LT3782 [Linear]

2-Phase Step-Up DC/DC Controller; 两相升压型DC / DC控制器
LT3782
型号: LT3782
厂家: Linear    Linear
描述:

2-Phase Step-Up DC/DC Controller
两相升压型DC / DC控制器

控制器
文件: 总16页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3782  
2-Phase Step-Up  
DC/DC Controller  
U
DESCRIPTIO  
FEATURES  
2-Phase Operation Reduces Required Input and  
The LT®3782 is a current mode two phase step-up DC/DC  
converter controller. Its high switching frequency (up to  
500kHz) and 2-phase operation reduce system filtering  
capacitance and inductance requirements.  
Output Capacitance  
Programmable Switching Frequency:  
150kHz to 500kHz  
6V to 40V Input Range  
10V Gate Drive with VCC 13V  
High Current Gate Drive (4A)  
With 10V gate drive (VCC 13V) and 4A peak drive current,  
the LT3782 can drive most industrial grade high power  
MOSFETs with high efficiency. For synchronous applica-  
tions, the LT3782 provides synchronous gate signals with  
programmable falling edge delay to avoid cross conduc-  
tion when using external MOSFET drivers. Other features  
include programmable undervoltage lockout, soft-start,  
current limit, duty cycle clamp (50% or higher) and slope  
compensation.  
Programmable Soft-Start and Current Limit  
Programmable Slope Compensation for  
High Noise Immunity  
MOSFET Gate Signals with Programmable  
Falling Edge Delay for External Synchronous  
Drivers  
Programmable Undervoltage Lockout  
The LT3782 is available in a thermally enhanced 28-lead  
SSOP package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 6144194.  
Programmable Duty Cycle Clamp (50% or Higher)  
Thermally EnhanUced 28-Lead SSOP Package  
APPLICATIO S  
Industrial Equipment  
Telecom Infrastructure  
Interleaved Isolated Power Supply  
U
TYPICAL APPLICATIO  
50V 4A Boost Converter  
V
V
IN  
10V TO 36V  
OUT  
50V, 4A  
L1  
L2  
C
D1  
OUT1  
Efficiency and Power Loss  
vs Load Current  
V
GBIAS1  
CC  
10µF  
50V  
2x  
30BQ060  
1µF  
R6  
+
GBIAS2  
GBIAS  
C3  
2µF  
825k  
D2  
97  
95  
93  
91  
89  
87  
85  
18  
15  
12  
9
+
C
OUT2  
220µF  
C
30BQ060  
IN  
V
IN  
= 24V  
RUN  
M1  
EFFICIENCY  
10µF  
50V  
2x  
BGATE1  
Si7852dp  
2x  
R8  
274k  
V
IN  
= 12V  
R
LT3782  
S1  
0.004  
V
R
V
IN  
= 12V  
EE1  
SLOPE  
59k  
M2  
Si7852dp  
2x  
SLOPE  
DELAY  
DCL  
BGATE2  
V
IN  
= 24V  
6
L1, L2: PB2020.223  
, C : X7R, TDK  
C
R
IN OUT1  
FREQ  
80k  
R
POWER LOSS  
S2  
0.004Ω  
3
R
SET  
V
EE2  
+
10Ω  
10Ω  
10nF  
0
SS  
0
1
2
3
4
5
SENSE1  
SENSE1  
0.1µF  
I
(A)  
OUT  
10nF  
3782 TA01b  
R
F1  
475k  
V
C
+
13k  
6.8nF  
SENSE2  
SENSE2  
100pF  
R
F2  
24.9k  
FB  
GND  
3782 TA01  
3782fa  
1
LT3782  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
1
2
28 GBIAS  
27  
SGATE2  
SGATE1  
NC  
VCC Supply Voltage.................................................. 40V  
GBIAS, GBIAS1, GBIAS2 Pin (Externally Forced)  
V
CC  
3
26 NC  
............................................................................ 14V  
SYNC, RUN Pin........................................................ 30V  
Operating Junction Temperature Range (Notes 2, 3)  
.......................................................... –40°C to 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
SS................................................................0.3V to 6V  
SENSE1+, SENSE2+, SENSE1, SENSE2–  
LT3782EFE  
4
25 NC  
GND  
5
24 VEE1  
23 BGATE1  
22 GBIAS1  
21 GBIAS2  
20 BGATE2  
19 VEE2  
18 NC  
SYNC  
DELAY  
DCL  
6
7
29  
+
8
SENSE1  
9
SENSE1  
10  
11  
12  
13  
14  
SLOPE  
R
SET  
FE PART  
MARKING  
17 RUN  
16 FB  
SENSE2  
SENSE2  
+
15  
V
C
SS  
................................................................0.3V to 2V  
LT3782EFE  
FE PACKAGE  
28-LEAD PLASTIC SSOP  
EXPOSED PAD (PIN 29) IS GND  
MUST BE SOLDERED TO PCB  
TJMAX = 125°C, θJA = 38°C/ W  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
outputs, unless otherwise noted.  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 13V, R = 80k, operating maximum V = 24V, no load on any  
A
CC  
SET  
CC  
PARAMETER  
Overall  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage (V  
)
6
40  
16  
V
CC  
Supply Current (I  
Shutdown  
)
V 0.5V (Switching Off), V 40V  
11  
mA  
VCC  
C
CC  
RUN Threshold  
2.3  
2.45  
80  
2.6  
V
RUN Threshold Hysteresis  
Supply Current in Shutdown  
mV  
1V RUN V , V 30V  
0.4  
40  
0.65  
90  
mA  
µA  
REF CC  
RUN 0.3V, V 30V  
CC  
RUN Pin Input Current  
V
= 2.3V  
–0.5  
–2  
µA  
RUN  
Voltage Amplifier gm  
Reference Voltage (V  
)
2.42  
2.4  
2.44  
2.464  
2.488  
V
V
REF  
Transconductance  
V
V
= 1V, I = ±2µA  
200  
260  
0.2  
1.5  
0.35  
11  
370  
0.6  
µmho  
µA  
V
VC  
FB  
VC  
Input Current I  
= V  
= 0  
= 0  
FB  
REF  
V High  
C
I
I
VC  
VC  
V Low  
C
0.4  
14  
28  
V
Source Current I  
V
V
= 0.7V – 1V, V = V – 100mV  
8
13  
0.3  
6
µA  
µA  
V
VC  
VC  
VC  
FB  
REF  
Sink Current I  
= 0.7V – 1V, V = V + 100mV  
20  
VC  
FB  
REF  
V Threshold for Switching Off (BGATE1, BGATE2 Low)  
C
Soft-Start Current I  
V
= 0.1V – 2.8V  
10  
15  
µA  
3782fa  
SS  
SS  
2
LT3782  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 13V, R = 80k, operating maximum V = 24V, no load on any  
A
CC  
SET  
CC  
outputs, unless otherwise noted.  
SYMBOL PARAMETER  
Current Amplifier CA1, CA2  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Voltage Gain V /V  
4
C
SENSE  
+
+
Current Limit (V  
Input Current (I  
Oscillator  
– V  
) (V  
– V  
)
50  
62  
60  
80  
mV  
SENSE1  
SENSE1  
SENSE2  
+
SENSE2  
+
, I  
, I  
, I  
)
V  
= 0V  
SENSE  
µA  
SENSE1 SENSE1 SENSE2 SENSE2  
Switching Frequency  
R
R
R
= 130k  
= 80k  
= 40k  
130  
212  
386  
154  
250  
465  
177  
288  
533  
kHz  
kHz  
kHz  
SET  
SET  
SET  
Synchronization Pulse Threshold on SYNC Pin  
Rising Edge V  
0.8  
1.2  
2
V
SYNC  
Synchronization Frequency Range  
(Note: Operation Switching Frequency Equals  
Half of the Synchronization Frequency)  
R
R
R
= 130k  
= 80k  
= 40k  
180  
290  
550  
240  
392  
715  
kHz  
kHz  
kHz  
SET  
SET  
SET  
V
R
= 80k  
2.3  
V
RSET  
SET  
Maximum Duty Cycle  
V
= V – 25mV, R > 80K  
90  
83  
94  
90  
%
%
FB  
REF  
SET  
SET  
R
= 40K  
Duty Cycle Limit  
R
= 80k , V  
0.3V  
50  
75  
%
%
SET  
DCL  
DCL  
DCL  
V
V
= 1.2V  
= V  
Max Duty Cycle  
RSET  
DCL Pin Input Current  
V
= 0.3V  
–0.1  
–0.3  
µA  
DCL  
Gate Driver  
V
I
< 70mA  
10.2  
11  
11.7  
10.5  
V
GBIAS  
GBIAS  
BGATE1, BGATE2 High Voltage  
13V V 24V, I  
V
= –100mA  
= –100mA  
7.8  
3.8  
9.2  
5
V
V
CC  
BGATE  
= 8V, I  
CC  
BGATE  
BGATE1, BGATE2 Source Current (Peak)  
Capacitive Load >22µF  
Capacitive Load >50µF  
3
4
A
A
BGATE1, BGATE2 Low Voltage  
8V V 24V, I  
= 100mA  
0.5  
0.7  
V
CC  
BGATE  
BGATE1, BGATE2 Sink Current (Peak)  
Capacitive Load >22µF  
Capacitive Load >50µF  
3
4
A
A
SGATE1, SGATE2 High Voltage  
SGATE1, SGATE2 Low Voltage  
SGATE1, SGATE2 Peak Current  
Delay of BGATE High  
8V V 24V, I  
= –20mA  
= 20mA  
4.5  
5.5  
0.5  
100  
6.7  
0.7  
V
V
CC  
SGATE  
SGATE  
8V V 24V, I  
CC  
500pF Load  
mA  
DELAY Pin and R Pin Shorted  
100  
150  
250  
500  
ns  
ns  
ns  
ns  
SET  
V
V
V
= 1V  
= 0.5V  
= 0.25V  
DELAY  
DELAY  
DELAY  
Delay Pin Input Current  
V
= 0.25V  
–0.1  
–0.3  
µA  
DELAY  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The LT3782 is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the –40°C to 125°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 3: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
3782fa  
3
LT3782  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS T = 25°C unless otherwise noted.  
A
V  
vs V , Frequency vs V  
CC  
REF  
CC  
V
GBIAS  
vs I  
I
vs V  
(R = 80k)  
SET  
GBIAS  
CC  
CC  
11.0  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10.0  
20  
18  
16  
14  
12  
10  
8
3
2
12  
10  
8
1
V  
REF  
0
6
–1  
–2  
–3  
–4  
–5  
4
2
Frequency  
6
0
4
–2  
–4  
2
0
50  
(mA)  
6
8
10 12 14 16 18 20 22 24 26 28 30  
(V)  
6
9
12  
15 18  
(V)  
21 24 27 30  
0
100  
V
CC  
V
I
CC  
GBIAS  
3782 G02  
3782 G03  
3782 G01  
V
vs I  
at Start-Up  
GBIAS  
Reference Voltage vs  
Temperature  
GBIAS  
Switching Frequency vs R  
(Charging 2µF)  
FREQ  
600  
500  
400  
300  
200  
100  
2.446  
2.444  
2.442  
2.440  
2.438  
2.436  
2.434  
14  
12  
10  
8
800  
700  
600  
500  
400  
300  
200  
100  
0
V
GBIAS  
6
4
I
GBIAS  
2
0
–2  
0
20 40 60 80 100 120 140 160 180 200  
(k)  
0
25  
75  
100  
125  
150  
0
250µ  
500µ  
750µ  
1m  
50  
JUNCTION TEMPERATURE (°C)  
R
TIME (s)  
FREQ  
3782 G04  
3782 G06  
3782 G05  
SGATE (Low) to BGATE (High)  
Delay vs V (R = 80k)  
Switching Frequency vs Duty  
Cycle  
Maximum Duty Cycle Limit vs  
DCL SET  
V
(R = 80k)  
DELAY SET  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
105  
100  
95  
120  
110  
100  
90  
80  
90  
70  
60  
85  
50  
40  
80  
0
0.5  
1.0  
V
1.5  
(V)  
2.0  
2.5  
100  
200  
300  
400  
500  
600  
0.9 1.2  
0
0.3 0.6  
1.5 1.8 2.1 2.4  
SWITCHING FREQUENCY (kHz)  
V
(V)  
DELAY  
DCL  
3782 G07  
3782 G08  
3782 G09  
3782fa  
4
LT3782  
U
U
U
PI FU CTIO S  
SGATE2 (Pin 1): Second Phase Synchronous Drive Sig-  
nal. An external driver buffer is needed to drive the top  
synchronous power FET.  
VC (Pin 15): The output of the gm error amplifier and the  
control signal of the current loop of the current-mode  
PWM. Switching starts at 0.7V, and higher VC voltages  
corresponds to higher inductor current.  
SGATE1 (Pin 2): First Phase Synchronous Drive Signal.  
An external driver buffer is needed to drive the top syn-  
chronous power FET.  
FB (Pin 16): Error Amplifier Inverting Input. A resistor  
divider to this pin sets the output voltage.  
NC (Pin 3): Not Connected. Can be connected to GND.  
GND (Pin 4): Chip Ground.  
RUN (Pin 17): LT3782 goes into shutdown mode when  
V
RUN isbelow2.2Vandgoestolowbiascurrentshutdown  
mode when VRUN is below 0.3V.  
SYNC (Pin 5): Synchronization Input. The pulse width can  
rangefrom10%to70%.Notethattheoperatingfrequency  
is half of the sync frequency.  
NC (Pin 18): Not Connected. Can be connected to GND.  
VEE2 (Pin 19): Gate Driver BGATE2 Ground. This pin  
should be connected to the ground side of the second  
current sense resistor.  
DELAY (Pin 6): When synchronous drivers are used, the  
programmable delay that delays BGATE turns on after  
SGATE turns off.  
BGATE2 (Pin 20): Second Phase MOSFET Driver.  
DCL (Pin 7): This pin programs the limit of the maximum  
dutycycle.WhenconnectedtoVRSET,itoperatesatnatural  
maximum duty cycle, approximately 90%.  
SENSE1+ (Pin 8): First Phase Current Sense Amplifier  
Positive Input. An RC filter is required across the current  
sense resistor. Current limit threshold is set at 60mV.  
SENSE1(Pin 9): First Phase Current Sense Amplifier  
Negative Input. An RC filter is required across the current  
sense resistor.  
GBIAS2 (Pin 21): Bias for Gate Driver BGATE2. Should be  
connected to GBIAS or an external power supply between  
12V to 14V. A bypass low ESR capacitor of 2µF or larger  
is needed and should be connected directly to the pin to  
minimize parasitic impedance.  
GBIAS1 (Pin 22): Bias for Gate Driver BGATE1. Should be  
connected to GBIAS2.  
BGATE1 (Pin 23): First Phase MOSFET Driver.  
VEE1 (Pin 24): Gate Driver BGATE1 Ground. This pin  
should be connected to the ground side of the second  
current sense resistor.  
SLOPE (Pin 10): A resistor from SLOPE to GND increases  
the internal current mode PWM slope compensation.  
RSET (Pin 11): A resistor from RSET to GND sets the  
NC (Pin 25): Not Connected. Can be connected to GND.  
NC (Pin 26): Not Connected. Can be connected to GND.  
oscillator charging current and the operating frequency.  
SENSE2(Pin12):SecondPhaseCurrentSenseAmplifier  
Negative Input. An RC filter is required across the current  
sense resistor.  
SENSE2+ (Pin13):SecondPhaseCurrentSenseAmplifier  
Positive Input. An RC filter is required across the current  
sense resistor. Current limit threshold is set at 60mV.  
VCC (Pin 27): Chip Power Supply. Good supply bypassing  
is required.  
GBIAS (Pin 28): Internal 11V regulator output for biasing  
internal circuitry. Should be connected to GBIAS1 AND  
GBIAS2.  
EXPOSED PAD (Pin 29): The exposed package pad is  
fused to internal ground and is for heat sinking. Solder the  
bottom metal plate onto expanded ground plane for opti-  
mum thermal performance.  
SS (Pin 14): Soft-Start. A capacitor on this pin sets the  
output ramp up rate. The typical time for SS to reach the  
programmed level is (C • 2.44V)/10µA.  
3782fa  
5
LT3782  
W
BLOCK DIAGRA  
V
V
OUT  
IN  
L1  
15µ  
D1  
V
CC  
V
GBIAS  
= V – 1V AND CLAMPED AT 11V  
CC  
C
IN  
20µF  
27  
REGULATOR  
L2  
15µ  
D2  
GBIAS1  
+
C
LOW POWER  
SHUTDOWN  
OUT  
22  
21  
28  
+
+
+
100µF  
R6  
R8  
GBIAS2  
GBIAS  
C3  
2µF  
A5  
A11  
A8  
RUN  
17  
+
+
+
0.5V  
7V  
A6  
V
– 2.5V  
R
F1  
CC  
+
R
F2  
A7  
+
A20  
2.44V  
SGATE1  
DELAY  
2
6
A4  
A1  
ONE SHOT  
GBIAS1  
A9  
R
SET  
+
+
A12  
2.5V  
BGATE1  
BGATE1  
A13  
22  
8
M1  
R
A14  
R1  
50k  
SLOPE COMP  
CH1  
R7  
+
SENSE1  
SENSE1  
S1  
10  
C2  
2nF  
+
BLANKING  
PWM1  
R3  
9
V
+
EE1  
24  
A3  
BGATE1  
CL1  
+
SGATE1  
SET  
DELAY  
60mV  
SGATE2  
1
A15  
A17  
+
+
A16  
2.5V  
DELAY  
BGATE2  
ONE SHOT  
GBIAS2  
BGATE2  
A18  
A2  
20  
13  
M2  
A19  
R2  
50k  
SLOPE COMP  
CH2  
R9  
+
R
SENSE2  
SENSE2  
S2  
10Ω  
SET  
SLOPE  
SYNC  
C4  
2nF  
+
BLANKING  
CH1  
CH2  
SLOPE  
COMP  
PWM2  
10  
5
R4  
S
R
S
R
12  
19  
V
EE2  
A10  
R
SET  
D6  
D7  
FB  
11  
OSC  
CK  
D
Q
Q
+
16  
3782 BD  
LOGIC  
R
FREQ  
+
GM  
C5  
20pF  
NOTE:  
CL2  
PACKAGE BOTTOM METAL PLATE (PIN 29)  
IS FUSED TO CHIP DIE AGND  
V
+
REF  
GND  
I1  
10µA  
60mV  
4
D4  
4V  
V
SS  
14  
C
7
15  
R5  
2k  
C7  
10nF  
DCL  
C1  
2000pF  
3782fa  
6
LT3782  
U
W U U  
APPLICATIO S I FOR ATIO  
Operation  
Soft-Start and Shutdown  
The LT3782 is a two phase constant frequency current  
mode boost controller. Switching frequency can be pro-  
grammed up to 500kHz. During normal switching cycles,  
thetwochannelsarecontrolledbyinternalflip-flopandare  
180 degrees out of phase.  
During soft-start, the voltage on the SS pin (VSS) controls  
the output voltage. The output voltage thus ramps up  
following VSS. The effective range of VSS is from 0V to  
2.44V. The typical time for the output to reach the pro-  
grammed level is  
Referring to the Block Diagram, the LT3782 basic func-  
tions include a transconductance amplifer (gm) to regu-  
late the output voltage and to control the current mode  
PWMcurrentloop.Italsoincludesthenecessarylogicand  
flip-flop to control the PWM switching cycles, two high  
speedgatedriverstodrivehighpowerN-ChannelMOSFETs,  
and 2-phase control signals to drive external gate drivers  
for optional synchronous operation.  
C 2.44V  
t =  
10µA  
C is the capacitor connected from the SS pin to Gnd.  
Undervoltage Lockout and Shutdown  
Only when VRUN is higher than 2.45V VGBIAS will be active  
and the switching enabled. The LT3782 goes into low  
current shutdown when VRUN is below 0.3V. A resistor  
divider can be used on RUN pin to set the desired VCC  
undervoltage lockout voltage. A 120mV hysteresis is built  
in on RUN pin thresholds.  
In normal operation, each switching cycle starts with a  
switch turn-on. The inductor current of each channel is  
sampled through the current sense resistor and amplified  
then compared to the error amplifier output VC to turn the  
switch off. The phase delay of the second channel is  
controlled by the divide-by-two D flip-flop and is exactly  
180 degrees out of phase of the first channel. With a  
resistordividerconnectedtotheFBpin, theoutputvoltage  
is programmed to the desired value. The 10V gate drivers  
aresufficienttodrivemosthighpowerN-ChannelMOSFET  
in many industrial applications.  
Oscillation Frequency Setting and Synchronization  
The switching frequency of LT3782 can be set up to  
500kHz by a resistor RFREQ from pin RSET to ground.  
For fSET = 250kHz, RFREQ = 80k  
OncetheswitchingfrequencyfSET ischosen, RFREQ canbe  
found from the Switching Frequency vs RFREQ graph  
found under the Typical Electrical Characteristics section.  
Additional important features include shutdown, current  
limit,soft-start,synchronizationandprogrammablemaxi-  
mum duty cycle. Additional slope compensation can be  
added also.  
Note that because of the 2-phase operation, the internal  
oscillator is running at twice the switching frequency. To  
synchronize the LT3782 to the system frequency fSYSTEM  
the synchronizing frequency fSYNC should be two times  
fSYSTEM, and the LT3782 switching frequency fSET should  
be set below 80% of fSYSTEM  
,
Output Voltage Programming  
With a 2.44V feedback reference voltage VREF, the output  
VOUT is programmed by a resistor divider as shown in the  
Block Diagram.  
.
fSYNC = 2fSYSTEM and fSET < (fSYSTEM • 0.8)  
Forexample,tosynchronizetheLT3782to200kHzsystem  
frequency fSYSTEM, fSYNC needs to be set at 400kHz and  
fSET needs to be set at 160kHz. From the Switching  
Frequency vs RFREQ graph found under the Typical Electri-  
cal Characteristics section, RFREQ = 130k.  
RF1  
RF2  
VOUT = 2.44 1+  
3782fa  
7
LT3782  
U
W U U  
APPLICATIO S I FOR ATIO  
Witha200nsone-shottimeronchip, theLT3782provides  
flexibility on the external sync pulse width. The sync pulse  
threshold is about 1.2V (Figure 1).  
to compensate for the propagation delay of external gate  
driver, a resistor divider can be used from RSET to ground  
to program VDELAY for the longer delay needed. For  
example, for a switching frequency of 250kHz and delay of  
150ns, then RFREQ1 + RFREQ2 should be 80k and VDELAY  
should be 1V, with VRSET = 2.3V then RFREQ1 = 47.5k and  
RFREQ2 = 32.5k (see Figure 3).  
5V TO 20V  
5k  
LT3782  
SYNC  
VN2222  
DELAY  
3782 F01  
PULSE WIDTH > 200ns  
LT3782  
Figure 1. Synchronizing with External Clock  
R
SET  
3782 F03  
R
R
FREQ1  
47.5k  
Current Limit  
FREQ2  
32.5k  
Current limit is set by the 60mV threshold across SEN1P,  
SEN1N for channel one and SEN2P, SEN2N for channel  
two. By connecting an external resistor RS (see Block  
Diagram), the current limit is set for 60mV/RS. RS should  
be placed very close to the power switch with very short  
traces. A low pass RC filter is needed across RS to filter out  
the switching spikes. Good Kelvin sensing is required for  
accurate current limit. The input bypass capacitor ground  
should be at the same ground point of the current sense  
resistor to minimize the ground current path.  
Figure 3. Increase Delay Time  
Duty Cycle Limit  
When DCL pin is shorted to RSET pin and switching  
frequency is less than 250kHz (RFREQ > 80k), the maxi-  
mum duty cycle of LT3782 will be at least 90%. The  
maximumdutycyclecanbeclampedto50%bygrounding  
the DCL pin or to 75% by forcing the VDCL voltage to 1.2V  
with a resistor divider from RSET pin to ground. The typical  
DCL pin input current is 0.2µA.  
Synchronous Rectifier Switches  
For high output voltage applications, the power loss of the  
catch diodes are relatively small because of high duty  
cycle.Ifdiodespowerlossorheatisaconcern,theLT3782  
provides PWM signals through SGATE1 and SGATE2 pins  
todriveexternalMOSFETdriversforsynchronousrectifier  
operation. Note that SGATE drives the top switch and  
BGATE drives the bottom switch. To avoid cross conduc-  
tionbetweentopandbottomswitches, theBGATEturn-on  
isdelayed100ns(whenDELAYpinistiedtoRSET pin)from  
SGATE turn-off (see Figure 2). If a longer delay is needed  
Slope Compensation  
The LT3782 is designed for high voltage and/or high  
current applications, and very often these applications  
generate noise spikes that can be picked up by the current  
sensing amplifier and cause switching jitter. To avoid  
switching jitter, careful layout is absolutely necessary to  
minimize the current sensing noise pickup. Sometimes  
increasingslopecompensationtoovercomethenoisecan  
help to reduce jitter. The built-in slope compensation can  
be increased by adding a resistor RSLOPE from SLOPE pin  
to ground. Note that smaller RSLOPE increases slope  
compensation and the minimum RSLOPE allowed is  
RFREQ/2.  
BGATE1  
SGATE1  
SET  
DELAY  
3782 F02  
Figure 2. Delay Timing  
3782fa  
8
LT3782  
U
W U U  
APPLICATIO S I FOR ATIO  
Layout Considerations  
Power Inductor Selection  
To prevent EMI, the power MOSFETs and input bypass  
capacitor leads should be kept as short as possible. A  
groundplaneshouldbeusedundertheswitchingcircuitry  
to prevent interplane coupling and to act as a thermal  
spreading path. Note that the bottom pad of the package  
is the heat sink, as well as the IC signal ground, and must  
be soldered to the ground plane.  
In a boost circuit, a power inductor should be designed to  
carry the maximum input DC current. The inductance  
should be small enough to generate enough ripple current  
to provide adequate signal to noise ratio to the LT3782. An  
empiricalstartingoftheinductorripplecurrent(perphase)  
is about 40% of maximum DC current, which is half of the  
input DC current in a 2-phase circuit:  
In a boost converter, the conversion gain (assuming  
100% efficiency) is calculated as (ignoring the forward  
voltage drop of the boost diode):  
IOUT(MAX) VOUT  
IOUT(MAX) VOUT  
IL 40%•  
= 20%•  
2V  
V
IN  
IN  
where VIN, VOUT and IOUT are the DC input voltage, output  
voltage and output current, respectively.  
VOUT  
V
IN  
1
1D  
=
And the inductance is estimated to be:  
where D is the duty ratio of the main switch. D can then be  
estimated from the input and output voltages:  
V D  
fs IL  
IN  
L =  
V
V
VOUT  
IN(MIN)  
IN  
D = 1−  
;DMAX = 1−  
where fs is the switching frequency per phase.  
VOUT  
The saturation current level of inductor is estimated to be:  
The Peak and Average Input Currents  
IOUT(MAX) VOUT  
IL  
2
I
IN  
2
The control circuit in the LT3782 measures the input  
current by using a sense resistor in each MOSFET source,  
so the output current needs to be reflected back to the  
input in order to dimension the power MOSFET properly.  
Based on the fact that, ideally, the output power is equal to  
the input power, the maximum average input current is:  
ISAT  
+
70%•  
V
IN(MIN)  
Sense Resistor Selection  
During the switch on-time, the control circuit limits the  
maximum voltage drop across the sense resistor to about  
60mV. The peak inductor current is therefore limited to  
60mV/R. The relationship between the maximum load  
current, duty cycle and the sense resistor RSENSE is:  
IO(MAX)  
1– DMAX  
The peak current is:  
I
=
IN(MAX)  
1– DMAX  
IO(MAX)  
1– DMAX  
R VSENSE(MAX)  
I
= 1.2•  
IO(MAX)  
IN(PEAK)  
1.2•  
2
The maximum duty cycle, DMAX, should be calculated at  
minimum VIN.  
3782fa  
9
LT3782  
U
W U U  
APPLICATIO S I FOR ATIO  
The power dissipated by the MOSFET in a 2-phase boost  
converter is:  
Power MOSFET Selection  
Important parameters for the power MOSFET include the  
drain-to-source breakdown voltage (BVDSS), the thresh-  
old voltage (VGS(TH)), the on-resistance (RDS(ON)) versus  
gate-to-source voltage, the gate-to-source and gate-to-  
drain charges (QGS and QGD, respectively), the maximum  
drain current (ID(MAX)) and the MOSFET’s thermal resis-  
tances (RTH(JC) and RTH(JA)).  
2
I
O(MAX)  
2
PFET  
=
RDS(ON) •D •ρT  
1– D  
(
)
I
O(MAX)  
2
2
The gate drive voltage is set by the 10V GBIAS regulator.  
Consequently, 10V rated MOSFETs are required in most  
high voltage LT3782 applications.  
+ k VO  
•CRSS • f  
1– D  
(
)
The first term in the equation above represents the I2R  
losses in the device, and the second term, the switching  
losses. The constant, k = 1.7, is an empirical factor  
inversely related to the gate drive current and has the  
dimension of 1/current. The ρT term accounts for the  
temperature coefficient of the RDS(ON) of the MOSFET,  
which is typically 0.4%/°C. Figure 4 illustrates the varia-  
tion of normalized RDS(ON) over temperature for a typical  
power MOSFET.  
Pay close attention to the BVDSS specifications for the  
MOSFETsrelativetothemaximumactualswitchvoltagein  
the application. The switch node can ring during the turn-  
off of the MOSFET due to layout parasitics. Check the  
switching waveforms of the MOSFET directly across the  
drain and source terminals using the actual PC board lay-  
out (not just on a lab breadboard!) for excessive ringing.  
Calculating Power MOSFET Switching and Conduction  
Losses and Junction Temperatures  
2.0  
1.5  
1.0  
0.5  
0
In order to calculate the junction temperature of the power  
MOSFET, the power dissipated by the device must be  
known. This power dissipation is a function of the duty  
cycle, the load current and the junction temperature itself  
(duetothepositivetemperaturecoefficientofitsRDS(ON)).  
As a result, some iterative calculation is normally required  
to determine a reasonably accurate value. Care should be  
taken to ensure that the converter is capable of delivering  
the required load current over all operating conditions  
(line voltage and temperature), and for the worst-case  
specifications for VSENSE(MAX) and the RDS(ON) of the  
MOSFET listed in the manufacturer’s data sheet.  
50  
100  
50  
150  
0
JUNCTION TEMPERATURE (°C)  
3782 F06  
Figure 4. Normalized R  
vs Temperature  
DS(ON)  
3782fa  
10  
LT3782  
U
W U U  
APPLICATIO S I FOR ATIO  
From a known power dissipated in the power MOSFET, its  
junction temperature can be obtained using the following  
formula:  
tion will further reduce the input capacitor ripple current  
rating. The ripple current is plotted in Figure 5. Please note  
that the ripple current is normalized against  
TJ = TA + PFET • RTH(JA)  
V
L • fs  
IN  
Inorm  
=
The RTH(JA) to be used in this equation normally includes  
the RTH(JC) for the device plus the thermal resistance from  
the case to the ambient temperature (RTH(CA)). This value  
of TJ can then be compared to the original, assumed value  
used in the iterative calculation process.  
Output Capacitor Selection  
The voltage rating of the output capacitor must be greater  
than the maximum output voltage with sufficient derating.  
Because the ripple current in output capacitor is a pulsat-  
ing square wave in a boost circuit, it is important that the  
ripple current rating of the output capacitor be high  
enough to deal with this large ripple current. Figure 6  
shows the output ripple current in the 1- and 2-phase  
designs. As we can see, the output ripple current of a  
2-phase boost circuit reaches almost zero when the duty  
cycle equals 50% or the output voltage is twice as much  
as the input voltage. Thus the 2-phase technique signifi-  
cantly reduces the output capacitor size.  
Input Capacitor Choice  
The input capacitor must have high enough voltage and  
ripple current ratings to handle the maximum input volt-  
ageandRMSripplecurrentrating. Theinputripplecurrent  
in a boost circuit is very small because the input current is  
continuous. With 2-phase operation, the ripple cancella-  
Normalized Peak-to-Peak Input  
Ripple Current  
1.00  
0.90  
0.80  
0.70  
Normalized Output RMS  
Ripple Currents  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0.60  
1-PHASE  
0.50  
0.40  
2-PHASE  
0.30  
0.20  
0.10  
0
1-PHASE  
0
0.2  
0.4  
0.6  
0.8  
1.0  
DUTY CYCLE  
2-PHASE  
3782 F04  
Figure 5. Normalized Input Peak-to-Peak Ripple Current:  
0.4 0.5  
DUTY CYCLE OR (1-V /V  
0.1 0.2 0.3  
0.6 0.7 0.8 0.9  
)
IN OUT  
V
IN  
3782 F05  
Inorm  
=
L • fs  
Figure 6. Normalized Output Ripple Currents in Boost Converter:  
1-Phase and 2-Phase. I Is the DC Output Current.  
The RMS Ripple Current is About 29% of the Peak-to-Peak  
Ripple Current.  
OUT  
3782fa  
11  
LT3782  
U
W U U  
APPLICATIO S I FOR ATIO  
For a given VIN and VOUT, we can calculate the duty cycle  
D and then derive the output RMS ripple current from  
Figure 6. After choosing output capacitors with sufficient  
RMS ripple current rating, we also need to consider the  
ESR requirement if Electrolytic caps, Tantulum caps,  
POSCAPs or SP CAPs are selected. Given the required  
output ripple voltage spec VOUT (in RMS value) and the  
calculated RMS ripple current IOUT, one can estimate the  
ESR value of the output capacitor to be  
1. The supply current into VIN. The VIN current is the sum  
of the DC supply current IQ (given in the Electrical  
Characteristics) and the MOSFET driver and control  
currents. The DC supply current into the VIN pin is  
typically about 7mA and represents a small power loss  
(much less than 1%) that increases with VIN. The driver  
current results from switching the gate capacitance of  
thepowerMOSFET;thiscurrentistypicallymuchlarger  
than the DC current. Each time the MOSFET is switched  
onandthenoff,apacketofgatechargeQG istransferred  
from GBIAS to ground. The resulting dQ/dt is a current  
that must be supplied to the GBIAS capacitor through  
the VIN pin by an external supply. In normal operation:  
VOUT  
ESR ≤  
IOUT  
External Regulator to Bias Gate Drivers  
IQ(TOT) IQ = f • QG  
If VIN is higher than 24V and the applications require the  
LT3782 to drive large MOSFETs the IC temperature may  
gettoohigh.Toreduceheat,anexternalregulatorbetween  
12V to 14V should be used to override the internal VGBIAS  
regulator to supply the current needed for BGATE1 and  
BGATE2 (see Figure 7).  
PIC = VIN • (IQ + f • QG)  
2. Power MOSFET switching and conduction losses:  
2
IO(MAX)  
2
P
FET  
=
RDS(ON) •DMAX ρT  
1– DMAX  
LT3782  
GBIAS  
+
12V  
GBIAS1  
GBIAS2  
IO(MAX)  
2
2
+ k VO  
•CRSS • f  
3782 F07  
2µF  
1– DMAX  
3. The I2R losses in the sense resistor can be calculated  
almost by inspection.  
Figure 7  
Efficiency Considerations  
2
IO(MAX)  
The efficiency of a switching regulator is equal to the  
output power divided by the input power (¥100%). Per-  
cent efficiency can be expressed as:  
2
PR(SENSE)  
=
•R•DMAX  
1– DMAX  
% Efficiency = 100% – (L1 + L2 + L3 + …),  
where L1, L2, etc. are the individual loss components as  
a percentage of the input power. It is often useful to  
analyze individual losses to determine what is limiting the  
efficiency and which change would produce the most  
improvement. Although all dissipative elements in the  
circuit produce losses, four main sources usually account  
for the majority of the losses in LT3782 application  
circuits:  
4. The losses in the inductor are simply the DC input  
currentsquaredtimesthewindingresistance. Express-  
ing this loss as a function of the output current yields:  
2
IO(MAX)  
2
PR(WINDING)  
=
•RW  
1– DMAX  
3782fa  
12  
LT3782  
U
W U U  
APPLICATIO S I FOR ATIO  
5. Losses in the boost diode. The power dissipation in the  
In order to help dissipate the power from MOSFETs and  
diodes, keep the ground plane on the layers closest to the  
layers where power components are mounted. Use power  
planes for MOSFETs and diodes in order to improve the  
spreading of the heat from these components into the  
PCB.  
boost diode is:  
IO(MAX)  
PDIODE  
=
VD  
2
The boost diode can be a major source of power loss in  
a boost converter. For 13.2V input, 42V output at 3A, a  
Schottky diode with a 0.4V forward voltage would  
dissipate 600mW, which represents about 1% of the  
input power. Diode losses can become significant at  
low output voltages where the forward voltage is a  
significant percentage of the output voltage.  
For best electrical performance, the LT3782 circuit should  
be laid out as follows:  
Place all power components in a tight area. This will  
minimize the size of high current loops. Orient the input  
andoutputcapacitorsandcurrentsenseresistorsinaway  
that minimizes the distance between the pads connected  
to ground plane.  
6. Other losses, including CIN and CO ESR dissipation and  
inductor core losses, generally account for less than  
2% of the total losses.  
Place the LT3782 and associated components tightly  
together and next to the section with power components.  
PCB Layout Considerations  
Use a local via to ground plane for all pads that connect to  
ground. Use multiple vias for power components.  
To achieve best performance from an LT3782 circuit, the  
PC board layout must be carefully done. For lower power  
applications, a two-layer PC board is sufficient. However,  
at higher power levels, a multiplayer PC board is recom-  
mended.Usingasolidgroundplaneunderthecircuitisthe  
easiest way to ensure that switching noise does not affect  
the operation.  
Connect the current sense inputs of LT3782 directly to the  
current sense resistor pads. Connect the current sense  
traces on the opposite sides of pads from the traces  
carrying the MOSFETs source currents to ground. This  
technique is referred to as Kelvin sensing.  
3782fa  
13  
LT3782  
U
TYPICAL APPLICATIO S  
10V to 24V Input to 24V, 8A Output Boost Converter  
10V TO 24V INPUT  
1
2
3
4
5
6
28  
27  
26  
25  
24  
23  
SGATE1  
SGATE2  
NC  
GBIAS  
2R2  
L1  
V
CC  
D1  
PB2020-103  
UPS840  
NC  
NC  
Q1  
PH3330  
1µF  
GND  
C
OUT2  
330µF, 35V, 2x  
CS1  
SYNC  
DELAY  
V
EE1  
0.004  
BGATE1  
GBIAS1  
GBIAS2  
7
8
22  
21  
DCL  
OUTPUT  
24V  
8A  
10Ω  
+
CS1  
SENSE1  
LT3782  
C
C
OUT1  
22µF, 25V, 4x  
IN  
2.2µF  
10nF  
22µF  
9
20  
19  
25V  
SENSE1  
SLOPE  
BGATE2  
0.004Ω  
59k  
82k  
10  
V
EE2  
NC  
CS2  
825k  
274k  
11  
12  
18  
17  
R
SET  
Q2  
PH3330  
+
SENSE2  
RUN  
FB  
10nF  
10Ω  
24.9k  
221k  
13  
14  
16  
15  
L2  
PB2020-103  
CS2  
SENSE2  
SS  
D2  
UPS840  
V
C
3782 TA02  
4.7nF  
L1, L2: PULSE PB2020-103  
ALL CERAMIC CAPACITORS ARE X7R, TDK  
C
C1  
6.8nF  
R
C1  
C
C2  
100pF  
13.3k  
*OUTPUT CURRENT WITH BOTH INPUTS PRESENT  
Efficiency  
100  
98  
96  
94  
92  
90  
88  
86  
15V  
IN  
12V  
IN  
0
1
2
3
4
5
6
7
8
I
(A)  
OUT  
3782 TA02b  
3782fa  
14  
LT3782  
U
PACKAGE DESCRIPTIO  
FE Package  
28-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation EB  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
4.75  
(.187)  
28 2726 25 24 23 22 21 20 19 18 1716 15  
6.60 ±0.10  
2.74  
(.108)  
EXPOSED  
PAD HEAT SINK  
ON BOTTOM OF  
PACKAGE  
4.50 ±0.10  
SEE NOTE 4  
6.40  
2.74  
(.252)  
(.108)  
BSC  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
5
7
1
2
3
4
6
8
9 10 12 13 14  
11  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE28 (EB) TSSOP 0204  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
MILLIMETERS  
(INCHES)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
3. DRAWING NOT TO SCALE  
3782fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT3782  
U
TYPICAL APPLICATIO S  
28V Output Base Station Power Converter with Redundant Input  
V
INA  
0V TO 28V*  
1
2
3
4
5
6
28  
27  
26  
25  
24  
23  
SGATE1  
SGATE2  
NC  
GBIAS  
2R2  
L1  
10µH  
V
CC  
D1  
UPS840  
BAS516  
NC  
NC  
Q1  
PH4840S  
1µF  
GND  
C
INA  
22µF  
C
OUT2  
330µF, 35V, 2x  
CS1  
0.004  
SYNC  
DELAY  
V
EE1  
BGATE1  
GBIAS1  
GBIAS2  
7
8
22  
21  
DCL  
OUTPUT  
28V  
4A (8A**)  
10Ω  
+
CS1  
SENSE1  
LT3782  
C
OUT1  
2.2µF  
10nF  
10µF, 50V, 4x  
9
20  
19  
SENSE1  
SLOPE  
BGATE2  
0.004Ω  
CS2  
59k  
82k  
10  
V
EE2  
NC  
C
INB  
22µF  
825k  
274k  
11  
12  
18  
17  
R
SET  
Q2  
PH4840S  
+
SENSE2  
RUN  
FB  
10nF  
10Ω  
24.9k  
261k  
13  
14  
16  
15  
L2  
10µH  
BAS516  
CS2  
SENSE2  
SS  
D2  
UPS840  
V
C
3782 TA03  
NOTE:  
4.7nF  
V
INB  
0V TO 28V*  
C
C1  
4.7nF  
*INPUT VOLTAGE RANGE FOR VINA AND VINB IS 0V TO 28V.  
AT LEAST ONE OF THE INPUTS MUST BE 12V OR HIGHER.  
R
C1  
C
C2  
100pF  
15k  
L1, L2: PULSE PB2020-103  
ALL CERAMIC CAPACITORS ARE X7R, TDK  
**OUTPUT CURRENT WITH BOTH INPUTS 12V OR HIGHER  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
Current Mode PWM Controller  
Current Mode DC/DC Controller  
COMMENTS  
LT®1619  
300kHz Fixed Frequency, Boost, SEPIC, Flyback Topology  
LTC1624  
SO-8; 300kHz Operating Frequency; Buck, Boost, SEPIC Design;  
V
Up to 36V  
IN  
LTC1696  
Overvoltage Protection Controller  
0.8V V 24V, ±2% Overvoltage Threshold Accuracy,  
IN  
ThinSOT Package  
LTC1700  
No R Synchronous Step-Up Controller  
Up to 95% Efficiency, Operation as Low as 0.9V Input  
SENSE  
LTC1871/LTC1871-7  
LT1930  
Wide Input Range Controller  
No R  
, 7V Gate Drive, Current Mode Control  
SENSE  
1.2MHz, SOT-23 Boost Converter  
Single Switch Synchronous Forward Controller  
Up to 34V Output, 2.6V V 16V, Miniature Design  
High Efficiency, 25W to 500W, Wide Input Range, Adaptive  
Duty Cycle Clamp  
IN  
LT1952  
LTC3425  
5A, 8MHz 4-Phase Monolithic Step-Up DC/DC Converter  
0.5V V 4.5V, 2.4V V  
5.25V, Very Low Output Ripple  
OUT  
IN  
LTC3703/LTC3703-5  
100V and 60V, Step-Down and Step-Up DC/DC  
Synchronous Controller  
High Efficiency Synchronous Operation, High Voltage Operation,  
No Transformer Required  
LTC3728  
LTC3729  
Dual, 550kHz, 2-Phase Synchronous Step-Down  
Controller  
Dual 180° Phased Controllers, V : 3.5V to 35V, 99% Duty Cycle,  
IN  
5x5QFN, SSOP-28 Packages  
20A to 200A, 550kHz PolyPhase™ Synchronous Controller Expandable from 2-Phase to 12-Phase, Uses all Surface Mount  
Components, V up to 36V  
IN  
LTC3731  
LTC3803  
3- to 12-Phase Step-Down Synchronous Controller  
SOT-23 Flyback Controller  
60A to 240A Output Current, 0.6V V  
Adjustable Slope Compensation, Internal Soft-Start, Current  
Mode 200kHz Operation  
6V, 4.5V V 32V  
OUT IN  
LTC3806  
Synchronous Flyback Controller  
High Efficiency, Improves Cross Regulation in Multiple Output  
Designs, Current Mode, 3mm × 4mm 12 Pin DFN Package  
No RSENSE and PolyPhase are trademarks of Linear Technology Corporation.  
3782fa  
LT/LT 0705 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT3782A

2-Phase Step-Up DC/DC Controller
Linear

LT3782AEFE

2-Phase Step-Up DC/DC Controller
Linear

LT3782AEFE#PBF

LT3782A - 2-Phase Step-Up DC/DC Controller; Package: TSSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3782AEFE#TR

暂无描述
Linear

LT3782AEFE-PBF

2-Phase Step-Up DC/DC Controller
Linear

LT3782AEFE-TR

2-Phase Step-Up DC/DC Controller
Linear

LT3782AEFE-TRPBF

2-Phase Step-Up DC/DC Controller
Linear

LT3782AEUFD

2-Phase Step-Up DC/DC Controller
Linear

LT3782AEUFD#TR

IC 0.07 A SWITCHING CONTROLLER, 533 kHz SWITCHING FREQ-MAX, PQCC28, 4 X 5 MM, PLASTIC, MO-220WXXX-X, QFN-28, Switching Regulator or Controller
Linear

LT3782AEUFD#TRPBF

2-Phase Step-Up DC/DC Controller
Linear

LT3782AEUFD-PBF

2-Phase Step-Up DC/DC Controller
Linear

LT3782AEUFD-TR

2-Phase Step-Up DC/DC Controller
Linear