
GATE  
25mV Overdrive Applied to CSP Pin  
Gate Voltage Overshoot  
CLAMP Pin Threshold  
500  
1.6  
mV  
V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3751E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design  
characterization and correlation with statistical process controls. The  
LT3751I is guaranteed over the full –40°C to 125°C operating junction  
temperature range.  
Note 5: Refer to Block Diagram for V  
and V  
definitions.  
DRAIN  
TRANS  
Note 6: Low noise regulation of the output voltage requires a resistive  
voltage divider from output voltage to FB pin. FB pin should not be  
grounded in this configuration. Refer to the Typical Application diagram for  
proper FB pin configuration.  
Note 7: The feedback pin has built-in hysteresis that defines the boundary  
between charge-only mode and low noise regulation mode.  
Note 8: LVGATE should be used in parallel with HVGATE when V is less  
than or equal to 8V (LVGATE active). When not in use, LVGATE should be  
CC  
tied to V (LVGATE inactive).  
CC  
Note 3: A 60V internal clamp is connected to RV  
, RDCM, RV  
,
TRANS  
OUT  
Note 9: Do not apply a positive or negative voltage or current source to  
HVGATE, otherwise permanent damage may occur.  
UVLO1, UVLO2, OVLO1 and OVLO2. Resistors should be used such that  
the pin currents do not exceed the Absolute Maximum Ratings.  
Note 4: Currents will increase as pin voltages are taken higher than the  
internal clamp voltage.  
3751f  
4
LT3751  
TYPICAL PERFORMANCE CHARACTERISTICS  
VTRANS Supply Current  
CHARGE Pin Current  
vs Pin Voltage  
VCC Pin Current vs Pin Voltage  
vs Supply Voltage  
7
6
5
4
3
2
1
0
150  
145  
140  
135  
130  
125  
120  
115  
110  
450  
400  
350  
300  
250  
200  
150  
100  
50  
RV  
V
, RV , R  
= 25k  
TRANS  
CC  
OUT DCM  
, CHARGE = 5V  
I
= I  
+ I  
+ I  
VTRANS RVTRANS RVOUT RDCM  
–40°C  
25°C  
–40°C  
25°C  
125°C  
–40°C  
25°C  
125°C  
125°C  
0
0
4
8
12  
16  
20  
24  
0
10  
20  
30  
40  
50  
60  
0
4
8
12  
16  
20  
24  
PIN VOLTAGE (V)  
PIN VOLTAGE (V)  
PIN VOLTAGE (V)  
3751 G01  
3751 G02  
3751 G03  
CHARGE Pin Minimum Enable  
Voltage vs Temperature  
CHARGE Pin Maximum Disable  
Voltage vs Temperature  
DONE, FAULT Pin Voltage Low  
vs Temperature  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
400  
350  
300  
250  
200  
150  
100  
50  
V
CC  
V
CC  
V
CC  
= 5V  
= 12V  
= 24V  
1mA SINK  
100μA SINK  
10μA SINK  
V
CC  
V
CC  
V
CC  
= 5V  
= 12V  
= 24V  
0
–40 –20  
0
20 40 60 80 100 120  
–40 –20  
0
20 40 60 80 100 120  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3751 G04  
3751 G05  
3751 G06  
VOUT Comparator Trip Voltage  
vs Temperature  
UVLO1 Trip Voltage  
vs Temperature  
UVLO1 Trip Current  
vs Temperature  
30.8  
30.4  
30.0  
29.6  
29.2  
28.8  
28.4  
1.236  
1.234  
1.232  
1.230  
1.228  
1.226  
1.224  
50.5  
50.4  
50.3  
50.2  
50.1  
50.0  
49.9  
49.8  
49.7  
RV  
, RV  
TRANS  
= 25.5k (R  
= 1%)  
TOL  
OUT  
V
CC  
V
CC  
V
CC  
= 5V  
= 12V  
= 24V  
V
CC  
V
CC  
V
CC  
= 5V  
= 12V  
= 24V  
V
V
V
= 5V  
= 12V  
= 24V  
TRANS  
TRANS  
TRANS  
V
= 48V  
= 72V  
TRANS  
TRANS  
V
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
–40 –20  
0
20 40 60 80 100 120  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3751 G07  
3751 G08  
3751 G09  
3751f  
5
LT3751  
TYPICAL PERFORMANCE CHARACTERISTICS  
Current Comparator Minimum  
Trip Voltage (Regulation Mode)  
vs Temperature  
Current Comparator Trip Voltage  
(Charge Mode) vs Temperature  
FB Pin Regulation Mode  
Threshold vs Temperature  
1.168  
1.164  
1.160  
1.156  
1.152  
109.0  
108.5  
108.0  
107.5  
107.0  
13.0  
12.8  
12.6  
12.4  
12.2  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
V
= V  
– V  
V
= V  
– V  
CSP CSN  
TH  
CSP  
CSN  
TH  
FB = 1.3V  
V
V
V
= 5V  
= 12V  
= 24V  
V
CC  
V
CC  
V
CC  
= 5V  
= 12V  
= 24V  
V
CC  
V
CC  
V
CC  
= 5V  
= 12V  
= 24V  
CC  
CC  
CC  
–40 –20  
0
20 40 60 80 100 120  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3751 G12  
3751 G10  
3751 G11  
FB Pin Regulation Mode  
Hysteresis vs Temperature  
FB Pin Overvoltage Mode  
Threshold Voltage vs Temperature  
FB Pin Overvoltage Mode  
Hysteresis vs Temperature  
60  
58  
56  
54  
52  
50  
1.356  
1.354  
1.352  
1.350  
1.348  
1.346  
1.344  
61.0  
60.6  
60.2  
59.8  
59.4  
59.0  
V
V
V
= 5V  
= 12V  
= 24V  
V
CC  
V
CC  
V
CC  
= 5V  
= 12V  
= 24V  
CC  
CC  
CC  
V
V
V
= 5V  
= 12V  
= 24V  
CC  
CC  
CC  
–40 –20  
0
20 40 60 80 100 120  
–40 –20  
0
20 40 60 80 100 120  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3751 G13  
3751 G14  
3751 G15  
HVGATE Pin Clamp Voltage  
vs Temperature  
CLAMP Pin Threshold  
vs Temperature  
1.9  
11.0  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
V
CC  
V
CC  
= 12V  
= 24V  
V
= 24V  
CC  
CLAMP = 0V  
1.8  
1.7  
1.6  
1.5  
1.4  
–40  
0
40  
80  
120  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3751 G16  
3751 G17  
3751f  
6
LT3751  
TYPICAL PERFORMANCE CHARACTERISTICS  
DCM Trip Voltage (VDRAIN  
VTRANS) vs Temperature (RVTRANS  
= RDCM = 25kΩ)  
HVGATE Pin Clamp Voltage  
vs Temperature  
0.64  
0.62  
0.60  
0.58  
0.56  
0.54  
5.70  
5.65  
5.60  
5.55  
5.50  
V
V
V
V
= 5V  
V
= 12V  
TRANS  
TRANS  
TRANS  
TRANS  
CC  
= 12V  
= 24V  
= 48V  
CLAMP = 12V  
–40  
0
40  
80  
120  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3751 G19  
3751 G18  
PIN FUNCTIONS  
OVLO1 (Pin 1): V  
Overvoltage Lockout Pin. Senses  
FAULT (Pin 4): Open Collector Indication Pin. When either  
or V exceeds the user-selected voltage range, a  
TRANS  
when V  
rises above:  
V
TRANS  
TRANS  
CC  
transistor turns on. The part will stop switching. This pin  
needs a proper pull-up resistor or current source.  
VOVLO1 =1.225+50μA •ROVLO1  
DONE (Pin 5): Open Collector Indication Pin. When the  
target output voltage (charge mode) is reached, a transis-  
tor turns on. This pin needs a proper pull-up resistor or  
current source.  
and trips the FAULT latch low, disabling switching. After  
V
drops below V  
, toggling the CHARGE pin  
TRANS  
OVLO1  
reactivates switching.  
UVLO2 (Pin 2): V Undervoltage Lockout Pin. Senses  
CHARGE (Pin 6): Charge Pin. Initiates a new charge cycle  
(charge mode) or enables the part (regulation mode)  
when driven higher than 1.5V. Bring this pin below 0.3V  
to discontinue charging and put the part into shutdown.  
Turn-on ramp rates should be between 10ns to 10ms.  
CC  
when V drops below:  
CC  
VUVLO2 =1.225+50μA •RUVLO2  
CHARGE pin should not be directly ramped with V or  
and trips the FAULT latch low, disabling switching. After  
CC  
LT3751 may not properly initiate.  
V
rises above V  
, toggling the CHARGE pin reac-  
UVLO2  
CC  
tivates switching.  
CLAMP (Pin 7): Internal Clamp Voltage Selection Pin.  
Tie this pin to V to activate the internal 5.6V gate driver  
OVLO2 (Pin 3): V Overvoltage Lockout Pin. Senses  
CC  
CC  
clamp. Tie this pin to ground to activate the internal 10.5V  
when V rises above:  
CC  
gate driver clamp.  
VOVLO2 =1.225+50μA •ROVLO2  
FB(Pin8):FeedbackRegulationPin.Usethispintoachieve  
low noise voltage regulation. FB is internally regulated  
to 1.22V when a resistive divider is tied from this pin to  
the output. FB pin should not float. Tie FB pin to either a  
and trips the FAULT latch low, disabling switching. After  
V
drops below V  
, toggling the CHARGE pin reac-  
CC  
OVLO2  
tivates switching.  
resistor divider or ground.  
3751f  
7
LT3751  
PIN FUNCTIONS  
CSN (Pin 9): Negative Current Sense Pin. Senses external  
NMOS source current. Connect to local R  
RDCM (Pin 17): Discontinuous Mode Sense Pin. Senses  
when the external NMOS drain is equal to 20μA • R  
ground  
+
DCM  
SENSE  
connection for proper Kelvin sensing. The current limit  
is set by 106mV/R  
V
and initiates the next charge cycle. Place a resis-  
TRANS  
.
tor equal to 0.45 times the resistor on the RV  
between this pin and V  
pin  
SENSE  
TRANS  
.
DRAIN  
CSP (Pin 10): Positive Current Sense Pin. Senses NMOS  
source current. Connect the NMOS source terminal and  
the current sense resistor to this pin. The current limit is  
RV  
(Pin19):TransformerSupplySensePin.Connect  
TRANS  
a resistor between the RV  
pin and the V  
supply.  
TRANS  
TRANS  
fixed at 106mV/R  
in charge mode. The current limit  
RefertoFigure11forpropersizingoftheRV  
The minimum operation voltage for V  
resistor.  
SENSE  
TRANS  
can be reduced to a minimum 11mV/R  
mode.  
in regulation  
is 4.75V.  
SENSE  
TRANS  
UVLO1(Pin20):V  
UndervoltageLockoutPin.Senses  
TRANS  
drops below:  
V
(Pin 11): Input Supply Pin. Must be locally bypassed  
when V  
CC  
TRANS  
with high-grade (X5R or better) ceramic capacitor. The  
minimum operating voltage for V is 4.75V.  
VUVLO1 =1.225+50μA •RUVLO1  
CC  
LVGATE (Pin 12): Low Voltage Gate Pin. Connect the  
and trips the FAULT latch low, disabling switching. After  
NMOS gate terminal to this pin when operating V below  
CC  
V
rises above V  
, toggling the CHARGE pin  
8V. The internal gate driver will drive the voltage to the  
TRANS  
UVLO1  
reactivates switching.  
V
rail. When operating V higher than 8V, tie this pin  
CC  
CC  
directly to V .  
CC  
GND (Pin 21): Ground. Tie directly to local ground plane.  
HVGATE (Pin 13): High Voltage Gate Pin. Connect NMOS  
gate terminal to this pin for all V operating voltages.  
CC  
Internal gate driver will drive the voltage to within V  
CC  
– 2V during each switch cycle.  
RBG (Pin 14): Bias Generation Pin. Generates a bias  
current set by 0.98V/R . Select R to achieve desired  
BG  
BG  
TRANS  
resistance for R  
, RV , and RV  
.
DCM  
OUT  
RV  
(Pin 16): Output Voltage Sense Pin. Develops a  
OUT  
currentproportionaltooutputcapacitorvoltage.Connecta  
resistor between this pin and drain of NMOS such that:  
RVOUT  
RBG  
VOUT = 0.98 N•  
VDIODE  
when RV  
is set equal to RV , otherwise:  
TRANS  
OUT  
RVOUT  
RBG  
RVOUT  
RV  
TRANS  
VOUT =N0.98 •  
+ VTRANS  
1  
VDIODE  
where V  
= forward voltage drop of diode D1 (refer  
DIODE  
to Block Diagram).  
3751f  
8
LT3751  
BLOCK DIAGRAM  
T1  
1:10  
D1  
V
V
OUT  
450V  
TRANS  
12V  
+
47μF  
×2  
RV  
TRANS  
40.2k  
10μF  
+
C
OUT  
RV  
TRANS  
V
OUT  
COMPARATOR  
+
CHARGE  
0.98V  
60V  
REFERENCE  
OFF ON  
OTLO  
START-UP  
RV  
OUT  
RV  
OUT  
ONE SHOT  
40.2k  
V
CC  
V
CC  
12V  
MASTER  
LATCH  
DIFF. AMP  
COMPARATOR  
WITH  
INTERNAL  
60V CLAMPS  
60V  
100k  
DONE  
DCM  
COMPARATOR  
10μF  
R
DCM  
S
R
Q
RDCM  
60V  
+
18.2k  
Q
ENABLE  
GATE  
DRIVER  
DCM  
ONE SHOT  
100k  
1.22V  
REFERENCE  
FAULT  
V
DRAIN  
S
Q
R
Q
FAULT  
LATCH  
V
CC  
26kHz ONE SHOT  
CLOCK  
HVGATE  
GATE DRIVE  
CIRCUITRY  
M1  
S
R
Q
INTERNAL  
UVLO  
Q
3.8V  
+
SWITCH  
LATCH  
CLAMP  
LVGATE  
V
CC  
V
CC  
R
UVLO1  
191k  
UVLO1  
OVLO1  
UVLO2  
OVLO2  
V
V
RESET  
TRANS  
+
CC  
AUXILIARY  
CLK  
55V  
COUNT  
+
COUNTER  
162mV  
R
OVLO1  
240k  
– +–  
+
26kHz  
ONE SHOT  
CLOCK  
55V  
MAIN  
CSP  
CSN  
+
R
SENSE  
12mꢁ  
106mV  
UVLO/OVLO  
R
UVLO2  
191k  
COMPARATORS  
– +–  
V
+
CC  
TIMING AND PEAK  
CURRENT CONTROL  
55V  
55V  
11mV TO 106mV  
MODULATION  
TO CHARGE  
1-SHOT  
26kHz  
ONE SHOT  
CLOCK  
ERROR  
AMP  
1.22V  
REFERENCE  
+
R
OVLO2  
240k  
A1  
+
R
FBH  
3.65M  
FB  
DIE  
TEMP  
TO V  
OUT  
COMPARATOR  
160ºC  
MODE  
CONTROL  
1.22V  
REFERENCE  
R
FBL  
10k  
10nF  
GND  
RBG  
3751 BD  
R
BG  
1.33k  
3751f  
9
LT3751  
OPERATION  
TheLT3751canbeusedaseitherafast,efficienthighvoltage  
capacitor charger controller or as a high voltage, low noise  
voltage regulator. The FB pin voltage determines one of the  
three primary modes: charge mode, low noise regulation,  
or overvoltage Burst Mode® Operation (see Figure 1).  
I
LPRI  
V
– V  
PRI  
TRANS  
DS(ON)  
I
L
PK  
FB PIN  
VOLTAGE  
I
LSEC  
OVERVOLTAGE  
1.34V  
V
+ V  
L
OUT  
DIODE  
SEC  
I
PK  
N
REGULATION  
1.16V  
CHARGE  
MODE  
V
PRI  
V
– V  
TRANS  
DS(ON)  
0.0V  
3751 F01  
Figure 1. FB Pin Modes  
CHARGE MODE  
–(V  
+ V  
N
)
DIODE  
OUT  
When the FB pin voltage is below 1.16V, the LT3751 acts  
as a rapid capacitor charger. The charging operation has  
four basic states for charge mode steady-state operation  
(see Figure 2).  
V
SEC  
V
OUT  
+ V  
DIODE  
1. Start-Up  
The first switching cycle is initiated approximately 2μs  
after the CHARGE pin is raised high. During this phase,  
the start-up one-shot enables the master latch turning  
on the external NMOS and beginning the first switching  
cycle. After start-up, the master latch will remain in the  
switching-enable state until the target output voltage is  
reached or a fault condition occurs.  
–N (V  
– V  
)
DS(ON)  
TRANS  
V
+ V  
N
OUT  
DIODE  
V
+
TRANS  
V
DRAIN  
V
TRANS  
TheLT3751utilizescircuitrytoprotectagainsttransformer  
primarycurrententeringarunawayconditionandremains  
in start-up mode until the DCM comparator has enough  
headroom. Refer to the Start-Up Protection section for  
more detail.  
V
V
DS(ON)  
DS(ON)  
1.  
3751 F02  
2.  
3.  
PRIMARY-SIDE  
CHARGING  
SECONDARY  
ENERGY TRANSFER  
AND OUTPUT  
DISCONTINUOUS  
MODE  
DETECTION  
DETECTION  
2. Primary Side Charging  
Figure 2. Idealized Charging Waveforms  
When the NMOS switch latch is set, and depending on the  
use of LVGATE, the gate driver rapidly charges the gate  
pin to V – 2V in high voltage applications or directly to  
CC  
V
in low voltage applications (refer to the Application  
CC  
Burst Mode is a registered trademark of Linear Technology Corporation.  
3751f  
10  
LT3751  
OPERATION  
Information section for proper use of LVGATE). With the  
gate driver output high, the external NMOS turns on,  
comparator sets the NMOS switch latch and a new charge  
cycle begins. Steps 2-4 continue until the target output  
voltage is reached.  
forcing V  
– V  
across the primary winding.  
TRANS  
DS(ON)  
Consequently, current in the primary coil rises linearly at  
a rate (V – V )/L . The input voltage is mir-  
Start-Up Protection  
TRANS  
DS(ON) PRI  
rored on the secondary winding N • (V  
– V  
)
TRANS  
DS(ON)  
TheLT3751atstart-up,whentheoutputvoltageisverylow  
(or shorted), usually does not have enough V  
voltage to trip the DCM comparator. The part in start-up  
modeusestheinternal26kHzclockandanauxiliarycurrent  
comparator. Figure 3 shows a simplified block diagram of  
the start-up circuitry.  
which reverse-biases the diode and prevents current flow  
in the secondary winding. Thus, energy is stored in the  
core of the transformer.  
node  
DRAIN  
3. Secondary Energy Transfer  
Whencurrentlimitisreached,thecurrentlimitcomparator  
resets the NMOS switch latch and the device enters the  
third phase of operation, secondary energy transfer. The  
energy stored in the transformer core forward-biases the  
diode and current flows into the output capacitor. During  
this time, the output voltage (neglecting the diode drop)  
is reflected back to the primary coil. If the target output  
FROM AUXILIARY  
INCREMENT  
CURRENT  
COMPARATOR  
COUNTER 1  
FROM DCM  
RESET  
COMPARATOR  
FROM CLK  
SWITCH  
LATCH  
+
INCREMENT  
COUNTER 2  
RESET  
FROM GATE  
DRIVER ON  
voltage is reached, the V  
comparator resets the master  
OUT  
3751 F03  
latch and the DONE pin goes low. Otherwise, the device  
enters the next phase of operation.  
Figure 3. Start-Up Protection Circuitry  
Toggling the CHARGE pin always generates a start-up  
one-shottoturnontheexternalswitch,initiatingthecharg-  
ing process. After the start-up one-shot, the LT3751 waits  
for either the DCM comparator to generate a one-shot or  
the output of the start-up protection circuitry going high,  
4. Discontinuous Mode Detection  
During secondary energy transfer to the output capacitor,  
(V  
+ V  
)/N will appear across the primary wind-  
OUT  
DIODE  
ing. A transformer with no energy cannot support a DC  
voltage, so the voltage across the primary will decay to  
zero. In other words, the drain of the NMOS will ring  
which ever comes first. If the switch drain node, V  
,
DRAIN  
is below the DCM comparator threshold (see Entering  
Normal Boundary Mode), the DCM comparator will never  
fire and the start-up circuitry is dominant.  
down from V  
+ (V  
+ V  
TRANS  
)/N to V  
. When  
TRANS  
OUT  
DIODE  
+ 20μA • R  
TRANS  
the drain voltage falls to V  
, the DCM  
DCM  
V
V
TH1  
V
TH2  
V
DRAIN  
V
OUT  
DCM  
1-SHOT  
t
START-UP  
(DCM THRESHOLD = V  
BOUNDARY-MODE  
(DCM THRESHOLD = V  
BELOW V  
TH2  
(WAIT FOR TIME-OUT)  
)
)
TH2  
TH1  
3751 F04  
Figure 4. DCM Comparator Thresholds  
3751f  
11  
LT3751  
OPERATION  
Atverylowoutputvoltages,theboundary-modeswitching  
cycle period increases significantly such that the energy  
stored in the transformer core is not depleted before the  
next clock cycle. In this situation, the clock may initiate  
another switching cycle before the secondary winding  
current reaches zero and cause the LT3751 to enter con-  
tinuous-modeconduction.Normally,thisisnotaproblem;  
however, if the secondary energy transfer time is much  
longer than the CLK period, significant primary current  
overshoot can occur. This is due to the non-zero starting  
point of the primary current when the switch turns on and  
the finite speed of the current comparator.  
V
, and indicates that the energy in the secondary  
DRAIN  
winding has depleted. For this to happen, V  
must  
DRAIN  
exceed V  
+ ΔV  
prior to its negative edge; oth-  
TRANS  
DRAIN  
erwise, the DCM comparator will not generate a one-shot  
to initiate the next switching cycle. The part would remain  
stuck in this state indefinitely; however, the LT3751 uses  
the start-up protection circuitry to jumpstart switching if  
the DCM comparator does not generate a one-shot after  
a maximum time-out of 500μs.  
Figure 4 shows a typical V  
a test circuit voltage clamp applied to the output. V  
node waveform with  
DRAIN  
TH1  
is the start-up threshold and is set internally by forcing  
to 40ꢀA. Once the first DCM one-shot is initiated,  
The LT3751 startup circuitry adds an auxiliary current  
comparator with a trip level 50% higher than the nominal  
trip level. Every time the auxiliary current comparator  
trips, therequiredclockcountbetweenswitchingcyclesis  
incremented by one. This allows more time for secondary  
energy transfer.  
I
OFFSET  
the mode latch is set to boundary-mode. The mode latch  
then sets the clock count to maximum (500μs) and lowers  
the DCM comparator threshold to V (I  
= 20ꢀA).  
TH2 OFFSET  
This provides needed hysteresis between start-up mode  
and boundary-mode operation.  
Counter 1 in Figure 3 is set to its maximum count when  
the first DCM comparator one-shot is generated. If no  
DCM one-shot is initiated in normal boundary-mode  
operation during a maximum count of approximately  
500μs, the LT3751 re-enters start-up mode and the count  
is returned to zero.  
LOW NOISE REGULATION  
Low noise voltage regulation can be achieved by adding  
a resistive divider from the output node to the LT3751 FB  
pin. At start-up (FB pin below 1.16V), the LT3751 enters  
the charge mode to rapidly charge the output capacitor.  
Once the FB pin is within the threshold range of 1.16V  
to 1.34V, the part enters into low noise regulation. The  
switching methodology in regulation mimics that used  
in the capacitor charging mode, but with the addition of  
peak current and duty cycle control techniques. Figure 5  
shows the steady state operation for both regulation  
techniques. Figure 6 shows how both techniques are  
combined to provide stable, low noise operation over a  
wide load and supply range.  
Note that Counter 1 is initialized to zero at start-up. Thus,  
theoutputofthestartupcircuitrywillgohighafteroneclock  
cycle. Counter 2 is reset when the gate driver goes high.  
This repeats until either the auxiliary current comparator  
incrementstherequiredclockcountoruntilV  
ishigh  
DRAIN  
enough to sustain normal operation described in steps 2  
through 4 in the previous section.  
Entering Normal Boundary Mode  
The LT3751 has two DCM comparator thresholds that are  
dependent on what mode the part is in, either start-up  
modeornormalboundary-mode,andthestateofthemode  
latch. For boundary-mode switching, the LT3751 requires  
During heavy load conditions, the LT3751 sets the peak  
primarycurrenttoitsmaximumvalue,106mV/R  
and  
SENSE  
sets the maximum duty cycle to approximately 95%. This  
allows for maximum power delivery. At very light loads,  
the opposite occurs, and the LT3751 reduces the peak  
primary current to approximately one tenth its maximum  
value while modulating the duty cycle below 10%. The  
LT3751 controls moderate loads with a combination of  
peak current mode control and duty cycle control.  
the DCM sense voltage (V  
) to exceed V  
by the  
DRAIN  
TRANS  
ΔDCM comparator threshold, ΔV  
:
DRAIN  
ΔV  
= (40μA + I  
) • R – 40μA • RV  
OFFSET DCM TRANS  
DRAIN  
where I  
is mode dependent. The DCM one-shot  
OFFSET  
signal is negative edge triggered by the switch node,  
3751f  
12  
LT3751  
OPERATION  
CHARGE MODE  
LIGHT LOAD OPERATION  
26kHz  
ONE-SHOT  
CLK  
26kHz  
ONE-SHOT  
CLK  
...  
...  
...  
...  
SWITCH  
ENABLE  
MAXIMUM  
PEAK CURRENT  
NO BLANKING  
SWITCH  
ENABLE  
DUTY CYCLE  
CONTROL  
DUTY CYCLE  
CONTROL  
FORCED  
BLANKING  
I
I
PRI  
PRI  
...  
...  
t
t
t
≈ 38μs  
PER  
NO LOAD OPERATION  
HEAVY LOAD OPERATION  
26kHz  
ONE-SHOT  
CLK  
26kHz  
ONE-SHOT  
CLK  
...  
...  
...  
...  
110%  
OUT, NOM  
V
SWITCH  
ENABLE  
PEAK CURRENT  
CONTROL  
V
OUT  
FORCED  
BLANKING  
105%  
OUT, NOM  
V
...  
1/10TH I  
I
PK  
PRI  
...  
I
PRI  
t
t
t
≈ 38μs  
PER  
3751 F05  
Figure 5. Modes of Operation (Steady State)  
I
(
) DUTY CYCLE(  
)
LIM  
I
MAX  
95%  
NO LOAD  
OPERATION  
1/10  
MAX  
10%  
0
I
LOAD  
CURRENT  
CHARGE  
MODE  
3751 F06  
LIGHT LOAD  
MODERATE  
LOAD  
HEAVY LOAD  
Figure 6. Regulation Technique  
3751f  
13  
LT3751  
OPERATION  
Periodic Refresh  
Light Load Operation  
When the LT3751 enters regulation, the internal circuitry  
deactivates switching when the internal one-shot clock  
is high. The clock operates at a 1/20th duty cycle with a  
minimum blank time of 1.5μs. This reset pulse is timed to  
drastically reduce switching frequency content within the  
audiospectrumandisactiveduringallloadingconditions.  
Each reset pulse guarantees at least one energy cycle. A  
minimum load is required to prevent the LT3751 from  
entering overvoltage Burst Mode Operation.  
The LT3751 uses duty cycle control to drastically reduce  
audible noise in both the transformer (mechanical) and  
the ceramic capacitors (piezoelectric effects). Internal  
control circuitry forces a one-shot condition at a periodic  
rate greater than 20kHz and out of the audio spectrum.  
The regulation loop then determines the number of pulses  
that are required to maintain the correct output voltage.  
Figure 5 shows the use of duty-cycle control.  
No Load Operation  
Heavy Load Operation  
The LT3751 can remain in low noise regulation at very low  
loading conditions. Below a certain load current threshold  
(LightLoadOperation), theoutputvoltagewouldcontinue  
to increase and a runaway condition could occur. This is  
due to the periodic one-shot forced by the periodic refresh  
circuitry. By design, the LT3751 has built-in overvoltage  
protection associated with the FB pin.  
The LT3751 enters peak current mode control at higher  
output load conditions. The control loop maximizes the  
number of switch cycles between each reset pulse. Since  
the control scheme operates in boundary mode, the reso-  
nant boundary-mode period changes with varying peak  
primary current:  
1
N
When the FB pin voltage exceeds 1.34V ( 20mV), the  
LT3751 enters overvoltage Burst Mode Operation.  
Overvoltage Burst Mode Operation does not reset with  
the one-shot clock. Instead, the pulse train is completely  
load-dependent. These bursts are asynchronous and can  
contain long periods of inactivity. This allows regulation at  
a no-load condition but with the increase of audible noise  
andvoltageripple.Notethatwhenoperatinginovervoltage  
Burst Mode Operation, the output voltage will increase  
10% above the nominal output voltage.  
Period=IPK LPRI  
+
VTRANS VOUT  
and the power output is proportional to the peak primary  
current:  
1/ 2IPK  
POUT  
=
1
N
+
VTRANS VOUT  
Noise becomes an issue at very low load currents. The  
LT3751 remedies this problem by setting the lower peak  
current limit to one tenth the maximum level and begins  
to employ duty-cycle control.  
3751f  
14  
LT3751  
APPLICATIONS INFORMATION  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
The LT3751 charger controller can be optimized for either  
capacitor charging only or low noise regulation applica-  
tions. Several equations are provided to aid in the design  
process.  
P = 20 WATTS  
P = 50 WATTS  
P = 100 WATTS  
Safety Warning  
Largecapacitorschargedtohighvoltagecandeliveralethal  
amount of energy if handled improperly. It is particularly  
important to observe appropriate safety measures when  
designing the LT3751 into applications. First, create a dis-  
charge circuit that allows the designer to safely discharge  
theoutputcapacitor.Second,adequatelyspacehighvoltage  
nodes from adjacent traces to satisfy printed circuit board  
voltage breakdown requirements.  
1
10  
PEAK PRIMARY CURRENT (A)  
100  
3751 F07  
Figure 7. Maximum Power Output  
Selecting Transformer Turns Ratio  
Selecting Operating Mode  
The transformer ratio, N, should be selected based on  
the input and output voltages. Smaller N values equate  
to faster charge times and larger available output power.  
Tie the FB pin to GND to operate the LT3751 as a capacitor  
charger. In this mode, the LT3751 charges the output at  
peak primary current in boundary mode operation. This  
constitutes maximum power delivery and yields the fast-  
est charge times. Power delivery is halted once the output  
reaches the desired output voltage set by the RV  
RBG pins.  
Note that drastically reducing N below the V /V  
OUT TRANS  
ratio will increase the flyback voltage on the drain of the  
NMOS and increase the current through the output diode.  
and  
OUT  
A good choice is to select N equal to V /V  
.
OUT TRANS  
VOUT  
VTRANS  
N≤  
Tie a resistor divider from the FB pin to V  
and GND  
OUT  
to operate the LT3751 as a low noise voltage regulator  
(refer to Low Noise regulation section for proper design  
procedures). The LT3751 operates as a voltage regulator  
using both peak current and duty cycle modulation to vary  
output current during different loading conditions.  
Choosing Capacitor Charger I  
PK  
When operating the LT3751 as capacitor charger, choose  
based on the required capacitor charge time, t  
I
PK  
,
CHARGE  
and the initial design inputs.  
Selecting Component Parameters  
2•N• VTRANS + VOUT COUT • VOUT  
(
)
IPK =  
Most designs start with the initial selection of V  
,
Efficiency • VTRANS • tCHARGE td  
(
)
TRANS  
, (capacitor  
V
, C , and either charge time, t  
OUT OUT  
charger) or P  
CHARGE  
Theconverterefficiencyvariesovertheoutputvoltagerange.  
TheI equationisbasedontheaverageefficiencyoverthe  
(regulator). These design inputs  
OUT,MAX  
PK  
are then used to select the transformer ratio, N, the peak  
primary current, I , and the primary inductance, L  
entirechargingperiod.Severalfactorscancausethecharge  
timetoincrease.Efficiencyisthemostdominantfactorand  
is mainly affected by the transformer winding resistance,  
core losses, leakage inductance, and transistor R . Most  
applications have overall efficiencies above 70%.  
.
PRI  
PK  
Figure7canbeusedasaroughguideformaximumpower  
output for a given V and I .  
TRANS  
PK  
DS  
3751f  
15  
LT3751  
APPLICATIONS INFORMATION  
Thetotalpropagationdelay,t ,isthesecondmostdominant  
d
factor that affects efficiency and is the summation of gate  
driver on-off propagation delays and the discharge time  
associatedwiththesecondarywindingcapacitance.There  
are two effective methods to reduce the total propagation  
delay. First, reduce the total capacitance on the secondary  
winding, most notably the diode capacitance. Second,  
reduce the total required NMOS gate charge. Figure 8  
shows the effect of large secondary capacitance.  
V
DRAIN  
I
SEC  
NO SEC.  
CAPACITANCE  
I
PRI  
SEC. DISCHARGE  
t
3751 F08  
The energy stored in the secondary winding capacitance  
2
Figure 8. Effect of Secondary Winding Capacitance  
is ½ • C • V  
. This energy is reflected to the primary  
SEC  
OUT  
when the diode stops forward conduction. If the reflected  
capacitance is greater than the total NMOS drain capaci-  
tance, the drain of the NMOS power switch goes negative  
and its intrinsic body diode conducts. It takes some time  
for this energy to be dissipated and thus adds to the total  
propagation delay.  
ThepreviousequationguaranteesthattheV comparator  
OUT  
has enough time to sense the flyback waveform and trip  
the DONE pin latch. Operating V  
significantly higher  
OUT  
then that used to calculate L could result in a runaway  
PRI  
condition and overcharge the output capacitor.  
The L equation is adequate for most regulator applica-  
PRI  
Choosing Regulator Maximum I  
PK  
tions.NotethatifbothI andNareincreasedsignificantly  
PK  
The I parameter in regulation mode is calculated based  
for a given V  
and V , the maximum I will not be  
PK  
TRANS  
OUT PK  
on the desired maximum output power instead of charge  
time like that in a capacitor charger application.  
reached within the refresh clock period. This will result in  
a lower than expect maximum output power. To prevent  
this from occurring, maintain the condition in the follow-  
ing equation.  
POUT(AVG)  
Efficiency  
1
N
VOUT  
IPK = 2•  
+
V
TRANS  
38μs  
1
VTRANS VOUT  
LPRI  
<
Note that the LT3751 regulation scheme varies the peak  
current based on the output load current. The maximum  
N
I •  
+
PK  
I
is only reached during charge mode or during heavy  
PK  
load conditions where output power is maximized.  
The upper constraint on L can be reduced by increas-  
PRI  
ing V  
and starting the design process over. The best  
TRANS  
Transformer Design  
regulation occurs when operating the boundary-mode  
frequency above 100kHz (refer to Operation section for  
boundary-mode definition).  
Thetransformer’sprimaryinductance,L ,isdetermined  
PRI  
by the desired V  
and previously calculated N and I  
OUT  
PK  
parameters. Use the following equation to select L  
:
PRI  
3μsVOUT  
IPK •N  
LPRI  
=
3751f  
16  
LT3751  
APPLICATIONS INFORMATION  
Table 1. Recommended Transformers  
MANUFACTURER  
PART NUMBER  
MAXIMUM I (A)  
L
(μH)  
PRI  
TURNS RATIO (PRI:SEC)  
SIZE L × W × H (mm)  
PRI  
Coilcraft  
www.coilcraft.com  
DA2033-AL  
DA2034-AL  
GA3459-BL  
GA3460-BL  
5
10  
1:10  
1:10  
1:10  
1:10  
17.4 × 24.1 × 10.2  
20.6 × 30 × 11.3  
32.65 × 26.75 × 14  
32.65 × 26.75 × 14  
10  
20  
50  
10  
5
2.5  
Midcom  
www.midcom.com  
750032051  
750032052  
750310349  
750310355  
5
10  
10  
5
1:10  
1:10  
1:10  
1:10  
28.7 × 22 × 11.4  
28.7 × 22 × 11.4  
36.5 × 42 × 23  
36.5 × 42 × 23  
10  
20  
50  
2.5  
Sumida  
www.sumida.com  
C8117  
5
10  
10  
5
1:10  
1:10  
1:10  
1:10  
23 × 18.6 × 10.8  
32.2 × 27 × 14  
32.5 × 26.5 × 13.5  
32.5 × 26.5 × 13.5  
C8119  
10  
20  
50  
PS07-299  
PS07-300  
2.5  
TDK  
www.tdk.com  
DCT15EFD-U44S003  
DCT20EFD-U32S003  
DCT25EFD-U27S005  
5
10  
20  
10  
10  
5
1:10  
1:10  
1:10  
22.5 × 16.5 × 8.5  
30 × 22 × 12  
27.5 × 33 × 15.5  
Figure 9 defines the maximum boundary-mode switching  
frequency when operating at a desired output power level  
10.000  
1.000  
0.100  
0.010  
f
f
f
= 50kHz  
= 100kHz  
= 200kHz  
MAX  
MAX  
MAX  
and is normalized to L /P  
(ꢀH/Watt). The relation-  
PRI OUT  
ship of output power, boundary-mode frequency, I , and  
PK  
primary inductance can be used as a guide throughout  
the design process.  
RV  
& R  
Selection  
TRANS  
DCM  
RV  
sets the common-mode reference voltage for  
TRANS  
both the DCM comparator and V  
comparator. Select  
OUT  
0.001  
1
10  
PEAK PRIMARY CURRENT (A)  
100  
RV  
from the design guide in Figure 10.  
TRANS  
3751 F09  
The RV  
pin is connected to an internal 40μA current  
TRANS  
Figure 9. Maximum Switching Frequency  
source. Pin current increases as the pin voltage is taken  
higher than the internal 60V zener clamp. Choose 25k for  
V
voltage below 12V. Choose 40k for V  
voltage  
TRANS  
TRANS  
voltage greater than  
between 12V and 60V. For V  
TRANS  
150k  
60V, choose RV  
than 60V (i.e. 55V).  
to limit RV  
pin voltage to less  
TRANS  
TRANS  
SUGGESTED  
TRANS  
RESISTANCE  
125k  
100k  
75k  
RV  
VTRANS – 55V  
RVTRANS  
=
40μA  
needstobeproperlydesignedinrelationtoRV  
50k  
R
.
TRANS  
DCM  
Improper selection of R  
can lead to undesired switch-  
DCM  
25k  
ing operation at low output voltages.  
10 20 30 40 50 60 70 80  
RDCM = 0.45RVTRANS  
V
(V)  
TRANS  
3751 F10  
Figure 10. Suggested RVTRANS Resistance  
3751f  
17  
LT3751  
APPLICATIONS INFORMATION  
RV  
& RBG Selection  
creases with output voltage, the average current though  
the NMOS is greatest when the output is nearly charged  
and is given by:  
OUT  
RV  
should be selected based on V  
comparator trip  
OUT  
OUT  
current.RV currentshouldbedesignedbetween100μA  
OUT  
IPK • VOUT(PK)  
and 4mA to maintain accuracy.  
IAVG,M  
=
2(VOUT(PK) +NVTRANS  
)
V
OUT,TRIP + VDIODE  
+ VTRANS 55V  
See Table 2 for recommended external NMOS transistors.  
N
RVOUT  
=
400μA  
Gate Driver Operation  
R
sets the trip current and is directly related to the  
BG  
The LT3751 gate driver has an internal, selectable 10.5V  
or 5.6V clamp with up to 2A current capability (using  
LVGATE). For 10.5V operation, tie CLAMP pin to ground,  
selection of RV  
.
OUT  
0.98 RVOUT  
RBG  
=
and for 5.6V operation, tie the CLAMP pin to the V pin.  
CC  
V
OUT,TRIP + VDIODE  
RVOUT  
RV  
TRANS  
VTRANS  
1  
Choose a clamp voltage that does not exceed the NMOS  
N
manufacturer’s maximum V ratings. The 5.6V clamp  
GS  
can also be used to reduce LT3751 power dissipation  
and increase efficiency when using logic-level FETs. The  
typical gate driver overshoot voltage is 0.5V above the  
clamp voltage.  
NMOS Switch Selection  
ChooseanexternalNMOSpowerswitchwithminimalgate  
charge and on-resistance that satisfies current limit and  
voltage break-down requirements. The gate is nominally  
TheLT3751’sgatedriveralsoincorporatesaPMOSpull-up  
deviceviatheLVGATEpin.ThePMOSpull-updrivershould  
driven to V – 2V during each charge cycle. Ensure that  
CC  
this does not exceed the maximum gate to source voltage  
rating of the NMOS but enhances the channel enough to  
minimize the on-resistance.  
onlybeusedforV applicationsof8Vorbelow.Operating  
CC  
LVGATE with V above 8V will cause permanent damage  
CC  
to the part. LVGATE is active when tied to HVGATE and  
Similarly, the maximum drain-source voltage rating of the  
allows rail-to-rail gate driver operation. This is especially  
NMOS must exceed V  
+ V /N or the magnitude  
TRANS  
OUT  
useful for low V applications, allowing better NMOS  
CC  
of the leakage inductance spike, whichever is greater. The  
maximuminstantaneousdraincurrentratingmustexceed  
selected current limit. Because the switching period de-  
drive capability. It also provides the fastest rise times,  
given the larger 2A current capability verses 1.5A when  
using only HVGATE.  
Table 2. Recommended NMOS Transistors  
MANUFACTURER  
PART NUMBER  
I (A)  
D
V
(V)  
R
(mΩ)  
Q
(nC)  
PACKAGE  
DS(MAX)  
DS(ON)  
G(TOT)  
Fairchild Semiconductor  
www.fairchildsemi.com  
FDS2582  
FQB19N20L  
FQP34N20L  
4.1  
21  
31  
150  
200  
200  
66  
140  
75  
11  
27  
55  
SO-8  
TO-252  
TO-220  
On Semiconductor  
www.onsemi.com  
MTD6N15T4G  
NTD12N10T4G  
NTB30N20T4G  
NTB52N10T4G  
6
150  
100  
200  
100  
300  
165  
81  
15  
14  
75  
72  
DPAK  
DPAK  
12  
30  
52  
2
D PAK  
2
30  
D PAK  
Vishay  
www.vishay.com  
Si7820DN  
2.6  
3.4  
33  
200  
150  
200  
240  
135  
60  
12.1  
20  
53  
1212-8  
1212-8  
TO-252  
Si7818DN  
SUP33N20-60P  
3751f  
18  
LT3751  
APPLICATIONS INFORMATION  
Table 3. Recommended Output Diodes  
MANUFACTURER  
PART NUMBER  
I
(A)  
V
RRM  
(V)  
T (ns)  
RR  
PACKAGE  
F(AV)  
Central Semiconductor  
www.centralsemi.com  
CMR1U-10M  
1
1000  
100  
SMA  
Fairchild Semiconductor  
www.fairchildsemi.com  
ES3J  
ES1G  
ES1J  
3
1
1
600  
400  
600  
35  
35  
35  
SMC  
SMA  
SMA  
On Semiconductor  
www.onsemi.com  
MURS360  
MURA260  
MURA160  
3
2
1
600  
600  
600  
75  
75  
75  
SMC  
SMA  
SMA  
Vishay  
www.vishay.com  
USB260  
US1G  
2
1
1
5
600  
400  
1000  
600  
30  
50  
75  
30  
SMB  
SMA  
US1M  
SMA  
GURB5H60  
TO-263AB  
Output Diode Selection  
Setting Current Limit  
The output diode(s) are selected based on the maximum  
repetitive reverse voltage (V ) and the average forward  
Placing a sense resistor from the positive sense pin, CSP,  
to the negative sense pin, CSN, sets the maximum peak  
switch current. The maximum current limit is nominally  
RRM  
current (I  
). The output diode’s V  
should exceed  
should exceed  
F(AV)  
RRM  
V
PK  
+ N • V  
. The output diode’s I  
106mV/R  
. The power rating of the current sense  
OUT  
TRANS  
F(AV)  
SENSE  
I /2N,theaverageshort-circuitcurrent.Theaveragediode  
resistor must exceed:  
I2 RSENSE  
current is also a function of the output voltage.  
VOUT(PK)  
VOUT(PK) +NVTRANS  
PK  
PRSENSE  
IPK • VTRANS  
2•(VOUT +NVTRANS  
3
IAVG  
=
)
Additionally, there is approximately a 100ns propagation  
delay from the time that peak current limit is detected to  
when the gate transitions to the low state. This delay in-  
The highest average diode current occurs at low output  
voltages and decreases as the output voltage increases.  
Reverse recovery time, reverse bias leakage and junc-  
tion capacitance should also be considered. All affect  
the overall charging efficiency. Excessive diode reverse  
recovery times can cause appreciable discharging of the  
output capacitor, thereby increasing charge time. Choose  
a diode with a reverse recovery time of less than 100ns.  
Diode leakage current under high reverse bias bleeds the  
output capacitor of charge and increases charge time.  
Choose a diode that has minimal reverse bias leakage  
current. Diode junction capacitance is reflected back to  
the primary, and energy is lost during the NMOS intrinsic  
diode conduction. Choose a diode with minimal junction  
capacitance. Table 3 recommends several output diodes  
for various output voltages that have adequate reverse  
recovery times.  
creases the peak current limit by (V  
)(100ns)/L  
.
TRANS  
PRI  
Sense resistor inductance (L  
) is another source of  
RSENSE  
current limit error. L  
creates an input offset voltage  
RSENSE  
(V ) to the current comparator and causes the current  
OS  
comparator to trip early. V can be calculated as:  
OS  
LRSENSE  
VOS = VTRANS  
L
PRIMARY  
ThechangeincurrentlimitbecomesV /R  
.Theerror  
OS SENSE  
is more significant for applications using large di/dt ratios  
in the transformer primary. It is recommended to use very  
low inductance (< 2nH) sense resistors. Several resistors  
can be placed in parallel to help reduce the inductance.  
3751f  
19  
LT3751  
APPLICATIONS INFORMATION  
Care should also be taken in placement of the sense lines.  
The negative return line, CSN, must be a dedicated trace  
to the low side resistor terminal. Haphazardly routing the  
CSN connection to the ground plane can cause inaccurate  
current limit.  
NMOS Snubber Design  
The transformer leakage inductance causes a parasitic  
voltage spike on the drain of the power NMOS switch dur-  
ingtheturn-offtransition.Transformerleakageinductance  
effects become more apparent at high peak primary cur-  
rents. The worst-case magnitude of the voltage spike is  
determinedbytheenergystoredintheleakageinductance  
Under/Overvoltage Lockout  
The LT3751 provides user-programmable under and  
and the total capacitance on the V  
node.  
DRAIN  
overvoltage lockouts for both V and V  
. Use the  
TRANS  
CC  
LLEAK I2  
CVDRAIN  
equationsinthePinFunctionssectionforproperselection  
of resistor values. When under/overvoltage lockout com-  
parators are tripped, the master latch is disabled, power  
delivery is halted, and the FAULT pin goes low. Adequate  
supply bulk capacitors should be used to reduce power  
supplyvoltageripplethatcouldcausefalsetrippingduring  
normal switching operation.  
PK  
VD,LEAK  
=
Two problems can arise from large V  
. First, the  
D,LEAK  
magnitude of the spike may require an NMOS with an  
unnecessarily high V which equates to a larger  
(BR)DSS  
. Secondly, the V  
R
node will ring—possibly  
DS(ON)  
DRAIN  
below ground—causing false tripping of the DCM com-  
parator or damage to the NMOS switch (see Figure 12).  
Both issues can be remedied using a snubber. If leakage  
inductance causes issues, it is recommended to use a RC  
snubber in parallel with the primary winding, as shown  
The LT3751 provides internal zener clamping diodes to  
protect itself in shutdown when V  
is operated above  
TRANS  
55V. Supply voltages should only be applied to UVLO1,  
UVLO2, OVLO1 and OVLO2 with series resistance such  
thattheAbsoluteMaximumpincurrentsarenotexceeded.  
Pin current can be calculated using:  
in Figure 11. Size C  
and R  
based on the desired  
SNUB  
SNUB  
leakage spike voltage, known leakage inductance, and an  
RC time constant less than 1μs. Otherwise, the leakage  
VAPPLIED 55V  
IPIN  
=
voltage spike can cause false tripping of the V  
parator and stop charging prematurely.  
com-  
OUT  
RSERIES  
Note that in shutdown, RV  
, RV , R  
, UVLO1,  
TRANS  
OUT DCM  
UVLO2,OVLO1andOVLO2currentsincreasesignificantly  
when operating V above the zener clamp voltages  
TRANS  
and are inversely proportional to the external series pin  
L
PRI  
R
SNUB  
resistances.  
C
SNUB  
L
LEAK  
C
VDRAIN  
3751 F11  
Figure 11. RC Snubber Circuit  
3751f  
20  
LT3751  
APPLICATIONS INFORMATION  
R
, depending on output voltage and type used, may  
FBH  
V
DRAIN  
require several smaller values placed in series. This will  
reducetheriskofarcinganddamagetothefeedbackresis-  
tors.Consultthemanufacturer’sratedvoltagespecification  
for safe operation of the feedback resistors.  
(WITHOUT  
SNUBBER)  
0V  
NMOS DIODE  
CONDUCTS  
V
DRAIN  
(WITH  
SNUBBER)  
The LT3751 has a minimum periodic refresh frequency  
limitof23kHz.Thisdrasticallyreducesswitchingfrequency  
components in the audio spectrum. The LT3751 can oper-  
ate with no-load, but the regulation scheme switches to  
overvoltage Burst Mode Operation and audible noise and  
output voltage ripple increase. This can be avoided by  
operating with a minimum load current.  
0V  
I
PRI  
3751 F12  
Figure 12. Effects of RC Snubber  
Figure 12 shows the effect of the RC snubber resulting in  
a lower voltage spike and faster settling time.  
Minimum Load Current  
Periodic refresh circuitry requires an average minimum  
load current to avoid entering overvoltage burst mode.  
Usually, the feedback resistors should be adequate to  
provide this minimum load current.  
LOW NOISE REGULATION  
The LT3751 has the option to provide low noise regulated  
output voltage when using a resistive voltage divider  
from the output node to the FB pin. Refer to the Selecting  
ComponentParameterssectiontodesignthetransformer,  
NMOS power switch, output diode, and sense resistor.  
Use the following equations to select the feedback resis-  
tor values based on the power dissipation and desired  
output voltage:  
L
PRI •I2PK 23kHz  
100 • VOUT  
ILOAD(MIN)  
I
is the peak primary current at maximum power de-  
PK  
livery. The LT3751 will enter overvoltage burst mode if  
the minimum load current is not met. Overvoltage burst  
mode will prevent the application from entering a runaway  
condition; however, the output voltage will increase 10%  
over the nominal regulated voltage.  
2
V
1.22  
PD  
(
)
OUT  
RFBH  
=
=
; Top Feedback Resistor  
1.22  
1.22  
RFBL  
RFBH ; Bottom Feedback Resistor  
V
OUT  
3751f  
21  
LT3751  
APPLICATIONS INFORMATION  
Large Signal Stability  
Small Signal Stability  
Large signal stability can be an issue when audible noise  
is a concern. Figure 13 shows that the problem originates  
from the one-shot clock and the output voltage ripple. The  
load must be constrained such that the output voltage  
ripple does not exceed the regulation range of the error  
amplifier within one clock period (approximately 6mV  
referred to the FB pin).  
The LT3751’s error amplifier is internally compensated to  
increase its operating range but requires the converter’s  
output node to be the dominant pole. Small signal stability  
constraints become more prevalent during high-load-  
ing conditions where the dominant output pole moves  
to higher frequency and closer to the internal feedback  
poles and zeros. The feedback loop requires the output  
pole frequency to remain below 200Hz to guarantee small  
The output capacitance should be increased if oscillations  
occur or audible noise is present. Use Figure 14 to deter-  
mine the maximum load for a given output capacitance to  
maintain low audible noise operation. A small capacitor  
can also be added from the FB pin to ground to lower the  
ripple injected into FB pin.  
signal stability. This allows smaller R  
values then the  
LOAD  
large signal constraint. Thus, small signal issues should  
not arise if the large signal constraint is met.  
30  
V
V
V
= 150V  
= 300V  
= 600V  
OUT  
OUT  
OUT  
25  
20  
15  
10  
5
LOAD  
DROOP  
V
OUT  
I
PRI  
26kHz  
ONE-SHOT  
CLK  
0
0
50  
100  
150  
200  
OUTPUT POWER (W)  
3751 F13  
3751 F14  
Figure 13. Voltage Ripple Stability Constraint  
Figure 14. COUT(MIN) vs Output Power  
3751f  
22  
LT3751  
APPLICATIONS INFORMATION  
Board Layout  
4. Reduce the total node capacitance on the RV  
and  
OUT  
R
pins by removing any ground or power planes  
DCM  
ThehighvoltageoperationoftheLT3751demandscarefulat-  
tention to the board layout, observing the following points:  
underneath the R  
and R  
pads and traces.  
DCM  
VOUT  
Parasitic capacitance can cause unwanted behavior  
on these pins.  
1. Minimizetheareaofthehighvoltageendofthesecond-  
ary winding.  
5. Thermal vias should be added underneath the Exposed  
Pad, Pin 21, to enhance the LT3751’s thermal perfor-  
mance. These vias should go directly to a large area of  
ground plane.  
2. Provide sufficient spacing for all high voltage nodes  
(NMOS drain, V  
and secondary winding of the  
OUT  
transformer) in order to meet the breakdown voltage  
requirements.  
6. Isolated applications require galvanic separation of the  
output-sidegroundandprimary-sideground.Adequate  
spacing between both ground planes is needed to meet  
voltage safety requirements.  
3. KeeptheelectricalpathformedbyC  
, theprimary  
VTRANS  
of T1, and the drain of the NMOS as short as possible.  
Increasing the length of this path effectively increases  
the leakage inductance of T1, potentially resulting in an  
overvoltage condition on the drain of the NMOS.  
3751f  
23  
LT3751  
APPLICATIONS INFORMATION  
Y
S E C O N D A R  
P R I M A R  
Y
3751f  
24  
LT3751  
TYPICAL APPLICATIONS  
42A Capacitor Charger  
DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
T1**  
1:10  
D1 D2***  
V
V
OUT  
500V  
*M1, M2 REQUIRES PROPER  
TRANS  
12V TO 24V  
HEATSINK/THERMAL DISSIPATION  
C2  
R6  
C3  
TO MEET MANUFACTURER’S SPECIFICATIONS  
10μF  
40.2k  
1000μF  
+
C4  
1200μF  
**THERMAL DISSIPATION OF T1 WILL LIMIT  
THE CHARGE/DISCHARGE DUTY CYCLE OF C4  
RV  
CHARGE  
CLAMP  
TRANS  
R7, 18.2k  
R8, 40.2k  
OFF ON  
RDCM  
***D2 MAY BE OMITTED FOR OUTPUT  
VOLTAGE OPERATION BELOW 300V  
V
CC  
V
LT3751  
CC  
12V TO 24V  
RV  
C1  
10μF  
OUT  
R11, 100k  
DONE  
R12, 100k  
R1, 191k  
HVGATE  
LVGATE  
CSP  
M1, M2*  
V
FAULT  
UVLO1  
OVLO1  
UVLO2  
CC  
C1: 25V X5R OR X7R CERAMIC CAPACITOR  
C2: 25V X5R OR X7R CERAMIC CAPACITOR  
R5  
2.5mꢁ  
C3: 25V ELECTROLYTIC  
V
TRANS  
R2, 475k  
R3, 191k  
C4: HITACHI FX22L122Y 1200μF, 550V ELECTROLYTIC  
D1, D2: VISHAY GURB5H60 600V, 5A ULTRAFAST RECTIFIER  
M1, M2: 2 PARALLEL VISHAY SUD33N20-60P 200V, 33A NMOS  
R1 THRU R4: USE 1% RESISTORS  
CSN  
FB  
V
CC  
R4, 475k  
R6 THRU R8: USE 1% 0805 RESISTORS  
R5: USE 2 PARALLEL 5mΩ IRC LR SERIES 2512 RESISTORS  
T1: COILCRAFT GA-3460-BL 50A SURACE MOUNT TRANSFORMER  
OVLO2  
GND RBG  
3751 TA02  
R9  
787Ω  
FOR ANY V  
VOLTAGE BETWEEN  
OUT  
50V AND 500V SELECT R9 ACCORDING TO:  
40.2kꢀ  
+ VDIODE  
R9 = 0.98 N•  
V
OUT  
Charging Efficiency  
vs Output Voltage  
Output Capacitor Charge Times  
vs Capacitance  
Charging Waveform  
85  
80  
75  
70  
65  
1200  
800  
400  
0
V
V
V
V
V
V
V
V
= 500V, V  
= 500V, V  
= 300V, V  
= 300V, V  
= 100V,  
= 24V  
= 12V  
= 24V  
= 12V  
OUT  
OUT  
OUT  
OUT  
TRANS  
TRANS  
TRANS  
TRANS  
V
V
= 500V  
TRANS  
C4 = 1200μF  
OUT  
= 24V  
OUT  
= 24V  
TRANS  
= 100V,  
OUT  
= 12V  
TRANS  
V
OUT  
100V/DIV  
AVERAGE  
INPUT  
CURRENT  
5A/DIV  
V
V
= 12V  
= 24V  
TRANS  
TRANS  
3751 TA02d  
50  
150  
250  
350  
450  
200  
400  
600  
800  
1000  
1200  
100ms/DIV  
OUTPUT VOLTAGE (V)  
OUTPUT CAPACITANCE (μF)  
3751 TA02b  
3751 TA02c  
3751f  
25  
LT3751  
TYPICAL APPLICATIONS  
18A Non-Isolated, High-Voltage Regulator  
DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
T1  
1:10  
D1  
V
V
OUT  
TRANS  
50V TO 500V  
5V TO 24V  
C2  
C3  
C5  
0.47μF  
R6  
5× 2.2μF  
680μF  
40.2k  
*M1 REQUIRES PROPER  
+
C4***  
100μF  
HEATSINK/THERMAL DISSIPATION  
TO MEET MANUFACTURER’S SPECIFICATIONS  
RV  
TRANS  
R7, 18.2k  
R8, 40.2k  
OFF ON  
CHARGE  
CLAMP  
RDCM  
**DEPENDING ON DESIRED OUTPUT VOLTAGES,  
R10 MUST BE SPLIT INTO MULTIPLE RESISTORS,  
TO MEET MANUFACTURER’S VOLTAGE SPECIFICATION.  
LT3751  
V
CC  
V
RV  
OUT  
CC  
5V TO 24V  
C1  
10μF  
***C4 MUST BE SIZED TO MEET LARGE SIGNAL  
STABILITY CRITERIA DESCRIBED IN THE  
APPLICATIONS INFORMATION SECTION  
DONE  
TO  
MICRO  
HVGATE  
LVGATE  
CSP  
M1*  
V
FAULT  
UVLO1  
OVLO1  
UVLO2  
OVLO2  
CC  
R1, 475k  
R5  
6mΩ  
C1: 25V X5R OR X7R CERAMIC  
C2: 25V X5R OR X7R CERAMIC  
C3: 25V ELECTROLYTIC  
V
TRANS  
R2, 69.8k  
R3, 475k  
CSN  
FB  
R10**  
R11  
C5: TDK CKG57NX7R2J474M  
D1: VISHAY US1M 1000V  
V
CC  
R4, 69.8k  
M1: FAIRCHILD FQP34N20L  
C6  
10nF  
R1 THRU R4, R6 THRU R9, R11: USE 1% 0805  
R5: IRC LR SERIES 2512 RESISTORS  
R10A, R10B, R10C USE: 200V 1206 RESISTORS  
T1: COILCRAFT GA3459-AL  
GND RBG  
3751 TA04  
R9  
Steady-State Operation with  
1.1mA Load Current  
Suggested Component Values  
V
(V)  
R9 (kΩ)  
3.32  
R11(kΩ)  
R10(kΩ)  
30.9  
124  
OUT  
V
OUT  
100  
200  
300  
400  
0.383  
0.768  
1.13  
AC COUPLED  
2V/DIV  
1.65  
1.10  
274  
V
SW  
50V/DIV  
0.825  
1.54  
499  
I
PRI  
500  
Tie to GND  
1.74  
715  
10A/DIV  
Transformer primary inductance limits V  
comparator operation  
OUT  
3751 TA03b  
to V  
operating V  
= 400V  
. RV  
and R should be tied to ground when  
OUT BG  
10μs/DIV  
OUT  
MAX  
above 400V.  
OUT  
Regulation Efficiency  
vs Load Current (VOUT = 500V)  
Steady-State Operation with  
100mA Load Current  
VOUT vs Load Current  
90  
85  
80  
75  
70  
65  
60  
515  
510  
505  
500  
495  
V
OUT  
V
V
V
= 24V  
= 12V  
= 5V  
TRANS  
TRANS  
TRANS  
COUPLED  
2V/DIV  
V
SW  
50V/DIV  
I
PRI  
10A/DIV  
3751 TA03e  
10μs/DIV  
V
V
V
= 24V  
= 12V  
= 5V  
TRANS  
TRANS  
TRANS  
0
50  
100  
150  
200  
0
50  
100  
(mA)  
150  
200  
OUTPUT VOLTAGE (V)  
I
LOAD  
3751 TA03c  
3751 TA03d  
3751f  
26  
LT3751  
PACKAGE DESCRIPTION  
UFD Package  
20-Pin Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1711 Rev B)  
0.70 0.05  
2.65 0.05  
4.50 0.05  
3.10 0.05  
1.50 REF  
3.65 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
2.50 REF  
4.10 0.05  
5.50 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR  
C = 0.35  
0.75 0.05  
1.50 REF  
19  
4.00 0.10  
(2 SIDES)  
R = 0.05 TYP  
20  
0.40 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 0.10  
(2 SIDES)  
2.50 REF  
3.65 0.10  
2.65 0.10  
(UFD20) QFN 0506 REV B  
0.25 0.05  
0.50 BSC  
0.200 REF  
R = 0.115  
TYP  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3751f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT3751  
TYPICAL APPLICATION  
300V Regulated Power Supply  
T1  
D1  
1:10  
V
V
TRANS  
24V  
OUT  
300V  
C2  
C3  
R6  
0mA TO 270mA  
5× 2.2μF  
+
680μF  
40.2k  
C4  
20μF  
RV  
CHARGE  
TRANS  
R7  
18.2k  
OFF ON  
RDCM  
RV  
CLAMP  
OUT  
V
CC  
V
CC  
24V  
C1  
10μF  
R8  
274k  
M1  
R5  
HVGATE  
LVGATE  
CSP  
DONE  
FAULT  
TO  
V
MICRO  
CC  
R1  
432k  
UVLO1  
OVLO1  
UVLO2  
OVLO2  
6mꢁ  
V
R2  
TRANS  
LT3751  
475k  
CSN  
FB  
R3  
432k  
C5  
10nF  
V
R4  
475k  
CC  
R9  
1.13k  
GND RBG  
3751 TA05  
C1: 25V X5R OR X7R CERAMIC CAPACITOR  
C2: 25V X5R OR X7R CERAMIC CAPACITOR  
C3: 25V ELECTROLYTIC  
C4: 330V RUBYCON PHOTOFLASH CAPACITOR  
D1: VISHAY USIM 1000V  
M1: FAIRCHILD FQP34N20L  
R1 THROUGH R4: USE 1% 0805 RESISTORS  
R5: USE TWO PARALLEL 5mΩ IRC LR SERIES 2512 RESISTORS  
T1: SUMIDA PS07-299, 20A TRANSFORMER  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 2.75V to 5.5V, Charges Two Supercapacitors in Series to 4.8V or 5.3V  
LTC3225  
150mA Supercapacitor Charger  
IN  
LT3420/LT3420-1  
1.4A/1A, Photoflash Capacitor Charger  
with Automatic Top-Off  
Charges 220μF to 320V in 3.7 Seconds from 5V, V : 2.2V to 16V, I < 1μA,  
IN SD  
10-Lead MS Package  
LT3468/LT3468-1  
LT3468-2  
1.4A, 1A, 0.7A, Photoflash Capacitor Charger V : 2.5V to 16V, Charge Time: 4.6 Seconds for LT3468 (0V to 320V, 100μF,  
IN  
V
= 3.6V), I < 1μA, ThinSOT™ Package  
SD  
IN  
LT3484-0/LT3484-1  
LT3484-2  
1.4A, 0.7A, 1A Photoflash Capacitor Charger  
V : 1.8V to 16V, Charge Time: 4.6 Seconds for LT3484-0 (0V to 320V, 100μF,  
IN  
IN  
V
= 3.6V), I < 1μA, 2mm × 3mm 6-Lead DFN Package  
SD  
LT3485-0/LT3485-1  
LT3485-2/LT3485-3  
1.4A, 0.7A, 1A, 2A Photoflash Capacitor  
Charger with Output Voltage Monitor and  
Integrated IGBT  
V : 1.8V to 10V, Charge Time: 3.7 Seconds for LT3485-0 (0V to 320V, 100μF,  
IN  
IN  
V
= 3.6V), I < 1μA, 3mm × 3mm 10-Lead DFN Package  
SD  
LT3585-0/LT3585-1  
LT3585-2/LT3585-3  
1.2A, 0.55A, 0.85A, 1.7A Photoflash  
Capacitor Charger with Adjustable Input  
Current and IGBT Drivers  
V : 1.5V to 16V, Charge Time: 3.3 Seconds for LT3585-3 (0V to 320V, 100μF,  
IN  
IN  
V
= 3.6V), I < 1μA, 3mm × 2mm DFN-10 Package  
SD  
LT3750  
Capacitor Charger Controller  
V : 3V to 24V, Charge Time: 300ms for (0V to 300V, 100μF) MSOP-10 Package  
IN  
ThinSOT is a trademark of Linear Technology Corporation.  
3751f  
LT 1108 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3751IUFD-TR

Capacitor Charger Controller with Regulation
Linear

LT3751IUFD-TRPBF

Capacitor Charger Controller with Regulation
Linear

LT3752

Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters
Linear

LT3752-1

Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters
Linear

LT3752-1_15

Active Clamp Synchronous Forward Controllers with Internal Housekeeping Controller
Linear

LT3752_15

Active Clamp Synchronous Forward Controllers with Internal Housekeeping Controller
Linear

LT3753

Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters
Linear

LT3754

16-Channel × 50mA LED Driver
Linear

LT3754EUH#PBF

LT3754 - 16-Channel x 50mA LED Driver; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3754EUH#TRPBF

LT3754 - 16-Channel x 50mA LED Driver; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3754EUHPBF

16-Channel × 50mA LED Driver
Linear

LT3754EUHTRPBF

16-Channel × 50mA LED Driver
Linear