LT3990IDDBTRPBF [Linear]

60V, 350mA Step-Down Regulator with 2.5μA Quiescent Current and Integrated Diodes; 60V为350mA降压型稳压器具有2.5μA静态电流和集成二极管
LT3990IDDBTRPBF
型号: LT3990IDDBTRPBF
厂家: Linear    Linear
描述:

60V, 350mA Step-Down Regulator with 2.5μA Quiescent Current and Integrated Diodes
60V为350mA降压型稳压器具有2.5μA静态电流和集成二极管

稳压器 二极管
文件: 总20页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Electrical Specifications Subject to Change  
LT3990  
60V, 350mA Step-Down  
Regulator with 2.5µA  
Quiescent Current and  
Integrated Diodes  
FEATURES  
DESCRIPTION  
Low Ripple Burst Mode® Operation  
The LT®3990 is an adjustable frequency monolithic buck  
switching regulator that accepts a wide input voltage  
range up to 60V, and consumes only 2.5μA of quiescent  
current. A high efficiency switch is included on the die  
along with the catch diode, boost diode, and the neces-  
saryoscillator, controlandlogiccircuitry. LowrippleBurst  
Mode operation maintains high efficiency at low output  
currents while keeping the output ripple below 5mV in a  
typical application. Current mode topology is used for fast  
transient response and good loop stability. A catch diode  
current limit provides protection against shorted outputs  
and overvoltage conditions. An enable pin with accurate  
threshold is available, producing a low shutdown current  
n
2.5μA I at 12V to 3.3V  
Q
IN  
OUT  
Output Ripple < 5mV  
P-P  
n
n
n
n
n
n
n
n
n
n
n
Wide Input Voltage Range: 4.2V to 60V Operating  
Adjustable Switching Frequency: 200kHz to 2.2MHz  
Integrated Boost and Catch Diodes  
350mA Output Current  
Accurate 1V Enable Pin Threshold  
Low Shutdown Current: I = 0.7μA  
Q
Internal Sense Limits Catch Diode Current  
Power Good Flag  
Output Voltage: 1.21V to 25V  
Internal Compensation  
Small 10-Pin MSOP and (3mm × 2mm) DFN Packages  
of 0.7μA. A power good flag signals when V  
reaches  
OUT  
90% of the programmed output voltage. The LT3990 is  
available in small 10-pin MSOP and 3mm × 2mm DFN  
packages.  
L, LT, LTC, LTM, Burst Mode, Linear Technology and the Linear logo are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
APPLICATIONS  
n
Automotive Battery Regulation  
Power for Portable Products  
n
n
Industrial Supplies  
TYPICAL APPLICATION  
5V Step-Down Converter  
Efficiency  
90  
V
= 12V  
V
IN  
IN  
6V TO 60V  
0.22μF  
80  
70  
V
BOOST  
LT3990  
IN  
22μH  
22pF  
V
OUT  
5V  
OFF ON  
EN  
PG  
SW  
BD  
350mA  
60  
50  
1M  
RT  
FB  
22μF  
2.2μF  
GND  
316k  
226k  
f = 600kHz  
3990 TA01a  
40  
30  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
3990 TA01b  
3990p  
1
LT3990  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
V , EN Voltage .........................................................60V  
Operating Junction Temperature Range (Note 2)  
LT3990E............................................. –40°C to 125°C  
LT3990I.............................................. –40°C to 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
IN  
BOOST Pin Voltage ...................................................75V  
BOOST Pin Above SW Pin.........................................30V  
FB, RT Voltage.............................................................6V  
PG, BD Voltage .........................................................30V  
MS Only............................................................ 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
10  
9
FB  
RT  
FB  
1
2
3
4
5
10 RT  
EN  
PG  
EN  
9
8
7
6
PG  
11  
8
V
IN  
BD  
V
BD  
IN  
GND  
BOOST  
SW  
7
GND  
BOOST  
SW  
GND  
6
GND  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
DDB PACKAGE  
10-LEAD (3mm s 2mm) PLASTIC DFN  
θ
= 100°C/W  
JA  
θ
= 76°C/W  
JA  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3990EDDB#PBF  
LT3990IDDB#PBF  
LT3990EMS#PBF  
LT3990IMS#PBF  
TAPE AND REEL  
PART MARKING*  
LFCZ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT3990EDDB#TRPBF  
LT3990IDDB#TRPBF  
LT3990EMS#TRPBF  
LT3990IMS#TRPBF  
10-Lead (3mm × 2mm) Plastic DFN  
10-Lead (3mm × 2mm) Plastic DFN  
10-Lead Plastic MSOP  
LFCZ  
LTFDB  
LTFDB  
10-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3990p  
2
LT3990  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VBD = 3.3V unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Minimum Input Voltage  
Quiescent Current from V  
4
4.2  
V
V
V
V
Low  
High  
High  
0.7  
1.7  
0.98  
2.7  
3.5  
μA  
μA  
μA  
IN  
EN  
EN  
EN  
Feedback Voltage  
1.195  
1.185  
1.21  
1.21  
1.225  
1.235  
V
V
l
l
FB Pin Bias Current (Note 3)  
FB Voltage Line Regulation  
Switching Frequency  
0.1  
20  
nA  
4.2V < V < 60V  
0.0002  
0.01  
%/V  
IN  
R = 41.2k, V = 6V  
1.76  
640  
160  
2.25  
800  
200  
2.64  
960  
240  
MHz  
kHz  
kHz  
T
IN  
R = 158k, V = 6V  
T
IN  
R = 768k, V = 6V  
T
IN  
Switch Current Limit  
V
V
= 5V, V = 0V  
535  
350  
700  
400  
300  
0.05  
650  
0.05  
875  
0.02  
1.4  
5.5  
1
865  
500  
mA  
mA  
mV  
μA  
mV  
μA  
mV  
μA  
V
IN  
FB  
Catch Schottky Current Limit  
= 5V  
IN  
Switch V  
I
= 200mA  
CESAT  
SW  
Switch Leakage Current  
Catch Schottky Forward Voltage  
Catch Schottky Reverse Leakage  
Boost Schottky Forward Voltage  
Boost Schottky Reverse Leakage  
Minimum Boost Voltage (Note 4)  
BOOST Pin Current  
2
2
I
= 100mA, V = V = NC  
SCH  
IN  
BD  
V
SW  
= 12V  
I
= 50mA, V = NC, V  
= 0V  
BOOST  
SCH  
IN  
V
V
= 12V  
2
1.8  
8
REVERSE  
l
l
= 5V  
IN  
I
= 200mA, V = 15V  
BOOST  
mA  
nA  
V
SW  
EN Pin Current  
V
EN  
= 12V  
30  
EN Voltage Threshold  
EN Rising, V ≥ 4.2V  
0.95  
80  
1
1.05  
IN  
EN Voltage Hysteresis  
30  
mV  
mV  
mV  
μA  
μA  
ns  
PG Threshold Offset from Feedback Voltage  
PG Hysteresis  
V
FB  
Rising  
120  
12  
160  
1
PG Leakage  
V
V
= 3V  
0.01  
80  
PG  
PG  
l
l
PG Sink Current  
= 0.4V  
40  
Minimum Switch On-Time  
Minimum Switch Off-Time  
90  
V
IN  
= 10V  
100  
160  
ns  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Bias current flows into the FB pin.  
Note 4: This is the minimum voltage across the boost capacitor needed to  
guarantee full saturation of the switch.  
Note 2: The LT3990E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization, and correlation with statistical process controls. The  
LT3990I is guaranteed over the full –40°C to 125°C operating junction  
temperature range.  
3990p  
3
LT3990  
T = 25°C, unless otherwise noted.  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency, VOUT = 3.3V  
Efficiency, VOUT = 5V  
VFB vs Temperature  
90  
90  
1.220  
FRONT PAGE APPLICATION  
80  
70  
80  
70  
V
= 12V  
= 36V  
1.215  
1.210  
IN  
IN  
V
= 12V  
= 36V  
IN  
IN  
V
= 24V  
V
= 24V  
IN  
IN  
V
V
60  
50  
60  
50  
1.205  
1.200  
1.195  
FRONT PAGE APPLICATION  
V
= 3.3V  
40  
30  
40  
30  
OUT  
R1 = 1M  
R2 = 576k  
0.01  
0.1  
1
10  
100  
50  
TEMPERATURE (°C)  
0.01  
0.1  
1
10  
100  
–50 –25  
0
25  
75 100 125 150  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3990 G02  
3990 G01  
3990 G03  
No-Load Supply Current  
No-Load Supply Current  
Maximum Load Current  
15  
550  
500  
450  
400  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
FRONT PAGE APPLICATION  
FRONT PAGE APPLICATION  
FRONT PAGE APPLICATION  
V
= 3.3V  
V
V
= 12V  
V
= 3.3V  
OUT  
IN  
OUT  
OUT  
= 3.3V  
R1 = 1M  
12  
9
TYPICAL  
R1 = 1M  
R2 = 576k  
R2 = 576k  
MINIMUM  
6
3
0
350  
50  
TEMPERATURE (°C)  
–50 –25  
0
25  
75 100 125 150  
25  
30  
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
35  
40  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3990 G05  
3990 G06  
3990 G04  
Maximum Load Current  
Maximum Load Current  
Load Regulation  
600  
550  
500  
450  
400  
350  
600  
500  
400  
300  
200  
100  
0
0.20  
FRONT PAGE APPLICATION  
V
= 5V  
OUT  
0.15  
0.10  
LIMITED BY CURRENT LIMIT  
TYPICAL  
0.05  
0
LIMITED BY MAXIMUM  
JUNCTION TEMPERATURE;  
Q
= 76°C/W  
MINIMUM  
JA  
–0.05  
–0.10  
–0.15  
FRONT PAGE APPLICATION  
V
V
= 12V  
= 5V  
FRONT PAGE APPLICATION  
REFERENCED FROM V  
IN  
OUT  
AT 100mA LOAD  
OUT  
–0.20  
50  
0
50  
100  
150  
200 250 300 350  
5
10  
15  
20  
25  
30  
35  
40  
–50 –25  
0
25  
75 100 125  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
3990 G07  
3990 G08  
3990 G09  
3990p  
4
LT3990  
T = 25°C, unless otherwise noted.  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
Switch Current Limit  
Switch Current Limit  
Switching Frequency  
800  
700  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
800  
700  
600  
500  
400  
300  
200  
SWITCH PEAK CURRENT LIMIT  
SWITCH PEAK  
CURRENT LIMIT  
600  
500  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CATCH DIODE VALLEY CURRENT LIMIT  
CATCH DIODE VALLEY CURRENT LIMIT  
400  
300  
200  
0
20  
40  
60  
80  
100  
75 100  
–50  
–25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50  
125 150  
DUTY CYCLE (%)  
TEMPERATURE (oC)  
3990 G10  
3990 G12  
3990 G11  
Minimum  
Switch On-Time/Switch Off-Time  
Switch VCESAT (ISW = 200mA)  
vs Temperature  
Switch VCESAT  
350  
300  
250  
200  
200  
180  
160  
140  
120  
100  
80  
500  
400  
300  
200  
100  
0
LOAD CURRENT = 175mA  
MINIMUM OFF-TIME  
MINIMUM ON-TIME  
60  
40  
20  
0
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50  
50  
100 125  
150  
–25  
0
25  
75  
0
100  
200  
300  
400  
500  
TEMPERATURE (°C)  
SWITCH CURRENT (mA)  
3990 G14  
3990 G13  
3990 G15  
Minimum Input Voltage,  
VOUT = 3.3V  
Minimum Input Voltage,  
VOUT = 5V  
BOOST Pin Current  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
14  
12  
FRONT PAGE APPLICATION  
FRONT PAGE APPLICATION  
V
= 3.3V  
V
= 5V  
OUT  
OUT  
TO START  
10  
8
TO START  
TO RUN  
TO RUN  
6
4
2
0
100  
200  
300  
500  
200  
LOAD CURRENT (mA)  
350  
200  
LOAD CURRENT (mA)  
350  
0
400  
0
50 100 150  
250  
0
50 100 150  
250  
300  
300  
SWITCH CURRENT (mA)  
3990 G16  
3990 G17  
3990 G17  
3990p  
5
LT3990  
T = 25°C, unless otherwise noted.  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
Boost Diode Forward Voltage  
Catch Diode Forward Voltage  
Catch Diode Leakage  
1.2  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
20  
V
= 12V  
R
16  
12  
0.8  
0.6  
8
4
0
0.4  
0.2  
0
–50°C  
25°C  
125°C  
150°C  
–50°C  
25°C  
125°C  
150°C  
0
50  
100  
150  
200  
0
100  
200  
300  
400  
–50  
25 50 75  
–25  
0
100 125  
150  
TEMPERATURE (°C)  
BOOST DIODE CURRENT (mA)  
CATCH DIODE CURRENT (mA)  
3990 G19  
3990 G20  
3990 G21  
Transient Load Response; Load  
Current is Stepped from 10mA  
(Burst Mode Operation) to 110mA  
Power Good Threshold  
EN Threshold  
92  
91  
90  
89  
1.050  
1.025  
1.000  
0.975  
V
OUT  
100mV/DIV  
I
L
100mA/DIV  
3990 G24  
100μs/DIV  
FRONT PAGE APPLICATION  
V
V
= 12V  
OUT  
IN  
= 5V  
88  
0.950  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3990 G22  
3990 G23  
Transient Load Response; Load  
Current is Stepped from 100mA  
to 200mA  
Switching Waveforms,  
Burst Mode Operation  
Switching Waveforms, Full  
Frequency Continuous Operation  
V
V
SW  
5mV/DIV  
SW  
V
OUT  
5V/DIV  
100mV/DIV  
I
I
L
L
100mA/DIV  
200mA/DIV  
I
L
V
100mA/DIV  
V
OUT  
OUT  
5mV/DIV  
5mV/DIV  
3990 G25  
3990 G26  
3990 G27  
100μs/DIV  
2μs/DIV  
1μs/DIV  
FRONT PAGE APPLICATION  
FRONT PAGE APPLICATION  
FRONT PAGE APPLICATION  
V
V
= 12V  
V
IN  
V
= 12V  
V
IN  
V
= 12V  
IN  
OUT  
= 5V  
= 5V  
= 10mA  
= 5V  
= 350mA  
OUT  
LOAD  
OUT  
LOAD  
I
I
3990p  
6
LT3990  
PIN FUNCTIONS  
FB (Pin 1): The LT3990 regulates the FB pin to 1.21V. Con-  
nect the feedback resistor divider tap to this pin.  
BOOST (Pin 7): This pin is used to provide a drive volt-  
age, higher than the input voltage, to the internal bipolar  
NPN power switch.  
EN (Pin 2): The part is in shutdown when this pin is low  
and active when this pin is high. The hysteretic threshold  
BD (Pin 8): This pin connects to the anode of the boost  
diode.ThispinalsosuppliescurrenttotheLT3990’sinternal  
regulator when BD is above 3.2V.  
voltage is 1V going up and 0.97V going down. Tie to V  
IN  
if shutdown feature is not used. The EN threshold is ac-  
curate only when V is above 4.2V. If V is lower than  
IN  
IN  
PG (Pin 9): The PG pin is the open-drain output of an  
internal comparator. PG remains low until the FB pin is  
within10%ofthenalregulationvoltage. PGisvalidwhen  
4.2V, ground EN to place the part in shutdown.  
V (Pin 3): The V pin supplies current to the LT3990’s  
IN  
IN  
internal circuitry and to the internal power switch. This  
V is above 4.2V and EN is high.  
IN  
pin must be locally bypassed.  
RT (Pin 10): A resistor is tied between RT and ground to  
set the switching frequency.  
GND (Pins 4, 5): Ground.  
SW (Pin 6): The SW pin is the output of an internal power  
switch. Connect this pin to the inductor.  
Exposed Pad (Pin 11, DFN Only): Ground. Must be sol-  
dered to PCB.  
BLOCK DIAGRAM  
V
IN  
3
V
IN  
C1  
INTERNAL 1.21V REF  
SHDN  
+
BD  
8
1V  
+
EN  
2
D
BOOST  
SLOPE COMP  
BOOST  
SWITCH LATCH  
7
6
R
Q
S
RT  
PG  
OSCILLATOR  
10  
9
C3  
200kHz TO 2.2MHz  
R
T
L1  
C2  
1.09V  
+
+
SW  
V
V
OUT  
C
Burst Mode  
DETECT  
ERROR  
AMP  
D
CATCH  
GND  
(4, 5)  
FB  
1
R2  
R1  
3990 BD  
3990p  
7
LT3990  
OPERATION  
The LT3990 is a constant frequency, current mode step-  
down regulator. An oscillator, with frequency set by RT,  
sets an RS flip-flop, turning on the internal power switch.  
An amplifier and comparator monitor the current flowing  
If the EN pin is low, the LT3990 is shut down and draws  
0.7μA from the input. When the EN pin exceeds 1V, the  
switching regulator will become active.  
The switch driver operates from either V or from the  
IN  
between the V and SW pins, turning the switch off when  
IN  
BOOST pin. An external capacitor is used to generate a  
voltage at the BOOST pin that is higher than the input  
supply. This allows the driver to fully saturate the internal  
bipolar NPN power switch for efficient operation.  
this current reaches a level determined by the voltage at  
V (see Block Diagram). An error amplifier measures the  
C
output voltage through an external resistor divider tied to  
the FB pin and servos the V node. If the error amplifier’s  
C
To further optimize efficiency, the LT3990 automatically  
switches to Burst Mode operation in light load situations.  
Between bursts, all circuitry associated with controlling  
the output switch is shut down reducing the input supply  
current to 1.7μA.  
output increases, more current is delivered to the output;  
if it decreases, less current is delivered.  
Anothercomparatormonitorsthecurrentowingthrough  
thecatchdiodeandreducestheoperatingfrequencywhen  
the current exceeds the 410mA bottom current limit. This  
foldback in frequency helps to control the output current  
in fault conditions such as a shorted output with high  
input voltage. Maximum deliverable current to the output  
is therefore limited by both switch current limit and catch  
diode current limit.  
The LT3990 contains a power good comparator which  
trips when the FB pin is at 90% of its regulated value. The  
PG output is an open-drain transistor that is off when the  
output is in regulation, allowing an external resistor to pull  
the PG pin high. Power good is valid when the LT3990 is  
enabled and V is above 4.2V.  
IN  
An internal regulator provides power to the control cir-  
cuitry. The bias regulator normally draws power from  
the V pin, but if the BD pin is connected to an external  
IN  
voltage higher than 3.2V, bias power will be drawn from  
theexternalsource(typicallytheregulatedoutputvoltage).  
This improves efficiency.  
3990p  
8
LT3990  
APPLICATIONS INFORMATION  
FB Resistor Network  
where V is the typical input voltage, V  
is the output  
IN  
OUT  
voltage, V is the integrated catch diode drop (~0.7V),  
D
The output voltage is programmed with a resistor divider  
between the output and the FB pin. Choose the 1% resis-  
tors according to:  
and V is the internal switch drop (~0.5V at max load).  
SW  
This equation shows that slower switching frequency is  
necessary to accommodate high V /V  
ratio.  
IN OUT  
V
1.21  
OUT  
Lower frequency also allows a lower dropout voltage. The  
input voltage range depends on the switching frequency  
because the LT3990 switch has finite minimum on and off  
times.Theswitchcanturnonforaminimumof~150nsand  
turn off for a minimum of ~160ns (note that the minimum  
on-time is a strong function of temperature). This means  
that the minimum and maximum duty cycles are:  
R1=R2  
–1  
Reference designators refer to the Block Diagram. Note  
that choosing larger resistors will decrease the quiescent  
current of the application circuit.  
Setting the Switching Frequency  
DC  
DC  
= f • t  
SW ON(MIN)  
MIN  
The LT3990 uses a constant frequency PWM architecture  
thatcanbeprogrammedtoswitchfrom200kHzto2.2MHz  
by using a resistor tied from the RT pin to ground. A table  
= 1 – f • t  
MAX  
SW ON(MIN)  
where f is the switching frequency, the t  
is the  
ON(MIN)  
SW  
showing the necessary R value for a desired switching  
T
minimum switch on-time (~150ns), and the t  
is  
OFF(MIN)  
frequency is in Table 1.  
the minimum switch off-time (~160ns). These equations  
show that duty cycle range increases when switching  
frequency is decreased.  
Table 1. Switching Frequency vs RT Value  
SWITCHING FREQUENCY (MHz)  
R VALUE (kΩ)  
T
0.2  
0.3  
0.4  
0.5  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
768  
499  
357  
280  
226  
158  
124  
100  
80.6  
68.1  
57.6  
49.9  
42.2  
A good choice of switching frequency should allow ad-  
equate input voltage range (see next section) and keep  
the inductor and capacitor values small.  
Input Voltage Range  
The minimum input voltage is determined by either the  
LT3990’s minimum operating voltage of 4.2V or by its  
maximum duty cycle (as explained in previous section).  
The minimum input voltage due to duty cycle is:  
VOUT + VD  
1– fSW • tOFF(MIN)  
Operating Frequency Trade-Offs  
V
=
VD + VSW  
IN(MIN)  
Selectionoftheoperatingfrequencyisatrade-offbetween  
efficiency, componentsize, minimumdropoutvoltageand  
maximum input voltage. The advantage of high frequency  
operationisthatsmallerinductorandcapacitorvaluesmay  
be used. The disadvantages are lower efficiency, lower  
maximum input voltage, and higher dropout voltage. The  
where V  
is the minimum input voltage, V  
is the  
SW  
SW  
IN(MIN)  
OUT  
output voltage, V is the catch diode drop (~0.7V), V  
D
is the internal switch drop (~0.5V at max load), f is  
the switching frequency (set by RT), and t  
is the  
OFF(MIN)  
minimumswitchoff-time(160ns).Notethathigherswitch-  
ing frequency will increase the minimum input voltage.  
If a lower dropout voltage is desired, a lower switching  
frequency should be used.  
highest acceptable switching frequency (f  
given application can be calculated as follows:  
) for a  
SW(MAX)  
VOUT + VD  
fSW(MAX)  
=
tON(MIN) V – VSW + VD  
(
)
IN  
3990p  
9
LT3990  
APPLICATIONS INFORMATION  
The highest allowed V during normal operation  
where V is the voltage drop of the catch diode (~0.7V),  
D
IN  
(V  
) is limited by minimum duty cycle and can  
be calculated by the following equation:  
L is in μH and f is in MHz. The inductor’s RMS current  
IN(OP-MAX)  
SW  
rating must be greater than the maximum load current  
and its saturation current should be about 30% higher.  
For robust operation in fault conditions (start-up or short  
circuit) and high input voltage (>30V), the saturation  
current should be above 500mA. To keep the efficiency  
high, the series resistance (DCR) should be less than  
0.1Ω, and the core material should be intended for high  
frequency applications. Table 2 lists several vendors and  
suitable types.  
VOUT + VD  
fSW • tON(MIN)  
V
=
VD + VSW  
IN(OP-MAX)  
where t  
is the minimum switch on-time (~150ns).  
ON(MIN)  
However, the circuit will tolerate inputs up to the absolute  
maximumratingsoftheV andBOOSTpins,regardlessof  
IN  
chosenswitchingfrequency.Duringsuchtransientswhere  
V ishigherthanV  
,theswitchingfrequencywill  
IN(OP-MAX)  
IN  
This simple design guide will not always result in the  
optimum inductor selection for a given application. As a  
general rule, lower output voltages and higher switching  
frequency will require smaller inductor values. If the ap-  
plication requires less than 350mA load current, then a  
lesser inductor value may be acceptable. This allows use  
of a physically smaller inductor, or one with a lower DCR  
resulting in higher efficiency. There are several graphs in  
theTypicalPerformanceCharacteristicssectionofthisdata  
sheet that show the maximum load current as a function  
of input voltage for several popular output voltages. Low  
inductance may result in discontinuous mode operation,  
which is acceptable but reduces maximum load current.  
For details of maximum output current and discontinu-  
ous mode operation, see Linear Technology Application  
be reduced below the programmed frequency to prevent  
damage to the part. The output voltage ripple and inductor  
current ripple may also be higher than in typical operation,  
however the output will still be in regulation.  
Inductor Selection  
For a given input and output voltage, the inductor value  
and switching frequency will determine the ripple current.  
The ripple current increases with higher V or V  
and  
IN  
OUT  
decreases with higher inductance and faster switching  
frequency. A good starting point for selecting the induc-  
tor value is:  
VOUT + VD  
L = 3  
fSW  
Note 44.Finally,fordutycyclesgreaterthan50%(V /V  
OUT IN  
> 0.5), there is a minimum inductance required to avoid  
subharmonic oscillations. See Application Note 19.  
Table 2. Inductor Vendors  
VENDOR  
Coilcraft  
Sumida  
URL  
www.coilcraft.com  
www.sumida.com  
www.tokoam.com  
www.we-online.com  
www.cooperet.com  
www.murata.com  
Input Capacitor  
Bypass the input of the LT3990 circuit with a ceramic  
capacitor of X7R or X5R type. Y5V types have poor  
performance over temperature and applied voltage, and  
should not be used. A 1μF to 4.7μF ceramic capacitor  
is adequate to bypass the LT3990 and will easily handle  
Toko  
Würth Elektronik  
Coiltronics  
Murata  
3990p  
10  
LT3990  
APPLICATIONS INFORMATION  
the ripple current. Note that larger input capacitance is  
required when a lower switching frequency is used (due  
to longer on-times). If the input power source has high  
impedance, or there is significant inductance due to  
long wires or cables, additional bulk capacitance may be  
necessary. This can be provided with a low performance  
electrolytic capacitor.  
LT3990toproducetheDCoutput. Inthisroleitdetermines  
the output ripple, so low impedance (at the switching  
frequency) is important. The output ripple decreases with  
increasing output capacitance, down to approximately  
1mV. See Figure 1. Note that a larger phase lead capacitor  
should be used with a large output capacitor.  
18  
FRONT PAGE APPLICATION  
C
= 47pF FOR C  
≥ 47μF  
16  
14  
12  
10  
8
LEAD  
OUT  
Step-down regulators draw current from the input sup-  
ply in pulses with very fast rise and fall times. The input  
capacitor is required to reduce the resulting voltage ripple  
attheLT3990andtoforcethisveryhighfrequencyswitch-  
ing current into a tight local loop, minimizing EMI. A 1μF  
capacitor is capable of this task, but only if it is placed  
closetotheLT3990(seethePCBLayoutsection).Asecond  
precautionregardingtheceramicinputcapacitorconcerns  
themaximuminputvoltageratingoftheLT3990.Aceramic  
input capacitor combined with trace or cable inductance  
forms a high quality (under damped) tank circuit. If the  
LT3990 circuit is plugged into a live supply, the input volt-  
agecanringtotwiceitsnominalvalue, possiblyexceeding  
theLT3990’svoltagerating.Thissituationiseasilyavoided  
(see the Hot Plugging Safely section).  
6
4
V
= 24V  
60  
IN  
2
V
= 12V  
IN  
0
0
80  
100  
20  
40  
C
(μF)  
OUT  
3990 F01  
Figure 1. Worst-Case Output Ripple Across Full Load Range  
When choosing a capacitor, look carefully through the  
data sheet to find out what the actual capacitance is under  
operating conditions (applied voltage and temperature).  
A physically larger capacitor or one with a higher voltage  
rating may be required. Table 3 lists several capacitor  
vendors.  
Output Capacitor and Output Ripple  
The output capacitor has two essential functions. It stores  
energy in order to satisfy transient loads and stabilize the  
LT3990’s control loop. Ceramic capacitors have very low  
equivalent series resistance (ESR) and provide the best  
ripple performance. A good starting value is:  
Table 3. Recommended Ceramic Capacitor Vendors  
MANUFACTURER  
AVX  
WEBSITE  
www.avxcorp.com  
www.murata.com  
www.t-yuden.com  
www.vishay.com  
www.tdk.com  
50  
VOUT • fSW  
Murata  
COUT  
=
Taiyo Yuden  
Vishay Siliconix  
TDK  
where f is in MHz and C  
is the recommended output  
OUT  
SW  
capacitance in ꢀF. Use X5R or X7R types. This choice will  
provide low output ripple and good transient response.  
Transientperformancecanbeimprovedwithahighervalue  
capacitorifcombinedwithaphaseleadcapacitor(typically  
22pF) between the output and the feedback pin. A lower  
value of output capacitor can be used to save space and  
cost but transient performance will suffer.  
Ceramic Capacitors  
Ceramic capacitors are small, robust and have very low  
ESR. However, ceramic capacitors can cause problems  
whenusedwiththeLT3990duetotheirpiezoelectricnature.  
When in Burst Mode operation, the LT3990’s switching  
frequency depends on the load current, and at very light  
loads the LT3990 can excite the ceramic capacitor at audio  
frequencies, generating audible noise. Since the LT3990  
The second function is that the output capacitor, along  
with the inductor, lters the square wave generated by the  
3990p  
11  
LT3990  
APPLICATIONS INFORMATION  
700  
600  
operates at a lower current limit during Burst Mode op-  
eration, the noise is typically very quiet to a casual ear. If  
this is unacceptable, use a high performance tantalum or  
electrolytic capacitor at the output.  
FRONT PAGE APPLICATION  
500  
400  
300  
200  
100  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LT3990. As pre-  
viously mentioned, a ceramic input capacitor combined  
with trace or cable inductance forms a high quality (under  
damped)tankcircuit. IftheLT3990circuitispluggedintoa  
live supply, the input voltage can ring to twice its nominal  
value,possiblyexceedingtheLT3990’srating.Thissituation  
is easily avoided (see the Hot Plugging Safely section).  
0
200  
LOAD CURRENT (mA)  
300 350  
0
50  
100 150  
250  
3990 F03  
Figure 3. Switching Frequency in Burst Mode Operation  
Low Ripple Burst Mode Operation  
At higher output loads (above ~45mA for the front page  
application) the LT3990 will be running at the frequency  
To enhance efficiency at light loads, the LT3990 operates  
inlowrippleBurstModeoperationwhichkeepstheoutput  
capacitor charged to the proper voltage while minimizing  
the input quiescent current. During Burst Mode opera-  
tion, the LT3990 delivers single cycle bursts of current to  
the output capacitor followed by sleep periods where the  
output power is delivered to the load by the output capaci-  
tor. Because the LT3990 delivers power to the output with  
single, low current pulses, the output ripple is kept below  
5mV for a typical application. See Figure 2.  
programmed by the R resistor, and will be operating in  
T
standard PWM mode. The transition between PWM and  
low ripple Burst Mode is seamless, and will not disturb  
the output voltage.  
BOOST and BD Pin Considerations  
CapacitorC3andtheinternalboostSchottkydiode(seethe  
Block Diagram) are used to generate a boost voltage that  
is higher than the input voltage. In most cases a 0.22μF  
capacitor will work well. Figure 4 shows two ways to ar-  
range the boost circuit. The BOOST pin must be more than  
1.9V above the SW pin for best efficiency. For outputs of  
2.2V and above, the standard circuit (Figure 4a) is best.  
For outputs between 2.2V and 2.5V, use a 0.47μF boost  
capacitor. For output voltages below 2.2V, the boost diode  
can be tied to the input (Figure 4b), or to another external  
supply greater than 2.2V. However, the circuit in Figure 4a  
is more efficient because the BOOST pin current and BD  
pin quiescent current come from a lower voltage source.  
Also, be sure that the maximum voltage ratings of the  
BOOST and BD pins are not exceeded.  
Astheloadcurrentdecreasestowardsanoloadcondition,  
the percentage of time that the LT3990 operates in sleep  
mode increases and the average input current is greatly  
reducedresultinginhighefficiencyevenatverylowloads.  
Note that during Burst Mode operation, the switching  
frequency will be lower than the programmed switching  
frequency. See Figure 3.  
V
SW  
5V/DIV  
I
L
100mA/DIV  
V
OUT  
5mV/DIV  
The minimum operating voltage of an LT3990 application  
is limited by the minimum input voltage (4.2V) and by the  
maximum duty cycle as outlined in a previous section. For  
proper start-up, the minimum input voltage is also limited  
by the boost circuit. If the input voltage is ramped slowly,  
the boost capacitor may not be fully charged. Because  
3990 G26  
2μs/DIV  
FRONT PAGE APPLICATION  
V
V
= 12V  
IN  
= 5V  
OUT  
LOAD  
I
= 10mA  
Figure 2. Burst Mode Operation  
3990p  
12  
LT3990  
APPLICATIONS INFORMATION  
V
OUT  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
FRONT PAGE APPLICATION  
= 3.3V  
V
BD  
OUT  
V
V
BOOST  
LT3990  
IN  
IN  
C3  
TO START  
SW  
GND  
TO RUN  
(4a) For V  
≥ 2.2V  
OUT  
BD  
0
50 100 150 200 250 300 350  
LOAD CURRENT (mA)  
V
V
BOOST  
LT3990  
IN  
IN  
C3  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
V
FRONT PAGE APPLICATION  
OUT  
SW  
OUT  
V
= 5V  
GND  
TO START  
3990 F04  
(4b) For V  
< 2.2V; V < 27V  
IN  
OUT  
TO RUN  
Figure 4. Two Circuits for Generating the Boost Voltage  
the boost capacitor is charged with the energy stored  
in the inductor, the circuit will rely on some minimum  
load current to get the boost circuit running properly.  
This minimum load will depend on input and output volt-  
ages, and on the arrangement of the boost circuit. The  
minimum load generally goes to zero once the circuit has  
started. Figure 5 shows a plot of minimum load to start  
and to run as a function of input voltage. In many cases  
the discharged output capacitor will present a load to the  
switcher, which will allow it to start. The plots show the  
0
50 100 150 200 250 300 350  
3990 F05  
LOAD CURRENT (mA)  
Figure 5. The Minimum Input Voltage Depends on  
Output Voltage, Load Current and Boost Circuit  
Adding a resistor divider from V to EN programs the  
IN  
LT3990 to regulate the output only when V is above a  
IN  
worst-case situation where V is ramping very slowly.  
desired voltage (see Figure 6). This threshold voltage,  
IN  
For lower start-up voltage, the boost diode can be tied to  
V
, can be adjusted by setting the values R3 and R4  
IN(EN)  
V ; however, this restricts the input range to one-half of  
such that they satisfy the following equation:  
IN  
the absolute maximum rating of the BOOST pin.  
R3+R4  
V
=
1V  
IN(EN)  
R4  
Enable Pin  
The LT3990 is in shutdown when the EN pin is low and  
active when the pin is high. The rising threshold of the EN  
comparatoris1V,witha30mVhysteresis.Thisthresholdis  
where output regulation should not start until V is above  
IN(EN)  
IN  
V
. Note that due to the comparator’s hysteresis,  
regulation will not stop until the input falls slightly below  
accurate when V is above 4.2V. If V is lower than 4.2V,  
V
IN(EN)  
.
IN  
IN  
tie EN pin to GND to place the part in shutdown.  
3990p  
13  
LT3990  
APPLICATIONS INFORMATION  
160  
120  
80  
V
= 6V  
IN(EN)  
LT3990  
V
V
IN  
IN  
R3 = 5M  
R4 = 1M  
R3  
R4  
1V  
+
SHDN  
EN  
40  
3990 F06  
0
4
Figure 6. Enable  
3
2
1
0
Be aware that while V is below 4.2V, the input current  
IN  
may rise up to several hundred μA and the part may begin  
to switch while the internal circuitry starts up. Figure 7  
shows the startup behavior of a typical application with  
0
1
2
3
4
5
6
7
8
different programmed V  
.
INPUT VOLTAGE (V)  
IN(EN)  
160  
120  
80  
V
= 12V  
IN(EN)  
Shorted and Reversed Input Protection  
R3 = 11M  
R4 = 1M  
If the inductor is chosen so that it won’t saturate exces-  
sively, a LT3990 buck regulator will tolerate a shorted  
output. There is another situation to consider in systems  
where the output will be held high when the input to the  
LT3990 is absent. This may occur in battery charging ap-  
plications or in battery backup systems where a battery  
or some other supply is diode ORed with the LT3990’s  
40  
0
4
3
2
1
0
output. If the V pin is allowed to float and the EN pin  
IN  
is held high (either by a logic signal or because it is tied  
to V ), then the LT3990’s internal circuitry will pull its  
IN  
0
2
4
6
8
10  
12  
14  
quiescent current through its SW pin. This is fine if the  
system can tolerate a few μA in this state. If the EN pin is  
grounded, the SW pin current will drop to 0.7μA. However,  
INPUT VOLTAGE (V)  
3990 F07  
Figure 7. VIN Start-Up of Front Page Application with VOUT = 3.3V,  
No-Load Current, and VIN(EN) programmed as in Figure 6.  
if the V pin is grounded while the output is held high,  
IN  
regardless of EN, parasitic diodes inside the LT3990 can  
pull current from the output through the SW pin and the  
D4  
V pin. Figure 8 shows a circuit that will run only when  
IN  
MBRS140  
BD  
BOOST  
LT3990  
the input voltage is present and that protects against a  
V
V
IN  
IN  
shorted or reversed input.  
EN  
SW  
V
OUT  
GND  
FB  
+
BACKUP  
3990 F08  
Figure 8. Diode D4 Prevents a Shorted Input from Discharging a  
Backup Battery Tied to the Output. It Also Protects the Circuit from  
a Reversed Input. The LT3990 Runs Only when the Input is Present  
3990p  
14  
LT3990  
APPLICATIONS INFORMATION  
PCB Layout  
with stray inductance in series with the power source,  
forms an under damped tank circuit, and the voltage at  
For proper operation and minimum EMI, care must be  
taken during printed circuit board layout. Figure 9 shows  
the recommended component placement with trace,  
ground plane and via locations. Note that large, switched  
the V pin of the LT3990 can ring to twice the nominal  
IN  
input voltage, possibly exceeding the LT3990’s rating and  
damaging the part. If the input supply is poorly controlled  
or the user will be plugging the LT3990 into an energized  
supply, the input network should be designed to prevent  
thisovershoot.SeeLinearTechnologyApplicationNote 88  
for a complete discussion.  
currents flow in the LT3990’s V and SW pins, the internal  
IN  
catch diode and the input capacitor. The loop formed by  
these components should be as small as possible. These  
components,alongwiththeinductorandoutputcapacitor,  
should be placed on the same side of the circuit board,  
and their connections should be made on that layer. Place  
a local, unbroken ground plane below these components.  
The SW and BOOST nodes should be as small as possible.  
Finally, keep the FB nodes small so that the ground traces  
will shield them from the SW and BOOST nodes. The  
Exposed Pad on the bottom of the DFN package must be  
soldered to ground so that the pad acts as a heat sink. To  
keep thermal resistance low, extend the ground plane as  
much as possible, and add thermal vias under and near  
the LT3990 to additional ground planes within the circuit  
board and on the bottom side.  
High Temperature Considerations  
For higher ambient temperatures, care should be taken  
in the layout of the PCB to ensure good heat sinking  
of the LT3990. The Exposed Pad on the bottom of the  
DFN package must be soldered to a ground plane. This  
ground should be tied to large copper layers below with  
thermal vias; these layers will spread the heat dissipated  
by the LT3990. Placing additional vias can reduce thermal  
resistance further. In the MSOP package, the copper lead  
frame is fused to GND (Pin 5) so place thermal vias near  
this pin. The maximum load current should be derated  
as the ambient temperature approaches the maximum  
junction rating.  
GND  
GND  
Power dissipation within the LT3990 can be estimated by  
calculatingthetotalpowerlossfromanefficiencymeasure-  
ment and subtracting inductor loss. The die temperature  
is calculated by multiplying the LT3990 power dissipation  
by the thermal resistance from junction to ambient.  
1
2
3
4
5
10  
9
EN  
PG  
V
IN  
8
7
6
Finally, be aware that at high ambient temperatures the  
internalSchottkydiodewillhavesignificantleakagecurrent  
(see Typical Performance Characteristics) increasing the  
quiescent current of the LT3990 converter.  
V
GND  
OUT  
3990 F09  
VIAS TO LOCAL GROUND PLANE  
VIAS TO V  
OUT  
Other Linear Technology Publications  
Figure 9. A Good PCB Layout Ensures Proper, Low EMI Operation  
Application Notes 19, 35 and 44 contain more detailed  
descriptions and design information for buck regulators  
and other switching regulators. The LT1376 data sheet  
has a more extensive discussion of output ripple, loop  
compensation and stability testing. Design Note 100  
shows how to generate a bipolar output supply using a  
buck regulator.  
Hot Plugging Safely  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LT3990 circuits. However, these ca-  
pacitors can cause problems if the LT3990 is plugged into  
a live supply. The low loss ceramic capacitor, combined  
3990p  
15  
LT3990  
TYPICAL APPLICATIONS  
3.3V Step-Down Converter  
5V Step-Down Converter  
V
V
IN  
6V TO 60V  
IN  
4.2V TO 60V  
C3  
0.22μF  
C3  
0.22μF  
V
BOOST  
LT3990  
V
BOOST  
LT3990  
IN  
IN  
L1  
L1  
22μH  
22μH  
V
V
OUT  
OUT  
3.3V  
5V  
OFF ON  
EN  
PG  
SW  
BD  
OFF ON  
EN  
PG  
SW  
BD  
350mA  
350mA  
R1  
R1  
22pF  
22pF  
1M  
1M  
C1  
2.2μF  
C1  
2.2μF  
C2  
22μF  
C2  
22μF  
RT  
FB  
RT  
FB  
GND  
GND  
R2  
576k  
R2  
316k  
226k  
226k  
3990 TA02  
3990 TA03  
f = 600kHz  
f = 600kHz  
2.5V Step-Down Converter  
V
IN  
4.2V TO 60V  
C3  
0.47μF  
V
BOOST  
LT3990  
IN  
L1  
15μH  
V
OUT  
2.5V  
OFF ON  
EN  
PG  
SW  
BD  
350mA  
R1  
47pF  
1M  
C1  
2.2μF  
C2  
47μF  
RT  
FB  
GND  
R2  
931k  
226k  
3990 TA04  
f = 600kHz  
1.8V Step-Down Converter  
V
IN  
4.2V TO 27V  
C3  
0.22μF  
V
BOOST  
LT3990  
IN  
L1  
10μH  
V
OUT  
1.8V  
OFF ON  
EN  
BD  
PG  
SW  
350mA  
R1  
47pF  
487k  
C1  
2.2μF  
C2  
47μF  
RT  
FB  
GND  
R2  
1M  
226k  
3990 TA05  
f = 600kHz  
3990p  
16  
LT3990  
TYPICAL APPLICATIONS  
12V Step-Down Converter  
5V, 2MHz Step-Down Converter  
V
V
IN  
IN  
8.5V TO 16V  
TRANSIENTS  
TO 60V  
14V TO 60V  
C3  
C3  
0.1μF  
0.1μF  
V
BOOST  
LT3990  
IN  
L1  
33μH  
V
BOOST  
LT3990  
IN  
L1  
10μH  
V
OUT  
V
12V  
OFF ON  
EN  
PG  
SW  
BD  
OUT  
5V  
OFF ON  
EN  
PG  
SW  
BD  
350mA  
350mA  
R1  
22pF  
R1  
1M  
22pF  
C1  
2.2μF  
C2  
22μF  
RT  
FB  
1M  
C1  
1μF  
C2  
RT  
FB  
GND  
R2  
113k  
226k  
10μF  
R2  
GND  
49.9k  
f = 2MHz  
316k  
3990 TA06  
f = 600kHz  
3990 TA07  
5V Step-Down Converter with Reduced Input Current During Start-Up  
V
IN  
kΩ  
6V TO 60V  
+
0.22μF  
22μH  
V
BOOST  
LT3990  
IN  
5M  
V
OUT  
5V  
EN  
PG  
SW  
BD  
350mA  
1M  
22pF  
1M  
RT  
FB  
22μF  
2.2μF  
GND  
316k  
226k  
3990 TA08a  
f = 600kHz  
Input Current During Start-Up  
Start-Up from High Impedance Input Source  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
EN PROGRAMMED TO 6V  
INPUT CURRENT  
DROPOUT  
V
IN  
5V/DIV  
CONDITIONS  
FRONT PAGE  
APPLICATION  
V
OUT  
2V/DIV  
FRONT PAGE  
APPLICATION  
WITH EN  
PROGRAMMED  
TO 6V  
3990 TA08c  
5ms/DIV  
FRONT PAGE APPLICATION  
V
OUT  
= 5V  
1k INPUT SOURCE RESISTANCE  
2.5mA LOAD  
–0.5  
0
2
6
8
10  
12  
4
INPUT VOLTAGE (V)  
3990 TA08b  
3990p  
17  
LT3990  
PACKAGE DESCRIPTION  
DDB Package  
10-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1722 Rev Ø)  
0.64 p0.05  
(2 SIDES)  
0.70 p0.05  
2.55 p0.05  
1.15 p0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50 BSC  
2.39 p0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.40 p 0.10  
3.00 p0.10  
(2 SIDES)  
TYP  
6
R = 0.05  
TYP  
10  
2.00 p0.10  
PIN 1 BAR  
(2 SIDES)  
TOP MARK  
PIN 1  
R = 0.20 OR  
(SEE NOTE 6)  
0.25 s 45o  
0.64 p 0.05  
(2 SIDES)  
0.25 p 0.05  
CHAMFER  
5
1
(DDB10) DFN 0905 REV Ø  
0.75 p0.05  
0.200 REF  
0.50 BSC  
2.39 p0.05  
(2 SIDES)  
0 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
3990p  
18  
LT3990  
PACKAGE DESCRIPTION  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661 Rev E)  
0.889 p 0.127  
(.035 p .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.497 p 0.076  
(.0196 p .003)  
REF  
0.50  
0.305 p 0.038  
(.0120 p .0015)  
TYP  
(.0197)  
10 9  
8
7 6  
BSC  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
DETAIL “A”  
0o – 6o TYP  
0.254  
(.010)  
GAUGE PLANE  
1
2
3
4 5  
0.53 p 0.152  
(.021 p .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
0.50  
(.0197)  
BSC  
MSOP (MS) 0307 REV E  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3990p  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT3990  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 3.6V to 36V, Transient to 60V, V  
LT3689  
36V, 60V Transient Protection, 800mA, 2.2MHz High Efficiency  
Micropower Step-Down DC/DC Converter with POR Reset and  
Watchdog Timer  
= 0.8V, I = 75μA,  
OUT(MIN) Q  
IN  
I
< 1μA, 3mm × 3mm QFN16  
SD  
LT3682  
36V, 60V  
, 1A, 2.2MHz High Efficiency Micropower Step-Down  
V : 3.6V to 36V, V  
= 0.8V, I = 75μA, I < 1μA,  
OUT(MIN) Q SD  
MAX  
IN  
DC/DC Converter  
3mm × 3mm DFN12  
LT3480  
36V with Transient Protection to 60V, 2A (I ), 2.4MHz, High  
V : 3.6V to 38V, V  
= 0.78V, I = 70μA, I < 1μA,  
Q SD  
OUT  
IN  
OUT(MIN)  
Efficiency Step-Down DC/DC Converter with Burst Mode® Operation 3mm × 3mm DFN10, MSOP10E  
LT3685  
36V with Transient Protection to 60V, 2A (I ), 2.4MHz, High  
V : 3.6V to 38V, V  
= 0.78V, I = 70μA, I < 1μA,  
OUT  
IN  
OUT(MIN) Q SD  
Efficiency Step-Down DC/DC Converter  
3mm × 3mm DFN10, MSOP10E  
LT3481  
34V with Transient Protection to 36V, 2A (I ), 2.8MHz, High  
V : 3.6V to 34V, V = 1.26V, I = 50μA, I < 1μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
Efficiency Step-Down DC/DC Converter with Burst Mode Operation  
3mm × 3mm DFN10, MSOP10E  
LT3684  
34V with Transient Protection to 36V, 2A (I ), 2.8MHz,  
V : 3.6V to 34V, V = 1.26V, I = 850μA, I < 1μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
High Efficiency Step-Down DC/DC Converter  
3mm × 3mm DFN10, MSOP10E  
LT3508  
36V with Transient Protection to 40V, Dual 1.4A (I ), 3MHz,  
V : 3.7V to 37V, V = 0.8V, I = 4.6mA, I < 1μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
High Efficiency Step-Down DC/DC Converter  
4mm × 4mm QFN24, TSSOP16E  
LT3505  
36V with Transient Protection to 40V, 1.4A (I ), 3MHz,  
V : 3.6V to 34V, V = 0.78V, I = 2mA, I < 2μA,  
OUT  
IN  
OUT(MIN)  
Q
SD  
High Efficiency Step-Down DC/DC Converter  
3mm × 3mm DFN8, MSOP8E  
LT3500  
36V, 40V  
, 2A, 2.5MHz High Efficiency Step-Down DC/DC  
MAX  
V : 3.6V to 36V, V = 0.8V, I = 2.5mA, I < 10μA,  
IN  
OUT(MIN)  
Q
SD  
Converter and LDO Controller  
3mm × 3mm DFN10  
LT3507  
36V 2.5MHz, Triple (2.4A + 1.5A + 1.5A (I )) with LDO Controller  
V : 4V to 36V, V  
= 0.8V, I = 7mA, I < 1μA,  
OUT(MIN) Q SD  
OUT  
IN  
High Efficiency Step-Down DC/DC Converter  
5mm × 7mm QFN38  
LT3437  
60V, 400mA (I ), Micropower Step-Down DC/DC Converter with  
V : 3.3V to 60V, V  
= 1.25V, I = 100μA, I < 1μA,  
OUT(MIN) Q SD  
OUT  
IN  
Burst Mode Operation  
3mm × 3mm DFN10, TSSOP16E  
LT1976/LT1977  
LT3434/LT3435  
LT1936  
60V, 1.2A (I ), 200/500kHz, High Efficiency Step-Down DC/DC  
V : 3.3V to 60V, V  
= 1.20V, I = 100μA, I < 1μA,  
Q SD  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
Converter with Burst Mode Operation  
TSSOP16E  
60V, 2.4A (I ), 200/500kHz, High Efficiency Step-Down DC/DC  
V : 3.3V to 60V, V  
= 1.20V, I = 100μA, I < 1μA,  
Q SD  
OUT  
IN  
Converter with Burst Mode Operation  
TSSOP16E  
36V, 1.4A (I ) , 500kHz High Efficiency Step-Down DC/DC  
V : 3.6V to 36V, V  
= 1.2V, I = 1.9mA, I < 1μA,  
Q SD  
OUT  
IN  
Converter  
MS8E  
LT3493  
36V, 1.4A (IOUT), 750kHz High Efficiency Step-Down DC/DC  
Converter  
V : 3.6V to 36V, V  
= 0.8V, I = 1.9mA, I < 1μA,  
Q SD  
IN  
2mm × 3mm DFN6  
LT1766  
60V, 1.2A (I ), 200kHz, High Efficiency Step-Down DC/DC  
V : 5.5V to 60V, V  
= 1.20V, I = 2.5mA, I = 25μA,  
Q SD  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
Converter  
TSSOP16E  
LT3508  
36V with Transient Protection to 40V, Dual 1.4A (I ), 3MHz,  
V : 3.7V to 37V, V  
= 0.8V, I = 4.6mA, I < 1μA,  
Q SD  
OUT  
IN  
High Efficiency Step-Down DC/DC Converter  
4mm × 4mm QFN24, TSSOP16E  
LT3500  
36V, 40V  
, 2A, 2.5MHz High Efficiency Step-Down DC/DC  
MAX  
V : 3.6V to 36V, V = 0.8V, I = 2.5mA, I < 10μA,  
IN  
OUT(MIN)  
Q
SD  
Converter and LDO Controller  
3mm × 3mm DFN10  
LT3507  
36V 2.5MHz, Triple (2.4A + 1.5A + 1.5A (I )) with LDO Controller  
V : 4V to 36V, V  
= 0.8V, I = 7mA, I < 1μA,  
OUT(MIN) Q SD  
OUT  
IN  
High Efficiency Step-Down DC/DC Converter  
5mm × 7mm QFN38  
Burst Mode is a registered trademark of Linear Technology Corporation.  
3990p  
LT 0709 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY